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Abstract 13 

Several modeling studies reported elevated carbon emissions from historical land use change (ELUC) by 14 

including bi-directional transitions on the sub-grid scale (termed gross land use change), dominated by 15 

shifting cultivation and other land turnover processes. However, most dynamic global vegetation models 16 

(DGVM) having implemented gross land use change either do not account for sub-grid secondary lands, 17 

or often have only one single secondary land tile over a model grid cell and thus cannot account for 18 

various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore it 19 

remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between 20 

the two modeling approaches with and without multiple sub-grid secondary land cohorts — in particular 21 

secondary forest cohorts. Here we investigated historical ELUC over 1501–2005 by including sub-grid 22 

forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the 23 

other with sub-grid secondary forests of 6 age classes whose demography is driven by historical land use 24 

change (Sage). Estimated global ELUC for 1501–2005 are 176 Pg C in Sage compared to 197 Pg C in Sageless. 25 

The lower ELUC in Sage arise mainly from shifting cultivation in the tropics under an assumed constant 26 

rotation length of 15 years, being of 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative 27 

ELUC from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) 28 

when the model is forced by reconstructed harvested areas, because secondary forests targeted in Sage for 29 

harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being 30 

dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e., always 31 

harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both 32 

simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the pre-defined 33 

forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs 34 
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over Africa reveal that a longer rotation length over historical period likely results in higher emissions. 35 

Our results highlight that although gross land use change as a former missing emission component is 36 

included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to 37 

be overestimated when models ignore sub-grid secondary forests.  38 

 39 

Keywords: gross land use change, carbon emission, secondary forests, shifting cultivation, wood harvest. 40 

 41 

Nomenclature 42 

LUC : land use change 43 

ELUC : carbon emissions from land use change. Positive values indicate that LUC has a net effect of 44 

releasing carbon from land to the atmosphere, while a negative value indicates the reverse. 45 

ELUC process[, configuration] : carbon emissions from a certain LUC process (net transitions only, land turnover, 46 

wood harvest or all three processes combined) quantified by a specific model configuration (age or 47 

ageless, in which differently aged sub-grid land cohorts are, or are not explicitly represented, 48 

respectively). For instance, ELUC net, ageless indicates ELUC from net transitions only and without explicitly 49 

representing sub-grid age dynamics, i.e., a single ageless mature patch is used to represent a land cover 50 

type; ELUC net, age indicates ELUC from the same process using a model configuration that explicitly 51 

represents differently aged land cohorts. 52 

Sage: Model simulations that represents sub-grid secondary land cohorts. 53 

Sageless: Model simulations that do not include sub-grid age dynamics, i.e., a single ageless mature patch is 54 

used to represent a land cover type. 55 

 56 

1 Introduction 57 

Historical land use change (LUC), such as the permanent establishment of agricultural land on forests 58 

(deforestation), shifting cultivation and wood harvest, has contributed significantly to the atmospheric 59 

CO2 increase, in particular since industrialization (Houghton, 2003; Le Quéré et al., 2016; Pongratz et al., 60 

2009). Carbon emissions from land use change (ELUC) are often defined as the net effect between carbon 61 

release on newly disturbed lands, given that in most cases newly created lands have a lower carbon 62 

density than natural ecosystems (e.g., deforestation or forest degradation), and carbon uptake on 63 

recovering ecosystems (e.g., cropland abandonment or afforestation/reforestation). As the high spatial 64 

heterogeneity of land conversions precludes any direct measurements of global or regional ELUC, 65 

modeling turned out to be the only approach to its quantification (Gasser and Ciais, 2013; Hansis et al., 66 

2015; Houghton, 1999, 2003; Piao et al., 2009b). Methods to quantify ELUC could fall broadly into three 67 

categories, namely bookkeeping models (Gasser and Ciais, 2013; Hansis et al., 2015; Houghton, 2003), 68 
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dynamic global vegetation models (Shevliakova et al., 2009; Stocker et al., 2014; Wilkenskjeld et al., 69 

2014; Yang et al., 2010), and satellite-based estimates of deforestation fluxes (Baccini et al., 2012; van 70 

der Werf et al., 2010). 71 

 72 

When including sub-grid bi-directional gross land use changes such as shifting cultivation or other forms 73 

of land turnover processes, models are found to yield higher estimates of ELUC for 1850-2005 by 2-38% 74 

than accounting for net transitions only (Hansis et al., 2015). Wood harvest, although it does not change 75 

the underlying land use type, can also lead to additional carbon emissions due to fast carbon release from 76 

recently harvested forests and slow uptake from re-growing ones (Shevliakova et al., 2009; Stocker et al., 77 

2014). Because of their importance in estimating historical LUC emissions, gross land use change and 78 

wood harvest have been implemented in several dynamic global vegetation models (DGVMs), as 79 

synthesized in the Table 1 of Yue et al. (2017). A recent synthesis study by Arneth et al. (2017) reported 80 

consistent increase in ELUC by several models when including shifting cultivation and wood harvest, as 81 

well as other agricultural management processes such as pasture harvest and cropland management. These 82 

processes altogether yield an upward shift in estimated historical ELUC, implying a larger potential in the 83 

land-based mitigation in the future if deforestation or forest degradation can be stopped. 84 

 85 

While replacing forest with cropland or pasture typically leads to carbon release, afforestation and forest 86 

regrowth following harvest or agricultural abandonment sequester carbon in growing biomass stocks. 87 

Some recent studies, on both site (Poorter et al., 2016) and regional scales (Chazdon et al., 2016), show 88 

that secondary forests recovering from historical LUC are contributing to the terrestrial carbon uptake, 89 

and that the carbon stored per unit land sometimes exceeds that of primary forests (Poorter et al., 2016). 90 

While explicit representation of sub-grid secondary forests and other lands with different years since the 91 

last disturbance (defined as cohorts or age classes) is straightforward in bookkeeping models (Hansis et 92 

al., 2015), and is fairly easy in some DGVMs combined with a forest gap model (e.g., LPJ-GUESS, 93 

Bayer et al., 2017), only a few DGVMs following an “area-based” approach (Smith et al., 2001) have 94 

done this but usually with a single secondary cohort for a given vegetation type (Yue et al., 2017). 95 

Shevliakova et al. (2009) pioneered the inclusion of both gross land use change and secondary lands in a 96 

DGVM. Their model can contain up to a total number of 12 secondary land cohorts, but the spatial 97 

separation of natural plant functional types (PFTs) was limited. In some other DGVMs (Kato et al., 2013; 98 

Stocker et al., 2014; Yang et al., 2010), secondary lands were limited to have one cohort per PFT. This 99 

has limited the accurate representation of the carbon balance in differently aged secondary forests. 100 

 101 
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In reality, shifting cultivation and wood harvest (forestry) tend to have certain rotation lengths (McGrath 102 

et al., 2015; van Vliet et al., 2012), which vary among different regions and management systems. 103 

Simulating these LUC activities by targeting forests with an appropriate age can have important 104 

consequences in derived ELUC, since young versus old forests have very different aboveground biomass 105 

stocks. Using a bookkeeping model, Hansis et al. (2015) showed that assuming only secondary land 106 

clearing in gross change yields a 2% increase in ELUC compared with accounting for net transitions only, 107 

much smaller than the 24% increase when assuming primary land clearing as a priority in gross change. 108 

The worldwide, systematic information on historical and present rotation lengths of shifting cultivation 109 

and wood harvest is missing. Some LUC reconstructions, such as the land-use harmonization version 1 110 

(LUH1) data (Hurtt et al., 2011), assumed a fixed rotation length of 15 years for shifting agriculture in the 111 

tropics, and this assumption has been used in some modeling studies (Bayer et al., 2017).  112 

 113 

Past studies using DGVMs mainly focused different estimates of ELUC between accounting for gross land 114 

use change and net transitions only. Very few studies have addressed the issue of how much ELUC from 115 

gross transitions differ by assuming clearing of primary forests versus secondary forests. The former issue 116 

can be tackled by DGVMs without sub-grid secondary lands, while the latter one can only be addressed 117 

by DGVMs with an explicit sub-grid secondary land age structure. Furthermore, it is unclear either how 118 

large the impact of shifting cultivation rotation length on the estimated ELUC is. 119 

 120 

In this study, we quantify global and regional carbon emissions from historical gross land use change 121 

since 1501 using a global vegetation model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic 122 

EcosystEms). The ORCHIDEE model has recently incorporated gross land use change and wood harvest, 123 

along with the representation of sub-grid secondary land cohorts. The model development and 124 

examination of model behaviour on site and regional scales are documented in a companion paper (Yue et 125 

al., 2017). The current paper focuses on the model global application. Our objectives are: 1) to quantify 126 

global and regional carbon emissions from historical gross land use change since 1501, and to examine 127 

the differences in ELUC when considering sub-grid secondary land cohorts by using parallel model 128 

simulations; 2) to examine contributions to ELUC from different LUC processes (i.e., net transitions only, 129 

shifting cultivation or land turnover, and wood harvest) and how they differ between the two model 130 

configurations with and without secondary land cohorts; 3) to examine the impacts of different rotation 131 

lengths in shifting cultivation on ELUC. Hereafter, we will use the terms ‘shifting cultivation’ or ‘land 132 

turnover’ interchangeably as they refer to the same process in the model — bi-directional equal-area land 133 

transitions between two land use types. 134 

 135 
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2 Methods 136 

2.1 ORCHIDEE-MICT model v8.4.2 and the implemented gross LUC processes 137 

ORCHIDEE (Krinner et al., 2005) is a dynamic global vegetation model and the land surface component 138 

of the IPSL Earth System Model (ESM). It comprises three sub-models that operate on different time 139 

steps. The SECHIBA sub-model operates on half-hourly time steps and simulates fast exchanges of 140 

energy, water and momentum between vegetation and the atmosphere. The STOMATE sub-model 141 

operates on daily time steps and simulates vegetation carbon cycle processes including photosynthate 142 

allocation, plant phenology, vegetation mortality and recruitment. The third sub-model contains various 143 

modules of different processes on varying time steps, such as vegetation dynamics, fire disturbance and 144 

land use change.  145 

 146 

The LUC module in ORCHIDEE was originally developed in Piao et al. (2009a), where only net 147 

transitions were taken into account. Recently, a gross land use change module, together with explicit 148 

representation of differently aged sub-grid land cohorts, have been implemented in a branch of 149 

ORCHIDEE model known as ORCHIDEE-MICT (Yue et al., 2017). This model will be henceforth 150 

referred to as ORCHIDEE-MICT v8.4.2. Idealized site-scale simulations with this model have shown that 151 

estimated carbon emissions from shifting cultivation and wood harvest are reduced by explicitly including 152 

sub-grid age dynamics, in comparison with an alternative approach to representing land cover types with 153 

a single ageless patch. This is because the secondary forests that are cleared in shifting cultivation or 154 

wood harvest with a rotation length of 15 years have a lower biomass than the mature forests that are 155 

otherwise cleared. Yue et al. (2017) provides details on the underlying processes in explaining differences 156 

in ELUC regarding whether sub-grid forest age structure is considered or not. 157 

 158 

The gross LUC module operates on an annual time step. For the very first year of the simulation, an initial 159 

land cover map (represented as a map of plant function types or PFTs) is prescribed. Land cover maps of 160 

subsequent years are updated using land use transition matrices corresponding to different LUC 161 

processes. Land use transitions between four vegetated land cover types are included: forest, natural 162 

grassland, pasture and cropland. The model separates overall LUC into three additive sub-processes in 163 

order to diagnose their individual contributions to ELUC, namely net land use change equivalent to the 164 

original approach that considers net transitions only, land turnover equivalent to shifting cultivation, and 165 

wood harvest. Matrices for net land use change and land turnover ([Xi,j]) take the form of 4 rows by 4 166 

columns, with Xi,j indicating the land transition from vegetation type i to j. The matrix for wood harvest 167 

has only two elements, indicating forest area as grid cell fractions that are subject to harvest from primary 168 



6 
 

and secondary forests, respectively. The current model version assumes that bare land fraction remains 169 

constant throughout the entire simulation.  170 

 171 

Differentiation of age classes applies on all vegetation types in the model. The number of age classes for 172 

each PFT can be customized via a configuration file. Age classes for forest PFTs are distinguished in 173 

terms of woody biomass, while those for herbaceous PFTs are defined using soil carbon stock. Newly 174 

established lands after LUC are assigned to the youngest age class. Forest cohorts move to the next age 175 

class when their woody biomass exceeds the threshold. For herbaceous PFTs, younger age classes are 176 

parameterized to have a larger soil carbon stock. This serves mainly as a preliminary attempt to have 177 

cohorts of secondary lands for herbaceous vegetation. Because the change in soil carbon depends on the 178 

vegetation types before and after LUC and on climate conditions (Don et al., 2011; Poeplau et al., 2011), 179 

ideally agricultural cohorts from different origins should be differentiated, with a origin-specific soil 180 

carbon boundary parameterization. However, to avoid inflating the total number of cohorts and the 181 

associated computation demand, as a first attempt here, we simply divided each herbaceous PFT into two 182 

broad sub-grid cohorts according to their soil carbon stocks and without considering their individual 183 

origins. We expect that such a parameterization can accommodate some typical LUC processes, such as 184 

the conversion of forest to cropland where soil carbon usually decreases over time, but not all LUC types 185 

(for instance, soil carbon stock increases when a forest is converted to a pasture).  186 

 187 

To simulate LUC with sub-grid land cohorts, a set of priority rules become necessary regarding which 188 

land cohorts to target given a specific LUC type (Table 1 in Yue et al., 2017), and regarding how to 189 

allocate LUC area into different PFTs of the same age class. For net LUC, clearing of forests exclusively 190 

starts from the oldest cohort and then moves onto younger ones until the youngest one. For shifting 191 

cultivation or land turnover, forest clearing starts from a pre-defined middle-aged class, and then moves 192 

onto older ones if this starting age class is used up, until the oldest ones. The primary target forest cohort 193 

in shifting cultivation and secondary forest harvest can be parameterized in the model. For the current 194 

study, shifting cultivation primarily targets the 3rd youngest cohort (Cohort3) and secondary forest harvest 195 

primarily targets the 2nd youngest cohort (Cohort2), with a total number of 6 forest cohorts (Cohort1 to 196 

Cohort6, with Cohort1 being the youngest) being simulated. This is to accommodate the assumption used 197 

in the LUC forcing data that shifting cultivation has a certain rotation length (see the Sect. 2.2), so that 198 

secondary forests are given a high priority to be cleared for agricultural land, and older forests will be 199 

cleared when even more agricultural lands are needed. Finally, for all other land cover types that are used 200 

as a source for conversion, as well as for primary forest harvest, we start from the oldest age class and 201 

move sequentially to younger ones in order to meet the prescribed LUC area in the forcing data. After the 202 
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LUC area is allocated on the cohort level, it is then distributed among different PFTs in proportion to their 203 

existing areas in this cohort. 204 

 205 

In order to compare the simulated ELUC with and without sub-grid secondary land cohorts, ORCHIDEE-206 

MICT v8.4.2 can be run in a way that each PFT has one single age class. This is equivalent to the 207 

alternative approach by which no sub-grid land cohorts are simulated. For more information on the 208 

rationale and details of LUC implementation in ORCHIDEE-MICT v8.4.2, readers are referred to Yue et 209 

al. (2017). 210 

 211 

2.2 Preparation of forcing land use change matrices 212 

For historical land use transitions, the land use harmonized data set version 1 (LUH1) for the CMIP5 213 

project was used (Hurtt et al., 2011, http://luh.umd.edu/data.shtml#LUH1_Data). We used the version of 214 

LUH1 data without urban lands as ORCHIDEE-MICT v8.4.2 does not simulate the effects of urban lands. 215 

The original data set is at a 0.5° spatial resolution with an annual time step covering 1500-2005. Four land 216 

use types are included: primary natural land, secondary natural land, pasture and cropland. The type of 217 

“natural land” consists of grassland and forest (which are separated in ORCHIDEE-MICT) but their 218 

relative fractions are not separated.  In LUH1, land use transitions from either primary or secondary 219 

natural land to pasture or cropland are provided, and vice versa. Secondary natural lands originated from 220 

pasture or cropland abandonment. Besides, land use transitions between pasture and cropland are 221 

provided as well. Harvested wood comes either from primary or secondary forest or non-forest lands, 222 

with ground area fractions that are harvested being available. Note that this does not contradict with the 223 

fact that forest and grassland fractions are not separated within the land use type of “natural land”, 224 

because forests are defined as natural lands with a certain biomass carbon stock based on the simulated 225 

biomass in a terrestrial model (Hurtt et al., 2011). 226 

 227 

Rather than the simple terrestrial model (Miami-LU) used in Hurtt et al. (2011) to separate natural 228 

vegetation into forested and non-forest land, ORCHIDEE-MICT distinguishes 8 forest PFTs, 2 natural 229 

grassland PFTs, 2 cropland PFTs (Krinner et al., 2005) and 2 pasture PFTs. Thus, to use LUH1 230 

reconstructions as a forcing input, assumptions have to be made to disaggregate LUH1 land use types into 231 

corresponding ORCHIDEE PFTs. For this purpose, we used an ORCHIDEE-compatible PFT map 232 

generated from the European Space Agency (ESA) Climate Change Initiative (CCI) land cover map 233 

(shortened as the ESA-CCI-LC map) covering a 5-year period of 2003-2007 (European Space Agency, 234 

2014), assuming that it corresponds to the land use distribution for 2005 by the LUH1 data. Subsequently, 235 

we backcast historical PFT map time series for 1500-2004 based on this 2005 PFT map using LUH1 236 
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historical net land use transitions as a constraint. Because land turnover involves an equal, bi-directional 237 

land transition between two land cover types, it does not lead to any net annual changes in the PFT map. 238 

Therefore, only net transition information is needed when backcasting historical PFT maps.  239 

 240 

To separate land use transitions in LUH1 into processes of net land use change and land turnover, we 241 

simply treat net land use change as the land transitions excluding the minimum reverse fluxes between 242 

two land use types. During the backcasting process, reconciliations have to be made where LUH1 data 243 

disagrees with the ESA map on the grid cell scale. When backcasting historical PFT map time series 244 

using net land use change matrices, we assume that when pasture or cropland is created, they come from 245 

an equal share of forest and grassland; when their fractions decrease, cropland abandonment leads first to 246 

forest recovery and then followed by natural grassland expansion, while pasture abandonment leads to an 247 

equal share of forest and natural grassland expansion. We then treat the minimum of two reverse land 248 

fluxes between secondary natural land and cropland or pasture as land turnover transitions. For each year, 249 

the land turnover transition between two land use types is not allowed to exceed the minimum of their 250 

existing areas. Spatially resolved forest harvest time series are provided in LUH1. We built the wood 251 

harvest matrices by limiting wood harvest area within the total area of forest PFTs over each grid cell for 252 

each year. Primary and secondary forest wood harvests from LUH1 were included and treated as primary 253 

and secondary forest harvest in the model, respectively, with non-forest wood harvest being discarded. 254 

More details on PFT map backcasting and the construction of land use transition matrices are provided in 255 

the Supplement Material.  256 

 257 

The construction of historical PFT maps and land transition matrices was done at 2° resolution for the 258 

whole globe, after re-sampling all input data from their original resolution to 2°. The reconstructed global 259 

forest area agrees with that by Peng et al. (2017), who has backcast historical ORCHIDEE PFT map 260 

series using the same ESA-CCI-LC 2005 PFT map and historical pasture and crop distributions from 261 

LUH1 but not the LUH1 land use transitions, with historical forest areas in the nine regions of the globe 262 

being constrained by data in Houghton (2003) based on national forest area statistics. The land turnover 263 

transitions between secondary land (forest and grassland) and cropland (or pasture) from the matrices 264 

defined above are smaller than originally prescribed in LUH1, because some of the prescribed transitions 265 

are ignored due to the inconsistency between LUH1 map in 2005 and the 2005 ORCHIDEE PFT map 266 

(See Supplement Material for detailed comparison). Because of this inconsistency, around 35% of net 267 

transitions from natural land to pasture, and 14% of net transitions from natural land to cropland were 268 

omitted when adapting the LUH1 data set to our model. About 20% of the turnover transitions between 269 

secondary land and pasture were omitted, and 11% of turnover transitions between secondary land and 270 
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cropland were omitted. Such inconsistencies among different data sets are a rather common challenge for 271 

their application in DGVMs, which have been reported by, for example, in Li et al. (2017), Meiyappan 272 

and Jain (2012) and  Peng et al. (2017). Note that shifting cultivation (land turnover) is limited to the 273 

tropical band as in LUH1, and the land turnover change resulting from the gridded LUH1 data upscaling 274 

from 0.5° to 2° is not included. The missing land turnover areas represent 17% of the turnover between 275 

natural lands and cropland that are included in our study, and 14% of the turnovers between natural lands 276 

and pasture.  277 

 278 

2.3 Simulation protocol 279 

2.3.1 Separate contributions of different land use change processes 280 

The PFT map of year 1500 as generated from the backcasting procedure (see the previous section) was 281 

used during the model spin-up. Climate data used were CRUNCEP v5.3.2 climate forcing at 2° resolution 282 

covering 1901-2013 (https://vesg.ipsl.upmc.fr/thredds/fileServer/store/p529viov/cruncep/readme.html). 283 

For the spin-up, climate data were cycled from 1901 to 1910, with atmospheric CO2 concentration being 284 

fixed at the 1750 level (277 ppm). Following LUH1 (Hurtt et al., 2011), we assume that no land use 285 

change occurs during the model spin-up. This might lead to overestimation of ELUC for the beginning 286 

years of the transient simulation due to high carbon stocks that are free from LUC before 1501. But on the 287 

other hand, legacy emissions from LUC activities before 1501 are also omitted. In general, because the 288 

magnitude of annual LUC activities for 1501–1520 is very small (Fig. 2), we assume that the bias in ELUC 289 

induced by not including LUC in the spin-up is small. Besides, simulated ELUC is less influenced by this 290 

factor after ca. 1700, which dominates the cumulative ELUC since 1501. The spin-up lasts for 450 years 291 

and includes a specific accelerated soil carbon module to speed up the equilibrium of soil carbon stock. 292 

Fires and fire carbon emissions are simulated with a prognostic fire module (Yue et al., 2014), with fire 293 

occurring only on forests and natural grasslands. Simulated net land-atmosphere carbon flux is calculated 294 

as net biome production (NBP): 295 

 296 

NBP = NPP – FInst – FWood – FHR – FFire – FAH – Fpasture                      Eq (1) 297 

 298 

Where NPP is the net primary production. All fluxes starting with “F” are outward fluxes (i.e., carbon 299 

fluxes from ecosystems to the atmosphere), with FInst being instantaneous carbon fluxes lost during LUC 300 

(e.g., site preparation, deforestation fires etc.), FWood for delayed carbon emissions from the degradation of 301 

harvested wood product pools, FHR for soil respiration, FFire for carbon emissions from natural and 302 

anthropogenic open vegetation fires, FAH for carbon emissions from agricultural harvest, including harvest 303 

from croplands and pastures (treated as a carbon source for the year of harvest equaling the harvested 304 
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biomass; this source is assumed to occur over the grid cell being harvested, ignoring the transport, 305 

processing and final consumption of agricultural yield), and Fpasture for additional non-harvest carbon 306 

sources from pastures including export of animal milk and methane emissions. ELUC is quantified as the 307 

differences in NBP between simulations without and with LUC, with positive values representing carbon 308 

sources.  309 

 310 

We conducted a set of additive factorial simulations (S0 to S3) by including matrices of different LUC 311 

processes in each simulation (Table 1), which allows diagnosing ELUC from different LUC processes. 312 

Note that this separation is done from a theoretical point of view with the objective to investigate the 313 

impacts on ELUC from gross land use change when including sub-grid multiple land cohorts. The 314 

simulations of S0 to S3 allow separating the contributions to ELUC by different LUC processes in a fully 315 

additive manner and this works accurately for a linear system. To test the uncertainties in ELUC turnover and 316 

ELUC harvest introduced by this assumption, we performed an alternative S2b simulation, which includes net 317 

land use change and wood harvest. ELUC turnover and ELUC harvest are then calculated using both S2 and S2b 318 

simulations and emissions from these two factorial runs are compared with each other. Henceforth for 319 

briefness, we denote the simulation without sub-grid age class dynamics as Sageless, simulation with sub-320 

grid age dynamics as Sage. At last, to investigate the sensitivity of ELUC turnover to shifting cultivation 321 

rotation length, we performed further simulations for Africa as a case study. Another five simulations 322 

were branched from the S2 simulation starting from the year 1860, in which the primary target cohort for 323 

land turnover was varied as each of the five cohorts other than Cohort3, the default primary target cohort 324 

for land turnover.  325 

 326 

2.3.2 Define thresholds for age classes 327 

For the simulation with age dynamics (Sage), six age classes are used for forest PFTs and two age classes 328 

for other PFTs. As explained, age classes of forest PFTs are separated in terms of woody biomass. The 329 

LUH1 data assumes a 15-year residence time for agricultural land in shifting cultivation in tropical 330 

regions. Ideally, model parameterization of woody biomass thresholds should allow corresponding forest 331 

age being inferred, so that clearing of forest age class in the model could match that in the LUH1 data set. 332 

For this purpose, we fit a woody biomass-age curve for each forest PFT using the model data from the 333 

spin-up: 334 

 335 

B = Bmax × [1 – exp(-k × age)]                                          Eq (2) 336 

 337 
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where Bmax is the asymptotic maximum woody biomass; k is the biomass turnover rate (in unit of yr-1). 338 

The curve-fitting used PFT-specific woody biomass time series during spin-up by averaging all grid cells 339 

across the globe. The ratios of woody biomass thresholds for each age class to the maximum woody 340 

biomass (Bmax) are looked up from this curve, based on their corresponding forest ages (Table 2). Next, 341 

these ratios are multiplied with the equilibrium woody biomass at each grid cell, approximated by the 342 

woody biomass at the end of model spin-up, to derive a spatial map of thresholds in woody biomass. We 343 

set the corresponding age for the Cohort3 for tropical forests as 15 years, in line with the residence time of 344 

shifting cultivation assumed in LUH1. Considering that temperate and boreal forests grow slower than 345 

tropical ones, forest ages corresponding to the Cohort3 are set as 20 and 30 years for temperate and boreal 346 

forests, respectively.  347 

 348 

We acknowledge that using such static woody biomass boundaries cannot ensure a forest of an exact 349 

given age to be cleared in the transient simulations, because changes in environmental conditions (e.g., 350 

atmospheric CO2 concentrations, climate) may alter the woody biomass-age curves established from the 351 

spin-up results. For example, the boundary biomass limits may be reached at an earlier age in case 352 

productivity increases due to changes in environmental conditions. If we assume that land managers 353 

always clear forest according to their ages, then our simulated ELUC might be underestimated, provided a 354 

higher biomass for a given age in transient simulations than that in the spin-up. But the uncertainties 355 

resulting from using static biomass boundaries should be less influential than the uncertainty induced by 356 

the fact that in general, rotational lengths of land turnover are poorly known and that a constant 15-year 357 

length for shifting agriculture in tropical regions is assumed (Hurtt et al., 2011). For wood harvest, we 358 

also assumed three different fixed rotation lengths for boreal, temperate and tropical regions, respectively 359 

(Table 2). 360 

 361 

We used two age classes for each herbaceous PFT including natural grassland, cropland and pasture, 362 

representing high versus low soil carbon densities, respectively. The energy balance in ORCHIDEE-363 

MICT v8.4.2 is resolved over the whole grid cell, and the hydrological balance is calculated over sub-grid 364 

soil tiles (bare soil, forest and herbs) rather than over each PFT. We thus expect the factors influencing 365 

soil carbon decomposition (i.e., soil temperature, soil moisture) to have little difference between different 366 

age classes of the same PFTs. This justifies the small number of age classes for herbaceous PFTs selected 367 

here as it can maximize computing efficiency. Overall, this feature of separating herbaceous PFTs into 368 

multiple cohorts is coded more as a “place holder” for the current stage of model development. Fully 369 

tracking soil carbon stocks of different vegetation types and their transient changes following LUC would 370 

require a much larger number of cohorts than that used in this study. 371 
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 372 

In Sage simulations, clearing of forest in the process of land turnover starts from Cohort3, corresponding to 373 

15 year-old forest, and forest clearing for wood harvest starts from Cohort2. Wood product pools resulting 374 

from net LUC and land turnover, and those from wood harvest are tracked separately in the model. 375 

However, land patches created from different LUC activities are not tracked individually, e.g., young 376 

forests, either re-established from land turnover or wood harvest, are merged together. In this approach, it 377 

is not possible to attribute the carbon fluxes into exact individual LUC processes, which explains why 378 

factorial simulations are needed. Within the model, wood harvest module is executed before the modules 379 

of net land use change and land turnover. This is reasonable as a forest might be harvested prior to being 380 

converted to agricultural land. Last, we turned off the dynamic vegetation module because allowing 381 

dynamic vegetation and using prescribed backcast historical land cover maps are internally inconsistent. 382 

 383 

3 Results 384 

3.1 Global carbon emissions with and without sub-grid age dynamics 385 

Cumulative ELUC during 1501–2005 for different LUC processes and model configurations are shown in 386 

Table 3. The model simulates a cumulative ELUC net of 123.7 and 118.0 Pg C during 1501–2005, for cases 387 

of without and with sub-grid age dynamics, respectively. Including land turnover and wood harvest yields 388 

additional carbon emissions, with the cumulative ELUC turnover as 45.4 Pg C and ELUC harvest as 27.4 Pg C in 389 

Sageless simulations. Accounting for age dynamics, in contrast, generates an ELUC turnover of 27.3 Pg C, 40% 390 

lower than that obtained by the Sageless simulation. The cumulative ELUC harvest for Sage equals to 30.8 Pg C 391 

and is slightly higher than in Sageless. When wood harvest is included on top of only the net land use 392 

change (the S2b simulation), the ELUC harvest S2b obtained by differing S1 and S2b simulations is slightly 393 

higher than that when wood harvest is included as the last term (i.e., quantified by differing S2 and S3 394 

simulations). This is reasonable because in the latter case, forests subject to wood harvest were already 395 

under disturbances of both land turnover and net land use change, which reduce forest biomass carbon 396 

stocks for harvest. The ELUC turnover derived from S2b simulations, in contrast, is lower than that derived 397 

from S2 simulations (Table 3).  Nonetheless, a consistent lower ELUC turnover is obtained by accounting for 398 

sub-grid age dynamics than not, by 40% or 37% depending whether the S2 or S2b simulations are used. 399 

Furthermore, different estimations of ELUC turnover derived by S2 and S2b simulations are close to each 400 

other, with a difference of ~10% of their mean value, indicating that LUC emissions are a quasi-linear 401 

system with respect to the different LUC processes. Based on this and for simplicity, in the following we 402 

will mainly focus on the results using S2 simulations. 403 

 404 
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Figure 1 shows the time series of simulated ELUC, all from all LUC processes (net land use change + land 405 

turnover + wood harvest) in comparison with previous studies. Simulated ELUC from each individual LUC 406 

process and corresponding time series of LUC areas are shown in Fig. 2. The temporal changes in 407 

emissions from S2b simulations are shown in Fig. S7. All estimations show a gradual increase of ELUC 408 

starting from the early 18th century with a peak of 1.5–3.5 Pg C yr-1 around the 1950s, followed by a 409 

slight decrease during 1970s and 1980s and then another peak appeared during 1990s. ELUC simulated by 410 

ORCHIDEE-MICT v8.4.2 is at the lower bound of all estimations until 1950s, but its second peak of 411 

emissions around 1990s (1.7–1.8 PgC yr-1) is a little higher than the first one (1.5 Pg C yr-1). ELUC all, ageless 412 

remains slightly higher than ELUC all, age until ca. 1960, and after that the difference increases to 0.25 Pg C 413 

yr-1. This two-peak pattern over time in ELUC all by ORCHIDEE-MICT v8.4.2 is mainly driven by ELUC net 414 

(Fig. 2a) which also shows two peaks around 1950s and 1990s, consistent with the peaks of land use 415 

change areas in the LUH1 forcing data (Fig. 2d). It should also be noted that as ELUC is quantified as the 416 

difference in NBP between two model simulations, its magnitude thus depend both on the areas subject to 417 

LUC and the magnitude of carbon fluxes in the reference S0 simulations, as driven by climate variability, 418 

atmospheric CO2, etc.  419 

 420 

Consistent with the idealized site-scale simulation in Yue et al. (2017), ELUC turnover, ageless is higher than 421 

ELUC turnvoer, age (Fig. 2b). Emissions from instantaneous fluxes and harvested wood product pool are lower 422 

in the Sage than in Sageless because in the former case low-biomass secondary forests are converted to 423 

agricultural land, as opposed to high-biomass mature forests in the latter one. Similarly, the lower ELUC 424 

turnvoer in the Sage simulation than Sageless are also found in the results with the S2b simulation (Fig. S7). The 425 

difference in ELUC turnover explains most of the difference in ELUC all between Sage and Sageless, since ELUC net 426 

does not differ much (Fig. 2a). The similar estimates of ELUC net are because the cleared forests in net LUC 427 

have little difference in their biomass densities between Sageless and Sage. Both ELUC turnover, ageless and ELUC 428 

turnover, age roughly follow the temporal pattern of areas impacted by land turnover from LUH1 (Fig. 2e), 429 

with a steep increase starting from ca. 1900 until 1980, corresponding to a strong increase in the areas 430 

undergoing forest-pasture land turnover. After 1980 the turnover-impacted area stabilizes and then shows 431 

a slight decrease. Accordingly, ELUC turnover, ageless shows a slight decrease of emissions in Fig. 2b, while 432 

ELUC turnover, age has a much stronger decrease, driven by the fact that recovering secondary forests gain 433 

carbon quickly after being taken out of shifting agriculture systems.  434 

 435 

Finally, ELUC harvest between Sage and Sageless simulations are almost identical until 1800 (Fig. 2), during 436 

which the wood harvest area remains stable (Fig. 2f). After this, ELUC harvest, ageless is lower than ELUC harvest, 437 

age for the 19th and most of the 20th century when ELUC harvest continued to rise, mainly driven by a rise in 438 
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secondary forest harvest area (Fig. 2f). According to the priority rules of secondary forest harvest in Sage, 439 

older forests, until the oldest ones, will be harvested if existing young forests cannot meet the prescribed 440 

harvest target. This most likely happens when harvested area continues to rise. This exemplifies the 441 

potential inconsistencies between model structure and forcing data. In addition, under such a 442 

circumstance, old forests in Sage simulation tend to have higher biomass density than the ageless forests in 443 

Sageless, because in Sage these mature forests remain intact throughout the whole simulation, while in Sageless 444 

they are “degraded” due to all kinds of historical LUC activities. This explains the slightly higher ELUC 445 

harvest in the Sage simulation. Similarly, it also explains that the difference in ELUC harvest between Sageless and 446 

Sage from S2b simulations is smaller than that from S2. In S2b simulations, ELUC harvest is quantified by 447 

including harvest on top of net LUC only, and the harvested forests have not been affected by land 448 

turnover, so ELUC harvest in the end differs little between Sageless and Sage. 449 

 450 

3.2 Spatial distribution of land use change emissions  451 

Figure 3 shows the spatial distribution of cumulative ELUC for 1501–2005 from different LUC processes 452 

in Sageless (Fig. 3a, 3d, 3g), the difference in ELUC between Sage and Sageless (Fig. 3b, 3e, 3h), corresponding 453 

net forest area change (Fig. 3c) and areas subject to land turnover (Fig. 3f) and wood harvest (Fig. 3i). 454 

The spatial pattern of ELUC net generally resembles that of forest area loss, with large areas of forests being 455 

cleared and corresponding high ELUC net in eastern North America, South America and Africa, southern 456 

and eastern Asia, and in central Eurasia (Fig. 3a, Fig. 3c). Central and Eastern Europe show some 457 

increases in forest area but carbon emissions from net land use change persists, probably because forest 458 

recovery happened recently and carbon accumulation in recovering forests is not yet large enough to 459 

compensate for historical loss (e.g., see Fig. 5g). Depending on different regions, ELUC net, age is slightly 460 

higher (e.g., along the boreal forest belt in central Europe and Asia, woodland savanna in South America) 461 

or lower (e.g., part of Africa and Australia) than ELUC net, ageless (Fig. 3b). This difference between Sage and 462 

Sageless is generally small (<0.5 kg C m-2 over 1501-2005). It mainly depends on the age classes of forests 463 

to be cleared in Sage and how the forest biomass density compares with that from Sageless and whether 464 

biomass density of the single ageless mature patch is reduced or not with establishment of young forests. 465 

 466 

Shifting cultivation is limited to the tropical region (Fig. 3h), as in the original LUH1 forcing data. 467 

Tropical Africa is the region with most of the land turnover activities, and consequently has highest ELUC 468 

turnover. Note that the peripheral of Amazon basin also shows active shifting cultivations and resulting 469 

carbon emissions (Fig. 3b, Fig. 3f). ELUC turnover, age is in general lower than ELUC tunrnover, ageless everywhere 470 

except at the northern fringe of African woodland savanna (Fig. 3e). Last, wood harvest mainly occurs in 471 

temperate and boreal forest in Northern Hemisphere (Europe and central Siberia, eastern North America 472 
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and southern and eastern Asia) and tropical forests including those of Amazon forest, in central Africa 473 

and tropical Asia, with corresponding carbon emissions (Fig. 3c, Fig. 3i). ELUC harvest, age is a higher source 474 

than ELUC harvest, ageless for most of the harvested regions, which mainly results from the model feature as 475 

explained above.  476 

 477 

3.3 Simulated regional LUC emissions 478 

Estimated carbon emissions since 1900 from different regions are shown in Fig. 4, with emissions from 479 

each LUC source for Sageless being shown in Fig. S8. The corresponding areas subject to the three LUC 480 

processes with forests being mainly involved are shown in Fig. 5. As shown in Fig. 5, in spite of incessant 481 

episodic forest gains, for most time in most regions, historical net forest change was dominated by forest 482 

loss, except for the second half of the 20th century in Western Europe, Former Soviet Union (FSU), and 483 

for the time period after 1970 in Pacific Developed Region. Meanwhile, land turnover and wood harvest 484 

persisted in most regions, although their magnitudes varied over time. While forest gain can lead to 485 

carbon uptake, it could be outweighed by emissions from simultaneous forest loss (note here both forest 486 

loss and gain occurred as a result of net LUC within the same region but not within the same grid cell), 487 

land turnover and wood harvest. Thus it is not surprising that LUC impacts on carbon cycle are diagnosed 488 

as emissions in most regions for most time, except for the latter half the 20th century for Former Soviet 489 

Union (Fig. 4). 490 

 491 

We also compared our estimates with those from Stocker et al. (2014). Stocker et al. (2014) simulated 492 

LUC emissions using a different vegetation model (LPX-Bern) but attributed the contributions of each 493 

individual LUC process using a similar approach as ours. Both studies are forced by the LUH1 data set, 494 

although actual areas undergoing different LUC activities may slightly differ because of different LUC 495 

implementation strategies. The two estimates of LUC emissions from our study and Stocker et al. (2014) 496 

are in general agreement for most of the regions, including their temporal variations (Fig. 4). Global 497 

emissions are dominated by Central and South America and Africa & Middle East. Emissions increased 498 

in both regions since 1900, and a peak of emissions occurred around the middle of the 20th century in 499 

Africa and around 1980 in Central and South America (Fig. 4a, 5b). Emissions from Stocker et al. (2014) 500 

show similar temporal variations in these two regions. The peak of emissions in Africa & Middle East 501 

around 1950 is caused by a peak of forest loss due to net LUC (red line in Fig. 5b), and a surge of forest 502 

loss due to land turnover that has accelerated between 1940 and 1960 (green line in Fig. 5b). After that 503 

emission peak, emissions slightly decreased, mainly due to the stabilized land turnover activities and a 504 

drop in area of net LUC. Then the emissions slightly increased again around 1980s, due to an increase in 505 

forest loss of net LUC (red line in Fig. 5b) and wood harvest (cyan line in Fig. 5b).  In contrast, even with 506 
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a similar peak of forest loss due to net LUC in Central and South America as in Africa & Middle East 507 

around 1950s (red line in Fig. 5a), emissions in the former region continued to increase until 1980s (Fig. 508 

4a), mainly due to the continuous forest losses resulting from expanding land turnover areas (green line in 509 

Fig. 5a).  510 

 511 

Both South & Southeast Asia and China Region showed steady increase in emissions up to c.a. 1990s 512 

(Fig. 4c, 4d). In the former region, it is likely driven by continuously growing land turnover and wood 513 

harvest; in the latter region, it is more driven by growing net forest loss (Fig. 5c, 5d). The peak in 514 

emissions around 1990s in China Region echoes a peak in net forest loss (red line in Fig. 5d). Stocker et 515 

al. (2014) shows slightly higher emissions than our estimates for South & Southeast Asia, and lower 516 

magnitude in China Region, but with similar temporal patterns in both regions. For the three regions 517 

where land turnover activities are included in the LUH1 data set (i.e., Central and South America, Africa 518 

& Middle East and South & Southeast Asia), there are some periods during which ELUC ageless is clearly 519 

higher than ELUC age. They mainly correspond to the time when land turnover area either showed 520 

decelerated growth or stabilized, being roughly after 1970 in Central and South America (Fig. 4a), 1965-521 

1985 in Africa & Middle East (Fig. 4b), and after 1980 in South & Southeast Asia (Fig. 4c).  522 

 523 

North America shows most clearly the legacy impact of past LUC activities on LUC emissions. For the 524 

period 1900–1940, carbon emissions in North America gradually decreased even though areas subject to 525 

forest loss and wood harvest showed slight increases (Fig. 4e, Fig. 5e). This is likely due to the fact that a 526 

peak of net forest loss occurred preceding 1900, which yields a high emission legacy for the beginning 527 

years of the 20th century (data not shown). LUC emissions and sinks in Pacific Developed Region and 528 

Europe are very small, despite a high forest wood harvest area in Europe. This is because in general ELUC 529 

harvest is small compared to ELUC net, probably due to the biomass accumulation in re-growing forest after 530 

wood harvest (Fig. S8). The carbon sink as a result of net forest gain is the most prominent in Former 531 

Soviet Union (blue line in Fig. 5h), where a peak of forest gain around 1950s lead to a sustained sink of 532 

~0.1 PgC yr-1 for the second half of the 20th century (Fig. 4h). However, concurrent sink is not seen in 533 

Stocker et al. (2014) (Fig. 4h).   534 

 535 

4 Discussion 536 

4.1 Impacts on estimated ELUC by including gross LUC and sub-grid secondary forests 537 

The advancement in this study in comparison with previous works, as far as we know, is the explicit 538 

inclusion of differently aged sub-grid secondary land cohorts in a DGVM. Although secondary lands have 539 

been represented in some DGVMs in previous studies (Shevliakova et al., 2009; Stocker et al., 2014; 540 
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Yang et al., 2010), here we incorporated the concept of rotation cycle. This is particularly important in 541 

simulating the carbon cycle impacts of gross LUC, such as wood harvest and shifting cultivation that 542 

often have certain rotation cycles. Because secondary lands, especially young re-growing forests, have 543 

lower biomass carbon stock than primary mature forests, the simulated ELUC involving secondary lands 544 

tend to be lower than that from simulations without sub-grid age dynamics. Our results demonstrate that 545 

by explicitly including secondary forest cohorts, cumulative ELUC from shifting cultivation in tropical 546 

regions during 1501–2005 are reduced from 45.4 Pg C to 27.4 Pg C, or 40% lower. Nonetheless, it should 547 

be noted that these results are base on a constant 15-year rotation length in shifting cultivation, to be 548 

consistent with the LUH1 data. To test the sensitivity of ELUC turnover to different rotation lengths in Sage 549 

simulations, we performed additionally five alternative S2 simulations, all starting from 1861 based on 550 

the system state of 1860 obtained by the default S2 simulation, but with the primary target cohort in land 551 

turnover varying among the other five cohorts except Cohort3 (the default target cohort). The results are 552 

presented in Fig. S9. ELUC turnover over 1861–2005 increases in a roughly linear way with the assumed 553 

woody mass of forest cohorts that are cleared in shifting cultivation, with an increase of 5.3 Pg C in 554 

emissions per kg C m-2 increase in cohort woody mass. ELUC turnover, ageless is slightly higher than ELUC turnover, 555 

age when cohorts with ~15 years are cleared primarily. Increasing rotation lengths thus leads to higher 556 

emissions than in Sageless simulations in this case. This highlights the importance of the rotation length, i.e. 557 

the residence time of agriculture in shifting cultivation systems, for the estimates of ELUC turnover. 558 

 559 

Table 4 summarized estimates of ELUC from different studies by including both net transitions and gross 560 

land use change, and the contributions to total emissions by including gross LUC. All studies show that 561 

including gross LUC increased estimated carbon emissions. Stocker et al. (2014) reported that gross LUC 562 

contributed 15% to total emissions, whereas Wilkenskjeld et al. (2014) reported a much higher 563 

contribution of 38%. Using a bookkeeping model, Hansis et al. (2015) reported a 22–24% contribution 564 

from gross change if primary lands are cleared, in contrast to a small contribution of only 2% if secondary 565 

lands are cleared. For Sageless in the current study, the contribution of gross LUC to the total emissions is 566 

20%, falling in between Stocker et al. (2014) and others including the 28% contribution by gross LUC in 567 

the tropics reported by Houghton (2010). However, the simulation by including secondary land (i.e., Sage) 568 

gives a lower gross LUC contribution (15%) than Sageless. In general, the same model yields lower 569 

contribution of gross changes by converting dominantly secondary land than primary land (our study and 570 

Hansis et al., 2015). Among different models/methods, the ones including secondary lands (Houghton, 571 

2010; Stocker et al., 2014) tends to yield lower contribution of gross changes than those do not  572 

(Wilkenskjeld et al., 2014). Although the percentage might differ depending on the amount of gross LUC 573 
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included and the biomass stocks of the secondary lands being cleared, it seems that contributions from 574 

gross LUC are lower when including sub-grid secondary lands. 575 

 576 

We also expected ELUC from wood harvest to be smaller when including secondary forests, for the same 577 

reason than shifting cultivation. However, we obtained a slightly higher ELUC harvest, age than ELUC harvest, agelss, 578 

mainly because there are not enough secondary forests available for harvesting in Sage, so that mature 579 

forests with a higher biomass density than in Sageless are harvested according to the priority setting in the 580 

model, which leads to higher emissions. This model feature was designed to solve the potential 581 

inconsistencies between prescribed harvest area in the forcing data and (secondary) forest availability in 582 

the model, to ensure that ultimately realized harvest area in the model is as close as possible to the 583 

prescribed one. From the S2b simulations where wood harvest, instead of land turnover, is added on top 584 

of net land use change, ELUC harvest derived from Sage and Sageless are very similar because in both 585 

simulations, forests with biomass close to the one of primary forests are harvested. Finally, it should be 586 

noted that reconstructions of forest wood harvest are highly uncertain. For example, LUH1 data provides 587 

a total wood harvest amount of 102 Pg C for 1850–2005 over forest and non-forest areas, whereas 588 

Houghton and Nassikas (2017) estimated 130 Pg C. Our estimates of ELUC harvest using different 589 

approaches is 22.5–27.8 Pg for 1850–2005, close to the estimated 25.3 Pg C for 1850–2015 by Houghton 590 

and Nassikas (2017).  591 

 592 

In the current study, we implemented wood harvest based on input (LUC forcing) information on 593 

harvested area rather than on wood volume or biomass. In the future, this process should be modified so 594 

that harvested wood volume or biomass information is directly used in the model, to allow dynamic 595 

decision on whether an old forest or secondary forest should be harvested. Using wood harvest volume or 596 

biomass information would largely alleviate the uncertainty brought about by the unknown wood harvest 597 

rotation length because the total amount of harvested biomass would be constrained (Houghton and 598 

Nassikas, 2017).  599 

 600 

We do not account for any LUC activities in the spin-up run and pristine ecosystems are assumed at the 601 

beginning of the transient run in 1501. This set-up might cause a spike in emissions during the beginning 602 

years in the transient simulation because ecosystem biomass stocks are high. Such a spike was evident in 603 

results by Stocker et al. (2014, blue and green lines in their Fig. 2) when land turnover is not accounted 604 

for during the spin-up in some of their simulations. The similar model behaviour also presents in the 605 

results by Hansis et al. (2015, dark and light blue lines in their Fig. 4) using a bookkeeping model. In our 606 

study, a similar initial spike in ELUC shortly after 1501 is almost invisible for the net LUC and land 607 
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turnover (Fig. 2a–b), probably owing to very small magnitudes of LUC area within the few years after 608 

1501 (Fig. 2d–e). However, there is a clear peak in ELUC turnover around 1520s (Fig. 2c), a likely impact of 609 

ignoring spin-up LUC process, given that a significantly larger-than-zero harvest area is prescribed for 610 

this period (Fig. 2f). In general, the impacts of not including LUC in the spin-up process seem to be small 611 

in our results. This issue impacts much less the comparisons focusing on emissions starting from 1850 in 612 

Table 3. 613 

 614 

As shown in Fig. 2 and Table 3, our estimations of historical LUC emissions from both Sageless and Sage 615 

simulations are lower than other studies for most time of history (albeit close to Stocker et al. 2014 before 616 

ca. 1860). We compared in Table S1 the cumulative ELUC for 1850-2005 by our studies and several 617 

previous studies. Our estimates (147 Pg C for ELUC age and 158 Pg C for ELUC ageless) are lower than the 618 

lower bound of other estimates (171 Pg C by Stocker et al. 2014). Estimations of Hansis et al. (2015) and 619 

Gasser and Ciais (2013) using Hurtt et al. (2011) data set give rather larger estimates than others, being 620 

261 and 294 Pg C, respectively. The median value of all previous estimates cited in Table S1 yields 210 621 

Pg C, still much higher than our estimates. 622 

 623 

The lower estimates of ELUC in our study are likely linked with underestimated global biomass carbon 624 

stock in ORCHIDEE-MICT V8.4.2. The global biomass carbon stock simulated by our model at 1500 625 

prior to any land use change is 365 Pg C, and increases to 510 Pg C at 2005 in the S0 simulations (i.e., 626 

assuming no LUC activity). The simulated contemporary global biomass in the S3 simulations, where all 627 

three LUC processes are included, remains almost the same as the 1500 value. So the ELUC basically 628 

balances out what would have been gained in the global biomass brought about by the environmental 629 

changes. Avitabile et al. (2016) have constructed a global contemporary aboveground biomass carbon 630 

map by merging two tropical aboveground forest biomass data sets of Saatchi et al. (2011) and Baccini et 631 

al. (2012) with northern hemisphere volumetric forest stock data from Santoro et al. (2015). Their 632 

estimated global forest biomass for aboveground only is 505 Pg C. Our simulated contemporary global 633 

total biomass stock (i.e., from S3 simulations) is thus even lower than their estimate for aboveground 634 

biomass only. Besides, some of the land transitions in LUH1 data were ignored because of the 635 

inconsistencies between LUH1 data and the model PFT map (Sect. 2.2), which may also explain the 636 

lower ELUC in our estimation. 637 

 638 

4.2 Land use and management processes in DGVMs in relation to forest demography 639 

Forest demography is an important factor in determining forest carbon dynamics on both stand and 640 

regional scales (Amiro et al., 2010; Pan et al., 2011). Natural disturbances (such as fire, wind and insect) 641 



20 
 

and land use change including land management are two primary factors creating spatial heterogeneity in 642 

forest age. As more and more forests are now under human management with different intensities (Erb et 643 

al., 2017; Luyssaert et al., 2014), sub-grid forest demography should be incorporated in DGVMs to 644 

account for the management consequences. Furthermore, when making more accurate (and detailed) 645 

account of regional carbon balances with land use change, other land cover types than forests should be 646 

distinguished into different cohorts as well, because the presence of many nonlinear processes (e.g., soil 647 

carbon decomposition) makes the simple averaging scheme — as in the case where they are represented 648 

with a single patch within the model — a sub-optimal choice. This new model structure to have more than 649 

one cohort for the same land cover within a grid cell, as has also been explored by Shevliakova et al. 650 

(2009) , will have impact on simulated biogeochemical and biophysical processes. 651 

 652 

However, despite these improvements in model structure, it remains a big challenge to “seamlessly” 653 

integrate LUC forcing data into the model. The fundamental reason is that historical transitions of LUC 654 

are not reconstructed in a way being internally consistent with DGVMs. The systems to build historical 655 

LUC transitions (so-called land use models) and DGVMs may use different land cover types so that 656 

conciliating the two land cover maps is inevitable. This will lead to loss of information in incorporating 657 

forcing data into the model, as is also pointed out by Stocker et al. (2014). Second, simulated forest 658 

biomass density might be different as well, therefore the same amount of harvested wood volume may be 659 

translated into different forest areas in land use models and DGVMs. Recently progress has been made in 660 

DGVMs to represent forest stand structure and detailed management options (Naudts et al., 2015), so that 661 

harvested wood volume as a model output can be validated with statistical data. Third, the rotation length 662 

of shifting cultivation or forest management used in DGVMs may not be consistent with that assumed in 663 

land use models. 664 

 665 

To overcome these obstacles and to promote a more comprehensive integration of LUC information into 666 

DGVMs, one possible route is to further develop DGVMs to partly embed functions of land use models. 667 

This will allow DGVMs to be used in an “inversed” manner than its current way of utilization. For 668 

example, food demand could be used as an input, so that dynamical decisions could be made within the 669 

model on how many croplands need to be created given the simulated crop yield by the crop module 670 

inside the DGVM. The same case also applies on pasture. Grassland management modules within 671 

DGVMs could generate information on meat and milk production etc., and this information could be used 672 

to inverse the meat and mild demand into demanded pasture areas (Chang et al., 2016). Harvested wood 673 

for a certain product usage might need wood with a specific diameter range, corresponding to a certain 674 
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forest age class given their simulated growth state, allowing the determination of both ages and areas of 675 

forests to be harvested. 676 

 677 

5 Conclusions 678 

In this study, we investigated the impacts on estimated historical gross land use change emissions by 679 

accounting for multiple sub-grid secondary land cohorts in a dynamic global vegetation model. The 680 

model employed here is capable of representing the rotation processes in land use and land management 681 

that mainly involve secondary forests, such as shifting cultivation and forest wood harvest. 682 

Intermediately-aged secondary forests are given a high priority when forest clearing occurs in either 683 

shifting cultivation or wood harvest, complemented by older forests if young ones are insufficient to meet 684 

the prescribed land use transition. For the net LUC, clearing of forests starts exclusively from mature 685 

forests and move sequentially to younger forests when older ones are used up. This set of rules becomes 686 

indispensable when incorporating multiple sub-grid secondary land cohorts and reconciling with external 687 

land use transition forcing data in the model. As such, the simulated portfolio of secondary land cohorts 688 

within the model is driven by a reconstruction of historical gross land use change.  689 

 690 

Following the input data of land use transition reconstruction, we assumed a constant shifting cultivation 691 

rotation length of 15 years in the tropics. We found that over 1501-2005, accounting for sub-grid 692 

secondary land cohorts yields a lower ELUC than not (176 versus 197 Pg C), which is dominated by lower 693 

emissions from shifting cultivation (27 versus 46 Pg C or 40% lower in the former case). This is because 694 

secondary forests with a lower biomass are allowed being cleared, instead of the mature forests with a 695 

high biomass as in the approach to representing only mature forest in DGVMs. The lower emissions from 696 

shifting cultivation when accounting for sub-grid multiple land cohorts highly depend on the assumed 697 

rotation length. A set of sensitivity runs for Africa showed that a longer historical shifting cultivation 698 

rotation length leads to higher associated emissions. This highlights the need for more reliable 699 

reconstructions of the areas as well as the historical rotation lengths of shifting cultivation to reduce 700 

uncertainty on ELUC. Our results show that although gross land use change as a previously neglected LUC 701 

emission component has been included by a growing number of DGVMs, its contribution to overall ELUC 702 

remains uncertain and tends to be overestimated by models ignoring sub-grid secondary forests. 703 

 704 
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Tables and figures 916 

Table 1 Factorial simulations to quantify ELUC from each of the LUC processes considered: net land use 917 

change (ELUC net), land turnover (ELUC turnover) and wood harvest (ELUC harvest), with ELUC all being carbon 918 

emissions from all the three processes. The plus sign (“+”) indicate that the process in question is 919 

included, with S0ageless (S0age) having no LUC activities to S3ageless (S3age) including all LUC processes. 920 

ELUC is quantified as the difference in net biome production (NBP) between simulations without and with 921 

LUC. To explore the uncertainties by using a fully additive approach, we included an alternative S2b 922 

simulation, which includes net land use change and land turnover. ELUC turnover and ELUC harvest are 923 

consequently calculated using this alternative simulation as well. 924 

Simulations and LUC processes included 

Simulations Net land use change Land turnover Wood harvest 

S0ageless (S0age)    

S1ageless (S1age) +   

S2ageless (S2age) + +  

S3ageless (S3age) + + +  

S2bageless (S2bage) +  + 

Calculation of ELUC 

No age dynamics (Sageless) With age dynamics (Sage) 

ELUC  net, ageless = NBPS0, ageless - NBPS1, ageless ELUC net, age = NBPS0, age - NBPS1, age 

ELUC turnover, ageless = NBPS1, ageless - NBPS2, ageless ELUC turnover, age = NBPS1, age - NBPS2, age 

ELUC harvest, ageless = NBPS2, ageless - NBPS3, ageless ELUC harvest, age = NBPS2, age – NBPS3, age 

ELUC turnover, ageless S2b = NBPS2b, ageless - NBPS3, ageless *ELUC turnover, age S2b = NBPS2b, age - NBPS3, age 

ELUC harvest, ageless S2b = NBPS1, ageless - NBPS2b, ageless *ELUC harvest, age S2b = NBPS1, age – NBPS2b, age 

ELUC all, ageless = NBPS0, ageless - NBPS3, ageless ELUC all, age = NBPS0, age – NBPS3, age 

 925 
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Table 2 Determination of woody biomass thresholds for different age classes of forest PFTs. We first look 926 

up through the biomass-age curve (Eq. 2) for a ratio of woody biomass to the maximum biomass that 927 

correspond to certain ages (years), and then multiply this ratio with equilibrium biomass at the end of 928 

spin-up for each grid cell. Numbers in the table indicate the ratio of woody biomass to the maximum 929 

woody biomass (Bmax in Eq. 2), and the numbers in parentheses indicate the corresponding forest age. 930 

Forest cohorts Tropical forest Temperate forest Boreal forest 

Age1 0.1 (3 year) 0.07 (3 year) 0.04 (3 year) 

Age2 0.26 (9 year) 0.22 (10 year) 0.19 (15 year) 

Age3 0.39 (15 year) 0.40 (20 year) 0.34 (30 year) 

Age4 0.6 (27 year) 0.6 (35 year) 0.6 (65 year) 

Age5 0.8 (48 year) 0.8 (64 year) 0.8 (114 year) 

Age6 1.2 (>48 year) 1.2 (>64 year) 1.2 (>114 year) 

 931 

Table 3 Cumulative ELUC for 1501–2005 (Pg C) from different processes quantified by different 932 

approaches (see Table 1 for detailed calculations of various ELUC). 933 

 
No age dynamics With age dynamics 

Emission change in Sage 
relative to Sageless (%) 

ELUC net  123.7 118.0 -4.6% 
ELUC turnover  45.4 27.3 -40% 
ELUC turnover S2b 39.9 25.1 -37% 
ELUC harvest 27.4 30.8 12% 
ELUC harvest S2b 32.9 33.0 0.0% 
ELUC all 196.5 176.1 10% 

 934 

Table 4 Carbon emissions from gross and net land use transitions, contributions of gross transitions to the 935 

total emissions from different studies, adapted from Hansis et al. (2015). 936 

Reference Time period 
ELUC  (Pg C) 

Contribution of gross 
transitions, Pg C (%)d Gross 

transitions 
Net 

transitions 
This study (Sage) 1850-2005 147 99 22 (15%) 
This study (Sageless) 1850-2005 158 104 31(20%) 
Hansis et al. (2015)a 1500–2012 382 374 8.5 (2%) 
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Hansis et al. (2015)b 1500–2012 382 290 92.4 (24%) 
Hansis et al. (2015)c 1500–2012 382 296 85.8 (22%) 
Stocker et al. (2014) 1850–2004 171 146 25 (15%) 
Wilkenskjeld et al. (2014) 1850–2005 225 140 85 (38%) 
Houghton (2010) 1850–2005 156    (28%, tropics) 

a Only secondary land is cleared in gross transitions. b Primary land is first cleared in gross transitions. c 937 

Primary land is last cleared in gross transitions. d The last column gives the difference in ELUC between 938 

gross and net transitions (the absolute value in Pg C and relative to the net ELUC). 939 

 940 

  941 
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 942 

 943 

 944 
Fig. 1 Annual carbon emissions from historical land use change over the globe by our studies and from 945 

other previous studies. Results of this study are smoothed using a ten-year average moving window; data 946 

of other studies are from Figure 5 Hansis et al. (2015) and are smoothed using a five-year moving average 947 

window. 948 

 949 

 950 

 951 
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Fig. 2 Upper panels: annual carbon emissions since 1501 from different LUC processes, (a) net land use 952 

change, (b) land turnover and (c) wood harvest. Data are smoothed using a ten-year average moving 953 

window. Lower panels: annual time series of areas impacted by different LUC processes. (d) Area losses 954 

of forest, grassland, cropland and pasture as a result of net land use change. Note that we assume equal 955 

contributions by forest and grassland to agricultural land when backcasting historical land cover maps, 956 

thus area losses of forest and grassland are identical. (e) Areas subject to land turnover. (f) Areas of wood 957 

harvest from primary and secondary forests.  958 

 959 

 960 

 961 
Fig. 3 (a)–(c): Spatial distribution of ELUC net for 1501–2005 (kg C m-2) as simulated by Sageless simulations, 962 

the age effect quantified as difference in ELUC net between Sage and Sageless, and the cumulative forest loss as 963 

a result of net land use change as a percentage of grid cell area. (d)–(f): similar as (a)–(c) but for ELUC 964 

turnover, with (f) showing the mean annual grid cell percentage impacted by land turnover over1501–2005. 965 

(g)–(i) similar as (a)–(c) but for ELUC harvest, with (i) showing the mean annual grid cell percentage 966 

impacted by wood harvest (i.e., sum of wood harvest on primary and secondary forests) over 1501–2005. 967 

 968 

 969 
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 970 
Fig. 4 (a)-(h) Temporal patterns of regional land use change emissions in comparison with those from 971 

Stocker et al. (2014). Thicker solid lines indicate smoothed annual emissions by ten-year moving average 972 

from our study, with blue (green) showing emissions from Sageless (Sage) simulations. Thinner solid lines 973 

indicate unsmoothed annual emissions from our study. Gray dashed lines indicate estimations from 974 

Stocker et al. (2014), smoothed by ten-year moving average. Regional segregation of the globe is shown 975 

in the subplot (i). 976 

 977 

 978 

 979 
Fig. 5 Annual regional areas subject to land use change. Only land use change activities involving forests 980 

are assumed to have dominant impacts on ELUC and are thus shown here: forest loss (red line) and gain 981 

(blue line) from net land use change, occurring within the same region but not in the same model grid 982 

cell; forest in involved in land turnover (green line) and wood harvest (cyan line), where forested land 983 
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remain a forest after land use change. Note that the scale of y-axis is the subplot (b) is different from the 984 

others. See Fig. 4 for the spatial extents of different regions. 985 


