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Abstract 30 

We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas 31 

north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in 32 

the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating 33 

chlorophyll-a concentration (Chl-a), sea surface temperature, sea surface salinity, sea ice 34 

concentration, atmospheric CO2 mixing ratio, and geographical position. We applied 35 

new algorithms for extracting Chl-a from satellite remote sensing reflectance with close 36 
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examination of uncertainty of the obtained Chl-a values. The overall relationship 37 

between pCO2w and Chl-a was negative, whereas the relationship varied among seasons 38 

and regions. The addition of Chl-a as a parameter in the SOM process enabled us to 39 

improve the estimate of pCO2w particularly via better representation of its decline in 40 

spring which resulted from biologically mediated pCO2w reduction. As a result of the 41 

inclusion of Chl-a, the uncertainty in the CO2 flux estimate was reduced, with a net 42 

annual Arctic Ocean CO2 uptake of 180 ± 130 TgC y–1. Seasonal to interannual 43 

variation of the CO2 influx was also figured out. 44 

 45 

1. Introduction 46 

The Arctic Ocean and its adjacent seas (Fig. 1) generally act as a sink for atmospheric 47 

CO2 because of the high solubility of CO2 in their low-temperature waters, combined 48 

with extensive primary production during the summer season (Bates and Mathis, 2009). 49 

The Arctic Ocean and its adjacent seas consist of complicated subregions that include 50 

continental shelves, central basins, and sea-ice-covered areas. Therefore, the surface 51 

partial pressure of CO2 (pCO2w) distribution is not only affected by ocean heat loss and 52 

gain, and biological production and respiration, but also by sea-ice formation and 53 

melting, river discharge, and shelf–basin interactions (cf. Bates and Mathis, 2009, and 54 
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references therein). However, CO2 measurements are sparse in this very heterogeneous 55 

area (Fig. 2), and hence the existing air–sea CO2 flux estimates in the Arctic are poorly 56 

constrained (Bates and Mathis, 2009; Schuster et al., 2013; Yasanuka et al., 2016). 57 

As global warming progresses, melting of sea ice will increase the area of open water 58 

and enhance the potential for atmospheric CO2 uptake (e.g., Bates et al., 2006; Gao et 59 

al., 2012). However, other processes could suppress CO2 uptake. For example, 60 

increasing seawater temperatures, declining buffer capacity due to the freshening of 61 

Arctic surface water by increased river runoff and melting of sea-ice, and increased 62 

vertical mixing supplying high-CO2 water to the surface will all result in a tendency for 63 

reduced uptake (Bates and Mathis, 2009; Cai et al., 2010; Chierici et al., 2011; Else et 64 

al., 2013; Bates et al. 2014; Fransson et al., 2017). The combined effect of all these 65 

processes on ocean CO2 uptake has not yet been clarified for the Arctic. 66 

 Yasunaka et al. (2016) prepared monthly maps of air–sea CO2 fluxes from 1997 to 67 

2013 for the Arctic north of 60° N by applying, for the first time, a self-organizing map 68 

(SOM) technique to map pCO2w in the Arctic Ocean. The advantage of the SOM 69 

technique is its ability to empirically determine relationships among variables without 70 

making any a priori assumptions (about what types of regression functions are 71 

applicable, and for which sub-regions the same regression function can be adopted, for 72 
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example). The SOM technique has been shown to reproduce the distribution of pCO2w 73 

from unevenly distributed observations better than multiple regression methods 74 

(Lefèvre et al., 2005; Telszewski et al., 2009). The uncertainty of the CO2 flux estimated 75 

by Yasunaka et al. (2016), however, was large (±3.4–4.6 mmol m–2 d–1), and the 76 

estimated CO2 uptake in the Arctic Ocean was smaller than the uncertainty (180 ± 210 77 

TgC y–1). One possible reason for the large uncertainties is that no direct proxies for the 78 

effect of biological processes on pCO2w were used in that study, leading to an 79 

underestimation of the seasonal amplitude of pCO2w. 80 

Remotely sensed chlorophyll-a concentrations (Chl-a) has been used in several 81 

pCO2w mapping efforts as a direct proxy for the effect of primary production. For 82 

example Chierici et al. (2009) produced pCO2w algorithms for the subpolar North 83 

Atlantic during the period from May to October and found that the inclusion of Chl-a 84 

improved the fit substantially. Measurements in several areas of the Arctic show that 85 

relationships between pCO2w and Chl-a occur also in this region. They correlate 86 

negatively (Gao et al., 2012; Ulfsbo et al., 2014), as expected from the drawdown of 87 

CO2 during photosynthesis, but exceptions do occur; in coastal regions the correlation is 88 

positive (Mucci et al., 2010). 89 

Several studies have demonstrated that Chl-a in the Arctic can be estimated from 90 
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satellite remote sensing reflectance (Rrs) (e.g. Arrigo and Dijken, 2004; Cota et al., 91 

2004). Perrette et al. (2011) showed that satellite-derived Chl-a successfully captured a 92 

phytoplankton bloom in the ice-edge region. Changes in the seasonal cycle from a 93 

single peak to a double peak of Chl-a have also been detected and are likely a 94 

consequence of the recent sea-ice loss in the Arctic (Ardyna et al., 2014). However, the 95 

available products (e.g. NASA’s OceanColor dataset) in the Arctic include large 96 

uncertainty and many missing values because of sea ice, low angle of sun-light and 97 

cloud cover, and are also prone to error due to the co-occurrence of large colored 98 

dissolved organic matter (CDOM) and total suspended matter (TSM) concentrations 99 

(e.g., Matuoka et al., 2007; Lewis et al., 2016). Here we deal with these issues by using 100 

several Chl-a algorithms optimised for the Arctic and others, and by excluding Chl-a 101 

data from grid cells potentially affected by CDOM and TSM. Calculated Chl-a values 102 

were then interpolated Chl-a so as to fit with the original data. Using these data, we 103 

examined the relationship between pCO2w and Chl-a in the Arctic Ocean and its 104 

adjacent seas, and computed monthly air–sea CO2 flux maps for regions north of 60° N 105 

using a SOM technique similar to that of Yasunaka et al. (2016), and with Chl-a added 106 

to the SOM process. 107 

 108 
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2. Data 109 

2.1. pCO2 w measurements 110 

We used fugacity of CO2 (fCO2w) observations from the Surface Ocean CO2 Atlas 111 

version 4 (SOCATv4; Bakker et al., 2016; http://www.socat.info/; 1,983,799 data points 112 

from >60° N), and pCO2w observations from the Global Surface pCO2 Database Version 113 

2014 (LDEOv2014; Takahashi et al., 2015; 114 

http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/; 302,150 data points from 115 

>60° N). In the LDEO database, pCO2w is based on measured CO2 mixing ratio in a 116 

parcel of air equilibrated with sea-water sample, and computed assuming CO2 as an 117 

ideal gas, whereas in the SOCAT, fCO2 is obtained considering the non-ideality from 118 

CO2-CO2 and CO2-H2O molecular interactions. Because of ambiguities in the CO2-H2O 119 

interaction corrections, the SOCAT fCO2w values are converted to pCO2w values (a 120 

correction of <1 %), and then combined them with the LDEO pCO2w values. When data 121 

points were duplicated in the SOCAT and LDEO datasets, the SOCAT version was used, 122 

except for the data obtained from onboard the USCGC Healy as these have been 123 

reanalyzed by Takahashi et al. (2015). Altogether 200,409 duplicates were removed. We 124 

also used shipboard pCO2w data obtained during cruises of the R/V Mirai of the Japan 125 

Agency for Marine-Earth Science and Technology (JAMSTEC) that have not yet been 126 
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included in SOCATv4 or LDEOv2014 (cruises MR09_03, MR10_05, MR12_E03, and 127 

MR13_06; available at http://www.godac.jamstec.go.jp/darwin/e; 95,725 data points 128 

from >60° N). In total, we used 2,181,265 pCO2w data points, 33 % more than used by 129 

Yasunaka et al. (2016). 130 

To further improve the data coverage, especially for the ice-covered regions, we also 131 

used 2166 pCO2w values calculated from dissolved inorganic carbon (DIC) and total 132 

alkalinity (TA) data extracted from the Global Ocean Data Analysis Project version 2 133 

(GLODAPv2; Key et al., 2015; Olsen et al., 2016; http://www.glodap.info). 90% of 134 

these data were obtained at cruises without underway pCO2w data. We extracted values 135 

of samples obtained from water depths shallower than 10 m, or the shallowest values 136 

from the upper 30 m of each cast if there were no values from above 10 m. There are 137 

1795 data points above 10 m depth, 296 in the 10–20 m range, and 75 in the 20–30 m 138 

range. This resulted in 94 % more calculated pCO2w values than used by Yasunaka et al. 139 

(2016), and altogether the number of directly measured and calculated data points used 140 

here is 33% more than used in Yasunaka et al. (2016). The CO2SYS program (Lewis 141 

and Wallace, 1998; van Heuven et al., 2009) was used for the calculation with the 142 

dissociation constants reported by Lueker et al. (2000) and Dickson (1990).  143 

We checked the difference between calculated pCO2w and measured pCO2w using the 144 
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data from cruises with both bottle DIC/TA samples and underway pCO2w available 145 

(10% of the bottle samples, i.e., 245 pairs). Mean value for the calculated pCO2w values 146 

from bottle DIC/TA samples from the upper 30 m was 299 ± 42 μatm, and that for the 147 

corresponding directly measured pCO2w values from underway observation generally at 148 

4–6m was 289 ± 11 μatm. The mean values are slightly higher for calculated pCO2w 149 

values than for measured ones, but the difference is smaller than the standard deviation 150 

and the uncertainties of the calculation (the latter of which is 14 μatm; see Section 4.2). 151 

The difference between calculated and measured pCO2w is not dependent on the depth 152 

where the TA/DIC samples were obtained. It was 10 ± 31 μatm for samples from above 153 

10 m, 7 ± 27 μatm for samples from 10–20 m, and 11 ± 47 μatm for samples from 20–154 

30 m.  155 

The availability of pCO2w data (measured and calculated) varies spatially and 156 

temporally (Fig. 2). Most of the available data are from the subpolar North Atlantic, the 157 

Greenland Sea, the Norwegian Sea, the Barents Sea, and the Chukchi Sea while much 158 

less data are available for the Kara Sea, the Laptev Sea, the East Siberian Sea, and the 159 

Eurasian Basin. The number of pCO2w data increased after 2005, but there are also a 160 

substantial number of data from before 2004. 161 

 162 
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2.2. Other data 163 

To calculate Chl-a, we used merged Rrs data from the SeaWiFS, MODIS-Aqua, MERIS, 164 

and VIIRS ocean color sensors processed and distributed by the GlobColour Project 165 

(Maritorena et al., 2010; http://hermes.acri.fr/index.php?class=archive). For 166 

compatibility with the spatio-temporal resolution of the gridded pCO2w data (see below 167 

Sect. 3.3), we selected monthly mean Rrs data with a spatial resolution of 1 (latitude) × 168 

1 (longitude). 169 

Sea surface temperature (SST) data were extracted from the National Oceanic and 170 

Atmospheric Administration (NOAA) Optimum Interpolation SST Version 2 (Reynolds 171 

et al., 2002; http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). These 172 

data are provided at a resolution of 1° × 1° × 1 month. Sea surface salinity (SSS) data 173 

were retrieved from the Polar Science Center Hydrographic Climatology version 3.0, 174 

which also has a resolution of 1° × 1°× 1 month (Steele et al., 2001; 175 

http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html). Sea ice 176 

concentration (SIC) data were obtained from the NOAA/National Snow and Ice Data 177 

Center Climate Data Record of Passive Microwave Sea Ice Concentration version 2, 178 

which has a resolution of 25 km × 25 km × 1 month (Meier et al., 2013; 179 

http://nsidc.org/data/G02202). These data were averaged into 1° × 1° × 1 month 180 
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grid-cells. Zonal mean data for the atmospheric CO2 mixing ratio (xCO2a) were 181 

retrieved from the NOAA Greenhouse Gas Marine Boundary Layer Reference data 182 

product (Conway et al., 1994; http://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html) and 183 

were interpolated into 1° × 1° × 1 month grid-cells. Both sea level pressure and 6-hourly 184 

10-m wind speeds data were obtained from the U.S. National Centers for Environmental 185 

Prediction–Department of Energy Reanalysis 2 (NCEP 2) (Kanamitsu et al., 2002; 186 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html). We also used 187 

the 6-hourly 10-m wind speeds from the U.S. National Centers for Atmospheric 188 

Prediction and the National Center for Atmospheric Research Reanalysis 1 (NCEP1) 189 

(Kalnay et al., 1996; 190 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) when the gas 191 

transfer velocity was optimized for NCEP2 wind (see Section 3.5 below). 192 

Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015; 193 

Olsen et al., 2016) and the World Ocean Database 2013 (WOD; Boyer et al., 2013). 194 

When data points were duplicated in the GLODAPv2 and WOD datasets, the 195 

GLODAPv2 version was used as this has been subjected to more extensive quality 196 

control. 197 

 198 
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3. Methods 199 

3.1. Calculation of chlorophyll-a concentrations 200 

Chl-a was calculated from Rrs by using the Arctic algorithm developed by Cota et al. 201 

(2004). Several assessments have shown that this algorithm has a large uncertainty (e.g., 202 

Matsuoka et al., 2007; Lewis et al., 2016), and therefore the sensitivity of our results to 203 

this choice was evaluated by using two alternative algorithms for Chl-a: the standard 204 

algorithm of O’Reilly et al. (1998), and the coastal algorithm, of Tassan (1994). 205 

To ensure that we were working with Rrs data relatively unaffected by CDOM and 206 

TSM, the Chl-a data were masked following the method of Siswanto et al. (2013). 207 

Briefly, the Rrs spectral slope between 412 and 555 nm (Rrs555-412 slope; sr-1 nm-1) was 208 

plotted against logarithmically transformed Chl-a. Based on the scatter plot of 209 

log(Chl-a) and Rrs555-412 slope, we then defined a boundary line separating 210 

phytoplankton-dominated grid-cells (Rrs555-412 slope < boundary value) from potentially 211 

non-phytoplankton-dominated grid-cells (Rrs555-412 slope ≥ boundary value) by: 212 

 213 

Rrs555-412 slope = –0.000003{log(Chl-a)}2 + 0.00002{log(Chl-a)} + 0.00006. (1) 214 

 215 

Grid-cells were considered invalid and masked out if 1) Rrs555-412 slope ≥ boundary value, 216 
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or 2) Rrs at 555nm (Rrs555) > 0.01 sr–1 (or normalized water-leaving radiance > 2 mW 217 

cm–2 μm–1 sr–1; see Siswanto et al., 2011 and Moore et al., 2012). This criterion masked 218 

2% of all Chl-a data. 219 

The criteria described in the previous paragraph could mask out grid-cells having 220 

coccolithophore blooms, which are sometimes observed in the Arctic Ocean (e.g., 221 

Smyth et al., 2004), as they also have Rrs555 > 0.01 sr–1 (Moore et al., 2012). Unlike 222 

waters dominated by non-phytoplankton particles, whose Rrs spectral shape peaks at 223 

555 nm, the Rrs spectral shape of waters with coccolithophore blooms peaks at 490 or 224 

510 nm (see Iida et al., 2002; Moore et al., 2012). Therefore, grid-cells with Rrs spectral 225 

peaks at 490 or 510 nm (already classified using the criteria of Rrs at 490nm (Rrs490) > 226 

Rrs at 443nm (Rrs443) and Rrs at 510nm (Rrs510) > Rrs555) were considered as 227 

coccolithophore grid-cells, and were reintroduced. 8% of the masked Chl-a data were 228 

reintroduced by this criterion. 229 

 230 

3.2. Chlorophyll-a interpolation 231 

Chl-a values are often missing because of cloud cover, low angle of sunlight, or sea ice. 232 

For the period and area analyzed here, data are missing for 86 % of the space and time 233 

grid-cells. Because pCO2w mapping requires a complete Chl-a field without missing 234 
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values, we interpolated the Chl-a data as follows; 1) Chl-a was set to 0.01 mg m–3 235 

(minimum value of Chl-a) in high-latitude regions in winter when there was no light 236 

(north of 80° N in December and January, and north of 88° N in November and 237 

February). 2) Whenever SIC was greater than 99 %, Chl-a was set to 0.01 mg m–3 (full 238 

ice coverage, thus minimum Chl-a). We chose the strict criterion of SIC > 99 % because 239 

weak but significant primary production has been found to occur under the sea ice in 240 

regions with SIC around 90 % (Gosselin et al., 1997; Ulfsbo et al., 2014; Assmy et al., 241 

2017). 3) The remaining grid-cells with missing data were filled, wherever possible, 242 

using the average of Chl-a in the surrounding grid-cells within ±1° latitude and ±1° 243 

longitude; this mainly compensated for missing Chl-a values due to cloud cover or 244 

grid-cells masked out as potentially affected by CDOM and TSM. 4) Parts of the 245 

remaining missing Chl-a values, mainly for the pre-satellite period of January–August 246 

1997, were set to the monthly climatological Chl-a values based on the 18-year monthly 247 

mean from 1997 to 2014. 5) The final remaining missing Chl-a data, mainly for the 248 

marginal sea-ice zone, were generated by linear interpolation using surrounding data. 249 

With each interpolation step the number of the grid-cells with missing data decreased; 250 

23 % of grid-cells without Chl-a data were filled by the first step, and the subsequent 251 

steps provided data for the remaining 12, 8, 5, and 52 %. 252 
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 253 

3.3. Gridding of pCO2 data 254 

In order to bring the individual pCO2w data to the same resolution as the other input data, 255 

they were gridded to 1° × 1° × 1 month grid-cells covering the years from 1997 to 2014. 256 

This was carried out using the same three-step procedure of Yasunaka et al. (2016) as 257 

this excludes values that deviate largely from the long-term mean in the area of each 258 

grid cell. In short, first, anomalous values were screened in the following manner. We 259 

calculated the long-term mean and its standard deviation for a window size of ±5° of 260 

latitude, ±30° of longitude, and ±2 months (regardless of the year) for each 1° × 1° × 1 261 

month grid-cell. We then eliminated the data in each grid-cell that differed by more than 262 

three standard deviations from this long-term mean. In the second step, we recalculated 263 

the long-term mean and its standard deviation using a smaller window size of ±2° of 264 

latitude, ±10° of longitude, and ±1 month (regardless of the year) for each 1° × 1° × 1 265 

month grid-cell, and eliminated data that differed from that long-term mean by more 266 

than three standard deviations. In the final step the mean value of the remaining data in 267 

each 1° × 1° × 1 month grid cell for each year from 1997 to 2014 was calculated. This 268 

procedure identified in total about 0.5 % of the data as extreme values. These may well 269 

be correct observations, but likely reflect small spatial scale and/or short time scale 270 
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variations that can are quite atypical of the large-scale variability of interest in this study. 271 

These excluded values were randomly distributed in time and space.  272 

Although some studies have used pCO2w normalized to a certain year, based on the 273 

assumption of a constant rate of increase for pCO2w (e.g., Takahashi et al., 2009), we 274 

used “non-normalized” pCO2w values from all years; therefore, in our analysis pCO2w 275 

can increase both non-linearly in time and non-uniformly in space.  276 

 277 

3.4. pCO2 estimation using a self-organizing map 278 

We estimated pCO2w by the SOM technique used by Yasunaka et al. (2016), but with 279 

Chl-a as an added training parameter to the SOM in addition to SST, SSS, SIC, xCO2a, 280 

and geographical position X (=sin[latitude] × cos[longitude]) and Y (=sin[latitude] × 281 

sin[longitude]). Chl-a, SST, SSS, and SIC are closely associated with processes causing 282 

variation in pCO2w, such as primary production, warming/cooling, mixing, and 283 

freshwater input, and represent spatio-temporal pCO2w variability at seasonal to 284 

interannual time-scales. Including the xCO2a enables the SOM to reflect the pCO2w 285 

time-trend in response to the atmospheric CO2 changes including large seasonal 286 

variation and continued anthropogenic emissions. In several previous studies the 287 

anthropogenic pCO2w increase has been assumed to be steady and homogeneous, and 288 
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subtracted from the original pCO2w data and added to the estimated pCO2w (Nakaoka et 289 

al. 2013; Zheng et al. 2014). However, the occurrence of steady and homogeneous 290 

pCO2w trends has not yet been demonstrated in the Arctic Ocean and using xCO2a as a 291 

training parameter in the SOM, similar to Landschutzer et al. (2013, 2014) is preferable. 292 

Finally, the inclusion of geographical position among the training parameters can 293 

prevent systematic spatial biases (Yasunaka et al., 2014). Compared to other efforts 294 

mapping pCO2w using the SOM technique such as those by Telszewski et al. (2009) and 295 

Nakaoka et al. (2013), we used xCO2a, and geographical position as training parameters 296 

while we did not use mixed layer depth because of lack of reliable data in the Arctic. 297 

Briefly, the SOM technique was implemented as follows: first, the approximately one 298 

million 1° × 1° × 1 month grid-cells in the analysis region and period were assigned to 299 

5000 groups, which are called “neurons”, of the SOM by using the training parameters. 300 

Then, each neuron was labeled, whenever possible, with the pCO2w value of the 301 

grid-cell where the Chl-a, SST, SSS, SIC, xCO2a, and X and Y values were most similar 302 

to those of the neuron. Finally, each grid-cell in the analysis region and period was 303 

assigned the pCO2w value of the neuron whose Chl-a, SST, SSS, SIC, xCO2a, and X and 304 

Y values were most similar to those of that grid-cell. If the most similar neuron was not 305 

labeled with a pCO2w value, then the pCO2w value of the neuron that was most similar 306 
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and labeled was used. That case often happened in periods and regions without any 307 

observed data. A detailed description of the procedure can be found in Telszewski et al. 308 

(2009) and Nakaoka et al. (2013). 309 

 310 

3.5. Calculation of air–sea CO2 fluxes 311 

We calculated monthly air–sea CO2 flux (F) values from the pCO2w values estimated in 312 

Sect. 3.4 by using the bulk formula: 313 

 314 

F = kL(pCO2w – pCO2a) ,   (2) 315 

 316 

where k is the gas transfer velocity and L is the solubility of CO2. The solubility of CO2 317 

(L) was calculated as a function of SST and SSS (Weiss, 1974). We converted the 318 

interpolated NOAA marine boundary layer xCO2a data (Sect. 2.2) to pCO2a by using 319 

monthly sea-level pressure data and the water-vapor saturation pressure calculated from 320 

monthly SST and SSS (Murray, 1967). 321 

The gas transfer velocity k was calculated by using the formula of Sweeney et al. 322 

(2007): 323 

 324 
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k = 0.19 (Sc/660)–0.5 <WNCEP2
2> ,     (3) 325 

 326 

where Sc is the Schmidt number of CO2 in seawater at a given SST, calculated 327 

according to Wanninkhof (2014), “< >” denotes the monthly mean, and <WNCEP2
2> is 328 

the monthly mean of the second moment of the NCEP2 6-hourly wind speed. The 329 

coefficient 0.19, which is the global average of 0.27<WNCEP1
2>/<WNCEP2

2>, is based on 330 

the one determined by Sweeney et al. (2007) but optimized for NCEP2 winds, following 331 

the same method as Schuster et al. (2013) and Wanninkhof et al. (2013). 332 

The suppression of gas exchange by sea ice was accounted for by correcting the air–333 

sea CO2 fluxes using the parameterization presented by Loose et al. (2009); the flux is 334 

proportional to (1-SIC)0.4. Following Bates et al. (2006), in the regions with SIC > 99 %, 335 

we used SIC = 99 % to allow for non-negligible rates of air–sea CO2 exchange through 336 

leads, fractures, and brine channels (Semiletov et al., 2004; Fransson et al., 2017). This 337 

parameterization reduces the flux in fully ice covered waters (SIC > 99%) by 84%. 338 

 339 

4. Uncertainty 340 

4.1. Uncertainty in chlorophyll-a concentration data 341 

Fig. 3 shows original and interpolated Chl-a for the year 2012 as an example. Overall, 342 
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the interpolated Chl-a data seems to fit well with the original data. Most interpolated 343 

Chl-a data have low concentrations because of high SIC and lack of sunlight. The 344 

average of the interpolated Chl-a values is 0.1 mg m–3, and less than 5% of the 345 

interpolated Chl-a values are >0.5 mg m–3 (cf. the average of the original Chl-a values is 346 

1.1 mg m–3, and 48% of the original Chl-a values are >0.5 mg m–3). The previous 347 

studies to estimate pCO2w in high-latitudes assumed missing Chl-a as constant values 348 

and ignored spatio-temporal variation of Chl-a (Landschutzer et al. 2013; Nakaoka et al. 349 

2013). However, original Chl-a values in the ice-edge region are not small as captured 350 

by Perrette et al. (2011), and those in the northernmost grids in winter, north of which 351 

the original Chl-a values are missing, is far south of polar night region, since they are 352 

missing not because of no sunlight but because of low-angles of sunlight (Fig. 3a). 353 

Therefore, we believe interpolation is better than lowest constant values. 354 

To validate our Chl-a interpolation, we repeated the interpolation after randomly 355 

eliminating 10 % of the satellite Chl-a values. We then used the eliminated original 356 

Chl-a data as independent data for the validation. Note that this comparison was done 357 

where there were the original Chl-a data, i.e. the high Chl-a region. The root mean 358 

square difference (RMSD) and correlation coefficient between the interpolated and the 359 

independent original Chl-a data are 0.90 mg m–3 and 0.80, respectively. It means the 360 



21 
 

interpolated Chl-a, maybe not quantitatively, but qualitatively reproduced the original 361 

Chl-a, and therefore is a meaningful parameter in the SOM process. Actually Chl-a data 362 

improved the pCO2w estimate, even though Chl-a values in many grid-cells were 363 

interpolated values (see Sec. 5.4). 364 

To evaluate our choice of Chl-a algorithm (i.e. the Arctic algorithm of Cota et al., 365 

2004), we compared its calculated Chl-a values with those determined by using the 366 

standard algorithm of O’Reilly et al. (1998) and the coastal algorithm of Tassan (1994). 367 

RMDS and correlation coefficient (r) between the original (i.e. non-interpolated) Chl-a 368 

values are about 0.8 mg m–3 and 0.9, respectively (Table 1). For all the Chl-a values 369 

including the interpolated data, they are about 0.4 mg m–3 and 0.9. The lower RMSD in 370 

this case results from the fact that most of the interpolated Chl-a values have low 371 

concentrations. This result means the Chl-a from the different algorisms, maybe not 372 

quantitatively, but qualitatively consistent with each other. Since not absolute Chl-a 373 

values but relative values affect the pCO2w estimates in the SOM technique, the large 374 

RMSD among the Chl-a does not result in the significant difference of the pCO2w 375 

estimates. Actually, the pCO2w and CO2 fluxes determined using Chl-a from any of 376 

these algorithms as input to the SOM are consistent within their uncertainties (see Sects. 377 

4.2 and 4.3 below). RMSDs between the observed and estimated pCO2w are smallest in 378 
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pCO2w estimate using Chl-a from the Arctic algorism, but the differences are quite small 379 

(<1%). 380 

 381 

4.2. Uncertainty of pCO2w mapping 382 

Fig. 4 compares observed and estimated pCO2w (note that the spatial change visible in 383 

Figs. 4a and 4b include differences generated by different seasonal coverage of data in 384 

the various regions). Both observed and estimated pCO2w tend to be higher in the 385 

subpolar North Atlantic, the Laptev Sea, and the Canada Basin, and lower in the 386 

Greenland Sea and the Barents Sea. However, the east–west contrast in the Bering Sea 387 

and the contrast between the Canada Basin and the Chukchi Sea are weaker in our 388 

estimates than in the observations, and mean bias and RMSD are relatively large in 389 

those areas (Figs. 4c and 4d). The temporal changes in the observed and estimated 390 

pCO2w are in phase (Fig. 5a), although the variability of the estimated values is 391 

somewhat suppressed compared to that of the observed data (Note that the temporal 392 

change depicted in Fig. 5a also includes changes incurred by time variations in data 393 

coverage). The mean bias and RMSD fluctuate seasonally but are at a constant level 394 

over the years (Fig. 5b). 395 

The correlation coefficient between estimated and observed pCO2w is 0.82, and the 396 
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RMSD is 30 μatm, which is 9 % of the average and 58 % of the standard deviation of 397 

the observed pCO2w values. This is a performance level categorized as “good” by 398 

Maréchal (2004). The differences between the estimated and observed values stem not 399 

only from the estimation error but also from the error of the gridded observed data. The 400 

uncertainty of the pCO2w measurements is 2–5 μatm (Bakker et al., 2014), the 401 

uncertainty of the pCO2w values calculated from dissolved inorganic carbon and total 402 

alkalinity, whose uncertainties are within 4 μmol kg–1 and 6 μmol kg–1, respectively 403 

(Olsen et al., 2016), can be up to 14 μatm (Lueker et al., 2000), and the sampling error 404 

of the gridded pCO2w observation data was determined from the standard errors of 405 

monthly observed pCO2w in the 1° × 1° grid-cells, to 7 μatm (Yasunaka et al., 2016). 406 

To validate our estimated pCO2w values for periods and regions without any observed 407 

data, we repeated the mapping experiments after systematically excluding some of the 408 

observed pCO2w data when labeling the neurons; four experiments were carried out, by 409 

excluding data (1) from 1997–2004, (2) from January to April, (3) from north of 80°N, 410 

and (4) from the Laptev Sea (90°E – 150°E), where there are only a few pCO2w 411 

observations. We compared the pCO2w estimates obtained in each experiment with the 412 

excluded observations and found that the pCO2w estimates reproduced the general 413 

features of the excluded data, both spatially and temporally (not shown here). They 414 
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were also similar to the pCO2w estimates obtained by using all observations, although 415 

the RMSDs between the estimates and the excluded observations are 54 μatm on 416 

average, which is 1.8 times the RMSDs of the estimates based on all observations. It 417 

means that our estimated pCO2w reproduce the general features both in space and time 418 

even when and where there are no observed data, although the uncertainty in pCO2w 419 

might be as large as 54 μatm in regions and periods without data. We used this 420 

uncertainty for pCO2w estimates made by using the pCO2w values of a less similar 421 

neuron. 422 

 423 

4.3. Uncertainty of CO2 flux estimates 424 

Signorini and McClain (2009) estimated the uncertainty of the CO2 flux resulting from 425 

uncertainties in the gas exchange parameterization to be 36 %, and that resulting from 426 

uncertainties in the wind data to be 11 %. The uncertainty for SIC is 5 % (Cavalieri et 427 

al., 1984; Gloersen et al., 1993; Peng et al., 2013). The standard error of the sea-ice 428 

effect on gas exchange was estimated to about 30 % by Loose et al. (2009). The 429 

uncertainty of pCO2a is about 0.5 μatm 430 

(http://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html), and that of pCO2w was 30 μatm 431 

(Sect. 4.2); therefore, we estimated the uncertainty of ∆pCO2 (=pCO2w − pCO2a) to be 432 
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34 % (average ∆pCO2 in the analysis domain and period was −89 μatm). The overall 433 

uncertainty of the estimated CO2 fluxes is thus 59 % ([0.362 + 0.112 + 0.052 + 0.32 + 434 

0.342]1/2) in sea-ice covered regions and 51 % ([0.362 + 0.112 + 0.342]1/2) in ice-free 435 

regions. For estimates using the pCO2w values of a less similar neuron, whose 436 

uncertainty in pCO2w is 54 μatm and the uncertainty of the ∆pCO2 estimates can be as 437 

high as 61 %, the uncertainty is 78 % ([0.362 + 0.112 + 0.052 + 0.32 + 0.612]1/2) in 438 

sea-ice covered regions, and 72 % ([0.362 + 0.112 + 0.612]1/2) in ice-free regions. The 439 

average of the estimated CO2 flux in the analysis domain and period is 4.8 mmol m–2 d–440 

1; hence the uncertainty of the CO2 flux estimate corresponds to 2.8 mmol m–2 d–1 in 441 

sea-ice covered regions and 2.4 mmol m–2 d–1 in ice-free regions. For estimates using 442 

the pCO2w values of a less similar neuron, the uncertainty corresponds to 3.7 mmol m–2 443 

d–1 in the sea-ice covered region and 3.5 mmol m–2 d–1 in ice-free regions. 444 

 445 

5. Results and discussion 446 

5.1. Relationship between pCO2 and chlorophyll-a 447 

Fig. 6 compares the observed pCO2w and the original non-interpolated Chl-a in spring 448 

(March–May) and summer (July–September). In spring, when much of the Arctic Ocean 449 

is ice-covered, Chl-a is high in the Barents Sea and the Bering Strait (>1 mg m–3). In 450 
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summer, when the ice cover is less extensive, Chl-a is high in the Chukchi Sea, the Kara 451 

Sea, the Laptev Sea, and the East Siberian Sea (>1 mg m–3) and especially high in the 452 

coastal regions of the two latter (>2 mg m–3). pCO2w is high in the Norwegian Sea in 453 

spring, and in the Kara Sea, the Laptev Sea and the Canada Basin during summer (>300 454 

μatm). On the other hand, it is lower in the Chukchi Sea, Bering Strait area and the 455 

sea-ice edge region of the Eurasian Basin in summer (<300 μatm). The overall 456 

correlation between pCO2w and Chl-a is negative where Chl-a ≤ 1 mg m–3 (70% of all 457 

the data; correlation coefficient r = –0.36, P < 0.01), but there is no significant 458 

relationship where Chl-a > 1 mg m–3 (Fig. 7). A similar situation was identified in the 459 

subpolar North Atlantic by Olsen et al. (2008). It means that primary production 460 

generally draws down the pCO2w, but high Chl-a are not necessarily associated with the 461 

low pCO2w probably because high Chl-a usually appears in the coastal regions (Fig. 6b; 462 

see below). 463 

To determine the spatial variability of the relationship between pCO2w and Chl-a, we 464 

calculated the correlation coefficients between pCO2w and Chl-a in a window of ±5° of 465 

latitude, and ±30° of longitude for each monthly 1° × 1° grid-cell (Fig. 8a). The 466 

correlations between pCO2w and Chl-a are negative in the Greenland/Norwegian Seas 467 

and over the Canada Basin. In the Greenland/Norwegian Seas, the correlation between 468 
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pCO2w and Chl-a is strongly negative (r < –0.4) in spring and weakly negative (–0.4 < r 469 

< 0) in summer. Chl-a there is higher in summer than in spring (Fig. 6b), whereas 470 

nutrient concentrations are high in spring and low in summer (Fig. 8b). Taken together, 471 

this suggest that primary production draws down the pCO2w in spring, whereas in 472 

summer the primary production mostly depends on regenerated nutrients (Harrison and 473 

Cota, 1991) and the net CO2 consumption is small, as also reported for the subpolar 474 

North Atlantic (Olsen et al., 2008). Therefore the correlation between pCO2w and Chl-a 475 

becomes less negative. In the eastern Barents Sea, the Kara Sea and the East Siberian 476 

Sea, and the Bering Strait, the correlations are positive because of water with high 477 

pCO2w and Chl-a in the coastal region subjected to river discharge (Murata, 2006; 478 

Semiletov et al., 2007; Anderson et al., 2009; Manizza et al., 2011). In the Chukchi Sea, 479 

the relationship is weak (–0.2 < r < 0.2), probably because the relationship is on smaller 480 

spatial and temporal scales than those represented by the window size used here, as 481 

shown by Mucci et al. (2010). The occurrence of calcifying plankton blooms in this 482 

region, likely also weakens the correlation since the calcification increases pCO2w 483 

(Shutler et al., 2013; Fransson et al., 2017). 484 

These results show that pCO2w relates Chl-a, but the relationships are different 485 

depending on the region and the season. It is difficult to represent such a complex 486 
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relationship using simple equations (e.g. multiple regression methods) because it needs 487 

a priori assumptions of regression functions and of dividing the basin into sub-regions. 488 

But the SOM technique can empirically induce the relationships without any of the a 489 

priori assumptions, and therefore is suitable to represent such a complex relationship. 490 

 491 

5.2. Spatiotemporal CO2 flux variability 492 

The 18-year annual mean CO2 flux distribution shows that all areas of the Arctic 493 

Ocean and its adjacent seas were net CO2 sinks over the time period that we 494 

investigated (Fig. 9). The annual CO2 influx to the ocean was strong in the 495 

Greenland/Norwegian Seas (9 ± 3 mmol m–2 d–1; 18-year annual mean ± uncertainty 496 

averaged over the area shown in Fig. 1), the Barents Sea (10 ± 3 mmol m–2 d–1), and the 497 

Chukchi Sea (5 ± 3 mmol m–2 d–1). In contrast, influx was weak and not statistically 498 

significantly different from zero in the Eurasian Basin, the Canada Basin, the Laptev 499 

Sea and the East Siberian Sea. Our annual CO2 flux estimates are consistent with those 500 

reported by Yasunaka et al. (2016) and other previous studies (Bates and Mathis, 2009, 501 

and references therein). 502 

The estimated 18-year average CO2 influx to the Arctic Ocean was 5 ± 3 mmol m–2 d–503 

1, equivalent to an uptake of 180 ± 130 TgC y–1 for the ocean area north of 65° N, 504 
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excluding the Greenland/Norwegian Seas and Baffin Bay (10.7 × 106 km2; see Fig. 1). 505 

This accounts for 12% of the net global CO2 uptake by the ocean of 1.5 PgC yr-1 506 

(Gruber et al., 2009; Wanninkhof et al., 2013; Landschützer et al., 2014). It is within the 507 

range of other estimates (81–199 TgC y–1; Bates and Mathis, 2009), but close to the 508 

upper bound. That is partly because the parameterization of the suppression effect by 509 

sea ice used in this study. Using another parameterization which represents the SIC 510 

effect linearly (Takahashi et al. 2009; Butterworth and Miller 2016), CO2 uptake of the 511 

Arctic Ocean was estimated to be 130 ± 110 TgC y–1. 512 

Fig. 10 shows the seasonal variation of the air-sea CO2 fluxes and its controlling 513 

factors (pCO2, wind speed and SIC; solubility is not shown as the impacts of its 514 

variations are relatively small in this context) in the Greenland/Norwegian Seas, the 515 

Barents Sea, the Chukchi Sea and the Arctic Ocean. In all of these regions the influxes 516 

are strongest in October, when the winds strengthen with the approach of winter and the 517 

pCO2w and/or SIC are still as low as in the summer. In the Greenland/Norwegian Seas 518 

and the Barents Sea the CO2 influx shows a secondary maximum in February because 519 

the strongest winds occur in that month, while in the Chukchi Sea and Arctic Ocean, the 520 

winds are also strong but the flux is suppressed by the extensive sea-ice cover. All of 521 

these regions are undersaturated with pCO2w (i.e. negative pCO2) throughout all 522 
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seasons. The undersaturation is strongest in the Arctic Ocean, as this has the most 523 

extensive sea ice cover limiting the fluxes from the atmosphere and the strongest 524 

stratification, limiting the mixing of CO2 rich subsurface waters into the surface ocean. 525 

The undersaturation typically shows a maximum (i.e. pCO2 is minimum) in late spring 526 

to early summer (May–June) when the spring bloom occur (Pabi et al. 2008), but not in 527 

the Arctic Ocean. Here the undersaturation reaches its minimum (pCO2 is the smallest) 528 

in late summer (August–September) at the time of minimum sea ice cover, since the 529 

seasonal decrease of pCO2 in summer is larger in the air than in the sea. Overall, in the 530 

Greenland/Norwegian Seas and the Barents Sea the seasonal variations of the CO2 flux 531 

is opposite to that expected from the seasonal pCO2 variations because it is the wind 532 

speed that governs most of the seasonal flux variations. In the Chukchi Sea, on the other 533 

hand, the CO2 influx is strongest in summer, a consequence of the minimum sea-ice 534 

cover and strongest pCO2 undersaturation. In the Arctic Ocean it is the SIC and wind 535 

speed that drive the seasonal flux variations. Seasonal variations of CO2 flux are 536 

consistent with those of the previous studies (Yasunaka et al. 2016, and references 537 

therein), whereas those of pCO2w become realistic (see Section 5.3 below). 538 

Fig. 11 shows interannual variation of CO2 flux and its driving factors in these four 539 

regions. The interannual variations of CO2 flux andpCO2 are generally smaller than 540 
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the seasonal variations, and are often smaller than their respective uncertainty. In the 541 

Greenland/Norwegian Sea, interannual variation of the CO2 flux negatively correlates 542 

with the wind speed (CO2 influx to the ocean is large when the wind is strong; r = –543 

0.41), while interannual variation of pCO2 and sea ice change is small. In the Barents 544 

Sea, the interannual variation of CO2 flux correlates with pCO2 positively (r = 0.71) 545 

and with SIC negatively (r = –0.50), while the correlation with wind speed is not 546 

significant. Although low SIC enhance the air-sea CO2 exchange due to increase of the 547 

area of open water, it also associates with high SST and therefore high pCO2w there. In 548 

the Chukchi Sea, CO2 influx to ocean is decreasing with the increasing of pCO2 (r = 549 

0.87). High pCO2w (>500 μatm) via storm-induced deep mixing events has been 550 

sometimes observed in the Chukchi Sea after 2010 (Hauri et al. 2013; Taro Takahashi, 551 

personal communication). Interannual variability of the CO2 flux averaged over the 552 

Arctic Ocean is small because the increasing pCO2 is compensated by the effect of sea 553 

ice retreat (r = –0.70). Thus, the combined effect of sea-ice retreat and pCO2w increase 554 

on CO2 flux varied among regions.  555 

The CO2 influx has been increasing in the Greenland Sea and northern Barents Sea, 556 

and decreasing in the Chukchi Sea and southern Barents Sea (Fig. 12). The CO2 flux 557 

trend corresponds well with the ∆pCO2 trend, which in turn corresponds well with the 558 
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SST trend. The increasing CO2 influx in the northern Barents Sea also corresponds with 559 

the sea-ice retreat. These results are similar to that for the previous estimates without 560 

using Chl-a (see Fig. 10 in Yasunaka et al., 2016). It shows again that the combined 561 

effect of sea-ice retreat and pCO2w increase to the CO2 flux is regionally different. In the 562 

SOM process, the pCO2w values observed in the latter period might be used for the 563 

pCO2w estimate in the former period where the pCO2w measurements have not been 564 

made, and therefore the trend in CO2 influx might be affected by the spatio-temporal 565 

distribution of the measurements. To confirm this is not the case, we checked that the 566 

spatial distribution of the pCO2w trend did not correspond to the year when the first 567 

observation was conducted (see supplement). 568 

 569 

5.3. Impact of incorporating chlorophyll-a data in the SOM 570 

To determine the impact of including Chl-a data in the SOM process, the analyses were 571 

repeated without Chl-a data. The RMSD of the resulting estimated pCO2w values is 33 572 

μatm, which is 3 μatm larger than the uncertainty of the estimates generated by 573 

including Chl-a in the SOM. Chl-a data thus improved the pCO2w estimate (namely, a 574 

10 % reduction of RMSD), even though 40 % of the Chl-a data labeled with pCO2w 575 

observations were interpolated Chl-a values.  576 
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Figs. S1 and S2 present the difference in bias and RMSD for pCO2w estimated with 577 

and without Chl-a; Fig. S1 shows the time-evolution and Fig. S2 shows the spatial 578 

distribution. Both approaches typically underestimate pCO2w in winter and overestimate 579 

the summertime values, but these systematic biases are reduced when Chl-a are 580 

included in the SOM (Fig. S1). Biases and RMSDs are reduced in the Canada basin, the 581 

western Bering Sea, and the boundary region between the Norwegian Sea and the 582 

subpolar North Atlantic (Fig. S2). As a result the strong east–west contrast in the Bering 583 

Sea and the contrast between the Canada Basin and the Chukchi Sea (see Fig. 4) are 584 

better represented when Chl-a is included. Taken together, inclusion of Chl-a when 585 

estimating pCO2w yields not only better representation of the pCO2w decline in spring 586 

and summer but also improves the representation of the spatio-temporal pCO2w 587 

distribution. Technically, these improvements come from the fact that Chl-a as a training 588 

parameter can separate high Chl-a region/time and low Chl-a region/time into different 589 

neurons, which contaminated in the same neurons trained without Chl-a. For example, 590 

since Chl-a is high in spring but SST and SIC are still in the similar levels with winter, 591 

the grid-cells in spring and winter would be classified into the separate neurons when 592 

Chl-a is included as a training parameter, but in the same neuron when Chl-a is not 593 

included. As a result, without Chl-a, the estimated pCO2w in spring tends to be similar to 594 
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the pCO2w in winter, and the pCO2w in winter tends to be similar to that in spring. And 595 

therefore the contrast between winter and spring is weakened without Chl-a.  596 

The seasonal cycles of pCO2w estimates derived with the inclusion of Chl-a have a 597 

larger amplitude than the uncertainties, whereas the uncertainties are larger than the 598 

seasonal amplitude when pCO2w is derived without Chl-a (upper panels of Fig. 13). The 599 

difference is caused by the fact that the seasonal cycle of pCO2w in each region 600 

reproduces the observed cycle better when Chl-a was included (lower panels of Fig. 13). 601 

Note that the much larger seasonal amplitude in the lower panels is an artefact generated 602 

by the seasonal bias in sampling locations; in winter most measurements are obtained at 603 

low latitudes where pCO2w is typically higher than at high latitudes.  604 

Compared to the CO2 influx estimates by Yasunaka et al. (2016), the winter CO2 605 

influx in the Greenland/Norwegian Seas estimated including Chl-a is about 3 mmol m–2 606 

d–1 less than that calculated without using Chl-a (Fig. 14), but this difference is smaller 607 

than the uncertainties. The CO2 fluxes in the other area are quite similar with each 608 

estimate, while their uncertainties are smaller in the present estimates.  609 

The inclusion of Chl-a data also reduced the uncertainty of the estimated annual 610 

air-sea CO2 flux integrated over the entire Arctic Ocean. Compared to the flux estimate 611 

determined by Yasunaka et al. (2016) of 180 ± 210 TgC y–1, the CO2 uptake in the 612 
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Arctic Ocean estimated here is significant within its uncertainty (180 ± 130 TgC y–1). 613 

This improvement is the result of 1) the inclusion of Chl-a data in the SOM process 614 

(which reduced the uncertainty by 23 %); 2) the separate uncertainty estimates for 615 

ice-free and ice-covered regions (8 %); and 3) the addition of new observational pCO2w 616 

data (7 %). Reducing the uncertainty of this quantification is a key contribution to the 617 

larger work of constraining the global carbon budget (e.g., Le Quere et al., 2016). 618 

Because the Arctic is an important CO2 sink, quantifying its fluxes and minimizing the 619 

uncertainty is of great scientific value. 620 

 621 

5.4. Toward further reduction of the uncertainty 622 

  The addition of new observational data from SOCATv4 and GLODAPv2 reduced the 623 

overall uncertainty in the mapped pCO2w: a 33 % increase in the number of observations 624 

induced a 7 % reduction in the uncertainty. However, there are still few observations in 625 

the Kara Sea, the Laptev Sea, the East Siberian Sea and the Eurasian Basin (Fig. 2). To 626 

improve our understanding of the variability in air–sea CO2 fluxes in the Arctic, it is of 627 

critical importance to obtain additional ocean CO2 measurements to fill these data gaps, 628 

and that these measurements are made publically available. Data synthesis activities like 629 

SOCAT must be encouraged. 630 
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In the present study, we discussed the combined effect of sea-ice retreat and pCO2w 631 

change on the air-sea CO2 flux. There are other factors that will induce the change of 632 

CO2 flux. For example, warmer temperature will lead to an increasing buffering 633 

capacity while lower salinity will have the opposite effect and cause a decrease in 634 

buffering capacity. In our current study, we used climatological-mean salinity for the 635 

pCO2w estimate because of lack of reliable year-to-year salinity data. That might be one 636 

of the improvements for a future study. 637 

 638 

6. Conclusions 639 

By applying an SOM technique with the inclusion of Chl-a data to estimate pCO2w, we 640 

produced monthly maps of air–sea CO2 fluxes from 1997 to 2014 for the Arctic Ocean 641 

and its adjacent seas north of 60° N. Negative correlation between pCO2w and Chl-a 642 

meant that Chl-a is valuable parameter to represent primary production. Since the 643 

relationship varied among seasons and regions, the SOM technique is better suited for 644 

the mapping than a multiple linear regression approach. Adding Chl-a to the SOM 645 

process improved representation of the seasonal cycle of pCO2w, and therefore reduced 646 

the uncertainty of the CO2 flux estimates. 647 

In the Greenland/Norwegian Seas and the Barents Sea the CO2 influx was large in 648 
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autumn and winter because of the strong wind. In the Chukchi Sea, on the other hand, 649 

the CO2 influx was strong in summer and autumn, as a consequence of the low SIC and 650 

strong pCO2w undersaturation. Although interannual variation of the CO2 influx was 651 

smaller than the seasonal variation, the CO2 influx has been increasing in the Greenland 652 

Sea and northern Barents Sea, and decreasing in the Chukchi Sea and southern Barents 653 

Sea. 654 

A major goal of the carbon-cycle research community in recent years has been to 655 

reduce the uncertainty in estimates of carbon reservoirs and fluxes. Our results 656 

contribute to this in that CO2 uptake in the Arctic Ocean is demonstrated with high 657 

significance. The resulting estimate of the annual Arctic Ocean CO2 uptake of 180 TgC 658 

y–1 is significant with an uncertainty of ± 130 TgC y–1. This is a substantial 659 

improvement over earlier estimates, and is due mainly to the incorporation of Chl-a 660 

data.  661 

  Assessment of the numerical models using our estimate of Arctic carbon uptake is 662 

also an interesting topic since numerical models are poorly validated in the Arctic due to 663 

the limited observations of biogeochemistry (Popova et al., 2012). However, such 664 

experiments need thorough insight into the numerical models, which is beyond the 665 

scope of this study. We hope to perform such comparisons in future studies. 666 
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The monthly CO2 flux, pCO2w, and interpolated Chl-a data presented in this paper 667 

will be available at the JAMSTEC website 668 

(http://www.jamstec.go.jp/res/ress/yasunaka/co2flux_v2). 669 
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 1025 

Figure 1: Map of the Arctic Ocean and its adjacent seas. Gray contour lines show the 1026 

1000, 2000, 3000, and 4000 m isobaths. Blue lines show the 17-year annual mean 1027 

position of the ice edge (SIC = 15 %). Area for the mapping is north of 60° N (heavy 1028 

black circle). Sectors selected for regional analysis are the Arctic Ocean (dashed 1029 

magenta line), the Greenland/Norwegian Seas (green 1), the Barents Sea (green 2), and 1030 

the Chukchi Sea (green 3). 1031 
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 1041 

 1042 

Figure 2: (a) The number of ocean surface CO2 data in the grid boxes (1° × 1°) used in 1043 

this study. Data are from SOCATv4, LDEOv2014, GLODAPv2, and collected by R/V 1044 

Mirai of JAMSTEC between 1997 and 2014. (b) Monthly number of CO2 data in the 1045 

analysis area (north of 60° N) from 1997 to 2014.   1046 
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 1061 

Figure 3: (a) Original and (b) interpolated Chl-a [mg m-3] in July 2012 (upper panels), 1062 

and along 75°N in 2012 (lower panels). Black lines denote SIC of 50% and 90%. Gray 1063 

areas in (a) indicate missing Chl-a data.  1064 
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 1076 

Figure 4: (a) Observed pCO2w averaged over the whole analysis period [μatm]. (b) 1077 

Estimated pCO2w averaged over the grid boxes in which observed pCO2w values were 1078 

available [μatm]. (c) Bias (estimate–observation) and (d) root-mean-square-difference 1079 

between observed and estimated pCO2w averaged over the whole analysis period 1080 

[μatm].   1081 
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 1094 

Figure 5: (a) Monthly time series of observed pCO2w averaged over the entire analysis 1095 

area (black), and estimated pCO2w averaged over the grid boxes in which observed 1096 

pCO2w values were available (green) [μatm]. (b) Bias (estimate–observation; black) and 1097 

root-mean-square-difference (green) between observed and estimated pCO2w averaged 1098 

over the entire analysis area [μatm]. 1099 
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Figure 6: (a) Observed pCO2w [μatm], and (b) non-interpolated Chl-a [mg m-3] in 1111 

March–May (left), and July–September (right) from 1997 to 2014.   1112 
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 1124 

Figure 7: Observed pCO2w [μatm] vs. satellite Chl-a [mg m-3] in the Arctic Ocean and 1125 

its adjacent seas (north of 60° N) from 1997 to 2014. Colors indicate the number of data 1126 

pairs in a 0.1 mg m-3 × 5 μatm bin when Chl-a ≤ 5 mg m–3, or in a 1 mg m–3 × 5 μatm 1127 

bin when Chl-a > 5 mg m–3.   1128 
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 1139 

Figure 8: (a) Spatial correlation (correlation coefficient, r) between pCO2w and Chl-a in 1140 

a window size of ±1 month, ±5° of latitude, and ±30° of longitude in March–May (left), 1141 

and July–September (right). Darker hatched areas represent values in grids where 1142 

correlations are insignificant (P > 0.05). (b) Surface nitrate concentration [μmol l-1] in 1143 

March–May (left), and July–September (right) from 1997 to 2014. 1144 
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 1154 

Figure 9: Eighteen-year annual means of CO2 flux [mmol m–2 day–1] (negative values 1155 

indicate flux into the ocean). Darker hatched areas represent show values in grids where 1156 

fluxes were smaller than the uncertainty, estimated as described in the text. 1157 
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 1170 

Figure 10: Eighteen-year monthly mean CO2 flux [mmol m–2 day–1] (black), ∆pCO2 1171 

[μatm] (red), wind speed [m sec–1] (green), and SIC [%] (blue), averaged over (a) the 1172 

Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic 1173 

Ocean. Error bars indicate the uncertainty. 1174 
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Figure 11: Area-mean interannual variations of CO2 flux [mmol m–2 day–1] (black), 1186 

∆pCO2 [μatm] (red), wind speed [m sec–1] (green), and SIC [%] (blue) in (a) the 1187 

Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic 1188 

Ocean. Error bars indicate the uncertainty. 1189 
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 1202 

Figure 12: Trends in (a) CO2 flux [mmol m–2 1203 

day–1 decade–1], (b) ∆pCO2 [μatm decade–1], 1204 

and (c) SIC [% decade–1]. Darker hatched 1205 

areas represent values in grids where trend 1206 

values were less than the uncertainty, 1207 

estimated as described in the text. 1208 
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 1219 

 1220 

Figure 13: Eighteen-year averaged pCO2w seasonal variations [μatm] in (a) the 1221 

Greenland/Norwegian Seas, (b) the Barents Sea, and (c) the Chukchi Sea. Black lines 1222 

with triangles show estimates without Chl-a; magenta lines with open circles show 1223 

estimates with Chl-a; green lines with closed circles show observed values. The upper 1224 

panels show pCO2w averaged for all grid cells with each region, and the lower panels 1225 

show pCO2w averaged over the grid boxes in which observed pCO2w values were 1226 

available. Error bars show the uncertainty, estimated as described in the text. 1227 
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 1238 

Figure 14: Eighteen-year monthly mean CO2 flux [mmol m–2 day–1] averaged over (a) 1239 

the Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the 1240 

Arctic Ocean. Black lines with triangles show estimates without Chl-a by Yasunaka et al. 1241 

(2016); magenta lines with open circles show estimates with Chl-a. Error bars show the 1242 

uncertainty, estimated as described in the text. 1243 
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 1245 

Table 1: RMSD [mg m–3] and correlation (r) between Chl-a values 1246 

 standard algorithm coastal algorithm 

RMSD r RMSD r 

Chl-a from Arctic algorithm 0.80 0.90 0.81 0.87 

Interpolated Chl-a from Arctic algorithm 0.37 0.92 0.48 0.86 

 1247 
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 1249 


