1	Arctic Ocean CO ₂ uptake: an improved multi-year estimate of the air-sea CO ₂ flux
2	incorporating chlorophyll-a concentrations
3	
4	Sayaka Yasunaka ^{1,2} , Eko Siswanto ¹ , Are Olsen ³ , Mario Hoppema ⁴ , Eiji Watanabe ² ,
5	Agneta Fransson ⁵ , Melissa Chierici ⁶ , Akihiko Murata ^{1,2} , Siv K. Lauvset ^{3,7} , Rik
6	Wanninkhof ⁸ , Taro Takahashi ⁹ , Naohiro Kosugi ¹⁰ , Abdirahman M. Omar ⁷ , Steven van
7	Heuven ¹¹ , and Jeremy T. Mathis ¹²
8	
9	¹ Research and Development Center for Global Change, Japan Agency for Marine-Earth
10	Science and Technology, Yokosuka, Japan
11	² Institute of Arctic Climate and Environment Research, Japan Agency for Marine-Earth
12	Science and Technology, Yokosuka, Japan
13	³ Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research,
14	Bergen, Norway
15	⁴ Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Climate
16	Sciences Department, Bremerhaven, Germany
17	⁵ Norwegian Polar Institute, Fram Centre, Norway
18	⁶ Institute of Marine Research, Tromsø, Norway

19	⁷ Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
20	⁸ National Oceanic and Atmospheric Administration, Atlantic Oceanographic and
21	Meteorological Laboratory, Miami, FL, USA
22	⁹ Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
23	¹⁰ Oceanography and Geochemistry Research Department, Meteorological Research
24	Institute, Japan Meteorological Agency, Tsukuba, Japan
25	¹¹ Energy and Sustainability Research Institute Groningen, Groningen University, The
26	Netherlands
27	¹² National Oceanic and Atmospheric Administration, Arctic Research Program, Seattle,
28	WA, USA
29	
30	Abstract
31	We estimated monthly air-sea CO ₂ fluxes in the Arctic Ocean and its adjacent seas
32	north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO_2 in
33	the surface water (pCO_{2w}) using a self-organizing map (SOM) technique incorporating
34	chlorophyll-a concentration (Chl-a), sea surface temperature, sea surface salinity, sea ice
35	concentration, atmospheric CO ₂ mixing ratio, and geographical position. We applied
36	new algorithms for extracting Chl-a from satellite remote sensing reflectance with close

37	examination of uncertainty of the obtained Chl-a values. The overall relationship
38	between pCO_{2w} and Chl-a was negative, whereas the relationship varied among seasons
39	and regions. The addition of Chl-a as a parameter in the SOM process enabled us to
40	improve the estimate of pCO_{2w} particularly via better representation of its decline in
41	spring which resulted from biologically mediated pCO_{2w} reduction. As a result of the
42	inclusion of Chl-a, the uncertainty in the CO ₂ flux estimate was reduced, with a net
43	annual Arctic Ocean CO ₂ uptake of 180 ± 130 TgC y ⁻¹ . Seasonal to interannual
44	variation of the CO ₂ influx was also figured out.

46 **1. Introduction**

The Arctic Ocean and its adjacent seas (Fig. 1) generally act as a sink for atmospheric 47CO₂ because of the high solubility of CO₂ in their low-temperature waters, combined 48 with extensive primary production during the summer season (Bates and Mathis, 2009). 4950The Arctic Ocean and its adjacent seas consist of complicated subregions that include continental shelves, central basins, and sea-ice-covered areas. Therefore, the surface 51partial pressure of CO_2 (pCO_{2w}) distribution is not only affected by ocean heat loss and 5253gain, and biological production and respiration, but also by sea-ice formation and melting, river discharge, and shelf-basin interactions (cf. Bates and Mathis, 2009, and 54

55	references therein). However, CO ₂ measurements are sparse in this very heterogeneous
56	area (Fig. 2), and hence the existing air-sea CO ₂ flux estimates in the Arctic are poorly
57	constrained (Bates and Mathis, 2009; Schuster et al., 2013; Yasanuka et al., 2016).
58	As global warming progresses, melting of sea ice will increase the area of open water
59	and enhance the potential for atmospheric CO ₂ uptake (e.g., Bates et al., 2006; Gao et
60	al., 2012). However, other processes could suppress CO ₂ uptake. For example,
61	increasing seawater temperatures, declining buffer capacity due to the freshening of
62	Arctic surface water by increased river runoff and melting of sea-ice, and increased
63	vertical mixing supplying high-CO ₂ water to the surface will all result in a tendency for
64	reduced uptake (Bates and Mathis, 2009; Cai et al., 2010; Chierici et al., 2011; Else et
65	al., 2013; Bates et al. 2014; Fransson et al., 2017). The combined effect of all these
66	processes on ocean CO ₂ uptake has not yet been clarified for the Arctic.
67	Yasunaka et al. (2016) prepared monthly maps of air-sea CO ₂ fluxes from 1997 to
68	2013 for the Arctic north of 60° N by applying, for the first time, a self-organizing map
69	(SOM) technique to map pCO_{2w} in the Arctic Ocean. The advantage of the SOM
70	technique is its ability to empirically determine relationships among variables without
71	making any a priori assumptions (about what types of regression functions are
72	applicable, and for which sub-regions the same regression function can be adopted, for

73	example). The SOM technique has been shown to reproduce the distribution of pCO_{2w}
74	from unevenly distributed observations better than multiple regression methods
75	(Lefèvre et al., 2005; Telszewski et al., 2009). The uncertainty of the CO ₂ flux estimated
76	by Yasunaka et al. (2016), however, was large (± 3.4 –4.6 mmol m ⁻² d ⁻¹), and the
77	estimated CO ₂ uptake in the Arctic Ocean was smaller than the uncertainty $(180 \pm 210$
78	TgC y^{-1}). One possible reason for the large uncertainties is that no direct proxies for the
79	effect of biological processes on pCO_{2w} were used in that study, leading to an
80	underestimation of the seasonal amplitude of pCO_{2w} .
81	Remotely sensed chlorophyll-a concentrations (Chl-a) has been used in several
82	pCO_{2w} mapping efforts as a direct proxy for the effect of primary production. For
83	example Chierici et al. (2009) produced pCO_{2w} algorithms for the subpolar North
84	Atlantic during the period from May to October and found that the inclusion of Chl-a
85	improved the fit substantially. Measurements in several areas of the Arctic show that
86	relationships between pCO_{2w} and Chl-a occur also in this region. They correlate
87	negatively (Gao et al., 2012; Ulfsbo et al., 2014), as expected from the drawdown of
88	CO ₂ during photosynthesis, but exceptions do occur; in coastal regions the correlation is
89	positive (Mucci et al., 2010).
90	Several studies have demonstrated that Chl-a in the Arctic can be estimated from

 $\mathbf{5}$

91	satellite remote sensing reflectance (Rrs) (e.g. Arrigo and Dijken, 2004; Cota et al.,
92	2004). Perrette et al. (2011) showed that satellite-derived Chl-a successfully captured a
93	phytoplankton bloom in the ice-edge region. Changes in the seasonal cycle from a
94	single peak to a double peak of Chl-a have also been detected and are likely a
95	consequence of the recent sea-ice loss in the Arctic (Ardyna et al., 2014). However, the
96	available products (e.g. NASA's OceanColor dataset) in the Arctic include large
97	uncertainty and many missing values because of sea ice, low angle of sun-light and
98	cloud cover, and are also prone to error due to the co-occurrence of large colored
99	dissolved organic matter (CDOM) and total suspended matter (TSM) concentrations
100	(e.g., Matuoka et al., 2007; Lewis et al., 2016). Here we deal with these issues by using
101	several Chl-a algorithms optimised for the Arctic and others, and by excluding Chl-a
102	data from grid cells potentially affected by CDOM and TSM. Calculated Chl-a values
103	were then interpolated Chl-a so as to fit with the original data. Using these data, we
104	examined the relationship between pCO_{2w} and Chl-a in the Arctic Ocean and its
105	adjacent seas, and computed monthly air–sea CO_2 flux maps for regions north of 60° N
106	using a SOM technique similar to that of Yasunaka et al. (2016), and with Chl-a added
107	to the SOM process.

109 **2. Data**

110 2.1. pCO_{2w} measurements

- 111 We used fugacity of CO_2 (fCO_{2w}) observations from the Surface Ocean CO_2 Atlas
- version 4 (SOCATv4; Bakker et al., 2016; http://www.socat.info/; 1,983,799 data points
- 113 from $>60^{\circ}$ N), and pCO_{2w} observations from the Global Surface pCO₂ Database Version
- 114 2014 (LDEOv2014; Takahashi et al., 2015;
- 115 http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/; 302,150 data points from

116 $>60^{\circ}$ N). In the LDEO database, pCO_{2w} is based on measured CO₂ mixing ratio in a

117 parcel of air equilibrated with sea-water sample, and computed assuming CO₂ as an

- 118 ideal gas, whereas in the SOCAT, fCO_2 is obtained considering the non-ideality from
- 119 CO₂-CO₂ and CO₂-H₂O molecular interactions. Because of ambiguities in the CO₂-H₂O

120 interaction corrections, the SOCAT fCO_{2w} values are converted to pCO_{2w} values (a

- 121 correction of <1 %), and then combined them with the LDEO pCO_{2w} values. When data
- 122 points were duplicated in the SOCAT and LDEO datasets, the SOCAT version was used,
- 123 except for the data obtained from onboard the USCGC Healy as these have been
- reanalyzed by Takahashi et al. (2015). Altogether 200,409 duplicates were removed. We
- 125 also used shipboard pCO_{2w} data obtained during cruises of the R/V *Mirai* of the Japan
- 126 Agency for Marine-Earth Science and Technology (JAMSTEC) that have not yet been

included in SOCATv4 or LDEOv2014 (cruises MR09_03, MR10_05, MR12_E03, and MR13_06; available at http://www.godac.jamstec.go.jp/darwin/e; 95,725 data points from >60° N). In total, we used 2,181,265 pCO_{2w} data points, 33 % more than used by

130 Yasunaka et al. (2016).

To further improve the data coverage, especially for the ice-covered regions, we also 131used 2166 pCO_{2w} values calculated from dissolved inorganic carbon (DIC) and total 132133alkalinity (TA) data extracted from the Global Ocean Data Analysis Project version 2 (GLODAPv2; Key et al., 2015; Olsen et al., 2016; http://www.glodap.info). 90% of 134135these data were obtained at cruises without underway pCO_{2w} data. We extracted values of samples obtained from water depths shallower than 10 m, or the shallowest values 136from the upper 30 m of each cast if there were no values from above 10 m. There are 1371795 data points above 10 m depth, 296 in the 10-20 m range, and 75 in the 20-30 m 138range. This resulted in 94 % more calculated pCO_{2w} values than used by Yasunaka et al. 139140 (2016), and altogether the number of directly measured and calculated data points used 141 here is 33% more than used in Yasunaka et al. (2016). The CO2SYS program (Lewis 142and Wallace, 1998; van Heuven et al., 2009) was used for the calculation with the 143dissociation constants reported by Lueker et al. (2000) and Dickson (1990). We checked the difference between calculated pCO_{2w} and measured pCO_{2w} using the 144

145	data from cruises with both bottle DIC/TA samples and underway pCO_{2w} available
146	(10% of the bottle samples, i.e., 245 pairs). Mean value for the calculated pCO_{2w} values
147	from bottle DIC/TA samples from the upper 30 m was 299 \pm 42 $\mu atm,$ and that for the
148	corresponding directly measured pCO_{2w} values from underway observation generally at
149	4–6m was $289 \pm 11 \mu atm$. The mean values are slightly higher for calculated pCO_{2w}
150	values than for measured ones, but the difference is smaller than the standard deviation
151	and the uncertainties of the calculation (the latter of which is 14 μ atm; see Section 4.2).
152	The difference between calculated and measured pCO_{2w} is not dependent on the depth
153	where the TA/DIC samples were obtained. It was $10 \pm 31 \mu$ atm for samples from above
154	10 m, 7 \pm 27 µatm for samples from 10–20 m, and 11 \pm 47 µatm for samples from 20–
155	30 m.
156	The availability of pCO_{2w} data (measured and calculated) varies spatially and
157	
	temporally (Fig. 2). Most of the available data are from the subpolar North Atlantic, the
158	temporally (Fig. 2). Most of the available data are from the subpolar North Atlantic, the Greenland Sea, the Norwegian Sea, the Barents Sea, and the Chukchi Sea while much
158 159	
	Greenland Sea, the Norwegian Sea, the Barents Sea, and the Chukchi Sea while much
159	Greenland Sea, the Norwegian Sea, the Barents Sea, and the Chukchi Sea while much less data are available for the Kara Sea, the Laptev Sea, the East Siberian Sea, and the

163 2.2	2. Other	data
---------	----------	------

164 To calculate Chl-a, we used merged Rrs data from the SeaWiFS, MODIS-Aqua, MERIS,

and VIIRS ocean color sensors processed and distributed by the GlobColour Project

166 (Maritorena et al., 2010; http://hermes.acri.fr/index.php?class=archive). For

- 167 compatibility with the spatio-temporal resolution of the gridded pCO_{2w} data (see below
- 168 Sect. 3.3), we selected monthly mean Rrs data with a spatial resolution of 1° (latitude) \times
- 169 1° (longitude).
- 170 Sea surface temperature (SST) data were extracted from the National Oceanic and
- 171 Atmospheric Administration (NOAA) Optimum Interpolation SST Version 2 (Reynolds
- 172 et al., 2002; http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). These
- 173 data are provided at a resolution of $1^{\circ} \times 1^{\circ} \times 1$ month. Sea surface salinity (SSS) data
- were retrieved from the Polar Science Center Hydrographic Climatology version 3.0,
- which also has a resolution of $1^{\circ} \times 1^{\circ} \times 1$ month (Steele et al., 2001;
- 176 http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html). Sea ice
- 177 concentration (SIC) data were obtained from the NOAA/National Snow and Ice Data
- 178 Center Climate Data Record of Passive Microwave Sea Ice Concentration version 2,
- which has a resolution of 25 km \times 25 km \times 1 month (Meier et al., 2013;
- 180 http://nsidc.org/data/G02202). These data were averaged into $1^{\circ} \times 1^{\circ} \times 1$ month

181	grid-cells. Zonal mean data for the atmospheric CO ₂ mixing ratio (<i>x</i> CO _{2a}) were
182	retrieved from the NOAA Greenhouse Gas Marine Boundary Layer Reference data
183	product (Conway et al., 1994; http://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html) and
184	were interpolated into $1^{\circ} \times 1^{\circ} \times 1$ month grid-cells. Both sea level pressure and 6-hourly
185	10-m wind speeds data were obtained from the U.S. National Centers for Environmental
186	Prediction–Department of Energy Reanalysis 2 (NCEP 2) (Kanamitsu et al., 2002;
187	http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html). We also used
188	the 6-hourly 10-m wind speeds from the U.S. National Centers for Atmospheric
189	Prediction and the National Center for Atmospheric Research Reanalysis 1 (NCEP1)
190	(Kalnay et al., 1996;
191	https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) when the gas
192	transfer velocity was optimized for NCEP2 wind (see Section 3.5 below).
	unister veroeity was optimized for reelf 2 wind (see section 5.5 below).
193	Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015;
193 194	
	Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015;
194	Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015; Olsen et al., 2016) and the World Ocean Database 2013 (WOD; Boyer et al., 2013).
194 195	Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015; Olsen et al., 2016) and the World Ocean Database 2013 (WOD; Boyer et al., 2013). When data points were duplicated in the GLODAPv2 and WOD datasets, the

199 **3. Methods**

200 3.1. Calculation of chlorophyll-a concentrations

201 Chl-a was calculated from Rrs by using the Arctic algorithm developed by Cota et al.

- 202 (2004). Several assessments have shown that this algorithm has a large uncertainty (e.g.,
- 203 Matsuoka et al., 2007; Lewis et al., 2016), and therefore the sensitivity of our results to
- this choice was evaluated by using two alternative algorithms for Chl-a: the standard

algorithm of O'Reilly et al. (1998), and the coastal algorithm, of Tassan (1994).

206 To ensure that we were working with Rrs data relatively unaffected by CDOM and

TSM, the Chl-a data were masked following the method of Siswanto et al. (2013).

- Briefly, the Rrs spectral slope between 412 and 555 nm ($\text{Rrs}_{555-412 \text{ slope}}$; sr⁻¹ nm⁻¹) was
- 209 plotted against logarithmically transformed Chl-a. Based on the scatter plot of

210 log(Chl-a) and Rrs_{555-412 slope}, we then defined a boundary line separating

- 211 phytoplankton-dominated grid-cells (Rrs_{555-412 slope} < boundary value) from potentially
- 212 non-phytoplankton-dominated grid-cells ($Rrs_{555-412 \text{ slope}} \ge$ boundary value) by:
- 213

214
$$\operatorname{Rrs}_{555-412 \text{ slope}} = -0.000003 \{\log(\text{Chl-a})\}^2 + 0.00002 \{\log(\text{Chl-a})\} + 0.00006.$$
 (1)

or 2) Rrs at 555nm (Rrs_{555}) > 0.01 sr⁻¹ (or normalized water-leaving radiance > 2 mW 217 $cm^{-2} \mu m^{-1} sr^{-1}$; see Siswanto et al., 2011 and Moore et al., 2012). This criterion masked 2182192% of all Chl-a data. 220The criteria described in the previous paragraph could mask out grid-cells having coccolithophore blooms, which are sometimes observed in the Arctic Ocean (e.g., 221Smyth et al., 2004), as they also have $\operatorname{Rrs}_{555} > 0.01 \text{ sr}^{-1}$ (Moore et al., 2012). Unlike 222223waters dominated by non-phytoplankton particles, whose Rrs spectral shape peaks at 224555 nm, the Rrs spectral shape of waters with coccolithophore blooms peaks at 490 or 225510 nm (see Iida et al., 2002; Moore et al., 2012). Therefore, grid-cells with Rrs spectral peaks at 490 or 510 nm (already classified using the criteria of Rrs at 490nm (Rrs₄₉₀) > 226Rrs at 443nm (Rrs_{443}) and Rrs at 510nm (Rrs_{510}) > Rrs_{555}) were considered as 227 coccolithophore grid-cells, and were reintroduced. 8% of the masked Chl-a data were 228reintroduced by this criterion. 2292303.2. Chlorophyll-a interpolation 231Chl-a values are often missing because of cloud cover, low angle of sunlight, or sea ice. 232233For the period and area analyzed here, data are missing for 86 % of the space and time

grid-cells. Because pCO_{2w} mapping requires a complete Chl-a field without missing

234

235	values, we interpolated the Chl-a data as follows; 1) Chl-a was set to 0.01 mg m^{-3}
236	(minimum value of Chl-a) in high-latitude regions in winter when there was no light
237	(north of 80° N in December and January, and north of 88° N in November and
238	February). 2) Whenever SIC was greater than 99 %, Chl-a was set to 0.01 mg m ^{-3} (full
239	ice coverage, thus minimum Chl-a). We chose the strict criterion of SIC $>$ 99 % because
240	weak but significant primary production has been found to occur under the sea ice in
241	regions with SIC around 90 % (Gosselin et al., 1997; Ulfsbo et al., 2014; Assmy et al.,
242	2017). 3) The remaining grid-cells with missing data were filled, wherever possible,
243	using the average of Chl-a in the surrounding grid-cells within $\pm 1^{\circ}$ latitude and $\pm 1^{\circ}$
244	longitude; this mainly compensated for missing Chl-a values due to cloud cover or
245	grid-cells masked out as potentially affected by CDOM and TSM. 4) Parts of the
246	remaining missing Chl-a values, mainly for the pre-satellite period of January-August
247	1997, were set to the monthly climatological Chl-a values based on the 18-year monthly
248	mean from 1997 to 2014. 5) The final remaining missing Chl-a data, mainly for the
249	marginal sea-ice zone, were generated by linear interpolation using surrounding data.
250	With each interpolation step the number of the grid-cells with missing data decreased;
251	23 % of grid-cells without Chl-a data were filled by the first step, and the subsequent
252	steps provided data for the remaining 12, 8, 5, and 52 %.

254 3.3. Gridding of pCO_2 data

In order to bring the individual pCO_{2w} data to the same resolution as the other input data, 255they were gridded to $1^{\circ} \times 1^{\circ} \times 1$ month grid-cells covering the years from 1997 to 2014. 256This was carried out using the same three-step procedure of Yasunaka et al. (2016) as 257this excludes values that deviate largely from the long-term mean in the area of each 258grid cell. In short, first, anomalous values were screened in the following manner. We 259calculated the long-term mean and its standard deviation for a window size of $\pm 5^{\circ}$ of 260261latitude, $\pm 30^{\circ}$ of longitude, and ± 2 months (regardless of the year) for each $1^{\circ} \times 1^{\circ} \times 1$ month grid-cell. We then eliminated the data in each grid-cell that differed by more than 262three standard deviations from this long-term mean. In the second step, we recalculated 263264the long-term mean and its standard deviation using a smaller window size of $\pm 2^{\circ}$ of latitude, $\pm 10^{\circ}$ of longitude, and ± 1 month (regardless of the year) for each $1^{\circ} \times 1^{\circ} \times 1$ 265month grid-cell, and eliminated data that differed from that long-term mean by more 266than three standard deviations. In the final step the mean value of the remaining data in 267 each $1^{\circ} \times 1^{\circ} \times 1$ month grid cell for each year from 1997 to 2014 was calculated. This 268269procedure identified in total about 0.5 % of the data as extreme values. These may well be correct observations, but likely reflect small spatial scale and/or short time scale 270

271	variations that can are quite atypical of the large-scale variability of interest in this study.
272	These excluded values were randomly distributed in time and space.
273	Although some studies have used pCO_{2w} normalized to a certain year, based on the
274	assumption of a constant rate of increase for pCO_{2w} (e.g., Takahashi et al., 2009), we
275	used "non-normalized" pCO_{2w} values from all years; therefore, in our analysis pCO_{2w}
276	can increase both non-linearly in time and non-uniformly in space.
277	
278	3.4. pCO_2 estimation using a self-organizing map
279	We estimated pCO_{2w} by the SOM technique used by Yasunaka et al. (2016), but with
280	Chl-a as an added training parameter to the SOM in addition to SST, SSS, SIC, <i>x</i> CO _{2a} ,
281	and geographical position X (=sin[latitude] \times cos[longitude]) and Y (=sin[latitude] \times
282	sin[longitude]). Chl-a, SST, SSS, and SIC are closely associated with processes causing
283	variation in pCO_{2w} , such as primary production, warming/cooling, mixing, and
284	freshwater input, and represent spatio-temporal pCO_{2w} variability at seasonal to
285	interannual time-scales. Including the xCO_{2a} enables the SOM to reflect the pCO_{2w}
286	time-trend in response to the atmospheric CO ₂ changes including large seasonal
287	variation and continued anthropogenic emissions. In several previous studies the

anthropogenic pCO_{2w} increase has been assumed to be steady and homogeneous, and

289	subtracted from the original pCO_{2w} data and added to the estimated pCO_{2w} (Nakaoka et
290	al. 2013; Zheng et al. 2014). However, the occurrence of steady and homogeneous
291	pCO_{2w} trends has not yet been demonstrated in the Arctic Ocean and using xCO_{2a} as a
292	training parameter in the SOM, similar to Landschutzer et al. (2013, 2014) is preferable.
293	Finally, the inclusion of geographical position among the training parameters can
294	prevent systematic spatial biases (Yasunaka et al., 2014). Compared to other efforts
295	mapping pCO_{2w} using the SOM technique such as those by Telszewski et al. (2009) and
296	Nakaoka et al. (2013), we used xCO_{2a} , and geographical position as training parameters
297	while we did not use mixed layer depth because of lack of reliable data in the Arctic.
298	Briefly, the SOM technique was implemented as follows: first, the approximately one
299	million $1^{\circ} \times 1^{\circ} \times 1$ month grid-cells in the analysis region and period were assigned to
300	5000 groups, which are called "neurons", of the SOM by using the training parameters.
301	Then, each neuron was labeled, whenever possible, with the pCO_{2w} value of the
302	grid-cell where the Chl-a, SST, SSS, SIC, <i>x</i> CO _{2a} , and X and Y values were most similar
303	to those of the neuron. Finally, each grid-cell in the analysis region and period was
304	assigned the pCO_{2w} value of the neuron whose Chl-a, SST, SSS, SIC, xCO_{2a} , and X and
305	Y values were most similar to those of that grid-cell. If the most similar neuron was not
306	labeled with a pCO_{2w} value, then the pCO_{2w} value of the neuron that was most similar

307 and labeled was used. That case often happened in periods and regions without any 308 observed data. A detailed description of the procedure can be found in Telszewski et al. (2009) and Nakaoka et al. (2013). 309 310 3.5. Calculation of air-sea CO₂ fluxes 311We calculated monthly air-sea CO_2 flux (F) values from the pCO_{2w} values estimated in 312313Sect. 3.4 by using the bulk formula: 314 $F = kL(pCO_{2w} - pCO_{2a}),$ 315(2) 316where k is the gas transfer velocity and L is the solubility of CO_2 . The solubility of CO_2 317(L) was calculated as a function of SST and SSS (Weiss, 1974). We converted the 318interpolated NOAA marine boundary layer xCO_{2a} data (Sect. 2.2) to pCO_{2a} by using 319320 monthly sea-level pressure data and the water-vapor saturation pressure calculated from monthly SST and SSS (Murray, 1967). 321

322 The gas transfer velocity k was calculated by using the formula of Sweeney et al.

323 (2007):

325
$$k = 0.19 (\text{Sc}/660)^{-0.5} < \text{W}_{\text{NCEP2}}^2 > ,$$
 (3)

327	where Sc is the Schmidt number of CO ₂ in seawater at a given SST, calculated
328	according to Wanninkhof (2014), "<>" denotes the monthly mean, and $\langle W_{NCEP2}^2 \rangle$ is
329	the monthly mean of the second moment of the NCEP2 6-hourly wind speed. The
330	coefficient 0.19, which is the global average of 0.27 $< W_{NCEP1}^2 > / < W_{NCEP2}^2 >$, is based on
331	the one determined by Sweeney et al. (2007) but optimized for NCEP2 winds, following
332	the same method as Schuster et al. (2013) and Wanninkhof et al. (2013).
333	The suppression of gas exchange by sea ice was accounted for by correcting the air-
334	sea CO ₂ fluxes using the parameterization presented by Loose et al. (2009); the flux is
335	proportional to $(1-SIC)^{0.4}$. Following Bates et al. (2006), in the regions with SIC > 99 %,
336	we used SIC = 99 % to allow for non-negligible rates of air–sea CO_2 exchange through
337	leads, fractures, and brine channels (Semiletov et al., 2004; Fransson et al., 2017). This
338	parameterization reduces the flux in fully ice covered waters (SIC $>$ 99%) by 84%.
339	
340	4. Uncertainty

341 4.1. Uncertainty in chlorophyll-a concentration data

343	the interpolated Chl-a data seems to fit well with the original data. Most interpolated
344	Chl-a data have low concentrations because of high SIC and lack of sunlight. The
345	average of the interpolated Chl-a values is 0.1 mg m ^{-3} , and less than 5% of the
346	interpolated Chl-a values are >0.5 mg m ⁻³ (cf. the average of the original Chl-a values is
347	1.1 mg m ⁻³ , and 48% of the original Chl-a values are >0.5 mg m ⁻³). The previous
348	studies to estimate pCO_{2w} in high-latitudes assumed missing Chl-a as constant values
349	and ignored spatio-temporal variation of Chl-a (Landschutzer et al. 2013; Nakaoka et al.
350	2013). However, original Chl-a values in the ice-edge region are not small as captured
351	by Perrette et al. (2011), and those in the northernmost grids in winter, north of which
352	the original Chl-a values are missing, is far south of polar night region, since they are
353	missing not because of no sunlight but because of low-angles of sunlight (Fig. 3a).
354	Therefore, we believe interpolation is better than lowest constant values.
355	To validate our Chl-a interpolation, we repeated the interpolation after randomly
356	eliminating 10 % of the satellite Chl-a values. We then used the eliminated original
357	Chl-a data as independent data for the validation. Note that this comparison was done
358	where there were the original Chl-a data, i.e. the high Chl-a region. The root mean
359	square difference (RMSD) and correlation coefficient between the interpolated and the
360	independent original Chl-a data are 0.90 mg m^{-3} and 0.80, respectively. It means the

361	interpolated Chl-a, maybe not quantitatively, but qualitatively reproduced the original
362	Chl-a, and therefore is a meaningful parameter in the SOM process. Actually Chl-a data
363	improved the pCO_{2w} estimate, even though Chl-a values in many grid-cells were
364	interpolated values (see Sec. 5.4).
365	To evaluate our choice of Chl-a algorithm (i.e. the Arctic algorithm of Cota et al.,
366	2004), we compared its calculated Chl-a values with those determined by using the
367	standard algorithm of O'Reilly et al. (1998) and the coastal algorithm of Tassan (1994).
368	RMDS and correlation coefficient (r) between the original (i.e. non-interpolated) Chl-a
369	values are about 0.8 mg m ^{-3} and 0.9, respectively (Table 1). For all the Chl-a values
370	including the interpolated data, they are about 0.4 mg m^{-3} and 0.9. The lower RMSD in
371	this case results from the fact that most of the interpolated Chl-a values have low
372	concentrations. This result means the Chl-a from the different algorisms, maybe not
373	quantitatively, but qualitatively consistent with each other. Since not absolute Chl-a
374	values but relative values affect the pCO_{2w} estimates in the SOM technique, the large
375	RMSD among the Chl-a does not result in the significant difference of the pCO_{2w}
376	estimates. Actually, the pCO_{2w} and CO_2 fluxes determined using Chl-a from any of
377	these algorithms as input to the SOM are consistent within their uncertainties (see Sects.
378	4.2 and 4.3 below). RMSDs between the observed and estimated pCO_{2w} are smallest in

379 pCO_{2w} estimate using Chl-a from the Arctic algorism, but the differences are quite small 380 (<1%).

381

382 4.2. Uncertainty of *p*CO_{2w} mapping

Fig. 4 compares observed and estimated pCO_{2w} (note that the spatial change visible in 383 Figs. 4a and 4b include differences generated by different seasonal coverage of data in 384 the various regions). Both observed and estimated pCO_{2w} tend to be higher in the 385subpolar North Atlantic, the Laptev Sea, and the Canada Basin, and lower in the 386 387 Greenland Sea and the Barents Sea. However, the east-west contrast in the Bering Sea and the contrast between the Canada Basin and the Chukchi Sea are weaker in our 388 estimates than in the observations, and mean bias and RMSD are relatively large in 389 390 those areas (Figs. 4c and 4d). The temporal changes in the observed and estimated pCO_{2w} are in phase (Fig. 5a), although the variability of the estimated values is 391392 somewhat suppressed compared to that of the observed data (Note that the temporal change depicted in Fig. 5a also includes changes incurred by time variations in data 393 coverage). The mean bias and RMSD fluctuate seasonally but are at a constant level 394 395over the years (Fig. 5b).

397	RMSD is 30 μ atm, which is 9 % of the average and 58 % of the standard deviation of
398	the observed pCO_{2w} values. This is a performance level categorized as "good" by
399	Maréchal (2004). The differences between the estimated and observed values stem not
400	only from the estimation error but also from the error of the gridded observed data. The
401	uncertainty of the pCO_{2w} measurements is 2–5 µatm (Bakker et al., 2014), the
402	uncertainty of the pCO_{2w} values calculated from dissolved inorganic carbon and total
403	alkalinity, whose uncertainties are within 4 μ mol kg ⁻¹ and 6 μ mol kg ⁻¹ , respectively
404	(Olsen et al., 2016), can be up to 14 µatm (Lueker et al., 2000), and the sampling error
405	of the gridded pCO_{2w} observation data was determined from the standard errors of
406	monthly observed pCO_{2w} in the 1° × 1° grid-cells, to 7 µatm (Yasunaka et al., 2016).
407	To validate our estimated pCO_{2w} values for periods and regions without any observed
408	data, we repeated the mapping experiments after systematically excluding some of the
409	observed pCO_{2w} data when labeling the neurons; four experiments were carried out, by
410	excluding data (1) from 1997–2004, (2) from January to April, (3) from north of 80°N,
411	and (4) from the Laptev Sea (90°E – 150°E), where there are only a few pCO_{2w}
412	observations. We compared the pCO_{2w} estimates obtained in each experiment with the
413	excluded observations and found that the pCO_{2w} estimates reproduced the general
414	features of the excluded data, both spatially and temporally (not shown here). They

415	were also similar to the pCO_{2w} estimates obtained by using all observations, although
416	the RMSDs between the estimates and the excluded observations are 54 μ atm on
417	average, which is 1.8 times the RMSDs of the estimates based on all observations. It
418	means that our estimated pCO_{2w} reproduce the general features both in space and time
419	even when and where there are no observed data, although the uncertainty in pCO_{2w}
420	might be as large as 54 μ atm in regions and periods without data. We used this
421	uncertainty for pCO_{2w} estimates made by using the pCO_{2w} values of a less similar
422	neuron.

424 4.3. Uncertainty of CO₂ flux estimates

425 Signorini and McClain (2009) estimated the uncertainty of the CO₂ flux resulting from

426 uncertainties in the gas exchange parameterization to be 36 %, and that resulting from

427 uncertainties in the wind data to be 11 %. The uncertainty for SIC is 5 % (Cavalieri et

428 al., 1984; Gloersen et al., 1993; Peng et al., 2013). The standard error of the sea-ice

- 429 effect on gas exchange was estimated to about 30 % by Loose et al. (2009). The
- 430 uncertainty of pCO_{2a} is about 0.5 µatm
- 431 (http://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html), and that of *p*CO_{2w} was 30 μatm
- 432 (Sect. 4.2); therefore, we estimated the uncertainty of $\Delta p CO_2$ (= $p CO_{2w} p CO_{2a}$) to be

433	34 % (average $\Delta p CO_2$ in the analysis domain and period was -89 µatm). The overall
434	uncertainty of the estimated CO ₂ fluxes is thus 59 % ($[0.36^2 + 0.11^2 + 0.05^2 + 0.3^2 + $
435	$(0.34^2]^{1/2}$) in sea-ice covered regions and 51 % ($[0.36^2 + 0.11^2 + 0.34^2]^{1/2}$) in ice-free
436	regions. For estimates using the pCO_{2w} values of a less similar neuron, whose
437	uncertainty in pCO_{2w} is 54 µatm and the uncertainty of the ΔpCO_2 estimates can be as
438	high as 61 %, the uncertainty is 78 % ($[0.36^2 + 0.11^2 + 0.05^2 + 0.3^2 + 0.61^2]^{1/2}$) in
439	sea-ice covered regions, and 72 % ($[0.36^2 + 0.11^2 + 0.61^2]^{1/2}$) in ice-free regions. The
440	average of the estimated CO ₂ flux in the analysis domain and period is 4.8 mmol $m^{-2} d^{-1}$
441	¹ ; hence the uncertainty of the CO ₂ flux estimate corresponds to 2.8 mmol $m^{-2} d^{-1}$ in
442	sea-ice covered regions and 2.4 mmol $m^{-2} d^{-1}$ in ice-free regions. For estimates using
443	the pCO_{2w} values of a less similar neuron, the uncertainty corresponds to 3.7 mmol m ⁻²
444	d^{-1} in the sea-ice covered region and 3.5 mmol m ⁻² d ⁻¹ in ice-free regions.

5. Results and discussion 446

Fig. 6 compares the observed pCO_{2w} and the original non-interpolated Chl-a in spring 448

(March-May) and summer (July-September). In spring, when much of the Arctic Ocean 449

is ice-covered, Chl-a is high in the Barents Sea and the Bering Strait (>1 mg m^{-3}). In 450

451	summer, when the ice cover is less extensive, Chl-a is high in the Chukchi Sea, the Kara
452	Sea, the Laptev Sea, and the East Siberian Sea (>1 mg m^{-3}) and especially high in the
453	coastal regions of the two latter (>2 mg m ⁻³). pCO_{2w} is high in the Norwegian Sea in
454	spring, and in the Kara Sea, the Laptev Sea and the Canada Basin during summer (>300
455	µatm). On the other hand, it is lower in the Chukchi Sea, Bering Strait area and the
456	sea-ice edge region of the Eurasian Basin in summer (<300 µatm). The overall
457	correlation between pCO_{2w} and Chl-a is negative where Chl-a $\leq 1 \text{ mg m}^{-3}$ (70% of all
458	the data; correlation coefficient $r = -0.36$, $P < 0.01$), but there is no significant
459	relationship where Chl-a > 1 mg m ^{-3} (Fig. 7). A similar situation was identified in the
460	subpolar North Atlantic by Olsen et al. (2008). It means that primary production
461	generally draws down the pCO_{2w} , but high Chl-a are not necessarily associated with the
462	low pCO_{2w} probably because high Chl-a usually appears in the coastal regions (Fig. 6b;
463	see below).
464	To determine the spatial variability of the relationship between pCO_{2w} and Chl-a, we
465	calculated the correlation coefficients between pCO_{2w} and Chl-a in a window of $\pm 5^{\circ}$ of
466	latitude, and $\pm 30^{\circ}$ of longitude for each monthly $1^{\circ} \times 1^{\circ}$ grid-cell (Fig. 8a). The
467	correlations between pCO_{2w} and Chl-a are negative in the Greenland/Norwegian Seas
468	and over the Canada Basin. In the Greenland/Norwegian Seas, the correlation between

469	pCO_{2w} and Chl-a is strongly negative (r < -0.4) in spring and weakly negative (-0.4 < r
470	< 0) in summer. Chl-a there is higher in summer than in spring (Fig. 6b), whereas
471	nutrient concentrations are high in spring and low in summer (Fig. 8b). Taken together,
472	this suggest that primary production draws down the pCO_{2w} in spring, whereas in
473	summer the primary production mostly depends on regenerated nutrients (Harrison and
474	Cota, 1991) and the net CO_2 consumption is small, as also reported for the subpolar
475	North Atlantic (Olsen et al., 2008). Therefore the correlation between pCO_{2w} and Chl-a
476	becomes less negative. In the eastern Barents Sea, the Kara Sea and the East Siberian
477	Sea, and the Bering Strait, the correlations are positive because of water with high
478	pCO_{2w} and Chl-a in the coastal region subjected to river discharge (Murata, 2006;
479	Semiletov et al., 2007; Anderson et al., 2009; Manizza et al., 2011). In the Chukchi Sea,
480	the relationship is weak ($-0.2 < r < 0.2$), probably because the relationship is on smaller
481	spatial and temporal scales than those represented by the window size used here, as
482	shown by Mucci et al. (2010). The occurrence of calcifying plankton blooms in this
483	region, likely also weakens the correlation since the calcification increases pCO_{2w}
484	(Shutler et al., 2013; Fransson et al., 2017).
485	These results show that pCO_{2w} relates Chl-a, but the relationships are different
486	depending on the region and the season. It is difficult to represent such a complex

relationship using simple equations (e.g. multiple regression methods) because it needs
a priori assumptions of regression functions and of dividing the basin into sub-regions.
But the SOM technique can empirically induce the relationships without any of the a
priori assumptions, and therefore is suitable to represent such a complex relationship.

- 492 5.2. Spatiotemporal CO₂ flux variability
- 493 The 18-year annual mean CO_2 flux distribution shows that all areas of the Arctic

494 Ocean and its adjacent seas were net CO₂ sinks over the time period that we

495 investigated (Fig. 9). The annual CO₂ influx to the ocean was strong in the

- 496 Greenland/Norwegian Seas (9 \pm 3 mmol m⁻² d⁻¹; 18-year annual mean \pm uncertainty
- 497 averaged over the area shown in Fig. 1), the Barents Sea $(10 \pm 3 \text{ mmol m}^{-2} \text{ d}^{-1})$, and the

498 Chukchi Sea $(5 \pm 3 \text{ mmol m}^{-2} \text{ d}^{-1})$. In contrast, influx was weak and not statistically

- 499 significantly different from zero in the Eurasian Basin, the Canada Basin, the Laptev
- 500 Sea and the East Siberian Sea. Our annual CO₂ flux estimates are consistent with those
- reported by Yasunaka et al. (2016) and other previous studies (Bates and Mathis, 2009,
- 502 and references therein).

503 The estimated 18-year average CO₂ influx to the Arctic Ocean was
$$5 \pm 3 \text{ mmol m}^{-2} \text{ d}^{-1}$$

504 ¹, equivalent to an uptake of $180 \pm 130 \text{ TgC y}^{-1}$ for the ocean area north of 65° N,

505	excluding the Greenland/Norwegian Seas and Baffin Bay ($10.7 \times 10^6 \text{ km}^2$; see Fig. 1).
506	This accounts for 12% of the net global CO_2 uptake by the ocean of 1.5 Gt C yr ⁻¹
507	(Gruber et al., 2009; Wanninkhof et al., 2013; Landschützer et al., 2014). It is within the
508	range of other estimates (81–199 TgC y ⁻¹ ; Bates and Mathis, 2009), but close to the
509	upper bound. That is partly because the parameterization of the suppression effect by
510	sea ice used in this study. Using another parameterization which represents the SIC
511	effect linearly (Takahashi et al. 2009; Butterworth and Miller 2016), CO ₂ uptake of the
512	Arctic Ocean was estimated to be $130 \pm 110 \text{ TgC y}^{-1}$.
513	Fig. 10 shows the seasonal variation of the air-sea CO ₂ fluxes and its controlling
514	factors ($\Delta p CO_2$, wind speed and SIC; solubility is not shown as the impacts of its
515	variations are relatively small in this context) in the Greenland/Norwegian Seas, the
516	Barents Sea, the Chukchi Sea and the Arctic Ocean. In all of these regions the influxes
517	are strongest in October, when the winds strengthen with the approach of winter and the
518	pCO_{2w} and/or SIC are still as low as in the summer. In the Greenland/Norwegian Seas
519	and the Barents Sea the CO_2 influx shows a secondary maximum in February because
520	the strongest winds occur in that month, while in the Chukchi Sea and Arctic Ocean, the
521	winds are also strong but the flux is suppressed by the extensive sea-ice cover. All of
522	these regions are undersaturated with pCO_{2w} (i.e. negative ΔpCO_2) throughout all

523	seasons. The undersaturation is strongest in the Arctic Ocean, as this has the most
524	extensive sea ice cover limiting the fluxes from the atmosphere and the strongest
525	stratification, limiting the mixing of CO ₂ rich subsurface waters into the surface ocean.
526	The undersaturation typically shows a maximum (i.e. $\Delta p CO_2$ is minimum) in late spring
527	to early summer (May–June) when the spring bloom occur (Pabi et al. 2008), but not in
528	the Arctic Ocean. Here the undersaturation reaches its minimum (ΔpCO_2 is the smallest)
529	in late summer (August-September) at the time of minimum sea ice cover, since the
530	seasonal decrease of pCO_2 in summer is larger in the air than in the sea. Overall, in the
531	Greenland/Norwegian Seas and the Barents Sea the seasonal variations of the CO ₂ flux
532	is opposite to that expected from the seasonal $\Delta p CO_2$ variations because it is the wind
533	speed that governs most of the seasonal flux variations. In the Chukchi Sea, on the other
534	hand, the CO ₂ influx is strongest in summer, a consequence of the minimum sea-ice
535	cover and strongest pCO_2 undersaturation. In the Arctic Ocean it is the SIC and wind
536	speed that drive the seasonal flux variations. Seasonal variations of CO ₂ flux are
537	consistent with those of the previous studies (Yasunaka et al. 2016, and references
538	therein), whereas those of pCO_{2w} become realistic (see Section 5.3 below).
539	Fig. 11 shows interannual variation of CO ₂ flux and its driving factors in these four
540	regions. The interannual variations of CO ₂ flux and Δp CO ₂ are generally smaller than

541	the seasonal variations, and are often smaller than their respective uncertainty. In the
542	Greenland/Norwegian Sea, interannual variation of the CO ₂ flux negatively correlates
543	with the wind speed (CO ₂ influx to the ocean is large when the wind is strong; $r = -$
544	0.41), while interannual variation of $\Delta p CO_2$ and sea ice change is small. In the Barents
545	Sea, the interannual variation of CO ₂ flux correlates with Δp CO ₂ positively (r = 0.71)
546	and with SIC negatively ($r = -0.50$), while the correlation with wind speed is not
547	significant. Although low SIC enhance the air-sea CO ₂ exchange due to increase of the
548	area of open water, it also associates with high SST and therefore high pCO_{2w} there. In
549	the Chukchi Sea, CO ₂ influx to ocean is decreasing with the increasing of Δp CO ₂ (r =
550	0.87). High pCO_{2w} (>500 µatm) via storm-induced deep mixing events has been
551	sometimes observed in the Chukchi Sea after 2010 (Hauri et al. 2013; Taro Takahashi,
552	personal communication). Interannual variability of the CO ₂ flux averaged over the
553	Arctic Ocean is small because the increasing $\Delta p CO_2$ is compensated by the effect of sea
554	ice retreat (r = -0.70). Thus, the combined effect of sea-ice retreat and pCO_{2w} increase
555	on CO ₂ flux varied among regions.
556	The CO ₂ influx has been increasing in the Greenland Sea and northern Barents Sea,
557	and decreasing in the Chukchi Sea and southern Barents Sea (Fig. 12). The CO ₂ flux
558	trend corresponds well with the $\Delta p CO_2$ trend, which in turn corresponds well with the

559	SST trend. The increasing CO ₂ influx in the northern Barents Sea also corresponds with
560	the sea-ice retreat. These results are similar to that for the previous estimates without
561	using Chl-a (see Fig. 10 in Yasunaka et al., 2016). It shows again that the combined
562	effect of sea-ice retreat and pCO_{2w} increase to the CO ₂ flux is regionally different. In the
563	SOM process, the pCO_{2w} values observed in the latter period might be used for the
564	pCO_{2w} estimate in the former period where the pCO_{2w} measurements have not been
565	made, and therefore the trend in CO ₂ influx might be affected by the spatio-temporal
566	distribution of the measurements. To confirm this is not the case, we checked that the
567	spatial distribution of the pCO_{2w} trend did not correspond to the year when the first
568	observation was conducted (see supplement).
568 569	observation was conducted (see supplement).
	observation was conducted (see supplement). 5.3. Impact of incorporating chlorophyll-a data in the SOM
569	
569 570	5.3. Impact of incorporating chlorophyll-a data in the SOM
569 570 571	5.3. Impact of incorporating chlorophyll-a data in the SOMTo determine the impact of including Chl-a data in the SOM process, the analyses were
569 570 571 572	5.3. Impact of incorporating chlorophyll-a data in the SOM To determine the impact of including Chl-a data in the SOM process, the analyses were repeated without Chl-a data. The RMSD of the resulting estimated pCO_{2w} values is 33
 569 570 571 572 573 	5.3. Impact of incorporating chlorophyll-a data in the SOM To determine the impact of including Chl-a data in the SOM process, the analyses were repeated without Chl-a data. The RMSD of the resulting estimated pCO_{2w} values is 33 µatm, which is 3 µatm larger than the uncertainty of the estimates generated by

577	Figs. S1 and S2 present the difference in bias and RMSD for pCO_{2w} estimated with
578	and without Chl-a; Fig. S1 shows the time-evolution and Fig. S2 shows the spatial
579	distribution. Both approaches typically underestimate pCO_{2w} in winter and overestimate
580	the summertime values, but these systematic biases are reduced when Chl-a are
581	included in the SOM (Fig. S1). Biases and RMSDs are reduced in the Canada basin, the
582	western Bering Sea, and the boundary region between the Norwegian Sea and the
583	subpolar North Atlantic (Fig. S2). As a result the strong east-west contrast in the Bering
584	Sea and the contrast between the Canada Basin and the Chukchi Sea (see Fig. 4) are
585	better represented when Chl-a is included. Taken together, inclusion of Chl-a when
586	estimating pCO_{2w} yields not only better representation of the pCO_{2w} decline in spring
587	and summer but also improves the representation of the spatio-temporal pCO_{2w}
588	distribution. Technically, these improvements come from the fact that Chl-a as a training
589	parameter can separate high Chl-a region/time and low Chl-a region/time into different
590	neurons, which contaminated in the same neurons trained without Chl-a. For example,
591	since Chl-a is high in spring but SST and SIC are still in the similar levels with winter,
592	the grid-cells in spring and winter would be classified into the separate neurons when
593	Chl-a is included as a training parameter, but in the same neuron when Chl-a is not
594	included. As a result, without Chl-a, the estimated pCO_{2w} in spring tends to be similar to

596	therefore the contrast between winter and spring is weakened without Chl-a.
597	The seasonal cycles of pCO_{2w} estimates derived with the inclusion of Chl-a have a
598	larger amplitude than the uncertainties, whereas the uncertainties are larger than the
599	seasonal amplitude when pCO_{2w} is derived without Chl-a (upper panels of Fig. 13). The
600	difference is caused by the fact that the seasonal cycle of pCO_{2w} in each region
601	reproduces the observed cycle better when Chl-a was included (lower panels of Fig. 13).
602	Note that the much larger seasonal amplitude in the lower panels is an artefact generated
603	by the seasonal bias in sampling locations; in winter most measurements are obtained at
604	low latitudes where pCO_{2w} is typically higher than at high latitudes.
605	Compared to the CO_2 influx estimates by Yasunaka et al. (2016), the winter CO_2
606	influx in the Greenland/Norwegian Seas estimated including Chl-a is about 3 mmol m^{-2}
607	d^{-1} less than that calculated without using Chl-a (Fig. 14), but this difference is smaller
608	than the uncertainties. The CO_2 fluxes in the other area are quite similar with each
609	estimate, while their uncertainties are smaller in the present estimates.
610	The inclusion of Chl-a data also reduced the uncertainty of the estimated annual
611	air-sea CO ₂ flux integrated over the entire Arctic Ocean. Compared to the flux estimate
612	determined by Yasunaka et al. (2016) of $180 \pm 210 \text{ TgC y}^{-1}$, the CO ₂ uptake in the
609 610	estimate, while their uncertainties are smaller in the present estimates. The inclusion of Chl-a data also reduced the uncertainty of the estimated annual

613	Arctic Ocean estimated here is significant within its uncertainty $(180 \pm 130 \text{ TgC y}^{-1})$.
614	This improvement is the result of 1) the inclusion of Chl-a data in the SOM process
615	(which reduced the uncertainty by 23 %); 2) the separate uncertainty estimates for
616	ice-free and ice-covered regions (8 %); and 3) the addition of new observational pCO_{2w}
617	data (7%). Reducing the uncertainty of this quantification is a key contribution to the
618	larger work of constraining the global carbon budget (e.g., Le Quere et al., 2016).
619	Because the Arctic is an important CO ₂ sink, quantifying its fluxes and minimizing the
620	uncertainty is of great scientific value.
621	
622	5.4. Toward further reduction of the uncertainty
622 623	5.4. Toward further reduction of the uncertaintyThe addition of new observational data from SOCATv4 and GLODAPv2 reduced the
623	The addition of new observational data from SOCATv4 and GLODAPv2 reduced the
623 624	The addition of new observational data from SOCATv4 and GLODAPv2 reduced the overall uncertainty in the mapped pCO_{2w} : a 33 % increase in the number of observations
623 624 625	The addition of new observational data from SOCATv4 and GLODAPv2 reduced the overall uncertainty in the mapped pCO_{2w} : a 33 % increase in the number of observations induced a 7 % reduction in the uncertainty. However, there are still few observations in
623 624 625 626	The addition of new observational data from SOCATv4 and GLODAPv2 reduced the overall uncertainty in the mapped pCO_{2w} : a 33 % increase in the number of observations induced a 7 % reduction in the uncertainty. However, there are still few observations in the Kara Sea, the Laptev Sea, the East Siberian Sea and the Eurasian Basin (Fig. 2). To
623 624 625 626 627	The addition of new observational data from SOCATv4 and GLODAPv2 reduced the overall uncertainty in the mapped pCO_{2w} : a 33 % increase in the number of observations induced a 7 % reduction in the uncertainty. However, there are still few observations in the Kara Sea, the Laptev Sea, the East Siberian Sea and the Eurasian Basin (Fig. 2). To improve our understanding of the variability in air–sea CO ₂ fluxes in the Arctic, it is of

631	In the present study, we discussed the combined effect of sea-ice retreat and pCO_{2w}
632	change on the air-sea CO ₂ flux. There are other factors that will induce the change of
633	CO ₂ flux. For example, warmer temperature will lead to an increasing buffering
634	capacity while lower salinity will have the opposite effect and cause a decrease in
635	buffering capacity. In our current study, we used climatological-mean salinity for the
636	pCO_{2w} estimate because of lack of reliable year-to-year salinity data. That might be one
637	of the improvements for a future study.
638	

639 6. Conclusions

By applying an SOM technique with the inclusion of Chl-a data to estimate pCO_{2w} , we 640 produced monthly maps of air-sea CO₂ fluxes from 1997 to 2014 for the Arctic Ocean 641 and its adjacent seas north of 60° N. Negative correlation between pCO_{2w} and Chl-a 642 meant that Chl-a is valuable parameter to represent primary production. Since the 643 relationship varied among seasons and regions, the SOM technique is better suited for 644 the mapping than a multiple linear regression approach. Adding Chl-a to the SOM 645 process improved representation of the seasonal cycle of pCO_{2w} , and therefore reduced 646 647 the uncertainty of the CO₂ flux estimates. In the Greenland/Norwegian Seas and the Barents Sea the CO₂ influx was large in 648
649	autumn and winter because of the strong wind. In the Chukchi Sea, on the other hand,
650	the CO_2 influx was strong in summer and autumn, as a consequence of the low SIC and
651	strong pCO_{2w} undersaturation. Although interannual variation of the CO ₂ influx was
652	smaller than the seasonal variation, the CO ₂ influx has been increasing in the Greenland
653	Sea and northern Barents Sea, and decreasing in the Chukchi Sea and southern Barents
654	Sea.
655	A major goal of the carbon-cycle research community in recent years has been to
656	reduce the uncertainty in estimates of carbon reservoirs and fluxes. Our results
657	contribute to this in that CO_2 uptake in the Arctic Ocean is demonstrated with high
658	significance. The resulting estimate of the annual Arctic Ocean CO ₂ uptake of 180 TgC
659	y^{-1} is significant with an uncertainty of \pm 130 TgC y^{-1} . This is a substantial
660	improvement over earlier estimates, and is due mainly to the incorporation of Chl-a
661	data.
662	Assessment of the numerical models using our estimate of Arctic carbon uptake is
663	also an interesting topic since numerical models are poorly validated in the Arctic due to
664	the limited observations of biogeochemistry (Popova et al., 2012). However, such
665	experiments need thorough insight into the numerical models, which is beyond the
666	scope of this study. We hope to perform such comparisons in future studies.

667 The monthly CO_2 flux, pCO_{2w} , and interpolated Chl-a data presented in this paper 668 will be available at the JAMSTEC website

669 (http://www.jamstec.go.jp/res/ress/yasunaka/co2flux_v2).

670

671 Acknowledgments

672 We thank the many researchers and funding agencies responsible for the collection of data and quality control for their contributions to SOCAT and GLODAPv2. We are 673 grateful for the use of the CO2SYS program obtained from the Ocean Carbon Data 674 of System NOAA National for Environmental Information 675Centers (https://www.nodc.noaa.gov/ocads/oceans/CO2SYS/co2rprt.html), and SOM Toolbox 676 Version 2 developed by the Laboratory of Information and Computer Science at 677 Helsinki University of Technology (http://www.cis.hut.fi/projects/somtoolbox). We 678 thank ACRI-ST, France, for developing, validating, and distributing the GlobColour 679 680 data used in this work. This work was financially supported by the Arctic Challenge for Sustainability (ArCS) Project funded by the Ministry of Education, Culture, Sports, 681 682 Science and Technology, Japan. Are Olsen was supported by grants from the Norwegian Research Council (Subpolar North Atlantic Climate States [SNACS] 229752 and the 683 Norwegian component of the Integrated Carbon Observation System [ICOS-Norway] 684

685	245927). Mario Hoppema was partly supported by the German Federal Ministry of
686	Education and Research (grant no. 01LK1224I; ICOS-D). Siv K. Lauvset acknowledges
687	support from the Norwegian Research Council (VENTILATE, 229791) and the EU
688	H2020 project AtlantOS (grant agreement no. 633211). Rik Wanninkhof and Taro
689	Takahashi acknowledge support from the Office of Oceanic and Atmospheric Research
690	(OAR) of the United States NOAA, including resources from the Ocean Observation
691	and Monitoring Division of the Climate Program Office (fund reference100007298).
692	
693	References
694	Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wåhlström, I., and Semiletov, I. P.:
695	Out-gassing of CO ₂ from Siberian Shelf seas by terrestrial organic matter
696	decomposition, Geophys. Res. Lett., 36, L20601, doi:10.1029/2009GL040046, 2009.
697	Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay, JÉ.:
698	Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms, Geophys.
699	Res. Lett., 41, 6207-6212, doi:10.1002/2014GL061047, 2014.
700	Arrigo, K. R., and van Dijken, G. L.: Annual cycles of sea ice and phytoplankton near
701	Cape Bathurst, southeastern Beaufort Sea, Canadian Arctic, Geophys. Res. Lett., 31,
702	L08304, doi:10.1029/2003GL018978, 2004.

- 703 Assmy P. M. Fernandez-Mendez, Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J.,
- Olsen, L. M., Kauko, H. M., Bailey, A., Chierici, M., Cohen, L., Doulgeris, A. P.,
- Ehn, J. K., Fransson, A., Gerland, S., Hop, H., Hudson, S. R., Hughes, N., Itkin, P.,
- Johnsen, G., King, J. A., Koch, B. P., Koenig, Z., Kwasniewski, S., Laney, S. R.,
- 707 Nicolaus, M., Pavlov, A. K., Polashenski, C. M., Provost, C., Rösel, A., Sandbu, M.,
- 508 Spreen, G., Smedsrud, L. H., Sundfjord, A., Taskjelle, T., Tatarek, A., Wiktor, J.,
- Wagner, P. M., Wold, A., Steen, H., and Granskog, M. A.: Leads in Arctic pack ice
- enable early phytoplankton blooms below snow-covered sea ice. Scientific Report,
- 711 7:40850, DOI: 10.1038/srep40850, 2017.
- 712 Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, Olsen, A., Alin, C. Cosca, S. R.,
- Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M.,
- Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N., Boutin, J., Cai, W.-J., Castle,
- 715 R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W.,
- Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N., Hoppema,
- 717 M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M.,
- Jones, S., Jutterstrøm, S., Kitidis, V., Körtzinger, A., Lauvset, S. K., Lefèvre, N.,
- 719 Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Ono,
- T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S.,

- Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T.,
- Sullivan, K., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra,
- J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D.
- W. R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO₂ atlas
- (SOCAT version 2). Earth System Science Data, 6, 69–90,
- doi:10.5194/essd-6-69-2014, 2014.
- 727 Bakker, D. C. E., Pfeil, B., Smith, K., Harasawa, S., Landa, C., Nakaoka, S., Nojiri, Y.,
- 728 Metzl, N., O'Brien, K. M., Olsen, A., Schuster, U., Tilbrook, B., Wanninkhof, R.,
- Alin, S. R., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y.,
- Burger, E., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Cosca, C., Currie, K.,
- Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Greenwood, N., Gregor, L.,
- Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humpt,
- L., Monteiro, P., Munro, D., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
- Paterson, K., Pierrot, D., Robbins, L. L., Sabine, C. L., Saito, S., Salisbury, J.,
- 735 Schneider, B., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., St,
- L., Monteiro, P., Munro, D., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
- 737 Paterson, K., Pierrot, D., Robbins, L. L., Sabine, C. L., Saito, S., Salisbury, J.,
- 738 Schneider, B., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F.,

739	Sutherland, S.	C., Sutton,	A. J., Sweeney	и, С., Т	Fadokoro, K	., Takahashi,	Т.,	Telszewski,
-----	----------------	-------------	----------------	----------	-------------	---------------	-----	-------------

- M., Van Heuven, S. M. A. C., Vandemark, D., Wada, C., Ward, B., and Watson, A. J.:
- A multi-decade record of high quality fCO₂ data in version 3 of the Surface Ocean
- CO₂ Atlas (SOCAT). Earth System Science Data, 8, 383–413.
- 743 doi:10.5194/essd-8-383-2016, 2016.
- 744 Bates, N. R., and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of
- air-sea CO₂ exchanges, ocean acidification impacts and potential feedbacks,
- 746 Biogeosciences, 6, 2433-2459, doi:10.5194/bg-6-2433-2009, 2009.
- 747 Bates, N. R., Moran, S. B., Hansell, D. A., and Mathis, J. T.: An increasing CO₂ sink in
- the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609,
- 749 doi:10.1029/2006GL027028, 2006.
- 750 Bates, N. R., Garley, R., Frey, K. E., Shake, K. L., and Mathis J. T.: Sea-ice melt
- 751 CO₂-carbonate chemistry in the western Arctic Ocean: meltwater contributions to
- air-sea CO₂ gas exchange, mixed layer properties and rates of net community
- production under sea ice. Biogeosciences, 11, 6769–6789,
- doi:10.5194/bg-11-6769-2014., 2014
- Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A.,
- Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Paver, C. R.,

- 757 Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M. M.: World Ocean Database
- 758 2013. Sydney Levitus, Ed.; Alexey Mishonov, Technical Ed.; NOAA Atlas NESDIS
- 759 72, 209 pp, 2013.
- 760 Butterworth, B. J., and Miller, S. D.: Air-sea exchange of carbon dioxide in the Southern
- Ocean and Antarctic marginal ice zone. Geophys. Res. Lett., 43, 7223–7230,
 doi:10.1002/2016GL069581, 2016.
- 763 Cai, W.J., Chen, L. Q., Chen, B. S., Gao, Z. Y., Lee, S. H., Chen, J. F., Pierrot, D.,
- Sullivan, K., Wang, Y.C., Hu, X. P., Huang, W. J., Zhang, Y. H., Xu, S. Q., Murata, A.,
- Grebmeier, J. M., Jones, E. P., and Zhang, H. S.: Decrease in the CO₂ uptake capacity
- in an ice-free Arctic Ocean Basin. Science, 329, 556–559,
- 767 doi:10.1126/science.1189338, 2010.
- 768 Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination of sea ice parameters
- with the NIMBUS-7 SMMR, J. Geophys. Res., 89, 5355–5369, 1984.
- 770 Chierici, M., Olsen, A., Johannessen, T., Trinañes, J., Wanninkhof, R.: Algorithms to
- estimate CO_2 in the northern North Atlantic using observations, satellite and ocean
- analysis data, Deep-Sea Res. II, 56, 630–639, doi:10.1016/j.dsr2.2008.12.01, 2009.
- 773 Chierici, M, Fransson, A., Lansard, B., Miller, L. A., Mucci, A., Shadwick, E., Thomas,
- H., Tremblay, J.-E., and Papakyriakou, T.: The impact of biogeochemical processes

- and environmental factors on the calcium carbonate saturation state in the
- Circumpolar Flaw Lead in the Amundsen Gulf, Arctic Ocean. J. Geophys. Res., 116,
- 777 C00G09, doi:10.1029/2011JC007184, 2011.
- Conway, T.J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A.,
- and Zhang, N.: Evidence for interannual variability of the carbon cycle from the
- NOAA/CMDL global air sampling network. J. Geophys. Res., 99, 22831–22855,
- 781 1994.
- 782 Cota, G. F., Wang, J., and Comiso, J. C.: Transformation of global satellite chlorophyll
- retrievals with a regionally tuned algorithm, Remote Sens. Environ. 89, 326–350,
- doi:10.1016/j.rse.2004.01.005, 2004.
- Dickson, A. G.: Standard potential of the reaction: $AgCl(s) + 1/2H_2(g) = Ag(s) + Ag(s) + Ag(s) + Ag(s)$
- HCl(aq), and the standard acidity constant of the ion HSO_4^- in synthetic seawater
- 787 from 273.15 to 318.15 K. J. Chemical Thermodynamics, 22, 113–127, 1990.
- Else, B. G. T., Galley, R. J., Lansard, B., Barber, D. G., Brown, K., Miller, L. A., Mucci,
- A., Papakyriakou, T. N., Tremblay, J.-É., and Rysgaard, S.: Further observations of a
- decreasing atmospheric CO₂ uptake capacity in the Canada Basin (Arctic Ocean) due
- to sea ice loss, Geophys. Res. Lett., 40, 1132–1137, doi:10.1002/grl.50268, 2013.
- Fransson, A., Chierici, M., Skjelvan, I., Olsen, A., Assmy, P., Peterson, A. K., Spreen, G.,

793	and Ward, B.	: Effects of	f sea-ice a	nd biogeoc	hemical	processes ar	d storms on
.00	and mara, D.	. בוופטנט טו	bea lee a		lienneur	processes an	

- under-ice water fCO_2 during the winter-spring transition in the high Arctic Ocean:
- 795 Implications for sea-air CO₂ fluxes. J. Geophys. Res., doi:10.1002/2016JC012478,
- 796 2017.
- Gao, Z., Chen, L., Sun, H., Chen, B., and Cai, W.-J.: Distributions and air-sea fluxes of
- carbon dioxide in the Western Arctic Ocean, Deep-Sea Res. II, 81–84, 46–52,
- 799 doi:10.1016/j.dsr2.2012.08.021, 2012.
- 800 Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L., and
- Zwally, H. J.: Arctic and Antarctic sea ice, 1978–1987: Satellite passive-microwave

observations and analysis, NASA Spec. Publ., 511, 290 pp, 1993.

- 803 Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A., and B. C. Booth: New
- measurements of phytoplankton and ice algal production in the Arctic Ocean,
- 805 Deep-Sea Res. II, 44, 1623–1644, doi:10.1016/S0967-0645(97)00054-4, 1997.
- 806 Harrison, W. G., and Cota., G. F.: Primary production in polar waters: relation to
- nutrient availability, Polar Research, 10, 87–104,
- 808 doi:10.1111/j.1751-8369.1991.tb00637.x, 1991.
- Hauri, C., Winsor, P., Juranek, L. W., McDonell, A. M. P., Takahashi, T. and Mathis, J.
- T.: Wind-driven mixing causes a reduction in the strength of the continental shelf

- carbon pump in the Chukchi Sea, Geophys. Res. Letters, 40, 5932-5936,
- doi:10.1002/2013GL058267, 2013.
- 813 Iida, T., Saitoh, S. I., Miyamura, T., Toratani, M., Fukushima, H., and Shiga, N.:
- 814 Temporal and spatial variability of coccolithophore blooms in the eastern Bering Sea,
- 815 1998-2001, Prog. Oceanogr., 55, 165–175, 2002.
- 816 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
- Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,
- Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne,
- 819 R., and Joseph, D., The NCEP/NCAR 40-Year Reanalysis Project". Bull. Amer.
- 820 Meteor. Soc., 77, 437–471, 1996.
- 821 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S-K, Hnilo, J. J., Fiorino, M., and
- Potter, G. L., NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Amer. Meteor. Soc., 83,
- 823 1631–1643, 2002.
- Key, R.M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C.,
- Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E.,
- Ishii, M., Perez, F. F., and T. Suzuki: Global Ocean Data Analysis Project, Version 2
- 827 (GLODAPv2), ORNL/CDIAC-162, ND-P093. Carbon Dioxide Information Analysis
- 828 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,

Tennessee. doi: 10.3334/CDIAC/OTG.NDP093_GLODAPv2, 2015.

830	Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P.,
831	Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S.,
832	Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais,
833	P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I.,
834	Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E.,
835	Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi,
836	D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J.
837	E. M. S., Nakaoka, SI., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D.,
838	Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R.,
839	Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van
840	der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J.,
841	and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605-649,
842	https://doi.org/10.5194/essd-8-605-2016, 2016.
843	Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R.,
844	Sasse, T., and Zeng J., A neural network-based estimate of the seasonal to

- 845 inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–
- 846 7815, doi:10.5194/bg-10-7793-2013, 2013.

- 847 Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent variability of
- the global ocean carbon sink, Global Biogeochemical Cycles, 28, 927-949,
- doi:10.1002/2014GB004853, 2014.
- Lefèvre, N., Watson, A. J., and Watson, A. R.: A comparison of multiple regression and
- neural network techniques for mapping in situ pCO₂ data, Tellus B, 57: 375–384.
- doi:10.1111/j.1600-0889.2005.00164.x, 2005.
- Lewis, E., and Wallace, D. W. R.: Program Developed for CO₂ System Calculations.
- 854 ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge
- National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 1998.
- Lewis, K.M., Mitchell, B.G., van Dijken, G.L., and Arrigo, K.R.: Regional chlorophyll
- a algorithms in the Arctic Ocean and their effect on satellite-derived primary
- 858 production estimates, Deep-Sea Res. II, 130, 17–24, doi:10.1016/j.dsr2.2016.04.020,
- 859 2016.
- Loose, B., McGillis, W. R., Schlosser, P., Perovich, D., and Takahashi, T.: Effects of
- 861 freezing, growth, and ice cover on gas transport processes in laboratory seawater
- experiments, Geophys. Res. Lett., 36, L05603, doi:10.1029/2008GL036318, 2009.
- 863 Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO₂ calculated from
- dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based

- 865 on laboratory measurements of CO₂ in gas and seawater at equilibrium, Mar. Chem.,
 866 70, 105–119, 2000.
- 867 Manizza, M., Follows, M. J., Dutkiewicz, S., Menemenlis, D., McClelland, J. W., Hill,
- 868 C. N., Peterson, B. J., and R. M. Key: A model of the Arctic Ocean carbon cycle, J.
- Geophys. Res., 116, C12020, doi:10.1029/2011JC006998, 2011.
- 870 Maréchal, D., A soil-based approach to rainfall-runoff modelling in ungauged
- catchments for England and Wales. PhD thesis, Cranfield University, U.K., 157 pp,
- 872 2004.
- 873 Maritorena, S., d'Andon, O. H. F., Mangin, A., and Siegel, D. A.: Merged satellite ocean
- color data products using a bio-optical model: Characteristics, benefits and issues,
- 875 Remote Sensing of Environment, 114, 1791-1804, doi:10.1016/j.rse.2010.04.002,
- 876 2010.
- 877 Matsuoka, A., Huot, Y., Shimada, K., Saitoh, S., and Babin, M.: Bio-optical
- characteristics of the western Arctic Ocean: Implications for ocean color algorithms,
- Canadian J. Remote Sens., 33, 503–518, doi:10.5589/m07-059, 2007.
- 880 Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:
- 881 NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration.
- 882 Version 2, Boulder, Colorado USA: National Snow and Ice Data Center,

- 883 http://dx.doi.org/10.7265/N55M63M1, 2013.
- 884 Moore, T. S., Dowell, M. D., and Franz, B. A.: Detection of coccolithophore blooms in
- ocean color satellite imagery: A generalized approach for use with multiple sensors,
- 886 Rem. Sens. Env., 117, 249–263, doi: 10.1016/j.rse.2011.10.001, 2012.
- 887 Mucci, A., Lansard, B., Miller, L. A., and Papakyriakou, T. N.: CO₂ fluxes across the
- air-sea interface in the southeastern Beaufort Sea: Ice-free period, J. Geophys. Res.,
- 889 115, C04003, doi:10.1029/2009JC005330, 2010.
- 890 Murata, A.: Increased surface seawater pCO₂ in the eastern Bering Sea shelf: An effect
- of blooms of coccolithophorid *Emiliania huxleyi*? Global Biogeochem. Cycles, 20,
- GB4006, doi:10.1029/2005GB002615, 2006.
- 893 Murray, F. W.: On the computation of saturation vapor pressure. J. Applied Meteorology,
- 894 6, 203–204, 1967.
- 895 Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and
- V_{2} Usui, N.: Estimating temporal and spatial variation of sea surface pCO₂ in the North
- Pacific using a self organizing map neural network technique, Biogeosciences, 10,
- 898 6093-6106, doi:10.5194/bg-10-6093-2013, 2013.
- 899 Olsen, A., Brown, K. R., Chierici, M., Johannessen, T., and Neill, C.: Sea-surface CO₂
- 900 fugacity in the subpolar North Atlantic, Biogeosciences, 5, 535–547,

- 901 doi:10.5194/bg-5-535-2008, 2008.
- 902 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C.,
- 903 Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E.,
- 904 Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project
- 905 version 2 (GLODAPv2) an internally consistent data product for the world ocean,
- 906 Earth Syst. Sci. Data, 8, 297–323, 2016, doi:10.5194/essd-8-297-2016, 2016.
- 907 O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A.,
- 908 Kahru, M., and McClain, C.: Ocean color chlorophyll algorithms for SeaWiFS, J.
- 909 Geophys. Res., 103, 24937–24953, doi:10.1029/98JC02160, 1998.
- 910 Peng, G., Meier, W., Scott, D., and Savoie, M.: A long-term and reproducible passive
- 911 microwave sea ice concentration data record for climate studies and monitoring.
- Earth Syst. Sci. Data 5: 311–318, http://dx.doi.org/10.5194/essd-5-311-2013, 2013.
- 913 Perrette, M., Yool, A., Quartly, G. D., and Popova, E. E.: Near-ubiquity of ice-edge
- blooms in the Arctic, Biogeosciences, 8, 515–524, doi:10.5194/bg-8-515-2011, 2011.
- 915 Popova, E. E., Yool, A., Coward, A. C., Dupont, F., Deal, C., Elliott, S., Hunke, E., Jin,
- 916 M., Steele, M., and Zhang, J., What controls primary production in the Arctic Ocean?
- 917 Results from an intercomparison of five general circulation models with
- biogeochemistry, J. Geophys. Res., 117, C00D12, doi:10.1029/2011JC007112, 2012.

919	Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
920	improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625,
921	2002.
922	Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R.,
923	González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N.,
924	Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Rödenbeck, C.,
925	Santana-Casiano, J. M., Takahashi, T., Wanninkhof, R., and Watson, A. J.: An
926	assessment of the Atlantic and Arctic sea-air CO ₂ fluxes, 1990–2009,
927	Biogeosciences, 10, 607-627, doi:10.5194/bg-10-607-2013, 2013.
928	Shutler, J. D., Land, P. E., Brown, C. W., Findlay, H. S., Donlon, C. J., Medland, M.,
929	Snooke, R., and Blackford, J. C.: Coccolithophore surface distributions in the North
930	Atlantic and their modulation of the air-sea flux of CO ₂ from 10 years of satellite
931	Earth observation data, Biogeosciences, 10, 2699–2709,
932	doi:10.5194/bg-10-2699-2013, 2013
933	Semiletov, I., Makshtas, A., Akasofu, SI., and Andreas, E. L: Atmospheric CO ₂
934	balance: The role of Arctic sea ice, Geophys. Res. Lett., 31, L05121,

- 935 doi:10.1029/2003GL017996, 2004.
- 936 Semiletov, I. P., Pipko, I. I., Repina, I., and Shakhova, N. E.: Carbonate chemistry

- 937 dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in
- 938 the Arctic Ocean: Pacific sector of the Arctic, J. Mar. Syst., 66, 204–226,
- 939 doi:10.1016/j.jmarsys.2006.05.012, 2007.
- 940 Signorini, S. R., and McClain, C. R.: Effect of uncertainties in climatologic wind, ocean
- pCO₂, and gas transfer algorithms on the estimate of global sea-air CO₂ flux, Global
- 942 Biogeochem. Cycles, 23, GB2025, doi:10.1029/2008GB003246, 2009.
- 943 Siswanto, E., Tang, J., Ahn, Y.-H., Ishizaka, J., Yoo, S., Kim, S.-W., Kiyomoto, Y.,
- 944 Yamada, K., Chiang, C., and Kawamura, H.: Empirical ocean color algorithms to
- 945 retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter
- absorption coefficient in the Yellow and East China Seas, J. Oceanogr.,
- 947 doi:10.1007/s10872-011-0062-z, 2011.
- 948 Siswanto, E., Ishizaka, J., Tripathy, S. C., and Miyamura, K.: Detection of harmful algal
- blooms of *Karenia mikimotoi* using MODIS measurements: a case study of
- 950 Seto-Inland Sea, Japan, Remote Sensing of Environment, 129, 185–196,
- 951 doi:10.1016/j.rse.2012.11.003, 2013.
- 952 Smyth, T. J., Tyrrell, T., Tarrant, B.: Time series of coccolithophore activity in the
- Barents Sea, from twenty years of satellite imagery, Geophys. Res. Lett., 31, L11302,
- 954 doi:10.1029/2004GL019735, 2004.

- 955 Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high
- 956 quality Arctic Ocean, J. Climate, 14, 2079–2087, 2001.
- 957 Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L.,
- and Wanninkhof, R.: Constraining global air-sea gas exchange for CO₂ with recent
- bomb ¹⁴C measurements, Global Biogeochem. Cycles, 21, GB2015,
- 960 doi:10.1029/2006GB002784, 2007.
- 961 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman,
- 962 D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E.,
- 963 Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
- 964 Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook,
- 965 B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., de
- Baar, H. J. W.: Climatological mean and decadal changes in surface ocean pCO₂, and
- 967 net sea-air CO_2 flux over the global oceans. Deep-Sea Res. II, 56, 554–577, 2009.
- 968 Takahashi, T., Sutherland, S.C., and Kozyr, A.: Global Ocean Surface Water Partial
- 969 Pressure of CO₂ Database: Measurements Performed During 1957–2014 (Version
- 970 2014). ORNL/CDIAC-160, NDP-088(V2014). Carbon Dioxide Information Analysis
- 971 Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
- 972 Tennessee, doi: 10.3334/CDIAC/OTG.NDP088(V2014), 2015.

- 973 Tassan, S.: Local algorithms using SeaWiFS data for the retrieval of phytoplankton,
- pigments, suspended sediment, and yellow substance in coastal waters, Applied Opt.,
- 975 33, 2369–2378, doi:10.1364/AO.33.002369, 1994.
- 976 Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D.C.E.,
- 977 González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., Olsen, A., Omar, A.,
- 978 Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., and
- 979 Wanninkhof, R.: Estimating the monthly pCO₂ distribution in the North Atlantic
- using a self-organizing neural network, Biogeosciences, 6, 1405–1421,
- 981 doi:10.5194/bg-6-1405-2009, 2009.
- 982 Ulfsbo, A., Cassar, N., Korhonen, M., van Heuven, S., Hoppema, M., Kattner, G., and G.
- 983 Anderson, L.: Late summer net community production in the central Arctic Ocean
- using multiple approaches, Global Biogeochem. Cycles, 28, 1129–1148,
- 985 doi:10.1002/2014GB004833, 2014.
- van Heuven, S., Pierrot, D., Lewis, E., and Wallace, D. W. R.: MATLAB Program
- 987 Developed for CO2 System Calculations, ORNL/CDIAC-105b. Carbon Dioxide
- 988 Information Analysis Center, Oak Ridge National Laboratory, US Department of
- 989 Energy, Oak Ridge, Tennessee, 2009.
- 990 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J.

991 Geophys. Res., 97(C5), 7373–7382, doi:10.1029/92JC00188, 1992.

992	Wanninkhof, R.	, Park, O	Э. - Н.,	Takahashi,	T., Sweeney,	C., Feely	, R., Nojiri,	Y., Gruber
-----	----------------	-----------	-----------------	------------	--------------	-----------	---------------	------------

- 993 N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger,
- J., Graven, H., and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability
- and trends, Biogeosciences, 10, 1983–2000, doi:10.5194/bg-10-1983-2013, 2013.
- 996 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean
- revisited, Limnol. Oceanogr.: Methods, 12, 351-362, 2014.
- 998 Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
- 999 Mar. Chem., 2, 203–215, 1974.
- 1000 Yasunaka, S., Nojiri, Y., Nakaoka, S., Ono, T., Whitney, F. A., and Telszewski, M.:
- 1001 Mapping of sea surface nutrients in the North Pacific: Basin-wide distribution and
- seasonal to interannual variability, J. Geophys. Res. Oceans, 119, 7756–7771,
- 1003 doi:10.1002/2014JC010318, 2014.
- 1004 Yasunaka, S., Murata, A., Watanabe, E., Chierici, M., Fransson, A., van Heuven, S.,
- 1005 Hoppema, M., Ishii, M., Johannessen, T., Kosugi, N., Lauvset, S. K., Mathis, J. T.,
- 1006 Nishino, S., Omar, A. M., Olsen, A., Sasano, D., Takahashi, T., and Wanninkhof, R.:
- 1007 Mapping of the air–sea CO₂ flux in the Arctic Ocean and its adjacent seas:
- 1008 basin-wide distribution and seasonal to interannual variability, Polar Science, 10,

1009 323–334, doi:10.1016/j.polar.2016.03.006, 2016.

Figure 1: Map of the Arctic Ocean and its adjacent seas. Gray contour lines show the 1023 1000, 2000, 3000, and 4000 m isobaths. Blue lines show the 17-year annual mean 1024 position of the ice edge (SIC = 15 %). Area for the mapping is north of 60° N (heavy 1025 black circle). Sectors selected for regional analysis are the Arctic Ocean (dashed 1026 magenta line), the Greenland/Norwegian Seas (green 1), the Barents Sea (green 2), and 1027 the Chukchi Sea (green 3).

- 1037
- 1038

1039 Figure 2: (a) The number of ocean surface CO₂ data in the grid boxes $(1^{\circ} \times 1^{\circ})$ used in

1040 this study. Data are from SOCATv4, LDEOv2014, GLODAPv2, and collected by R/V

1041 *Mirai* of JAMSTEC between 1997 and 2014. (b) Monthly number of CO₂ data in the

analysis area (north of 60° N) from 1997 to 2014.

and along 75°N in 2012 (lower panels). Black lines denote SIC of 50% and 90%. Gray

1060 areas in (a) indicate missing Chl-a data.

- 1076 between observed and estimated pCO_{2w} averaged over the whole analysis period
- 1077 [µatm].

1091 Figure 5: (a) Monthly time series of observed pCO_{2w} averaged over the entire analysis

area (black), and estimated pCO_{2w} averaged over the grid boxes in which observed pCO_{2w} values were available (green) [µatm]. (b) Bias (estimate–observation; black) and

1094 root-mean-square-difference (green) between observed and estimated pCO_{2w} averaged

1095 over the entire analysis area [µatm].

1107 Figure 6: (a) Observed pCO_{2w} [µatm], and (b) non-interpolated Chl-a [mg m⁻³] in

- 1123 pairs in a 0.1 mg m⁻³ \times 5 µatm bin when Chl-a \leq 5 mg m⁻³, or in a 1 mg m⁻³ \times 5 µatm
- 1124 bin when $Chl-a > 5 \text{ mg m}^{-3}$.
- 1125

1136 Figure 8: (a) Spatial correlation (correlation coefficient, r) between pCO_{2w} and Chl-a in

- 1138 and July-September (right). Darker hatched areas represent values in grids where
- 1139 correlations are insignificant (P > 0.05). (b) Surface nitrate concentration [μ mol l⁻¹] in
- 1140 March–May (left), and July–September (right) from 1997 to 2014.
- 1141

1153 fluxes were smaller than the uncertainty, estimated as described in the text.

Figure 10: Eighteen-year monthly mean CO₂ flux [mmol m⁻² day⁻¹] (black), Δp CO₂ [µatm] (red), wind speed [m sec⁻¹] (green), and SIC [%] (blue), averaged over (a) the Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic Ocean. Error bars indicate the uncertainty.

Figure 11: Area-mean interannual variations of CO₂ flux [mmol m⁻² day⁻¹] (black), Δp CO₂ [µatm] (red), wind speed [m sec⁻¹] (green), and SIC [%] (blue) in (a) the Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic Ocean. Error bars indicate the uncertainty.

Figure 12: Trends in (a) CO_2 flux [mmol m⁻² day⁻¹ decade⁻¹], (b) ΔpCO_2 [µatm decade⁻¹], and (c) SIC [% decade⁻¹]. Darker hatched areas represent values in grids where trend values were less than the uncertainty, estimated as described in the text.

1217Figure 13: Eighteen-year averaged pCO_{2w} seasonal variations [µatm] in (a) the1218Greenland/Norwegian Seas, (b) the Barents Sea, and (c) the Chukchi Sea. Black lines1219with triangles show estimates without Chl-a; magenta lines with open circles show1220estimates with Chl-a; green lines with closed circles show observed values. The upper1221panels show pCO_{2w} averaged for all grid cells with each region, and the lower panels1222show pCO_{2w} averaged over the grid boxes in which observed pCO_{2w} values were1223available. Error bars show the uncertainty, estimated as described in the text.1224

1236 the Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the

1237 Arctic Ocean. Black lines with triangles show estimates without Chl-a by Yasunaka et al.

1238 (2016); magenta lines with open circles show estimates with Chl-a. Error bars show the

1239 uncertainty, estimated as described in the text.

1242 Table 1: RMSD [mg m⁻³] and correlation (r) between Chl-a values

	standard a	lgorithm	coastal algorithm	
	RMSD	r	RMSD	r
Chl-a from Arctic algorithm	0.80	0.90	0.81	0.87
Interpolated Chl-a from Arctic algorithm	0.37	0.92	0.48	0.86