
Associate Editor Decision: Reconsider after major revisions (30 Nov 2017) by Susan Natali
Comments to the Author:
Dear Dr. Siewert, 
Thank you for your responses to the referees' comments. I agree with the reviewers' comments and 
your response to address issues related to the spatial resolution of the model. With this and other 
suggested changes, including editing for readability and inclusion of processing code, I feel that this 
will be a much improved and publishable manuscript. 
Best regard, 
Sue Natali

Response letter to the editor:

Dear Dr. Natali,

Thank you for your positive feedback to my manuscript. It has now been fully revised. Major changes 
include:
- A section testing the modelling approach at different spatial resolutions.
- Major revisions of the text addressing all reviewer comments as outlined below and editing for 
readability.
- link to the processing code at github as suggest by Referee #2

I hope that the manuscript will be judge publishable after these improvements.

I am looking forward to your feedback.
With best regards,
Matthias Siewert



Response letter to the reviewers:

Anonymous Referee #1
Received and published: 21 September 2017
This paper discusses a study that developed a high spatial resolution map of soil organic carbon for a 
sub-Arctic peatland in northern Sweden, using essentially Random Forest algorithms and a suite of 
environmental variables, including land cover,remotely-sensed vegetation indices, and digital elevation 
terrain modeling (DEM). The study is relatively straightforward, and demonstrates a reasonable 
approach for modeling/mapping soil carbon in high northern latitude systems. My only major issue had
to do with clarification of the resolutions of the various input datasets, and the ultimate resolution 
provided by the model/map.

That and other minor points are listed here:

1)So, with regard to the resolution of the inputs and outputs, I found it slightly hard to follow, and I 
think it might help to put all of the resolutions on Figure 1 (right now only the orthophoto/DEM and the
final map resolutions are on there). If I am understanding this correctly, the orthophoto is 1m and the 
DEM is 2m (this is actually slightly misleading in Figure 1, which has the orthophoto + DEM as 1m – 
but, I guess that the DEM was just “down-sampled” to 1m resolution. The SPOT data are either 10m or
20m, and the minimum size of a land cover classification was 130m 2 , so somewhat consistent with a 
SPOT pixel, although it’s unclear what the range of extents are for land cover regions.
The final map is then generated at the 2m resolution; why not 1m and utilize the more resolute 
orthophoto information?

Thank your for this very interesting comment that opens up a different perspective to this work. 
The resolution of the individual products is now mentioned in Figure 1 (Now Figure 3). A 
resolution of 2 m for the final model was originally chosen as a compromise between the available
input variables, output quality, the benefit of higher resolution and processing time.

However, as this point has been mentioned by several reviewers, I ran the model at several spatial
resolutions: 1m, 2m, 10m, 30m, 100m, 250 m and 1000 m for the Total SOC and at 1m for 
different depth intervals. This is in line with the suggestions made by reviewer 3 and 4. The 
outcome is discussed following the reviewers input with regard to the resolution of different input
datasets. 

2) Figure 6 – Does “Mean decrease in accuracy” indicate the accuracy reduction when that variable is 
removed from the analysis? If so, make that clear in the figure and caption.
Yes, that is the meaning of this measure. The figure caption has been reformulated to emphasis 
this:
Fig. 1. Variable importance for the prediction of total SOC measured as mean decrease in accuracy 
of the random forest model if the variable is excluded. The higher the value the more important is 
the variable.

3) Also, it’s interesting that the most important variable in the analysis was Land Cover, the variable at 
the coarsest resolution, followed by three SPOT variables. In fact, you don’t get a DEM variable until 
the 5th-most important (Elevation), and even then it’s unclear that the information is necessary at the 
2m resolution (could be equally useful if aggregated to a coarser resolution). I know from first-hand 
experience that these systems can be highly variable in space over short distances with regard to SOC; 
however, it’s certainly interesting that most of the variability explained occurs at resolutions of tens of 



meters, which puts into question the utility of a 2m resolution map. I think this is worthy of some 
additional discussion in the paper – particularly within the context of what is discussed on Page 13, 
Lines 1-8,where a fine resolution is necessary to capture the appropriate scale of variability in SOC.

I agree with the reviewer in this point. Indeed, lower resolution input variables seem more 
important than higher resolution input variables. However, I believe that this is much an effect of
the validation rather than true value in the spatial prediction using the model. Looking at the 
resulting maps of SOC in Figure 6, it is clearly visible that information from the DEM has a 
strong influence on the final map. This seems to be more relevant for fine scale and linear 
landscape features, while larger homogeneous areas are more influenced by lower resolution 
input data. The discussion was updated regarding this comment (see section 5.3, 2 paragraph).

4) Abstract, Line 10 – add “for SOC quantification” after “evaluated”
Changed

5) Abstract, Line 16 – change “surprising” to “surprisingly”
Changed

6) Abstract, Line 19 – add “s” to “scale”
Changed

7) Page 2, Line 2 – specify “Northern” high latitudes
Changed
8) Page 2, Line 8 – to what depth is the 1300 Pg SOC estimate?∼
It is now specified that this includes “soils to a depth of 3 meters and other unconsolidated 
deposits “. The reader can get more information on this under the specified reference. 

9) Page 2, Line 10 and throughout – be consistent, either hyphenate “permafrost affected” or not – 
probably should hyphenate
Hyphenate is now used throughout

10) Page 2, Line 24 – remove “a” before “commonly”
Changed

11) Page 3, Line 1 – remove the hyphen from “higher-latitudes”
Changed

12) Page 3, Line 15 – I think LCC has not been spelled out yet in the paper
LCC has been spelled out on page 1 of the introduction.

13) Page 4, Line 19 – How long were the transects (i.e. what was the distance between sampling 
points)?
The following information was added: “between 50 to 300 m (Fig. 2)”. This should enable the 
reader to understand the sampling layout. 

14) Page 4, Line 29 – “deeper soil horizons were sampled in 5-10 cm intervals” – what actually were 
the intervals, and what determined  them?
To be more specific it was added “depending on horizon thickness”



15) Page 5, Line 4 – change “were” to “where”
Changed

16) Page 5, Line 6 – should the notation be “>2 mm,” if you are referring to the coarse fraction, or are 
you referring to the soil that is not the coarse fraction?
Changed to > 2mm. 

17) Page 5, Line 13 – add “SOC” before “stored”
Changed

18) Page 8, Lines 8-10 – I understand the overestimation of SOC values due to the absence of sample 
point from bare ground surfaces, however, I just want to clarify the justification for using 0 as the 
quantity of SOC. First, I’m not sure I know what a “blockfield” is – maybe that’s just me, but I think a 
definition/description would be good. Also, one cause of bare ground in northern high latitudes is 
cryogenic disturbances (i.e. cryoturbation), and in many cases, these were once vegetated areas that can
have quite a bit of SOC. Are these generally uncommon in your study area? In other words, are the 
dominant bare ground features these blockfields and stone beaches that I imagine have very little SOC?
The following has been added to clarify this:
“Originally, all models overestimated SOC contents for bare ground surfaces. These areas 
include exposed bedrock, blockfields (areas covered by shattered rock fragments with little or no 
fine substrate; Fig2b) and stone beaches along lake shores (alpine heat tundra with minimal soil 
development and cryogenic features form a separate class). “

19) Page 9, Line 4 – add “ed” to “collect”
Changed

20) Page 9, Line 10 – remove one “s” from “miss-“
Changed

21) Page 11, Line 3 – add “be” after the first “to” and remove the 2nd “to”
Changed

22) Page 11, Line 5 and throughout – Sphagnum should be capitalized and Italicized
Changed

23) Page 12, Line 26 – don’t capitalize “Geographically”
Changed

24) Page, 12, Lines 28-29 – I’m not sure that I understand the statement that “very strong 
environmental gradients” would “suggest low spatial autocorrelation.” I would think that strong 
environmental gradients would lead to high spatial autocorrelation.
Rephrased to “These sharp transitions in SOC storage between different land covers suggest low 
spatial autocorrelation at local scale, i.e. little relationship in SOC values between points far 
apart”

25) Page 18, Line 2 – change “adoptions” to “adaptations” – I think that’s what you are meaning to 
say?



Changed
Thanks, that’s clearly what I meant.

26) Page 18, Line 3 – need to reword “release them into the carbon cycle” – even if a carbon pool is 
stable for a long period of time, it’s still in the carbon cycle.
The sentence was reworded to avoid this construct:
Rapid future permafrost degradation in peatlands may lead to erosion of organic sediments. This
would transfer presently stored carbon into lakes and potentially into the atmosphere.



Anonymous Referee #2
Received and published: 26 September 2017
Siewert presents a study that maps soil organic carbon (SOC) stocks at high spatial resolution ( 2m) ∼
for a sub-Arctic study site in Sweden. Four machine-learning algorithms are compared to assess which 
is best for predicting SOC. The Random Forests method creates the most accurate predictions. The 
results revealed that vegetation/land-cover type explained most variability in SOC, and thus the spatial 
distribution of SOC is controlled largely by landcover. On average, landscape scale estimates of SOC 
are in line with other high-resolution estimates generated at the landscape scale, and these are generally
substantially lower than the best available circum-polar estimates generated using thematic maps. 
Overall the research is good quality and helps advance understanding of spatial variability in high-
latitude SOC dynamics. Revisions are required before the manuscript can be considered further for 
publication. In general I find the science presented in this study to be sound. However some of the 
methods could benefit from additional detail. The writing could also be improved to enhance the clarity
of the paper. There are quite a few wordy, run-on sentences that are hard to decipher. In other places 
there are generalities that do no actually convey much information. As a result of these things some 
very important key points are easy to miss, and this makes the paper seem less important than it 
actually is. Substantial editing will greatly improve the manuscript. I suspect that it should be possible 
to reduce the length of the quite a lot without losing any of the current content. As I mention above, and
in specific comments below, aspects of the methods would benefit from additional detail. In particular, 
the details of several machine learning approaches are unclear. I realize that you use many different 
data sources, software tools, and analytical approaches, and so there are many details. However, it is 
becoming more common to publish processing scripts and data (where feasible) with your papers 
(using a repository such as GitHub, etc. . .). I myself am working to do this, and I encourage others to 
do the same. This has many benefits, and few downsides. With regards to the content of the article, one 
area that I believe should be improved is the discussion of your results in comparison to circumpolar 
SOC estimates (i.e. NCSCD). The discrepancy you report is large and seems important, but this is not 
the first case. Can you discuss potential approaches to bridge these two scales? Would Landsat or 
MODIS data be appropriate? Since land cover is an important determinant of SOC, it seems as though 
this could be feasible. Some discussion of how to extend remote sensing methods of SOC prediction to 
regional and circumpolar scales, and implications for estimates of related SOC stocks would be really 
useful, especially if the manuscript is edited to improve clarity.

Thank you for this detailed review. The following changes have been made to address the 
reviewers comments: Some detail was added to the individual methods. However, a lot of 
literature is available on these methods and the interested reader is pointed on several occasions 
to recent key literature. The manuscript was edited throughout which hopefully improved the 
readability. The redundant sections of the manuscript were shortened or deleted. A link to a 
public github repository was added to the supplement material. The repository contains code 
relevant to reproducability of the article.
An analysis to investigate model performance at different resolutions of 1m, 2m, 10m, 30m, 
100m, 250m and 1000m was added. A full section addressing the discrepancy to the NCSCD and 
the effect of a reduced spatial resolution in the model was added to the discussion section. This 
includes a discussion on how to bridge both scales and which satellite data could be used to 
improve circumpolar estimates. This is in line with the suggestions made by the other reviewers. 

Specific Comments:
P2 L14: This seems like an odd place to state the purpose of the articles, especially when it is re-stated 
in more detail later in the introduction. The introduction should begin with broad context and then 
gradually narrow to the scope of the present study, whereas this seems to bounce back and forth a bit.



The introduction has been restructured and shortened to provide a clearer overview to the topic. 

P2 L34-37: Could you elaborate on the evolution of quantitative soils methods, or get rid of this 
passage. It seems strange to say that methods have changed without at least a brief description of how.
The specific passage has been deleted. 

P3 L1-4: Six studies seems like more than a few.
Thanks. The wording has been changed. 

P3 L10-12: Will this really advance knowledge of SOC in all permafrost environments? Perhaps just 
this particular one, with potential for improved understanding in others.
The wording was changed to adopt the perspective of the reviewer:
“The mapping approach will be discussed with regard to SOC estimation in permafrost regions 
at local to circumpolar scale.”

P3 L14-22: This reads more like methods. It would be better to include this as methods.
The paragraph has been moved to the methods section.

P3 L33-34: Probably only need to note the 2002-2011 period just once.
Changed

P4 L4-13: This paragraph would fit better with the climatological information, before the detailed soils 
description.
The paragraph has been moved. 

P5 L4: Typo.
Corrected

P5 L33-35: This is ambiguous and not necessarily reproducible. Ideally you should publish your 
scripts/code with the paper.
Thank you for your encouragement. A link to a github repository was added in the supplement.

P7 L11: Did you use the caret package to fit the model as well, or was this just for cross-validation? 
The methods are a little vague here.
Yes, caret was used to fit the model. 

P7 L28: What are ‘visual sound results’?
“Changed to visually meaningful results”

P7 L28-30: This is a run-on sentence.
Changed. 

P8 L2: It would be helpful to specify the number of points (i.e. how many is 20%).
Changed.

P10 L6-7: This sentence is discussion and doesn’t belong in the results.
The sentence was deleted. 

P10 L8: ‘Underestimated opposed’ is confusing wording.



Thank you, the entire paragraph has been edited to improve language. 

P10 L21-27: There is a lot of discussion in here.
All sentences that discuss the results will be deleted or moved to the discussion section. 

P12 L24: In which environments to other algorithms perform better, and why might this be?
At this point the general conclusion in the literature is only that no algorithm serves all 
landscapes. This most likely relates to statistical properties and underlying assumptions of each 
algorithm and how it can cope with the input data. A sentence was added to underline this. 

“This indicates that different machine learning algorithms might suit different landscapes and 
that several algorithms should be compared (Forkuor et al., 2017).”

P13 L24: Type ‘led’ not ‘let’
Thanks, Corrected

P14 L13: How generalizable are these results then?
Of course there is a limit to what geographical extent a set of input points can be generalized. It is
reasonable to assume that a similar environment will feature a similar pattern of SOC 
distribution, but higher or lower SOC mean values depending on climate.

P14 L17: ‘Incrementally’
Changed

P15 L15-20: This seems important – can you expand to discuss how these scales might be bridged? 
Does this mean all areas underestimated? What does this mean for circumpolar SOC stocks?
Thank you for your interest. The article was revised as suggested to include a discussion on 
scales, how these can be bridged and how circumpolar SOC stock estimates could be improved. 



Anonymous Referee #3
Received and published: 3 October 2017
General comments:
The study involves the evaluation of different methods for detailed mapping of SOC in permafrost 
regions. It targets a relevant topic and the methodological approach is sound. The manuscript is well 
written and thoroughly deals with all sections. Some improvements could be made though. The 
different machine learning methods were utilized a diverse set of input parameters, including individual
parameters (e g spectral bands), derived parameters form single data sources (e g NDVI, TWI) and 
integrated parameters (landcover/LCC). The single best predictor was LCC which is not surprising 
since the LCC integrates several remote sensing sources and also involves manual processing. These 
diverse types of parameters make it difficult to conclude which raw data sources are most important for
SOC mapping. A brief discussion about the importance of different sources could be added to the 
discussion. Further it would be very interesting to see the performance of LCC alone for mapping as a 
single predictor. This could be achieved by providing the performance of LCC alone in Table 1. The 
study focusses on high-resolution mapping (e g 2x2 meters) which is good, but in addition it would be 
of interest to see how the different methods perform at coarser scales. Unbiased estimate at the 
100x100 meter scale or 1x1 km scale is of great importance for global SOC mapping initiatives. A 
summary of landscape estimates for all the different methods (including LCC) could be added to the 
results. The SOC distribution in the Abisko area is strongly dependent on the occurrence of peatland 
areas. In Fig. 4 it can be seen clearly that the modelling mainly separate peatland areas from 
minerogenic soils. This is not discussed in relation to method performance and implications of the 
findings.

Thank you for your review. As several reviewers have suggested to investigate modeling at 
different spatial scales, I added estimates at spatial resolutions of 1m, 2 m, 10 m, 30m, 100m, 
250m and 1 km. To keep the article focused this was implemented using the RF model, as it 
showed overall the best results. I think there is little point to investigate the other models for all 
scales other than an initial test at 1x1 m. Furthermore, I considered and tested to model the SOC 
using only the LCC, but the results where not very promising and don’t seem to add to the 
manuscript in a coherent way. A summary of landscape estimates for different resolutions was 
added to the results in Table one and the predicted maps are shown in the supplement. A brief 
discussion point was added regarding the differentiation of peatland soils and minerogenic soils 
in the model. Indeed, very different controls for these two major SOC populations can be 
imagined. I will keep this notion in mind for future project. 

Detailed comments:
P1 L21: Abisko is misspelled.
Changed

P2 L15: Describe more specifically which “dramatic changes is peat mires...” that you refer to.
Replaced by “ Significant changes in surface structure and vegetation in a peat mire...”

P5 L6: I believe it should be “>2mm” instead of “<2 mm”.
Thanks, changed

P5 L6: How was the coarse fraction volume determined?
Added: “determined by sieving of the sample“

P7 L29: Change “visual” to “visually”.



Changed

P9 L24 (also P12 L17): Explain why the external validation was so much superior for RF compared to 
the other methods. What is the implication of this?
It is hard to explain why exactly one machine-learning method would perform better than others.
I don’t see any straightforward answer to this question from the literature. RF is generally 
known to be a versatile algorithm, while other algorithms can perform better in certain 
situations, but also require very detailed fine tuning. RF seems to be an overall reasonable 
recommendation. 

P13 L24: Change “let” to “led”.
changed

P13 L35: Clarify that LCC is an integrated parameter combining many other data sources.
This is now clarified further down in the paragraph

P13 L35-: In this section please discuss the inference of your results based on the fact that the 
distribution of SOC in the Abisko landscape is so strongly dependent on the distribution peatland.

A section will be added to address this:
“In Abisko, the distribution of SOC is defined by the occurrence of peatlands (Fig. 5 and Fig. 8), 
to the extent that two separate populations of soil pedons can be identified (Table 1). This strong 
non-linearity may be the reason, why some models perform better. In the future, it should be 
tested if in such a case separate models for different populations of soil pedons can improve the 
prediction.“



Anonymous Referee #4
Received and published: 3 October 2017
Author present comparison of four digital soil mapping techniques in predicting high-resolution (2x2m)
SOC stocks of sub-Arctic peatland terrain. Study reports that Random forest performed better in 
comparison to other three techniques used and land cover types derived from a high resolution remote 
sensing data was the most important predictor of SOC stock variability. Author also report that most of 
the SOC of study area is relatively new carbon (  2000 years old). Author report interesting findings ∼
and the outcome should be of interest to a wide readership of Biogeosciences. However, the current 
manuscript can be improved in multiple different ways as suggested below:

Thank you for your review.

- The sentence structure at multiple places is awkward so a careful editing is required.
My apologies. The manuscript was revised throughout with a focus on readability. 

- Its not clear to me how 2x2m spatial resolution for SOC stock was defined? Author seem to have a
variety of environmental datasets with spatial resolution ranging from 1 m to 20 m.
The spatial resolution of 2x2m was chosen as a compromise between the available input 
variables, output quality, the benefit of higher resolution and processing time. However, as 
several reviewers have highlighted interest in the exploration of different resolutions, I changed 
the changed the standard resolution to 1x1 m and added an anlysis on estimates for resolutions at
1m, 2m, 10m, 30m, 100m,250m and 1000m. 

- I don’t agree with the term internal validation used in this manuscript. Using model training dataset as
a model validation is not correct. It provides an incorrect metric of map accuracy. For validation, you 
have to either use the split sample in the beginning (like you did for 20% data) or it has to be take one 
out approach (cross validation; using remaining samples to predict at the data point by taking out that 
data point from the model calibration data).
The internal validation was completely removed. The manuscript metrics are now based on cross 
validation. All values have been updated. 

- Its not clear to me how land cover data was treated in different models used, were all the land cover 
types were equally important predictors of SOC? or it was only a subset of all the land cover types? 
Please provide results.
The land cover types were treated as equally important predictors.

- I will like to see a section on uncertainty in this manuscript. Either calculate the uncertainty or 
provide a discussion of potential sources of uncertainty involved this study.
A discussion of sources of error is provided on page 13 L 18-33 (original manuscript). The section 
was update to point out uncertainty and was given a separate heading to make it easier accessible
for the reader. 

- The manuscript will benefit if authors can provide reasoning to the observed results. For e.g., why the 
environmental predictors changed with depths, why certain environmental controllers were significant 
predictor at certain depth and not other.
The revised version contains insights regarding the influence of different predictors with depth 
(section 5.3). However, there is of course limited space for such detail analysis.



-How the multicollinearity and non-linear relationships were handled?
Multicollinearity was tested using a cross-table of the predicting variables. In the revised version,
highly correlated predictive variables are excluded. Non-linear relationships can be handled by 
the chosen models. See the updated methods and the discussion in section 5.1.

- Fig. 5 need to be replaced, please remove pseudo sampling points from the plots, provide the number 
of samples used for model validation. Provide separate plots for 4 mapping techniques
using validation samples only. Add R2, RMSE, and CCC values in each plots.

I see the need to replace Figure 5. However, if the figure is replaced according to the suggestion of
the reviewer (excluding training and pseudo sampling points) it would mean that it will only be 
based on 10 validation points per model (as the original pedon dataset is rather small). Using the 
full dataset (excluding pseudo sampling points) will provide much more information to the reader
than just ten points. The R2, RMSE and CCC are now derived from cross-validation (one out 
approach) as suggested by the reviewer earlier on. 

- Table 1: Please remove metrices calculated using model calibration datasets, and after adding these 
values in plots suggested earlier, you will not need this table. In results section, please describe what 
readers should learn from these map accuracy measures.

Table 1 has been removed. The information will be added in Fig. 5. Detail was added in the result 
section to describe what the reader should learn from the measures in terms of accuracy and 
precision. 
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Abstract

.  Soil organic carbon (SOC) stored in northern peatlands and permafrost- affected soils are key components in the global

carbon cycle.  IThis article quantifyies SOC stocks in a sub-arctic mountainous peatland environment in the discontinuous

permafrost  zone  in  Abisko,  northern  Sweden.  Four  machine-learning  techniques  are  evaluated  for  SOC quantification:

multiple  linear  regression,  artificial  neural  networks,  support  vector  machine  and  random  forest.  The  random  forest

approachmodel performed best and was used to predict SOC for several depth increments at a spatial resolution of  1 m

(12 × 12 m). A high-resolution (1 × 1m) land cover classification generated for this study is the most relevant predictive

variable. The landscape mean SOC storage (0–150 cm) is estimated to 7.98.3 ± 8.0 kg C m−2  and the SOC stored in the top

meter (0–100 cm) to 7.07 ± 6.32 kg C m−2. The predictive modeling highlights the relative importance of wetland areas and

in particular peat plateaus for the landscape SOC storage. The total SOC was also predicted at reduced spatial resolutions of

2 m, 10 m, 30 m, 100 m, 250 m and 1000 m and shows a significant drop in land cover class detail  and a tendency to

underestimate the SOC at resolutions >30 m. This is associated with the occurrence of large number of surprising  Amany

small scale wetlands areas are mapped forming very local hot-spots of SOC storage that are omitted at coarse resolutions.

The results show that  robust  SOC predictions are possible with the available methods and very high-resolution remote

sensing data.  Sharp transitions in SOC storageStrong environmental gradients   associated with land cover and permafrost

distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic

scales the main factor limiting robust, high-resolution SOC mapping efforts is the scarcity of soil pedon data from across the

entire environmental space. For the Abisiko region, past SOC and permafrost dynamics indicate that most of the SOC is

barely 2000 years  old and very dynamic in  wetland areas  with permafrost  related landforms.  Future research needs to

investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in

post-permafrost landscapes.
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1 Introduction

Northern hHigh-latitudes are among the regions most affected by increasing temperatures and climate change (IPCC, 2013).

Large amounts of soil organic carbon (SOC) and the abundance of wetlands as a substantial source of methane (CH 4), are

factors that make theseis regions a key component in the global carbon (C) cycle (McGuire et al., 2009). Frozen conditions,

cold temperatures and water-logging are characteristics of wetlands, peatlands and permafrost- affected soils that reduce

decomposition rates of SOC  (Davidson and Janssens, 2006; Ping et al., 2015). This has led to the accumulation of large

stocks of SOC in high-latitude ecosystems  (Tarnocai et al., 2009). SOC stocks in the circumpolar permafrost region are

currently estimated to ~1300 Pg, including soils to a depth of 3 meters and other unconsolidated deposits (Hugelius et al.,

2014) .  andThis representcorresponds to around half of the global SOC stocks (Köchy et al., 2015). Circumpolar mapping

efforts of this SOC provide important input data for Earth System Models, while Hhigh-resolution mapping efforts are

necessary to map SOC to understand the substanstial local scale spatial and vertical variability of SOC in permafrost-affected

soils (Siewert et al., 2015, 2016). A significant proportion of this SOC is stored in northern wetland and peatland areas

(Gorham, 1991).  However,  warming temperatures,  environmental  changes caused  by warming of  soils  and consequent

permafrost degradation are projected to lead to a gradual and prolonged release of greenhouse gases in the future (Schuur et

al., 2015).

This  article  investigates  SOC  storage  and  longterm  SOC  dynamics  in  the  Abisko  region,  sub-Arctic  Sweden,  where

numerous  ecosystem  dynamics  related  to  climate  warming  have  been  documented  (Callaghan  et  al.,  2013).

DramaticSignificant changes in surface structure and vegetation in a peat mire have been reported between 1970 and 2000

(Malmer et al., 2005). During this period, degradation of permafrost and vegetation changes can be associated with increases

in landscape scale CH4 emissions (Christensen et al., 2004). An analysis of present day C fluxes indicates that losses from

soil and over the hydrosphere currently offset C accumulation in peatlands and above ground biomass (Lundin et al., 2016).

To improve our understanding of  permafrost  C dynamics,  particularly over longer timescales,  high-resolution maps of

landscape distribution and partitioning of SOC, including the vertical partitioning, and an integration into numerical models

is necessary (Mishra et al., 2013; Schuur et al., 2015). Combined with a better temporal framework of past C dynamics, this

will improve the projection of future global temperatures. 

Circumpolar  mapping efforts of  SOC provide important  input data for  Earth System Models.  At  the same time,  high-

resolution mapping efforts are necessary to understand the substantial local scale spatial and vertical variability of SOC in

permafrost-affected soils (Siewert et al., 2015, 2016). Thematic maps are a commonly used to upscalemap SOC from point

measurements to landscape scale in permafrost environments (Hugelius, 2012). This method has beenis used in combination

with soil maps to estimate SOC storage in the circumpolar permafrost region using the Northern Circumpolar Soil Carbon

Database (NCSCD) (Hugelius  et  al.,  2014;  Tarnocai  et  al.,  2009).  Land cover maps  haveare alsobeen used at  local  to
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regional scales to estimate SOC values in numerous circumpolar environments  (Fuchs et al., 2015; Hugelius et al., 2010,

2011; Hugelius and Kuhry, 2009; Palmtag et al., 2015; Siewert et al., 2015; Zubrzycki et al., 2013). While soil maps may

better reflect soil properties and soil forming processes, a land cover classification (LCC) has the advantage that it can be

readily generated from remote sensing data using the spatial resolution of the respective sensor. However, thematic mapping

also represents a strong generalization, as equal soil properties are assumed for all areas covered by the same mapping class.

Furthermore, for land cover maps there is an implicit assumption that land cover alone reflects below-ground soil properties

(Hugelius, 2012).

An alternative to thematic mapping is the use of Ppredictive modeling methodsof SOC values. These can yield well resolved

pixel based estimates  of SOCand provide a potential improvement over thematic mapping.  Quantitative methods in soil

science are largely based on the works of Jenny (1941, 1980) and have significantly developed since. Digital soil mapping is

the successor of these concepts using modern methods.  A comprehensive summary  of these methods, commonly called

digital soil mapping, has beenis published by McBratney et al. (2003) and many examples are available for example in, e.g.

in Boettinger et al. (2010). However,at higher-latitudes  in sub-Arctic and Arctic permafrost environments the adoption of

these predictive modelling methods has been slow and only few studies apply predictive modeling methods to upscalemap

soil properties has been limited. Some examples include in sub-Arctic and Arctic permafrost environments  Bartsch et al.,

2016; Baughman et al.,  2015; Ding et  al.,  2016; Mishra and Riley, 2012, 2014 and Pastick et al.,  2014. This  e limited

adoption has several reasons including: the limited availability of environmental input data, the limited amount of soil pedon

data (Mishra et al., 2013) and the large local scale variability of permafrost-affected soils (Siewert et al., 2016). To cope with

these limitations new mapping methods for permafrost environments are necessary to better constrain SOC stocks in the

northern circumpolar permafrost region  (Mishra et al., 2013). Such new methods include the use of machine-learning in

digital soil  mapping  (Hastie et  al.,  2009; Li et  al.,  2011). Machine-learning in soil  science covers a set  of data-mining

techniques  that  can  recognize  patterns  in  data-sets  and  learn  from  these  to  predict  quantitative  soil  variables.  Many

algorithms are available and robust prediction results are possible (Hastie et al., 2009; Li and Heap, 2008; Li et al., 2011).

Testing these methods at different spatial resolutions can eventually improve local and circumpolar scale estimates of SOC.

Numerous ecosystem dynamics related to climate warming have been documented in sub-Arctic Sweden (Callaghan et al.,

2013). These include the degradation of permafrost  (Åkerman and Johansson, 2008; Johansson et al., 2011)(Åkerman and

Johansson, 2008; Johansson et al., 2011),  significant changes in surface structure in peat mires and changes in vegetation

(Malmer et al., 2005). These changes can be associated with increases in landscape scale CH4 emissions (Christensen et al.,

2004).  Analysis  of  present  day  C  fluxes  indicate  that  losses  from  soil  and  over  the  hydrosphere  currently  offset  C

accumulation in peatlands and above ground biomass making these ecosystems a C source (Lundin et al., 2016). To improve
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our understanding of these long-term permafrost region C dynamics, high-resolution  maps of landscape distribution and

partitioning of  SOC are  necessary.  This  should  include  the  vertical  partitioning of  SOC and provide  data  that  can  be

integrated into numerical models (Mishra et al., 2013; Schuur et al., 2015). Combined with a better temporal framework of

past C dynamics, this will improve the projection of future climatic changes.

This study aims to compare a variety of machine-learning techniques for the prediction of SOC in permafrost and peatland

environments and to estimate carbon storage under different land cover typesThis study aims to compare four different

machine-learning techniques for the prediction of SOC in a high-latitude permafrost and peatland environment. Combined

with radiocarbon dates to estimate SOC accumulation, this will advance our knowledge on SOC distribution and longterm C

dynamics in high-latitude permafrost environments. The mapping approach will be discussed with regard to its suitability to

estimate SOC stocks in permafrost environments at local to circumpolar scale using different spatial resolutions.  Machine-

learning in soil science covers a set of data-mining techniques that can recognize patterns in large data-sets and learn from

these to predict quantitative soil variables. Many algorithms are available and robust prediction results are possible (Hastie et

al.,  2009; Li and Heap, 2008; Li et al.,  2011). The workflow of this study is outlined in  Fig. 3. A 1 × 1 m very high-

resolution LCC is generated. Four prediction models are compared: a multiple linear regression (MLR) model, an artificial

neural network (ANN), a support vector machine (SVM) and the random forests (RF). The best performing model is used to

demonstrate a high-resolution (2 × 2 m) spatial regression modeling approach of SOC pedon data to landscape scale. The

LCC is used for stratified extraction of the SOC per class.The results willAs an outcome, I provide high-resolution SOC

storage data for a key sub-Arctic research site on ecosystem adaption to climate change located in Abisko, northern Sweden.

Theis includes study will give insights on the spatial and vertical partitioning of the SOC under different land covers and its

association with different environmental variables. The temporal evolution of the SOC stocks over the Holocene iswill be

interpreted from eight radio-carbon dates and the future development of SOC stocks and potential C release in high-latitude

environments iswill be discussedaddressed.

Figure 1 near here

2 Study area

The study area is a sub-Arctic mountain environment in the Abisko region near Stordalen along the shores of lake Torneträsk

in, northernmost Sweden (Fig. 1 and Fig. 2). Environmental monitoring and research has been conducted for more than a

century in the region and a particular interest has been the main peatland complex called Stordalen mire (Callaghan et al.,

2013; Jonasson et al., 2012). The mapping extent covers two major peatland complexes, Stordalen and Storflaket, east of the

Abisko Scientific Research Station, the surrounding birch forest and the  adjacent alpine tundra zone. The altitude ranges
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from 342 m a.s.l. corresponding to the lake level of Torneträsk to 932 m a.s.l. in the mountain zone. The total mapping area

is 65 km².

A mean annual air temperature of 0.5°C (2002–2011) and a mean annual precipitation of 332 mm have been measured for

the period 2002–2011 in Abisko. These values are approximate indicators as topography and rain-shadow effects have strong

local influence in the region (Callaghan et al., 2013).  The study area is located in the zone of discontinuous permafrost

(Brown et al., 1997). The onset of late Holocene permafrost aggradation in Stordalen was around 2650 cal BP with a first

phase that lasted until 2100 cal BP and a second phase after ca. 700 cal BP (Kokfelt et al., 2010). Today, the occurrence of

permafrost at lower elevations is confined to peat mires due to insulation effects of the peat. Here it can be several meters

thick below elevated permafrost peat plateaus (palsa) (Johansson et al., 2011). At higher elevation, permafrost was modeled

to occur above 850 m a.s.l. on north-east and east-facing slopes and above 1000 to 1100 m a.s.l. on west and south facing

slopes west of Abisko Station  (Ridefelt et al.,  2008). Widespread permafrost degradation has occurred at least since the

1980s.  This  was  associated  with  increased  active  layer  thicknesses,  decrease  in  permafrost  thickness  and  complete

disappearance of permafrost in some areas (Åkerman and Johansson, 2008) and with a decrease in permafrost thickness from

15 m in 1980 to 9 m 2009 in one borehole (Åkerman and Johansson, 2008; Johansson et al., 2011).

Wetland soils in the study area are of organic nature (Histosols). Soils in the surrounding forest have mostly characteristics

of Podzols or micro-Podzols with a bleached horizon below the organic surface layer. The aAlpine soils are often limited to

shallow surface organic layers over rock (Leptosols) or very weakly developed soils in unconsolidated slope or moraine

material  (Regosols).  However,  Soils  classify  as  Cryosols  if  permafrost  occurs  within 1 m at  higher  elevation  or  when

cryoturbation occurs and permafrost occurscan be detected within 2 m, then soils classify as Cryosols (FAO, 2015).

The  study area  is  located  in  the  zone  of  discontinuous  permafrost  (Brown et  al.,  1997).  The  onset  of  late  Holocene

permafrost aggradation in Stordalen was around 2650 cal BP with a first phase that lasted until 2100 cal BP and a second

phase after ca. 700 cal BP (Kokfelt et al., 2010). Today, the occurrence of permafrost at lower elevations is confined to peat

mires due to insulation effects of the peat. Here it can be several meters thick below elevated permafrost peat plateaus (palsa)

(Johansson et al., 2011). At higher elevation, permafrost was modeled to occur above 850 m a.s.l. on north-east and east-

facing slopes and above 1000 to 1100 m a.s.l. on west and south facing slopes west of Abisko Station (Ridefelt et al., 2008).

However,  widespread permafrost degradation has occurred at  least  since the 1980s. This was associated with increased

active layer thicknesses and complete disappearance of permafrost in some parts of Stordalen mire (Åkerman and Johansson,

2008) and with a decrease in permafrost thickness from 15 m in 1980 to 9 m 2009 in one borehole (Åkerman and Johansson,

2008; Johansson et al., 2011).

Fig. 1 and Fig. 2Figure 2 and 3 near here
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3 Methods

The workflow of this study is outlined in Fig. 3. First, datasets of environmental predictors and soil pedons are compiled.

Second,  a  LCC of  very  spatial  high-resolution  at  1 m (i.e. 1 × 1 m)  is  generated  using  a  subset  of  the  environmental

predictors. Third, digital soil mapping is performed by combining the environmental predictor variables and the soil pedon

dataset. For this, four commonly used machine-learning algorithms are tested to generate prediction models of SOC using a

regression approach. The best performing model is used to develop high-resolution (1 m) spatial maps of SOC for different

depth  intervals.  The  effect  of  spatial  resolution  is  analyzed  by  predicting  the  SOC  with  a  progressively  resampled

environmental predictor dataset at resolutions of 2 m, 10 m, 30 m, 100 m, 250 m and 1000 m. The LCC is used for stratified

extraction of the SOC per land cover class. Lastly, radiocarbon samples are analyzed to understand past SOC aggregation.

Fig. 3 near here

3.1 Field survey and SOC data 

Soil  sampling was performed in September 2013 and June 2015. In total,  47 sites were sampled following initial field

reconnaissance. Sampling was undertaken along 4 main transects with 8–10 points of equal distance between 50 to 300 m

(Fig. 1). These transects were laid out as a semi-random sampling schemes to represent major environmental gradients with a

restricted amount of sampling points in difficult terrain. These main transects were complemented with smaller transects

(n = 2 & 3) and six additional profiles from land covers with small patch sizes otherwise not covered. Some transects areare

incomplete due to points located in lakes, and to avoid disturbance of experimental installations or wildlife.

The sampling procedure followed  (Schoeneberger et al., 2012), with an additional protocol for permafrost-affected soils

(Ping et al., 2013; Siewert et al., 2016)(Ping et al., 2013; Siewert et al., 2016).  Sampling in peat was performed in 5 cm

intervals by cutting samples of known volume from the open pit, using fixed volume cylinders or in case of waterlogged

conditions using a fixed volume Russian peat corer. The permafrost was sampled by hammering a steel pipe into the frozen

ground. Sampling in  the surrounding birch forest and tundra was performed according to soil horizons. The organic layer

(OL) was sampled completely,  while  deeper soil  horizons were sampled in 5 to 10 cm intervals depending on horizon

thickness.  Frozen soil (permafrost) and deep soil layers were sampled by hammering a steel pipe into the ground.  Soils

outside the peat complexes are in general very shallow, and have large volumes of coarse fragments and often become

impossible to sample after ~20–50 cm as the fractured lithic contact is reached. The unsampled coarse fraction consisting of

unconsolidated bedrock was noted and used to correct the amount of soil material. For the tundra heath, the OL can be

discontinuous with patches of vegetation alternating with patches of bare ground. Here the SOC storage was corrected for the
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proportional coverage of the OL per m². Each point location was recorded in the field using a hand-held GPS device (±5 m

location accuracy).

A total of 278 individual soil samples were collected. Dry bulk density (DBD, g cm−3) was calculated from oven dried soil

samples  at  (65°C for 5 days). The loss on ignition  (LOI)  method was performed on all samples at  550°C for 5 hrs to

determine the organic matter (OM) content and at 950°C for 2 hrs to determine the inorganic C content (Heiri et al., 2001). C

% was measured for a subset of 73 samples using an EA 1110 Elemental Analyzer (CE Instruments, Italy). A further subset

of samples with  relatively  high inorganic C were acid treated but showed very little reaction. and   LOI  at  950°C  for all

samples also indicated very low inorganic C content in the soils of (0.73 ± 0.62%). for all samples and hHence, inorganic C

content was not further analyzed. C% values were then used to predict C% for samples where only LOI was available using

a third order polynomial regression model (Fuchs et al., 2015; Hugelius et al., 2011; Siewert et al., 2015). The SOC storage

was calculated per soil sample using C%, DBD, excluding soil material of the coarse fraction (determined by sieving of the

sample (><2 mm, CF, %) and sample depth interval. Depth intervals that have not been sampled were gap filled based on

soil horizon information. The average pedon depth was 103 ± 29 cm for wetland pedons and 26 ± 27 cm for non-wetland

pedons. To estimate the total SOC (SOC–Tot) stored in the landscape, all wetland pedons were processed to a reference

depth of 1.5 m and non-wetland pedons to a depth of 1 m. If the pedon did not reach that depth it was extrapolated based on

a trend in the pedon or similar pedons or set to zero if the lithic contact was reached.  This interpolation is necessary to

provide standardized and consistent input data for the predictive modeling approach.  Other  extracted  depth intervals that

were extracted are the SOC stored in the organic surface layer (SOC–OL), the SOC stored for the top 30 cm (SOC 0–30) and

the SOC for the top 100 cm (SOC 0–100). The depth of the organic surface layer (OL–Depth) was also predicted. 

To  evaluateevalutate long-term SOC dynamics,  eight  samples  were  submitted  for  AMS  14C dating to  the  Radiocarbon

Laboratory in Poznan, Poland. The resulting dates were calibrated to calendar years, cal yr BP (1950) using OxCal 4.2

(Bronk Ramsey, 2016).

3.2

3.3 Environmental datasets 

A set of spatially referenced environmental datasets iswas used as predictors to reflect ecosystem properties in the study area.

In the optical domain, an orthophoto of 1 m spatial resolution with RGB-bands from 2008 (© Lantmäteriet, I2014/00691)

and  a  SPOT5 orthorectified  multispectral  satellite  image  (Path  045,  row  208,  acquired  10.08.2013)(©  Lantmäteriet,

I2014/00691) were available. The spectral bands of the SPOT image include green, red and near-infrared (NIR) at 10 m

spatial  resolution  and  a  shortwave-infrared  (SWIR)  band  at  20 m  spatial  resolution.  A  topographical  correction  for

differential  illumination was applied to the  orthophoto and the SPOT image to  compensate for terrain shadows using a

“Minnaert correction with slope” implementation (Law and Nichol, 2004). The illumination corrected SPOT image was used
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to derive the normalized difference vegetation index (NDVI)  (Rouse et al., 1974) and the soil-adjusted vegetation index

(SAVI) with an L-value of 0.7  (Huete, 1988). Furthermore, the ratio of NIR/SWIR bands  wasis used.  A digital elevation

model (DEM) of 2 m spatial resolution (© Lantmäteriet, I2014/00691) was used to generate several derivative topographic

datasets. These include slope, aspect, profile and plan curvature, topographic ruggedness index (TRI), topographic position

index (TPI) (Wilson et al., 2007), a TPI based landform classification (Guisan et al., 1999), and topographic wetness index

(TWI)  (Moore et  al.,  1991).  Survey based vector  maps with a  scale  of  1:250 000 were obtained for  the geology and

quaternary land cover (© SGU, I2014/00691) and for vegetation (© Lantmäteriet, I2014/00691). Geospatial analyses as well

as raster and vector processing waweres performed using GDAL/OGR (GDAL, 2016), SAGA (Conrad et al., 2015), Orfeo

toolbox and R (R Core Team, 2017) softwares (see Code.A.1 in the supplement). 

3.4 Land cover classification

An object-based approach was used to generate a detailed LCC (Blaschke, 2010). Object-based classifications avoid miss-

classification of  individual  pixels  that  can be  problematic with pixel-based  classifications at  very high-resolution.  This

reduces the need for post-processing, filtering and other generalization methods otherwise necessary (Siewert et al., 2015).

The LCC is used as a predictor variable and for stratified extraction of the digital soil mapping results. First, the orthophoto

was combined with the DEM atresampled to 1 m spatial resolution. A segmentation layer was generated by grouping pixels

into homogeneous areas with a minimum region size of  130 m². From this a water mask was classified  in a separate step

using the red band of the orthophoto and a slope layer. A land cover training set was created by combining field survey

information with visual interpretation of the orthophoto and topography. The following layers were used as input for the

classification algorithm: the orthophoto, elevation and slope; the SPOT5 4-band satellite image and NDVI  (Rouse et al.,

1974), SAVI (Huete, 1988) and NIR/SWIR (SPOT5 derivatives). The ratio of NIR/SWIR band can be beneficial to separate

bedrock and bare rock areas (Andersson, 2016). The segments were then classified using a support vector machine (SVM;

Chang and Lin, 2011) algorithm. Artificial surfaces were hand digitized and masked out. The latter mainly includes a road

and railway passing through the study area. The individual thematic classes arewere adapted from Andersson (2016) and are

described in Table A.1 in the supplement.

The quality of the classification was assessed using a set of 108 ground control points. These include the locations of the soil

sampling sites and points along pathways collected in equal distance from the starting point. The kappa coefficient and the

overall accuracy arewere calculated for all land covers excluding water and artificial areas (Congalton, 1991).
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3.5 Digital soil mapping using machine-learning 

This article investigates the general applicability of machine-learning in the specific context of regression techniques for the

mapping  of  SOC  in  high-latitude  permafrost  and  peatland  environments.  Numerous  machine-learning  algorithms  and

approaches exist. A comprehensive general overview on machine-learning techniques is provided by Hastie et al. (2009) and

the  general  use of different machine-learning algorithms for digital soil mapping is thoroughly discussed for instance in

McBratney et al. (2003),  Li et al. (2011),  Were et al. (2015) and  Taghizadeh-Mehrjardi et al. (2016). Thus, only a brief

description follows. Four commonly used machine-learning techniques were compared: a multiple linear regression (MLR)

model, an artificial neural network (ANN)  (Ripley, 1996), a support vector machine (SVM)  (Chang and Lin, 2011) and

random forest (RF) (Breiman, 2001).

Multiple  linear regression (MLR) assumes that  the regression function defining the soil  variable is  linear  or  can  be

approximated using a linear equation. In a linear regression model tThe soil variable f(x) represents the dependent variable

and the environmental predictors the independent variables Xi. Where a is the intercept and bi are regression coefficients. 

f (X)=a+∑
i=0

n

b i xi (1)

The training data is used to define the regression equation and then used to predict the soil variable for unseen occurrences in

the environmental space. MLR is a popular technique that is comparatively simple. It is possible for linear regression models

to outperform non-linear  methods iIn situations with limited input  data and low-signal  to-noise  ratio,  linear  regression

models can sometimes outperform non-linear methods (Forkuor et al., 2017; Hastie et al., 2009).

For the MLR model the lm function in R was used (R Core Team, 2017). A model was trained using 10-fold cross-validation

with five repetitions was trained to develop a stable models of SOC–Tot using the ‘caret’ R package (Forkuor et al., 2017;

Kuhn, 2008b). 

Artificial neural network (ANN) is a technique that simulates the biological nervous system. For continuous soil variables,

it  is  a two-stage regression model typically represented by a network diagram with three layers.  A layer of input cells

represents environmental  covariates  and  transmiand is  connected ts  it to  a  layer  of  hidden  cells,  which  is  forwards

itconnected again  to  an  output  layer  representing  the  soil  property  to  be  predicted.  The  units  between  the  layers  are

connected by synapses.  These connections, also called weights or synapses,  form a network that  defines the model. The

model simulates learning from examples by training the network iteratively with information about the conditions in which a

certain value of the soil variable occurs. During each iteration the connection between the input layer, hidden layer and the

output unit is adjusted. Finally, the trained model is used to predict soil properties of unvisited pixels (Behrens et al., 2005;

Hastie et al., 2009).
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The ANN was parameterized using a grid search approach for the variables defining the  size of the hidden layer and the

decay of weights in the neural network.  The tuning was started with a value of 2 for  size to avoid a local minimum. The

‘caret’ R package was used in combination with a 10-fold cross-validation with five repetitions to developfit a stable model

of SOC–Tot based on the smallest RMSE value (Forkuor et al., 2017; Kuhn, 2008b).  

Support vector machine (SVM) is a technique that generates an optimal separating hyperplane to differentiate classes that

overlap and are not separable in a linear way. In this case, a large, transformed feature space is created to map the data with

the help of kernel functions to separate it along a linear boundary. While initially developed for classification purposes, this

technique can also be used for regression problems (Hastie et al., 2009; Vapnik, 1998).

For SVM a ε-regression with a gaussian radial basis kernel was used. This kernel can be considered a good general purpose

kernel (Zeileis et al., 2004). The cost parameter C and the ε error threshold parameter were determined using the grid-search

method.  This  was  combined  The final  model  was  developed  withusing a 10-fold cross-validation with five  repetitions

implemented by the ‘caret’ package in R (Forkuor et al., 2017; Kuhn, 2008b).

Random Forest (RF) is a tree-based learner that combines decision tree and bagging methods (Breiman, 2001). RF draws a

number of bootstrap samples (ntree) from the input dataset representing individual soil samples and grows a large amount of

unpruned regression trees (e.g. 500), where at each node random samples (mtry) of the environmental predictors are chosen. It

then averages the prediction of all trees to predict new data (Liaw and Wiener, 2002).

For RF the ‘randomForest’ R package was used (Liaw and Wiener, 2002).  The default  A values of 7 for  mtry equaling the

~3/predictors, a node size of 5 and ntree = 1500 provided stable and visually meaningful sound results. Different variations of

the parameters mtry, ntree, node size and maximum node number were tested. However, these, but generated visually inferior

visual results, while providing only minor improvements to R2, but  or  increaseding the dependency of the most important

predictive  variable  indicating  overfitting.  It  is  known that  RF does  not  need  extensive  fine-tuning  which  can  lead  to

overfitting (Ließ et al., 2016), thus the standard settings were applied. Sampling was performed with replacement and bias

correction was applied to decrease overestimation for low values and underestimation for high values. To achieve stable

model results, a 10-fold cross-validation with five repetitions was applied (Forkuor et al., 2017; Kuhn, 2008).

3.6 Model selection and validation

Originally, all models overestimated SOC contents for bare ground surfaces. These areas lowland  such as ,include exposed

bedrock, blockfields (areas covered by shattered rock fragments with little or no fine substrate; Fig. 2b) and stone beaches

along the lake shores. A(alpine heat tundra with minimal soil development and cryogenic features forms a separate class). To

address the overestimation, 10 pseudo-training samples withof 0.0 kg C m−2 SOC were added at bare ground locations. These

were based on field knowledge at bare ground locations and were  identified in the orthophoto. Theyse were distributed

across the study area and kept to a low number to avoid strong bias of the training dataset. A similar approach has been used
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by Siewert et al. (2012) to support spatial interpolation of limited line measurements to estimate the sediment thickness of

talus cones. The performance of the models is assessed with and without these 10 pseudo-training samples.

TFirst, the performanceability of all four machine-learning algorithms (MLR, ANN, SVM and RF) to predict SOC–Tot was .

For the validation,evaluatedtested by training  each model was trained usingwith a 80% random split of  the  soil pedon

dataset (excluding pseudo-training samples). The models are then assessed using an internal validation of predicted values

against the training dataset and an external validation using the remaining 20 %  split as an  unseen control dataset.  The

models  arewere comparedevaluated based  on  three  commonly  used  error  criteria derived  by  cross-validation  (one  out

method): for the internal and external validation. The error criteria include  the coefficient of determination (R²), the root

mean squared error (RMSE) and Lin’s concordance correlation coefficient (CCC) (Lin, 1989). R² is an indicator of model

precision, while RMSE is an indicator of accuracy and CCC combines measures of accuracy and precision to determine the

agreement to a 45° line.  Maps were developed by applying the predictive models  of the entire soil pedon dataset  to the

environmental datasets. These were then visually examined for further model evaluation and compared to a thematic map of

the SOC storage based on the combination of the LCC and average SOC values of soil pedons per LCC class.

Originally, all models overestimated SOC contents for bare ground surfaces. These areas lowland  such as ,include exposed

bedrock, blockfields (areas covered by shattered rock fragments with little or no fine substrate; Fig. 2b) and stone beaches

along the lake shores. Alpine heat tundra with minimal soil development and cryogenic features form a separate class. To

address the overestimation, 10 pseudo-training samples with 0.0 kg C m−2 SOC were added based on field knownledge at

bare ground locations identified in the orthophoto. These were distributed across the study area and kept to a low number to

avoid strong bias  of the training dataset.  A similar  approach has  been used by Siewert  et  al.  (2012) to support  spatial

interpolation of limited line measurements to estimate sediment thickness of talus cones. The performance of the models is

assessed with and without these 10 pseudo-training samples.

 For the final analysis, the best performing algorithm (RF) was chosen to model and develop maps for each of the following

soil variables depths: SOC–OL, SOC 0–30, SOC 0–100, SOC–Tot and the OL–Depth at a spatial resolution of 1 m. To

investigate potential circumpolar SOC mapping efforts, the SOC–Tot was also mapped at spatial resolutions of 2 m, 10 m,

30 m, 100 m 250 m and 1000 m by resampling the spatial predictor dataset. These resolutions aim to mimic commonly used

and freely available satellite data, e.g. Sentinel-2 (10 m), Landsat (30 m),  Moderate Resolution Imaging Spectroradiometer

(MODIS 250-1000 m) and Advanced Very High Resolution Radiometer (AVHRR; 1100 m). They also represent common

resolutions for Earth System Model applications. The SOC was then extracted using the 1 m resolution LCC.  For this the

entire soil pedon dataset and all environmental predictors were used.  Multicollinearity  among the predictor variables was

analyzed using a correlation matrix. Variables with a correlation >0.90 were excluded (Kuhn, 2008a) . Finally,  Ppredicted

SOC values below 0 were set 0. 
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4 Results

4.1 Land cover classification

The LCC showed good agreement with the classes that have been observed in the field and areas that have been visually

identified in the orthophoto (Fig. 4a and b). The accuracy assessment against ground control points collect in the field results

in a Kappa value of 0.71 and an overall accuracy of 74% (Table A.2). This does not include any water or artificial surfaces.

These values are comparable to other high-latitude LCC accuracy assessments (Schneider et al., 2009; Siewert et al., 2015;

Virtanen et al., 2004; Virtanen and Ek, 2014).

 The object-based classification has a minimum patch size of 130 m²,. hichwThis size was found to best differentiate areas of

homogeneous land cover, while preserving characteristic shapes of landforms  relevant for SOC storage in high-latitudes,

such as peat plateaus.

 Reese et al. (2014, 2015) demonstrated for the Abisko area, that very detailed pixel based vegetation maps are possible by

combining laser scanning point clouds and SPOT5 satellite imagery. However, the chosen patch-size seemed more realistic

to reflect most-likely homogeneous soil properties at this scale, both as input to predict SOC content and for the stratified

extraction of the predicted SOC values as applied here.This avoidsobject-based classifications avoid miss-classification of

individual pixels that can be a problematic with pixel-based classification approaches at very high-resolution and it reduces

the need for post-processing filtering and other generalization methods otherwise nescessary (Siewert et al., 2015). 

Fig. 4Figure 4 near here

4.2 Performance of four machine-learning algorithms to predict SOC

Four different models were compared to predict SOC–Tot stocks (Fig. 5).  Table 1 presents the results of the internal and

external validation. There wereare large discrepancies between the models. RF consistently achieveds the highest coefficient

of determination (R2); 0.736) and CCC (0.572), while having the lowest root mean squared error (RMSE; 14.131).  This

indicates high precision (R2  ), good agreement with the 45° line (CCC) and high accuracy (RMSE).  This was followed by

SVM with a slightly lower  inferior performance for each error criteria (R2   = 0.726, CCC = 0.543; RMSE=14.9). MLR and

ANN  showed  a  significantly  higher  deviation  of  predicted to  sampled  SOC values (MLR:  R2   =  0.48,  CCC =  0.418;

RMSE=21.22; ANN: R2   = 0.533, CCC = 0.483; RMSE=17.614).  achieved reasonable results for the internal validation.

SVM showed acceptable results, while MLR and ANN fail to match values of the internal validation. The exclusion of the

pseudo sampling points influences in particular the external  validation for which the results show a significant drop in

performance.
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Table1 near hereOnly RF showed tantamount performance for the internal and external validation (R2 = 0.939 compared to
0.908). 

All models underestimate large values and overestimate low values of SOC-Tot (Fig. 5) (Fig. 5). This so called regression to

mean effect is a known shortcoming. For of  the RF algorithm andit was addressed using the bias correction option in the

‘randomForest’ package (Liaw and Wiener, 2002; Zhang and Lu, 2012). Yet, a slight overestimation for low values from

~0–25 kg C m−2 and an underestimation for SOC–Tot values above ~60 kg C m−2 remains.

 Furthermore, RF cannot forecast values that are beyond the training dataset. Thus, even if the environmental variables

suggest higher SOC stocks, there is no trend extrapolation. In this study, the highest SOC value was 90  kg C m−2 and cannot

be exceeded in the model. This likely underestimates SOC values for some areas with thicker peat deposits than the 138  cm

measured in our transect sampling, as the thickness of peat can be up to 3  m in the mire (Malmer and Wallén, 1996).

However, this also prevents gross overestimation of SOC.

Fig. 5Figure 5 near here

The developed output maps show significant differences for the four prediction models (Fig. 4 d-g). Major wetland areas can

be recognized in all four maps. Wetlands and peat bogs generally represent areas with significantly higher SOC storage

compared to surrounding soils (e.g. Hugelius et al., 2011; Siewert et al., 2015).  The MLR model (Fig. 4d) shows a strong

contrast in SOC storage with sharp transitions between wetland and very strong gradients from non-wetland areas in SOC

storage.  TheseSOC storage in non-wetland areas seems to be  underoverestimated opposed to.  wWetland areas  that  are

predicted to have  a  very high SOC  storagevalues throughout, compared to an expected distribution of SOC following a

thematic map corresponding well to the thematic map (Fig. 4c). The ANN model (Fig. 4e) does not generalize well  s not

reflect wellto the field situation. While of strong it differentiates well  contrasts between wetland and non-wetland areas, it

also exhibits a significant amount of noise with unrealistically high values in birch forest. Birch forest areas and blockfields

seem in general  highly overestimated with SOC–Tot values  of ~20-30 kg C m−2 compared to 4.2 ± 2.2 kg C m−2 for the

average of soil pedons in birch forest. Wetland areas show low values compared to the other models. SVM and RF visually

correspond best to the field situation of sampled and analyzed soils as exemplified in the thematic map of SOC (Fig. 4dc, g,

f). SVM seems to slightly overestimates low SOC values close for lowland birch forest and bare ground areas (Fig. 4f). RF is

the only prediction model that can replicates the extent of elevated peat bogs and plateaus slightly better than SVM and MLR

(Fig. 2 and Fig. 4d-g). RF and MLR perform best at  manages to  representing the contrastlow SOC values of bare ground

areas and blockfields with SOC values typically <1 kg C m−2. 
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4.3 Environmental controls on SOC distribution

As the RF model provided the best  performance for the error metrics and the visual evaluation, the remaining analysis

proceeds using only RF.  The importance of each input variable for the prediction of the SOC–Tot  at 1 m resolution is

presented  in  Fig.  6.  The  LCC  is  the  most  important  predictive  variable.  The  strong  dependence  on  the  land  cover

classification likely reflects sensitivity to land cover segmentation. This is followed by TWI, a group of SPOT 5 based input

variables, and elevation, TWI and slope. The SPOT5 variables include the NIR band, the ratio of NIR/SWIR, and NDVI and

SAVI.  The strong dependence on the LCC likely reflects sensitivity to land cover segmentation. The SPOT5 variables

variables  are  related  to  the  sensitivity  of  the  included  bands  to  vegetation,  but  also  to  bare  ground  cover  signature

(Andersson,  2016;  Huete,  1988;  Rouse  et  al.,  1974).  Elevation  likely  reflects  the  lapse  rate  of  the  mean  annual  air

temperature  gradient  in  steep  mountainous  terrain.  The contribution  of  the  TWI data  is  likely  to  identify  waterlogged

conditions along streams and in mires.  This  is  likely supported  by slope and  is  particularly evident  for  alpine willow

communities  that  are  located  along  flow  accumulation  pathways.  Other  variables  seem  to  have  limitedequally  little

predictive power.overestimation for the lower range of SOC values. an  Exclusion of these predictive variables was tested,

but generate  and five variables were excluded after testing for multicollinearity.

The variable importance changes for the individual prediction models of SOC 0–30, SOC 0–100, SOC–OL, Depth–

OL (Fig.  A.1)  and SOC–Tot. However, the pattern usually resembles that of SOC–Tot (Fig. 6). Land cover is the

most  important  environmental  variable in  all  models  except  for  SOC 0–30,  where  NIR/SWIR is  the  most  important

variable with thefollowed by LCCNDVI, LCC, SAVI, and NIR in one group following, and NDVI.

Fig. 6Figure 6 near here

4.4 SOC stocks and landscape partitioning and age

Table 1 shows the landscape partitioning of the sampled SOC pedon values and the predicted SOC values using machine-

learning. The Llandscape mean SOC–Tot storage is predicted to be 7.98.3 ± 8.0 kg C m−2 and to 7.07 ± 6.32 kg C m−2 for the

top meter (0–100 cm; SOC 0–100) of soil. This compares to 5.8 ± 0.5 kg C m−2 for the SOC–Tot using the land cover class

for thematic mapping and 5.3 ± 0.5 kg C m−2 for the interval 0–100 cm using the LCC for thematic mapping. The highest

SOC stock per class is estimated for the Sphagnum covered wetlands areas (389.05 ± 98.73 kg C m−2) followed by the other

wetland  classes:  peat  bog  (365.35 ± 9.40 kg C m−2),  lowland  shrub  wetland  (367.42 ± 7.85 kg C m−2),  sedge  wetland
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(33.67 ± 9.90 kg C m−2) and forested wetland (2831.63 ± 67.26 kg C m−2). The alpine willow class stores the highest amount

of SOC of the remaining non-wetland classes with 910.24 ± 3.24 kg C m−2, followed by birch forest (7.98 ± 43.38 kg C m−2)

and  dwarf-shrubs  (78.51 ± 43.80 kg C m−2).  The  bare  ground  class  stores  the  lowest  amount  of  SOC  with

1.17 ± 2.23 kg C m−2. This represents most likely an overestimation and should be close to <0.1 kg C m−2. For SOC–OL,

SOC 0–30 and SOC 0–100 similar patterns emerge. Permafrost was encountered in six pedons of which 4 were located in

the peat bog with an average depth of 50 ± 20 cm, one in the Ssphagnum wetlands and one alpine tundra heath. The mire

permafrost soils were sampled in early September in 2013, while the alpine heath tundra (AL–Depth = 37 cm) pedon was

sampled in June and does not represent maximum annual active layer depth. The partition of SOC stored in permafrost is

10.1 ± 13.3 kg C m−2  for  peat  bog soil samples  and  8.5 ± 12.1 kg C m−2 for  Sphagnum wetland sampleoils.  This  equals

0.2 ± 0.0 kg C m−2 of  the  total  landscape  SOC  weighted  by  area  using  thematic  mapping.  Prediction  of  the  SOC  in

permafrost using digital soil mapping techniques did not yield sound results (data not shown), likely because permafrost is to

a large extent a thermal property and needs a dedicated prediction approach for the occurrence and active layer thickness

(Riseborough et al., 2008). Such results could however be combined with predicted SOC values. The predicted depth of the

OL compares well to sampled depths except for Sphagnum and forested wetlands, where it underestimates mean depth and

for alpine willow class, where it approximately doubles the pedon mean. 

Table 2Table 1 near here

The relative landscape SOC storage partitioning is shown in  Fig. 7. Birch forest stores  4138% of the  total SOCSOC–Tot

covering 41% of the soil area. This is followed by alpine heath tundra that stores 1214% of the SOC on 17% of the area.

Wetlands store 25% of the SOC–Tot while only covering % of the landscape. The individual wetland classes have the

highest ratio of stored SOC (5.54–76.81%) compared to the area covered (1.2–1.8%) (except Sphagnum wetland, where the

ratio is 0.76% SOC to 0.1% of the area), while bare ground has the lowest ratio covering 8% of the area and storing only

1.26% of the SOC. This is likely an overestimation.

Fig. 7Figure 7 near here

4.5 Effect of reduced spatial resolution

The effect of a reduced spatial resolution on the estimate of landscape mean SOC–Tot storage and partitioning is presented

in  Fig. 8,  Table 1 and Fig.A2. The estimate of SOC–Tot  first increases from 8.3 ± 8.0 kg C m−2   at a resolution of 1 m to
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10±8.0 kg C m−2 at a resolution of 30 m. At resolutions of 100 m, 250 m and 1000 m, the estimate drops to values between

7±5.6 and 7.2±7.9 kg C m−2. This decrease is associated with a considerable drop in the estimate of SOC stored in wetland

classes, while non-wetland classes do not change drasticallysignificantly in SOC estimates. The model at 10 m resolution has

the highest R² with 0.777 (using 47 + 10 pedons), followed by the models at 1  m (R² = 0.759), 2 m (R² = 0.752) and 30 m

(R² = 0.733). The models at resolutions of 100 m, 250 m and 1000 m have an R² between 0.520 and 0.538 (Fig. 8). The

predicted maps show how SOC values are progressively less detailed and the strong contrast between wetland areas and the

surrounding disappears. Each resolution emphasizes different details, e.g. SOC in alpine willow stands are most pronounced

at a resolution of 10 m (Fig.A2.).

Fig. 8 near here

4.6 SOC history and age

Eight samples have been radiocarbon-dated to understand long-term C dynamics in the system (Table 2). The oldest sample

from the central mire indicates a transition from C enriched mineral sediments to organic peat with an age ofat 5218 cal yrs

BP. A second phase of increased peat accumulation was dated to 2230–1936 cal yrs BP as found inbased on a profile close

to  the shores of  a  lake Mellersta Harrsjön and in  a profile in  ombrotrophic waterlogged Sphagnum patch in the center of

Stordalen mire. ,For the center of the mireFurthermore, one sample indicates a marked change in peat composition at 150.84

± 0.36 pMC for the mire center, which likely corresponds to a change from poor fen to palsa peat accumulation. This is

probably related to permafrost  accumulationformation (Kokfelt et al., 2010).  A shallow soil pedon with ~31 cm depth  Iin

thealpine birch forest  located at mid-slope position was dated with two samples. from a pedonThe base of the OL wereas

dated to modern age and  the mineral subsoil at a depth of 22-28 cm was dated to 150 cal yrs BP at the base of the OL on a

very shallow soil of ~31 cm depth. In   locatedlowerbirch forest located at the footslope, the base of the OL hads a modern

age and soil at a depth of 20–26 cm was dated to 1345 cal yrs BP.

Table 2Table 3 near here
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5 Discussion

Quantitative  estimates  of  SOC, its  spatial  distribution and  longterm dynamics in  permafrost  environments  are  a  major

uncertainty in future predictions of the global C cycle.  Therefore,  new  SOC  methods to estimate landscape scale SOC

storage need to be investigated and connected to a temporal framework. This article demonstrates the successful prediction

of SOC using machine-learning algorithms at very high spatial resolution (2 × 2m) in a sub-Arctic permafrost  peatland

environment.  Four SOC prediction models were tested. The prediction approach is discussed, followed by insights into

environmental controls of SOC, present day SOC stocks and their past and future development.

5.1 Predicting SOC using machine-learning algorithms

Of the compared prediction algorithms, the RF algorithm clearly performed best. This applies to all   three error criteria: R²,

CCC and RMSE, as well as to the visual evaluation (Error: Reference source not found).The high R² of 0.939 for the internal

validation can be confirmed by external validation (R² = 0.908), a high value for the CCC and lowest RMSE value.   On

visual comparison, it was the only algorithm that could reflect the expected distribution of SOC following simple thematic

mapping, and also replicate SOC storage dominatingdefining landforms, (i.e. peat plateaus), realistically (Fig. 5). SVM also

provided good results, but there was a significant drop in quality for MLR and ANN. The advantage of tree based machine-

learning techniques such as RF is that they can cope well with non-linearity and have minimal assumptions about the data

(McBratney et  al.,  2003).  This is  an important  property,  as  in the northern circumpolar permafrost  region only limited

environmental datasets of varying quality are available. ANN and SVM are also non-linear methods,  but don’t seem to

match the result of the tree based method did not perform equally well as the RF modelhowever in this case they. The RF

model  has  often showsshown superior performance for regression applications in many environments (e.g. Forkuor et al.,

2017; Li et al., 2011). However, in some environments other models outperformed RF, for example SVM (Were et al., 2015)

or ANN (Taghizadeh-Mehrjardi et al., 2016). This indicates that different machine learning algorithms might suit different

landscapes and that several algorithms should be compared  (Forkuor et al., 2017). Mishra and Riley (2012) showed that

eographically weighted regression (GWR) can be successfully used at regional level to predict SOC stocks in Alaska at 60  m

spatial resolution. However, GWR is based on the concept of spatial autocorrelation (Fotheringham et al., 2002). In Abisko,

very strong environmental  gradients  of  SOC distribution are found and suggest  low spatial  autocorrelation.  In  general,

machine-learning algorithms are a very promising approach for regression modeling of SOC in peatland and permafrost

environments with RF providing the best results. 

This study highlights two distinctive and related local scale properties of high-latitude permafrost ecosystems,.   thatThese

need to be considered when choosing an appropriate spatial prediction methodmachine-learning predictor . One factor is the
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strong land cover fragmentation of tundra environments with very small land cover patch sizes (Virtanen and Ek, 2014). In

the study area, this is reflected in the occurrence of blockfields, small mires and peat plateaus (Fig. 2). The second factor is a

high spatial variability of soil properties and thus SOC storage, related to the presence or absence of permafrost, peatlands

and meter scale periglacial landforms. For example, blockfields are areas with SOC–Tot stocks of <0.1 kg C m−2. These are

often surrounded by forested areas with around ~42 – 98 kg C m−2 or in direct neighborhood of mire ecosystems with SOC–

Tot stocks of ~210–90 kg (Table 1). These sharp transitions in SOC storage between different land covers suggest low

spatial autocorrelation at local scale, i.e. little relationship in SOC values between points far apart. Mishra and Riley (2012)

showed that geographically weighted regression (GWR), which is based on spatial autocorrelation, can successfully be used

to predict SOC stocks at regional scale in Alaska with a spatial resolution of 60 m. However, permafrost environments can

be very variable at local scale.Analogous, Hugelius et al. (2011) showed for a study area in the European Russian Arctic, that

a Quickbird based 2.4 m spatial resolution LCC was necessary to locate distinctive peat plateaus that store 30–58% of the

ecosystem C dominated by SOC, while covering less than ~20% of the area.   In areas with ice-wedge polygons, common in

lowland tundra environments, the local scale variability of SOC can be even higher than in Abisko, with SOC values from

almost zero on polygon rims to several tens of kg in polygon centers on distances of a few meters (Ping et al., 2013, 2015,

Siewert  et  al.,  2015,  2016).  Thus,  any  applied  machine-learning approach  must  be  able  to  cope with  strongsharp and

potentially non-linear environmental gradientstransitions in SOC storage, while efforts based on spatial- autocorrelation may

fail at local scale. unless they are supported by highly resolved environmental variables and a substantially higher number of

soil pedons than usually available. 

In Abisko, the distribution of SOC is defined by the  occurrence of peatlands (Fig. 5 and  Fig. 8), to the extent that two

separate populations of soil pedons can be identified (Table 1). This strong non-linearity may be the reason, why some

predictive models perform better. In the future, it should be tested if in such a case separate models for different populations

of soil pedons can improve the prediction. 

5.2 Limitations, sources of error and uncertainty

Several sources of error for the predicted SOC values can be identified. One source of uncertainty is related to the amount of

sampled soil pedons and limitations of transect sampling as opposed to ideal random sampling. Given the difficult nature of

Arctic  and  mountainous  environments,  transect  sampling  is  the  most  time  efficient  data  collection  method  providing

sufficient amounts of soil pedons for regression analysis. Most sub-Arctic and Arctic research facilities are located in remote

areas  and logistics  are difficult,  thus  the main source of uncertainty of  many local  and regional  scale studies  on SOC

distribution is the low amount of available soil data with only ~10–50 pedons.  The results show that  machine-learning

predictions using few soil pedons (n = 47 + 10) can provide sound results using machine-learning models. However, the

amount of soil pedons should ideally not be lower. Also, Tthe importance to samplecover the entire environmental gradient
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of a study area, including end-members with very low and very high-values in soil surveys isneeds to be underlined. The

original  dataset  included only  very  few data  points  for  the lower  range of  SOC–Tot  values  close  to  <0.1 kg C m−2 on

blockfields resulting in overestimation. This was compensated by introducing 0.0 kg C m−2 SOC pseudo-training examples.

At the same time,  Tthe SOC–Tot may be underestimated in small parts of the mires as the applied RF model cannot predict

values beyond the range of the input data, e.g. in case the peat accumulation exceeds the maximum thickness of 138 cm that

was sampled. Also, potential shifts in environmental gradients that have not been sampled, i.e. changes in geology, may have

strong  influence  on  SOC storage possibly  not  covered  by  this  study.  These  demands  on  the  datapedon  databases are

analogous to the ones outlined by Hugelius (2012) for making credible thematic mapsping and supports the idea of stratified

sampling schemes that explicitly include all landscape types.

 , but risks the omission of important environmental gradients not covered by transectsSources of error for the predicted SOC

values in this article include limitations of transect sampling as opposed to ideal random sampling. However, given the

nature of Arctic environments, this is the most time effective data collection method providing sufficient amounts of soil

pedons for regression analysis.Further, sources of uncertainty include In this articlethe strong dependence of the RF model to

the  LCC  that  could  result  from  overfitting.  Yet,  good  externalthe error  metrics  derived  from  cross-validation  of  the

projection indicates reliable results. and aA single dominating predictor variable has also been reported by other authors (e.g.

Hengl et al., 2015). The fast degradation of permafrost in the environment has likely ledt to temporal differences in the high-

resolution predictive datasets. For instance, areas visible as peat bog in the orthophoto from 2008 have since been submerged

by water due to permafrost degradation and resulting in a mismatch with soil pedons collected in 2013-15may have affected

some sampling points. Error propagation from the generation of the LCC and the use of the LCC as input variable and for

stratified extraction cannot be out-ruled out. Different spatial resolutions of the input data can reduce the spatial accuracy of

higher resolution input layers. Future applications of machine-learning methods in this context should investigate spatial

resolution  optimization of input variables  ,  an automated forward selection of the input variables (Ließ et  al.,  2016) or

alternatively  and  dimension  reduction  using  principal  component  analysis  (PCA)  to  reduce  processing  time  and

multicollinearity among the environmental variables (Howley et al., 2006).(Behrens et al., 2010; Drăguţ et al., 2009) and

Qquantitative uncertainty estimates with confidence intervals for the predicted SOC distribution are an important next step

(Hugelius, 2012; Hugelius et al., 2014; Zhu, 2000).

5.3 Environmental controls of SOC distribution

A set of  23environmental variables with varying quality and spatial resolutions was used for the prediction of SOC–Tot at

1 m resolution.  Land cover is the most important variable to predict the total SOC stock, followed by TWI, a group of input

variables  based  on  the  SPOT 5  image,  including NIR, NIR/SWIR,  NIR   and  SAVINDVI,  and  slopeDEM derivatives

including TWI and elevation and elevation. The relevance of land cover for the prediction model likely reflects its ability to
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segment distinct soil bodies and sharp transitions between land covers at high resolution. This seems to be particularly

important to map high SOC stocks related to deep OL depths and peat deposits, as the importance of the LCC is diminished

for  the  estimate  of  SOC–30  and  SOC–100  (Fig.A.1).  Furthermore,  the  LCC  is  an  integrated  parameter  combining

information from several data sources. The vegetation sensitive SPOT 5 bands and derived indices complement the LCC

with information on vegetation productivity and the fraction of bare ground cover (Andersson, 2016; Huete, 1988; Rouse et

al., 1974). The contribution of the TWI data is to identify soil moisture gradients. This is supported by curvature and is

particularly evident for alpine willow communities that are located along flow accumulation pathways.  Elevation likely

reflects  vegetation  productivity  as  a  function  of  the  lapse  rate  of  the  mean  annual  air  temperature  gradient  in  steep

mountainous terrain. Five other variables were excluded due to multicollinearity. The importance of NDVI in combination

with  TWI to predict  SOC has  also  been  reported  by  Taghizadeh-Mehrjardi  et  al.  (2016).   important.   notwere of  the

orthophoto sresolution, the bandbetter the  or because ofDespite All other variables showed comparatively little relevance. 

It is known that the scale of an environmental variable can have significant influence on the prediction accuracy and the

highest  resolution is not always providing the highest  accuracy  (Behrens et  al.,  2005; Drăguţ et al.,  2009).  Despite the

highest  spatial  resolution  of  1  m,  the  red  band  of  the  orthophoto  was  only  the  6 th   most  important  prediction

variable.potentially catenary position. slope and  soil moisture variabilityreflectsTWI and   complement this with information

on vegetation  productivitycomposites  The vegetation  sensitive  SPOT5 bands  and  .  to  the  next  land  coverfrom one to

reproduce distinct soil bodies and sharp transitions possibilityits contained in the LCC and  alreadyThe relevance of land

cover for the prediction model likely reflects the amount of information Micro-site effects such as cryoturbation patterns,

wind erosion of the OL on small ridges, or increased accumulation in small pits in the alpine soils (Becher et al., 2013;

Klaminder et al., 2009) likely occur at a finer resolution than can be resolved in this study. The input environmental variables

were not selected or organized according to specific soil forming factors (McBratney et al., 2003). For example no climatic

dataset is included. Yet, Klaminder et al. (2009) find a clear connection of SOC accumulation in dry tundra soils and mean

annual precipitation along a transect from Abisko towards the more humid western coast. While this study can be considered

to be representative for a mountainous area with discontinuous permafrost, it will be necessary to includeTherefore, climatic

datasets would be necessary for a as environmental variables to correctly model SOC storage along a larger regional climatic

gradientlarger study area. 

 While the LCC was constructed at 1 m resolution, each patch has a minimum size of 130 m², which is similar to the pixel

size of the SPOT 5 variables at 10–20 m resolution. The DEM has an original resolution of 2 m and its derivative TWI is the

second most important variable. While there is no clear trend for the variable importance, 

From thethe visual inspection itshows that seems lower resolution environmental variables reduce the spatial accuracy of the

mapping result creatinge a pixel artifacts. AAn exclusion of all SPOT 5 input variables was tested, but significantly reduced

model performance (result not shown). This indicates that even lower resolution environmental variables can improve the
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final prediction if they support higher resolution datasets. Yet, However, Samuel-Rosa et al. (2015) found that more detailed

environmental variables only improved model performance incrementally and the cost may outweigh the benefits. Instead,

efforts should be placed in more soil pedon data, which should also be a priority in permafrost environments. Most sub-

Arctic and Arctic research facilities are located in remote areas and logistics are difficult, thus the main source of uncertainty

of many local and regional scale studies on SOC distribution is the low amount of available soil data with only ~10–50

pedons. The latest circumpolar SOC estimate for the top meter is based on only 1778 pedons and reports substantial regional

gaps in pedon data, particularly for areas in the High Arctic with thin sediment overburden, and for cryoturbated soils and for

peatland soils (Hugelius et al., 2014). Similarly, it was shown for the SOC storage in Alaska, that despite 556 existing soil

pedons,  >300 additional soil pedons arew necessary to reflect the entire environmental space (Vitharana et al., 2017).Future

research should also investigate the use of new predictive variables, such as synthetic aperture radar remote sensing data

sensitive to soil moisture, which has recently been used to continuously map SOC at circumpolar scale north of the treeline

(Bartsch et al., 2016). 

5.4 Comparing the present day SOC storage

This study provides the first landscape scale estimate and partitioning of SOC for the Abisko arearegion. A mean landscape

storage of  87.39 ± 8.0 kg C m−2 for the SOC–Tot and 7.07 ± 6.32 kg C m−2 for the SOC 0–100 is predicted.  Overall, the

predicted estimates are in line with previous studies for individual land cover types. In the mires of the study area, Klaminder

et  al.  (2008) found  organic  matter  stocks  of  30–80 kg m−2 on  hummocks  (peat  bogs)  and  35–110 kg m−2 in  hollows

(wetlands) which translates into similar amounts of SOC as estimated in this study. Some publications have emphasized

higher amounts of SOC in tundra heath ~7–9 kg C m−2 compared to birch forest ~4–5 kg C m−2 (Hartley et al., 2012; Parker

et al., 2015). The sampled and predicted values for these classes are in the same range in this study, but higher amounts of

SOC in tundra heath cannot be confirmed. Potentially because the sampling included a wider range of birch forest sites,

including areas with a longer time for SOC accumulation. C stocks in lakes were not included, but sediment cores published

by Kokfelt et al. (2010) indicate that lakes in the study area could contain similar amounts of C as the sedge wetland class.

Overall, the predicted estimates are in line with previous studies for individual land cover types.

Few studies  have estimated  mean  landscape SOC stocks at  local  scale in mountainous environments in  the  permafrost

regions. Low storage of SOC was documented by Fuchs et al. (2015) in Tarfala, a sub-Arctic alpine valley 50 km south of

Stordalen. The SOC stocks vary from 0.05 kg C m−2 to 8.4 kg C m−2 for different land cover classes, with a landscape mean

SOC storage of 0.9 ± 0.2 kg C m−2. Dörfer et al. (2013) estimate the mean landscape SOC stocks for two study areas on the

Tibetan plateau to 3.4 and 10.4 kg C m−2 for the top 0–30 cm of soil. For the Abisko area, a value of 3.9 ± 1.78 kg C m−2 is

calculated for the same depth interval showing a good agreement. A study with a similar environmental setting is presented

by  Palmtag  et  al.  (2015) forwho  investigated  SOC  stocks in Zackenberg,  NE  Greenland.  This  landscape  features  a
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combination of higher  located  barren alpine areas and lower  located  wetland areas including palsas. They found a mean

landscape SOC storage of 8.3 ± 1.8 kg C m−2, for the top meter.  Thiswhich compares well to this study, despite the location

in the High Arctic. This could potentially be explained by decreased decomposition rates and slower C turnover in Greenland

(Hobbie et al., 2000).

5.5 From local to circumpolar scale 

 The SOC estimate for Abiskod 7.7 ± 6.2 kg C m−2   for the SOC–100 in Abisko is considerably lower than the 26.1 kg C m−2

for SOC 0–100 estimated for the same area at circumpolar scale in the Northern Circumpolar Soil Carbon Databasein the NCSCD

indicated for this area (Hugelius et al., 2013, 2014). A similar discrepancy has been noted for example by .Fuchs et al. (2015)

and Palmtag et al. (2016) for study areas in Sweden and Siberia.  The NCSCD is based on thematic mapping using soil

polygons for northern Europe with an average area of 205 ± 890 km² and averages many soil pedons for individual soil types

across the entire Arctic. The Abisko study area falls in a single polygon in the NCSCD. Clearly, the large generalization and

the  thematic  mapping  approach  cannot  reflect  local  scale  soil  properties  in  this  and  other  highly  diverse  permafrost

environments.

Using digital soil mapping in combination with machine-learning methods can in the future provide improved, pixel-based

regional to circumpolar estimates of SOC. The spatial resolution of such products is largely restricted by the available spatial

input data and by computing resources. The to map SOCeffectiveness spatial prediction approach at to resolutions provides

stable results at resolutions of 2 m, 10 m and 30 m for the SOC–Tot and for the SOC estimated under different land cover

classes (Fig. 8). A significant drop in quality of the estimate occurs between a resolution of 30 m and 100 m. This results in

an underestimation of the SOC–Tot at resolutions of 100 m, 250 m and 1000 m, as wetland classes can no longer be resolved

by the spatial predictor variables necessary to assess local or regional C dynamics.. This is associated with a drop in R² from

~0.7 at resolutions <30m to ~0.5 at resolutions >30m.

 The importance of wetlands for SOC global stocks has long been pointed out. PeatlandsWhile they store large amounts of

SOC while, they typically occupying only a small fraction of the total landscape. Northern peatlands are highly relevant to

the global C cycle  and store large amounts of SOC in boreal forests and tundra regions (Gorham, 1991). Peatlands are

restricted to waterlogged conditions. In mountainous terrain they therefore mostly occupy valley bottoms. Subsetting the

SOC–Tot map by areas that have a OL–Depth ≥40 cm, corresponding to a common definition of peatlands (Tarnocai and

Stolbovoy, 2006), it is found that peatlands represent 3.2% of the total soil area, but 13.9% of the SOC–Tot at a resolution of

1 m (Fig. 8). According to the LCC, the area covered by all wetland classes is 6.8  %, but this area stores 25.0% of the SOC.

For comparison, the Swedish CORINE land cover dataset (© Lantmäteriet, I2014/00691) based on Landsat TM imagery

with a resolution of 25 m, indicates a wetland area of only 3.3%. Extracting the SOC for these areas results in only 11.0% of

the landscape SOC–Tot. The difference can be attributed to many small scale wetlands in forest areas not captured in the

lower resolution datasets. This means an underestimation of wetland areas using a country scale LCC and SOC stored in
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wetlands by 3.4% of the total soil area and 14.1% of the SOC respectively. . In Abikso, wetlands store 25% of the carbon,

but cover only 6% of the area (Fig. 7). While the mMajor wetland complexes arecan be mapped at coarse resolution, but

small ones are clearly often omitted and high-resolution approaches are necessary to extract this informationThe effect of

spatial resolution on the mapping of wetlands and fens has 75% of the landscape SOC is not stored in wetlands, but to a large

extent in the birch forest with 40.8% and in alpine tundra heath with 12.1% (Fig. 7). It has to be pointed out that . also been

pointed out by .(Hugelius, 2012; Virtanen and Ek, 2014). For example, Hugelius et al. (2011) showed for a study area in the

European Russian Arctic, that a Quickbird based 2.4 m spatial resolution LCC was necessary to map peat plateaus that store

30–58% of the ecosystem C dominated by SOC, while covering less than ~20% of the area. Subsetting the SOC–Tot map for

Abisko to show only wetland classes highlights the fragmentation and dispersion of minor wetlands detached from major

wetland complexes (Fig.A2h).  tYet,The significance of these smaller wetland areass for C cycling at landscape scale has so

far found little attention in the literature..

Future  updates  at  circumpolar  scale would clearly benefit  from including high resolution  data  derived  from  Sentinel-2

(10 m), Landsat (30 m) satellites or the ArcticDEM (2-5 m; 2017). At such resolutions, SOC estimates may be considered

reliable  in  environments  similar  to  Abisko.  However,  areas  with a  significant  amount  of  ice-wedge  polygons may

requireeven higher-resolution mapping approaches (Siewert et al., 2015, 2016). At the same time, this will need considerable

amounts of computing power. Estimates using data from  satellites like MODIS (250-1000 m) and AVHRR (1100 m) are

likely to underestimate SOC stocks and may not reflect extreme values. At regional to circumpolar scale, it will also be

necessary  to  include  climatic  datasets  as  environmental  variables  to  correctly  model  the  SOC  storage. For  example,

Klaminder et al. (2009) find a clear connection between mean annual precipitation and SOC stored in tundra soils along a

transect from Abisko towards the more humid western coast (not covered here). Future research should also investigate the

use of new predictive variables,  such as  synthetic  aperture radar  remote sensing data.  This  product is  sensitive to  soil

moisture and has recently been used to continuously map SOC at circumpolar scale north of the treeline  (Bartsch et al.,

2016). A priority should however be the collection of soil pedons. The latest circumpolar SOC estimate for the top meter is

based on only 1778 pedons and reports substantial regional gaps in pedon data. This is particularly the case for areas in the

High Arctic with thin sediment overburden, for cryoturbated soils and for peatland soils (Hugelius et al., 2014). Similarly, it

was shown for the SOC storage in Alaska, that despite 556 existing soil pedons, >300 additional soil pedons are necessary to

reflect the entire environmental space (Vitharana et al., 2017).

24

5

10

15

20

25



5.6 SOC age, past and future development

A major research question is whether Arctic environments have in the past and will be in the future abeen a sink or a source

of C and how this will develop in the future. The Abisko arearegion was deglaciated around 9500 cal. yrs BP (Berglund et

al., 1996), leaving a glacier forefield like landscape with no SOC. This study finds that  initial  peat inception in Stordalen

took place around 5200 yrs ago in the center part of the mire, while other studies indicate  a rangepeat inception between

6000  and  4700 yrs  for  different  parts  of  the  mire  (Sonesson,  1972;  Kokfelt  et  al.,  2010). Other  amplesprofiles from

otherdifferent parts of the mire indicate an initial peat deposition and a transition to pure peat between 1900 and 2200 cal BP.

This peat that may havehas likely accumulated due to peat erosion from already developed peat deposits in the surrounding,

followed by continuous peat production. Similarly,  Kokfelt et al. (2010) found a change towards ombrotrophic conditions

and potential  permafrost aggradation  in the mire  taking place around 2800 cal BP and prevailing permafrost conditions

between 2650–2100 cal  BP. This was followed by a phase of  thermokarst  and peat  erosion and SOC accumulation in

surrounding  lakes.  After  700  cal  BP permafrost  conditions  prevailedreappeared and  palsa  formation  took place  in  the

northern part of the mire around 120 cal BP (Kokfelt et al., 2010). This interpretation with relatively stable accumulation of

SOC in the past 2000 is coherent with the results in this article.

 The majority of the sampled SOC in the birch forest has an age of less than 1350 years. No signs of significant SOC burial

due to solifluction or cryoturbation processes wereas found in the transect sampling.  Yet, tHowever, these processes can

store significant amounts of SOC in alpine and tundra terrain (Palmtag et al., 2015; Siewert et al., 2016) and are  a common

phenomenon on some slopes of the area.  Becher et al. (2013) found three major periods of burial of SOC in non-sorted

circles near Abisko, that coincide with transitions from colder to warmer conditions. These were dated to 0–100 A.D., 900–

1250 A.D. and 1650–1950 A.D. 

OverallIn summary, the bulk of the present day SOC in the study area hasmust have accumulated during the past 2000 yrs,

both for the peatlands and the birch forest. Despite some episodes of palsa and peat plateau degradation and peat erosion, it

can be assumed that the study area has over the time period of the Holocene likely been a C sink, with a significant portion

of the SOC stored in labile and temperature sensitive peat plateaus.

At present, permafrost of the peat plateaus of northern Fennoscandia seems to be at a critical thermal limit and close to

collapse. In the Abisko region, permafrost is warming rapidly (Johansson et al., 2011). In Stordalen, a decrease of dry peat

plateau areas by 10% and an increase of wet graminoid dominated water areas by 17% has been documented for the period

from 1970 to 2000 and was likely caused by permafrost degradation (Malmer et al., 2005). rs (Johansson et al, (2015). Snow

manipulation  experiments  have  shown a  rapid  increase  of  ground temperatures  leading  to  permafrost  degradation  and

changes in vegetation within only seven yeaIn Tavvavuoma, a peat plateau/thermokarst lake complex located in the sporadic

permafrost zone in northern Sweden, the same trend is observed. Here significant thermokarst lake formation, drainage and

infilling with fen vegetation has occurred from 1963 to 2003  (Sannel and Kuhry, 2011). These are significant landscape
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changes that affect the C balance in peat plateau areas and the permafrost in this area is clearly not in equilibrium with the

present day warmer climate causing dynamic  Unless pronounced cooling sets in permafrost degradation in the peat plateau

will occur (Sannel et al., 2015)..adjustments.

Past degradation of permafrost in Abisko resulted in redistribution of C rich organic sediments from eroding peat plateaus .

(Kokfelt  et  al.,  2010)  and  partial  loss  as  dissolved  organic  carbon (DOC) suggest  that  much of  the  eroded peat  from

Stordalen has been lost as dissolved organic carbon (DOC) (Malmer et al., 2005). Analogous to paraglacial sediment systems

(Ballantyne, 2002; Church and Ryder, 1972), the decay of permafrost will trigger and condition a set of processes that likely

result in a significant geomorphic impact.  While in the alpine heath ecosystem cryoturbation followed periods of climate

interruptions causing burial of SOC (Becher et al., 2013, 2015).P Analogous to paraglacial sediment systems (Ballantyne,

2002; Church and Ryder, 1972), the decay of permafrost will trigger and condition a set of processes that likely result in a

significant geomorphic impact. 

How these adjustments will influence the carbon balance in the future seems unclear. Lundin et al. (2016) find that the

Stordalen catchment is unlikely to be a present day C sink, but rather acts as a source of C. However,  Fuchs et al. (2015)

argue for the alpine Tarfala valley with very low SOC stocks, that these landscapes will under future climatic changes turn

into a sink of C, despite degradation of the permafrost, as biomass will increase and soils develop. In Abisko most of the

SOC is stored in birch forest soils. A further shrubification of alpine areas and a rise of the tree line combined with a positive

priming effect  could bind  more  SOC in  the  above ground vegetation  (Hartley  et  al.,  2012).  Yet,  for  most  permafrost

environments this is unlikely to offset SOC releases from the permafrost and deeper soil layers by mass (Siewert et al., 2015)

and may even lead to a release of SOC (Hartley et al., 2012). In wetlands, an increase of sedge and Eriophorum dominated

water submerged areas will be important to regulate DOC and SOC dynamics (Tang et al., 2018) .AlsoFurthermore, the role

of many minor wetland areas revealed by high resolution mapping has not received sufficient attention. Indeed, a holistic

perspective will be necessary to predict how SOC storages will evolve in post-permafrost landscapes in the future.

6 Conclusions

FVery few studies have applied regression methods or digital soil mapping techniques to map soil organic carbon (SOC) in

sub-Arctic and Arctic permafrost environments to map soil organic carbon (SOC). In general thematic mapping approaches

have been favored.  PThe results show promising results  have been obtained  using machine-learning techniques to predict

SOC in a mountainous sub-Arctic peatland environment with typical periglacial landforms such as permafrost raised peat

plateaus. A random forests prediction model showed the best  results in terms of  )908coefficient of determination (R² =

0.error metrics and upon visual inspection.    typical for tundra environments.very strong environmental gradientsThis is
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followed by a support vector machine, while multiple linear regression and artificial neural networks could not sufficiently

reflect  the fragmented SOC distribution with  Digital  soil mapping of SOC is a significant improvement over upscaling

methods using thematic maps such as land cover classifications or soil maps. Yet, carefully generated thematic maps remain

essential to our understanding of a landscape, its partitioning and patchiness. Thematic maps can be used  as a predictor

variable and  for stratified extraction of soil properties such as SOC. This will and  help to understand these variables at

landscape level.Future field surveys must pay attention to sample the entire environmental gradient, including low C storage

end-members. This applies to local as well as circumpolar scale, where large regional soil pedon gaps remain especially for

low SOC areas.This study shows good initial results for the use of machine-learning algorithms to project SOC stocks even

with limited ground data typical for remote and less accessible study areas in the Arctic.  

For the Abisko study area, the mean landscape total SOC storage is estimated to  78.93 ± 8.0 kg C m−2 and the 0–100 cm

storage to 7.07 ± 6.32 kg C m−2. at a spatial resolution of 1 m. This estimate is significantly lower than the estimates from the

Northern Circumpolar  liSoil Carbon Database, but in line with other high-resolution mapping results of SOC storage in

similar  environments,  indicating  the  value  of  high-resolution  upscaling  and  partitioning  studies.  Reducing  the  spatial

resolution of the environmental input data reveals a significant drop in mapping accuracy for resolutions coarser than 30 m

and a tendency to underestimate SOC stocks. The amount of soil pedon data is clearly the limiting factor to map SOC in

permafrost environments. Future field surveys must pay attention to sample the entire environmental gradient, including low

C storage end-members. This applies to local as well as circumpolar scale, where large regional soil pedon gaps remain

especially for areas with low SOC stocks.  Many small wetlands that are not resolved inmapped at lowercoarse resolutions

studies are mapped and the results highlight the importance of peatlands and peat plateaus for the total SOC stocks in sub-

Arctic environments.  Most SOC in the study area was accumulated during the past  2000 years.  The landscape history

emphasis  that  present  day  SOC  stocks  represent  a  snapshot  in  time  in  an  ecosystem  that  is  subject  to  continuous

environmental changeadaptation associated with complex biotic and abiotic ecological adoptions and interactionspermafrost

degradation caused by climate change. . The development of alpine heath and birch forest SOC stocks remains unclear. and

will  likely  release  these  into  the  carbon  cycleinto  lakes    of  organic  sediments and  transportRapid  future  permafrost

degradation in peatlands may lead to erosionA holistic approach will be necessary to understand  ‘post-how  permafrost’

processes degradation andwill affect the landscape distribution of SOC in the future.
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Fig. 1. Workflow diagram for this study. Environmental predictor variables are used to generate a land

cover classification. Digital soil mapping is performed using soil pedons (supplemented with pseudo

sampling points) combined with environmental predictor variables to train prediction models for SOC-

Total. The best performing model (RF) is used to develop maps of different SOC depth increments and

the OL depth. The results are discussed, with the help of eight radio carbon samples, in the context of

present day SOC storage, past and future SOC dynamics and the relevance of wetlands for the SOC

storage in permafrost environments. 
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Fig.  1.  Top right inset showing the location of  the study area.  Main view showing the land cover

classification for the entire mapping extent. The bottom left inset shows a closeup of Stordalen mire.

The beginning and counting direction of the four main sampling transects are marked.
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Fig.  2: Photographs exemplifying the study area. a) Alpine landscape mosaic showing several land

cover classes including bare ground and alpine tundra heath transitioning into birch forest. b) Lowland

landscape mosaic showing sparse birch forest, blockfields and a small wetland in direct neighborhood.

c) Raised permafrost peat plateau (left) with sharp transition to Sphagnum dominated wetland areas

and exposed bedrock areas (right). 
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Fig. 3. Workflow diagram for this study. Environmental predictor variables are used to generate a land

cover classification. Digital soil mapping is performed using soil pedons combined with environmental

predictor variables to train prediction models for SOC-Total. The best performing model (RF) is used

to  develop maps  of  different  SOC depth  increments  and the  OL depth  (supplemented  with  pseudo

sampling points). The results are discussed, with the help of eight radio carbon samples, in the context

of present day SOC storage, the effect of spatial resolution, past and future SOC dynamics and the

relevance of wetlands for the SOC storage in permafrost environments. 
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Fig. 4: A close up of the area near Stordalen mire comparing different maps. a) Illumination corrected

orthophoto (© Lantmäteriet, I2014/00691). b) Land cover classification, c) Soil organic carbon storage

using a thematic mapping approach. d-g) Maps developed using different machine-learning models.

Each map uses all input soil pedons and pseudo sampling points d) multiple linear regression model

(MLR), e) artificial neural network (ANN), f) support vector machine (SVM) and g) random forest (RF).
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Fig.  5.  Performance of different prediction models developed using the soil pedon dataset excluding

pseudo-training  samples.  The  evaluation  is  based on observed against  predicted  total  soil  organic

carbon  values.  The  performance  metrics  are  based  on  cross-validation.  (R2:  coefficient  of

determination;  CCC:  Lin’s  concordance  correlation  coefficient  (CCC);  RMSE:  root  mean  squared

error.Performance of different prediction models comparing observed against predicted total soil organic carbon values (all values in  kg C m−2)  using the full soil pedon

dataset including 10 pseudo-training samples for bare ground set to 0.0 kg C m−2.
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Fig. 6. Variable importance for the prediction of total SOC measured as mean decrease in accuracy of

the random forest model if the variable is excludedas a result of permutation of the input variable. The

higher the value the more important is the variable.
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Fig. 7. Partitioning of modeled total soil organic carbon (SOC) storage and respective land cover class

coverage in % using a random forest predictor. Height of the column represent the fraction of the

SOC–Tot. The mineral SOC is the amount of SOC–OL subtracted from the SOC–Tot. Crosses indicate

the percentage areal coverage of the respective land cover class of the total landscape soil area. 
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Fig. 8. Map of the predicted soil organic carbon storage using the random forests model. a) Total soil

organic  carbon,Summary  of  the  predicted  SOC at  different  spatial  resolutions.  The  dots  show the

development of the SOC–Tot while the colored dots show the SOC stored in individual classes extracted

using the LCC at 1 m spatial resolution.  b) SOC stocks in wetlands classes of the high-resolution land

cover classification, c) SOC stocks in peatlands as revealed from modeling the organic layer depth, d)

SOC stocks in wetland areas according to the CORINE datasetThe R² is estimated using the full pedon

dataset including pseudo-sampling points.
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Table1:  Validation  of  SOC-Tot  prediction  models.  The  validation  is  based  on  the  internal  (80%)
training data subset and on an external (20%) control subset of the SOC input data. The validation is
performed with and without pseudo sampling points for bare ground areas. 

Including Pseudo sampling points Excluding Pseudo sampling points

R2 CCC RMSE R2 CCC RMSE 

MLR Int. 0.812 0.879 9.347 0.825 0.882 9.074

MLR Ext. 0.143 0.424 25.051 0.022 0.299 27.343

ANN Int. 0.843 0.872 9.1 0.823 0.858 9.560

ANN Ext. 0.352 0.547 19.739 0.229 0.440 23.362

SVM Int. 0.898 0.908 7.512 0.793 0.837 10.331

SVM Ext. 0.698 0.552 17.755 0.377 0.438 21.783

RF Int. 0.939 0.925 6.482 0.949 0.945 4.986

RF Ext. 0.908 0.650 15.392 0.470 0.536 19.992

R2: coefficient of determination

RMSE: root mean squared error

CCC: Lin’s concordance correlation coefficient
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Table 1: Soil pedon properties by land cover class and predicted SOC carbon stocks using a random forest model. 

Soil pedon data Random forest predicted values

Mean ± StD cm Mean ± StD kg C m−2  
Mean ±
StD cm

Mean ± StD kg C m−2  

Land cover class
Sit
s

(n)

Area
in km²

%
of

Soil
Are
a 

Depth
Organic

layer 

Depth
Active
layer

SOC
Organic

layer

SOC
Mineral 

SOC
Permafro

st 

SOC
0 - 30 cm 

SOC
0 - 100 cm 

SOC
Total

SOC
Total
Min.–
Max. 

Depth

Organic

layer

1 x 1 m

SOC
Organic

layer
1 x 1 m

SOC 0 -
30 cm

1 x 1 m

SOC 0 -
100 cm
1 x 1 m

SOC
Total

1 x 1 m

SOC
Total

2 x 2 m

SOC
Total

10 x 10 m

SOC
Total

30 x 30 m

SOC
Total

100 x 100
m

SOC

Total  250

x 250 m 

SOC
Total
1000 x

1000 m 

Alpine heath tundra 7 8 17.1 5±3.4 37 1.4±1.3 2.6±2.9 0.1±0.3 3.5±2.8 4±3.1 4±3.1 1.1–9.2 8±4.9 2.7±2.1 3.6±1.6 6.5±3.6 6.8±4.1 6.4±3.2 6.9±7 7.8±3.6 4.8±3.1 4.3±2.9 3.2±3.9 

Alpine willow 1 2 4.3 5 – 1.1 6.5 0 7.5 7.6 7.6 7.6–7.6 13.6±5.1 3.9±2 5.4±0.7 9.7±2.6 10.4±3.4 8.8±2.8 10.2±6.7 11.5±3.2 7±2.8 6.3±2.8 5.5±4.7 

Bare ground 4 3.8 8.2 0.1±0 – 0±0 0±0 0±0 0±0 0±0 0±0 0–0 2.5±3.8 1±1.9 0.8±1.2 1.8±2.1 1.7±2.3 1.8±2.1 3.2±4.5 4±3.4 4.4±5.2 4.8±5 5±6.3 

Birch forest 6 19.3 41.1 9.5±3.9 – 2.4±0.4 1.8±2.4 0±0 4±2 4.2±2.2 4.2±2.2 2.4–8.6 10.4±4.7 3.2±1.8 4.5±0.9 7.4±2.8 7.8±3.8 7.6±3.6 9±6.9 10.2±4.9 7.5±4.5 7.7±6.1 10.1±8.7 

Dwarf shrubs 2 4.8 10.2 6±2.8 – 1.9±1.3 1.4±1.9 0±0 3.4±3.2 3.4±3.2 3.4±3.2 1.1–5.6 10.5±4.6 3.1±1.9 4.8±1.1 8.1±3 8.1±3.8 7.6±3.5 8.6±6.8 10.2±4.3 6.1±3.7 6±4.2 7.5±6.6 

Forested wetland 4 0.9 1.9 39.2±34.7 – 15.6±22.8 24.7±14.1 0±0 8.9±5.7 32.1±15.9 40.3±18.7 16.4–61.9 26.5±9.8 7.2±3.4 6±0.9 24±4.6 31.3±6.6 29.6±6.8 27±11.2 30±11.8 15.3±8.2 16.4±12.5 11.7±12.3

Lowland willow wetl. 2 0.6 1.3 46±38.2 – 17.5±17.3 28.2±18.1 0±0 9.6±2.5 35±6.7 45.7±0.8 45.1–46.3 47.6±13.7 19.1±6.1 6.7±1 29.5±5.2 37.2±7.5 36.5±8.2 37.6±11.1 32.1±13.3 16.9±9.4 19.3±14 10.1±11 

Peat bog wetland 9 0.6 1.2 56.9±27.2 50±20 28.3±20.6 23.9±10.4 10.1±13.3 9.9±4.5 40.6±17.9 52.2±20.3 28.8–90.3 44.7±12.9 20.6±6.8 7±1.4 31.3±6.8 36.5±9 38±8.9 38.3±13.8 35.3±13.1 20.6±10.5 24.4±14.5 10.7±10.3

Sedge wetland 4 0.7 1.5 48.8±51.1 – 13.3±16.2 8±2.4 0±0 4.6±2.7 14.5±8.5 21.3±18.2 7.7–48 44.1±14.4 15.9±6.1 5.3±1.6 26.9±5.9 33.7±9 34.4±9.6 35.4±13.1 29.8±15 16.8±12.2 20.4±16.2 9.7±12.3 

Sparse Birch forest 6 6.1 13.1 5±3.7 – 1.7±1.9 1.4±1.5 0±0 3±3.4 3.1±3.4 3.1±3.4 0.2–7.8 5.7±3.8 1.7±1.9 2.2±1.4 3.7±2.4 3.7±2.9 3.9±2.8 5.7±6.7 5.6±4.5 5.8±5.2 6.2±7.4 3.4±5.2 

Sphagnum wetland 2 0.1 0.1 93.5±62.9 73 22.1±15.4 12±14.6 8.5±12.1 6.6±2.5 22.3±6 34±0.8 33.4–34.6 54.2±17.5 22.1±7.2 7.4±1.1 29.1±6.1 39±8.7 37.9±8.3 34.3±11.5 36.7±12.4 21.5±11.6 24.4±15 15.6±15 

Anthropogenic  0.8 1.6 
Study area mean ± StD:a  Study area mean ± StD:a  

Water  17.4 37.1 

Mean of study area

(weighted by area)
47 650.3 100 9.1±1.1 - 2.8±0.3 3±0.2 0.2±0 3.8±0.5 5.3±0.5 5.8±0.5 0–90.3 10.6±9.7 3.5±4 3.9±1.8 7.7±6.2 8.3±8 8.1±7.9 9.2±9.7 10±8 7±5.6 7.2±7.2 7.2±7.9 

a Weighted by area, excluding Artificial surfaces and water areas.
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Table 2: Summary of radiocarbon dating. 

Soil pedon Depth Sample description Lab. no.a Age 14C

Age cal BP 

(yrs)b

AB-T1-06 14–15 cm Palsa, base of marked change in peat composition Poz-59879 150.84 ± 0.36 pMCc modern

AB-T1-06 94–95 cm Palsa, base of pure peat organics Poz-59880 4565 ± 30 BP 5218

AB-T1-10 72–73 cm Lowland shrub wetland, base of OL Poz-59882 2215 ± 30 BP 2230

AB-T2-06 48–49 cm Sphagnum patch, base of OL Poz-59883 1985 ± 30 BP 1936

AB-T3-07 11–12 cm Alpine birch forest, base of OL Poz-59884 119.16 ± 0.33 pMC modern

AB-T3-07 22–28 cm Alpine birch forest, mineral subsoil Poz-59885 150 ± 30 BP 150

AB-T3-09 18–19 cm Birch, base of OL Poz-59886 100.82 ± 0.29 pMC modern

AB-T3-09 20–26 cm Birch forest, mineral subsoil Poz-59887 1455 ± 30 BP 1345
a Laboratory number of the Radiocarbon Laboratory in Poznan, Poland.
b Mean age at 95.4% probability expressed in calendar years before 1950.  
c  Percent Modern Carbon.
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