
Reviewer 1 (Christopher Reyer) 

Compared to the announced text changes in our reply in the interactive discussion we slightly 
changed several text fragments to improve readability, English and grammar (especially in the 
three new sections: 4.2 Implications for forest management, 4.3 Implications for global 
vegetation modelling and the new Conclusion).. We mark major changes in our reply in purple. 

Comments of reviewer 1 in blue, reply in black. 

I am sorry for being late.  The manuscript uses an innovative modelling approach to assess the 
temperature sensitivity of above ground wood production.  It is generally well written but there 
are quite a number of minor fixed that still need to be carried out. 

Thank you very much for your detailed and helpful comments. We will include your 
recommendations carefully. 

I have two major concerns that can be addressed in a thorough minor revision: 1) I think your 
"climate scenarios" are actually rather a "climate sensitivity test".  Even though many things can 
be scenarios in the wider sense in the narrow sense, a scenario usually refers to an internally 
consistent projection while your scenarios systematically explore change temperature but do not 
adjust precip and radiation accordingly. This may lead to physically inconsistent "climates" 
because under a given temperature pathway it might be impossible to get a certain precip or 
radiation behavior.  

Thanks for this comment. We agree. We will replace “climate scenarios” by “climate sensitivity 
test” or “climate time series” depending on the context. For instance, P1L9: For each stand we 
estimate annual above-ground wood production and perform a climate sensitivity analysis 
analysis based on 320 different climate time series (of one year length). 

Related to that, you should possibly also discuss that your approach basically ignores transient 
responses and time lags longer than a year that influence forests. So i think this "sensitivity test" 
aspect should be carved out more clearly. The title actually is fine but some of the other sections 
give the impression this is rather a scenario study. 

This is a good point. Thank you. We will replace the sentences between P15L12 and P15L15 
with the following text: 

…This RCP scenario predicts only small changes of annual precipitation levels for many 

temperate regions. Hence, our approach focuses only on the effect of temperature change on 
wood production. For instance, we do not simulate the effect of changing CO2 in combination 
with an increase of temperature. This might be critical for analysis of strong temperature 
changes (e.g. RCP 8.5), which will result in an increase of droughts and changes in the annual 
temperature cycles. Such more complex scenarios should be analyzed in future studies. Further, 
we neglect the effect of time lags (e.g. the bud building in the autumn in the previous year). 
However, it is possible to enlarge the used time series to analyze the behavior of the forest over 
longer time periods and study not only productivity, but also effects on regeneration or mortality. 

2) I think, even though referring to central European, temperate forests,  you are not putting 
enough emphasis on the interpretation of the results from a forest management perspective. 
However, your target variable "above ground wood production" as well as the stand densities, 
species choices etc. are subject to forest management and species mixing etc. are important 



elements of EU silvicultural strategies. I think the discussion of the influence of forest 
management on your results and their implications for forest management should be 
strengthened.  

We agree that our result might be important for forest management strategies. We therefore will 
add a new section "4.2. Implications for forest management” in the Discussion section (see 
Appendix R 2).  

____________________________________________________________________________ 

Thank you for these detailed smaller points. 

P1L1: Either "Observational studies discovered that" or "Observations show that..." 

P1L4: "increase productivity the most" 

P1L8: "cover a wide range of possible" 

We will reformulate the phrases. 

P1L6: unclear: "within the forest structure" ==> don’t you simply mean "within the forest given 
the environmental conditions of each..."? 

We will write: … how well species are distributed over the different forest layers regarding… 

P1L11 and also L14:  "increasing OmegaAWP" it sounds weird that an optimum can be 
increased or have "large values".  Maybe I am too picky and I do not have a good alternative... 
maybe ask a native speaker... 

We will introduce a new term for ΩAWP:  “species distribution index” but keep the acronym ΩAWP. 

 P1L15: "heterogenity is associated with a positive" 

We will reformulate the sentence, following your suggestion. 

P1L14-16: This sounds like quite a contradiction: for young forests low diversity and low height 
spread make the forest react positively to temperature while for older forests this is not the 
case.  Could you add one sentence of explanation here and discuss potential implications for 
forest management in the discussion?  This would mean foresters should go for even aged, 
mono-species stands during establishment and then bring in other species later?  or keep the 
canopy closed with one species while having other species in the undergrowth for some time? 

We recommend paying attention to young forests with low diversity and even-aged structure. A 
mixture of climax species should be planted below the main canopy. Later those climax species 
will replace the pioneer species in the canopy and build the mature forest with heterogeneous 
tree sizes. 

We will add a new section regarding the implications on forest management (4.2. Implications for 
forest management). 



P1L19: I have the feeling you are using "forest growth", "wood production" and "forest 
productivity" interchangeably.  While this can be correct in some instances I wonder whether all 
the references you cite here actually refer to forest growth or rather productivity.} 

We will focus on (above-ground) wood production in the whole manuscript. Barber et al. 2000 
analyzed the change in radial growth of white spruce under climate change. We will replace the 
references of Cao and Woodard 1998 (as it refers more to carbon fluxes of ecosystem in general 
and not explicit wood production) by Reyer et al. 2013.  

The other two refer to the effect of climate change on photosynthesis or respiration of trees (Luo 
2007) or plants (Penuelas and Filella 2009). 

P1L21-P2L2:  I think this sentence is imprecise.  the observed changes in productivity are not 
the primary reason for discussing the compensation of co2.   it is rather the overall high carbon 
stocks and sequestration rates (even without changes) that matter for this discussion.  I see 
what you want to say but I think it is a bit too condensed here.... 

We will reformulate the sentences:  

Changes in forest productivity have been observed in past decades all over the world (Nemani 
et al., 2003; Boisvenue and Running, 2006; Seddon et al., 2016). The carbon stock of forests 
and their role as carbon sink are therefore changing. These findings stimulated discussions 
about whether forest management strategies can be adapted to reduce forest vulnerability to 
climate change, to support recovery after extreme events and foster the carbon sink function of 
forests. 

P2L3-9: I think this section should also mention the influence of other factors, at least 
briefly...  Especially since you say that "productivity is influenced by several factors" in the first 
sentence of this paragraph... 

We will add the following sentences: … in addition to other climate variables (Barford et al. 
2001). For instance, increasing CO2 increases water use efficiency of forests (Keenan et al. 
2013), which could compensate negative effects of climate change on European forest growth   
(whereas, with constant CO2 at 350ppm, forest growth declines on several sites due to climate 
change – (Reyer et al. 2014). Another important often investigated process is the fertilization 
effect of nitrogen (De Vries et al., 2006, 2009). For instance due to depositions in the second 
half of the last century, wood production had increased in European forests (Solberg et al. 
2009). In case of temperature change, photosynthesis, respiration and growth rates are 
modified… 

P2L18/19: “rarely include properties related to both species composition... 

P2L22: “forests stands were available, it would” 

P2L23.: “option to such field experiments is” 

P2L26: "simulating 30 year time slices of a range of different future climates for 135..." 

P2L27: “analyzed” 

P2L29: “a large number” 



P2L30: “species compositions” 

Figure  1:  I  would  delete  the  “...”  in  each  box  as  your  study  does  not  cover  more 

climate variables nor more stand structural or composition related variables.   In the caption, I 
would precise:  “overview of drivers influencing forest forest productivity in 
this  study”  and  also  clearly  state  that  only  temperature  is  varied  in  a  “temperature 
sensitivity analysis” or so. 

P3L3: “2017). The forest factory generates 370,170...and allows to estimate” 

We will realize all these suggestions. Thank you. 

P4L2: How to get from the 15 stem size distributions and 256 mixtures to the 370,170 stands? 

The forest factory creates forest patches which are based on 15 different stem size 
distributions and 256 species mixtures. 100 forests patches of each 
combination are built (in total 15*256*100 = 384,000 forests). In a few cases not all species of 
the mixture could be placed within a patch by the algorithm, so these forests are rejected. We 
end up with 370,170 forest stands.  

We will reformulate section 2.2 of the Method section to clarify these points. 

P4L3/4: At some point you should give the latin names of the species to allow international 

readers to check which species you mean... 

Good point. We will add the Latin names in the section 2.2. 

P4L6: I wonder how you can actually represent complex mixtures on a 400m2 plot. This could 
be covered by one large beech tree? I think you need to discuss the implications of choosing this 
patch size. Or do you upscale to the ha or so? 

Within an area of 400m² the trees compete for light as large trees shade the smaller ones. This 
is the typical plot size used in forest gap models. You are right, a very large tree could cover 
such a plot but below its crown there is space for smaller trees of other species. However, there 
are indeed a few combinations of species mixtures and stem size distribution that could not be 
represented within a plot because of limited space. Thus, these forests do not exist in the 
collection of forests generated by the forest factory. 

We will reformulate the text in section 2.2. to clarifying these points. 

P4L6: “space limits”  

We will reformulate the text.  

P4L8: You should discuss in detail why you think the year 2007 in Hainich is representtative of 
temperate climatic conditions!  I think you make two dangerous assumptions: 1) Hainich is 
somehow representative for “temperate climates” (it certainly is but only to a certain degree and 
2) the 2007 climate is somehow representative of the overall Hainich climate 



We agree. We use this year as an example of a temperate climate. (In principle, it is possible to 
use climate data of every other location).  We will reformulate the text in section 2.2.  

P4L11-22: This is from FORMIND, right? You could say that 

We will add the following sentence at the beginning of the paragraph: The calculation of wood 
production of trees is based on algorithms of the model FORMIND (Fischer et al. 2016,).  

P4L10: “2.2 Forest productivity...” 

P4L15: “by the photosynthesis-limiting...” 

We will use your suggestions. 

P4L17/18:  I read this as if Rm was both maintenance  respiration and allocation to non-woody 
tissues? 

This is correct. 

P4L23: I would introduce a new subheading here about the “climate sensitivity” 

We will add it. 

P4L25: “separated” The methods description should be in the past tense 

We will change the tense. 

\emph{\color{blue}Figure2:  You  should  explain  once  more  all  the  variables  shown  on  t
he  plots  in the caption, AWP and MAT are not explained currently. 

Good point. We will modify the caption of Figure 2. 

P5L1: unclear: do you include co2 and nitrogen in the model but keep them constant or are they 

not included at all? You should discuss that co2 will matter in a 2 $^{\circC$ warmer world... 

They are not included at all. We will modify the sentence. See also the reply to your first major 
comment above. 

P6L6: Do you have any reference or argumentation to support using BA as a proxy for LAI? I 
could imagine this only works until canopy closure? 

In the forest factory dataset LAI and basal area correlate quite well ($R^2$=0.74). A high 
correlation between leaf area and basal area ($R^2$>0.92) has been found for instance also by  
Levi and Jarvis 1999. 

P6L13: “maximum forest height” 

We will replace the phrase. 



P7L1-2: Is “10.2015” the right citation format? 

No. We will correct the citation format to “2015”. 

P7L5: Why Gaussian? Any deeper reasons or simply because it is the default? 

It is the default setting. We will modify the sentence: … assuming a Gaussian error structure 

(default setting). 

P7L8: the heading is unclear. “benefit the most” ==>from what? 

We will add: … the most from increasing temperatures. 

P7L18-19: I wonder if the mean is the appropriate measure here given that the distributions are 
so skewed (figure b1)? 

Figure B1 shows the distribution of the SI values. The shown SI values do not represent mean 
values; they are the slope of linear models, which relate temperature changes with AWP 
changes divided by the average AWP of the forest (see equation 2, 3 & 4). 

We will modify the sentence: We than quantified the changes in productivity due to changes in 
MAT ($SI_{MAT$) and Q95 ($SI_{Q95}$). 

P7L28:  This has to be carefully discussed.  It seems to be obvious that the species choice will 
have the strongest influence. 

Thanks for this point. We will modify the sentences at P11 L16ff: … If species are unfavourably 

distributed within the forest (low $\Omega_{AWP}$), the AWP of the forest is low. Note, 
$\Omega_{AWP}$  is the ratio between current AWP and the highest possible AWP of the forest 
which can be reached due to shuffling of species identities. If  AWP is low the forest will suffer 
from increasing temperatures, which results in negative slopes ($\Delta$AWP / $\Delta$T). 
These values are than divided by low AWP values (Equation 4), which results in large negative 
values of $SI_{MAT}$ and $SI_{Q95}$. (See Appendix B5). 

 

Figure 3: maybe explain somewhere (can be in the main text) how to interpret the scale from 0-1 
of the Omega_AWP. 

We will add an explanation in the caption of figure 3. 

P8L12: “analysed how” 

We will reformulate the phrases.  

P8L12: Maybe recap here that AWP is your expression of productivity. 

We will replace forest productivity by (above-ground) wood production. See also reply to your 
comment P1 L19. 



P9L1: “specific value combination of forest properties” ==> rephrase 

We will write: …with a specific set of forest properties which… 

P9L5/6 & 12-14:  Certainly analyzing all possible combinations of species and structures etc as 
done in the Forest Factory approach is valuable but this approach will also generate a huge 
number of stands which are highly unrealistic and that will never be found in reality.  So the 
discussion could be more balanced here highlighting that you also produce quite a lot of “non-
sense” forests as well. 

This is an important point of the forest factory approach.  

All forest patches could exist in reality, as every tree has a positive productivity and enough 
space for its crown. It is not possible that “non-sense” forests are generated as the used method 
prevents that a light demanding species occurs below a closed canopy or that forests are 
overcrowded. We will revise the text to makes this clearer. 

P9L10: “FORMIND” 

We will replace the phrase. 

P10L2-3: This sentence needs to be rewritten for clarity 

We will remove this sentence. 

P10L11: RCP2.6 

We will correct this. 

P10L15-28:  I had the feeling this section needs to be rewritten for clarity and logical connection 
to the preceding sections. 

Thanks for this comment. We will reformulate the section in the following way: 

To characterize the annual cycles of temperature we select two variables: mean annual 
temperature (MAT) and inter annual temperature amplitude (Q95). Both variables can be varied 
independently. In case of higher MAT we observe an elongation of the vegetation period. This 
leads to higher forest productivity, if other resources are sufficiently available (Luo, 2007). This 
explains why $SI_{MAT$ is often positive. However, warmer summer temperatures can also 
lead to a decline in wood production due to an increase in respiration. In case of increasing Q95, 
more days with extreme temperatures will occur in a year. Thus, an increase of one $^{\circ}^C{-
1}$   of Q95 will increase respiration more strongly compared to an increase of one $^{\circ} C^{-
1}$  of MAT. Hence, the increase of Q95 has normally negative effects on the productivity 
(negative SI values). 

P11L3-12:  Also here maybe some rewriting is needed to better link the paragraph to the rest of 
the discussion. 

We will modify the two paragraphs of section 4.2. 



P13L5: I find the conclusions too short and too close to the results. The conclusion in my view 
should clarify: Why do your results matter? What do we learn? 

We will extent the conclusion and include implications of our study for future forest modelling 
and forest management.  

P13L12:  I find the supporting material organized in a complicated way.  Can you not provide the 
text plus the associated figures and then another piece of text etc. The online material is not 
meant to be read as one text but one should find things quickly. 

We will rearrange the text and figures as suggested. 

Figure A2: I am pretty sure you are showing the annual precipitation sum and not the “mean” 

here. 

Correct. We will revise the sentence. 

P15L4/5: I do not understand this: it seems mean (1.5%) is outside of the interquartile range? 

The unit is \%${\circ}C{-1}$ . This means that on average forest increase their productivity by 
one \% if temperature increases by ${\circ}C$ . The interquantile range of 95\% (Q95) is used 
only to quantify the interannual temperature variability. 

We will modify the sentences to make this clearer: 

Figure A3: hec should be ha} 

P16l5:  “the first plot” ==>not very precise.  Do you mean plot 3a)?  Then also include small 
letters in the plots! 

We will follow your suggestions. 

P16L6: I would always refer to ΩAWP and not introduce any other terms such as suitability etc. it 

is getting too complicated... 

We will modify text and figure. 

Figure A4:  To me it looks like You are overestimating SIMAT quite systematically but you never 
really discuss this? 

Good point. It is quite difficult to evaluate the theoretical analysis by using field data, as a huge 
number of similar forest plots are needed, which cover a temperature gradient. In case of the 
German forest inventory only a few forest plots can be used for such an analysis. For spruce 
and beach monocultures we were able to select enough similar plots. Further, these inventory 
plots provide no direct measurements of climate or LAI, which would be needed for an 
appropriate evaluation. We therefore used altitude as proxy for temperature (although other 
environmental variables like precipitation or soil attributes could change as well with altitude) and 
basal area as proxy for LAI. The reason for the overestimates of $SI_{MAT}$ is not clear, but might 
be a result of the differences between $SI_{MAT}$-calculations based on field data and the 
calculation of $SI_{MAT}$ based on the forest factory approach. 



We will add some sentences regarding this point to the Appendix. 

P17L6: sentence misses a verb 

 We will revise the sentence. 

Figure b3:  I wonder why there are so distinct patterns of values with y=0 and also x=-100 in 
panel a and y=-8 (or so) and x=-100. Is this an artifact?  

The vertical dots occur as all forests with SI values smaller than -100\% ${\circ}C{-1}$ where set 
to -100\% ${\circ}C{-1}$ for this graphic. To be consistent, we will remove them, also as they were 
removed for the final analysis, which is presented in the paper. See page 6, line 4 of the 
manuscript: …In our analysis we exclude all forests stands for which AWP is negative if the  
temperature rises by 1 ${\circ}C{-1}$  ( 2\% of all stands). 

I assume the horizontal structure is an artifact of the boosted regression tree algorithm. We will 
reformulate the corresponding sentences. 

P18L2: “in some simulated”  

P18L7: “we calculate a mean...”  

Figure B5: panel “b)” is missing the “b)”  

We will reformulate these phrases and add the “b)”. 

Figure B6: The layout of this figure makes it very hard to see which color overlays the 
other ... so do most “brownish” species rather follow the green line or the dark blue for the 

left-side of the bell-shaped lines in panel a)?  

We will revise the figure based on a modified color-palette and enlarge the graphic. 

Figure B7: Is nowhere referred to in the text. What is the unit of the y-axis? 

It will be referred in the text and the text will be reformulated and we will revise the figure. 

Figure B8: The SIMAT values are so small, is that correct? 

We forgot conversion into \% (multiplication by 100, as done in all the other graphics). We will 
also add the unit to the y-axes. 

 

 

 

 

 



Reviewer 2 (anonymus) 

Compared to the announced text changes in our reply in the interactive discussion we slightly 
changed several text fragments to improve readability, English and grammar (especially in the 
three new sections: 4.2 Implications for forest management, 4.3 Implications for global 
vegetation modelling and the new Conclusion). We mark major changes in our reply in purple. 

The authors use an individual-based forest modelling approach to isolate the effect of five 
forest structure (LAI, maximum stand height, and canopy stratification) and composition 
(functional diversity and its optimal distribution) parameters on the overall sensitivity of 
simulated wood production to increasing mean annual temperature and seasonal amplitude 
in a European temperate setting.  The model is integrated hundred of times over a single 
year and forest stand using synthetic climate scenarios with perturbed temperature to 
simulate an ensemble of productivities for thousands of stands with a range of initial 
conditions of structure and composition, representative of different stand development 
stages.  This synthetic dataset, broadly consistent with ecological rules observed in the real 
world, is then analysed using a statistical regression method in order to quantify the relative 
effect of the five structural and compositional parameters on the simulated temperature 
sensitivity of forest productivity. Their results indicate that an index of optimal species 
distribution of the trees in a forest stand – the ratio of actual productivity of a forest stand to 
the maximum productivity achieved by changing only the species of the trees whilst keeping 
the same stand structure – explains ? 88% of the temperature sensitivity of forest 

productivity simulated by the model.    

Among the remaining four parameters, forest height (a proxy of stand development stage) is 
the most important variable in explaining the rest of the fractional variance of temperature 
sensitivities. Thus the authors conclude that the sensitivity of plant productivity in temperate 
forests to changes in temperature is driven by forest structure and species diversity. I 
believe that the main scientific finding is of interest for the wider biogeosciences com- 
munities.  

The overall  modelling  experiment  seems  appropriated  to  disentangle  the relative 
importance of forest structure and composition properties on patterns of temperature 
sensitivity of temperate forest productivity in the model world.  However, the manuscript is 
very difficult to follow at times and the discussion of the main findings is simply too thin.  I 
recommend major revisions in order to improve (i) the readability and English of the 
manuscript and (ii) to better discuss the underlying mechanisms and implications of the 
findings for the wider ecological theory. 

Thank you very much for your review. We will revise our manuscript carefully including 
your recommendations.  

We will enhance the readability and we will send the revised manuscript to native 
speakers to improve the English and the grammar. 

We further will add two new sections discussing the implications of our results for forest 
management and global vegetation modelling (see new section 4.2 and 4.3) and enlarge the 
conclusion (see appendix R3). Finally, we will carefully revise the Discussion including more 
details of the underlying mechanisms (Please note that some sections of the former 
discussion are now in section 3.1). 

____________________________________________________________________________ 



 

SPECIFIC COMMENTS 

Regarding the first point above, I have the following comments: 

-Introduction  

It is informative but the English and grammar need revision. 

As explained above, we will revise the manuscript regarding English and grammar using the 
help of a native speaker. 

-Method  

This section tends to be redundant with the opening paragraph and appendices.  I 
recommend reorganizing it and make it more concise.  It is not clear how the stands at 
different stages of development were initialised.  Were the structure, composition and 
development stage randomly generated or did you apply some spin-up? This has 

implications for the realised productivity when computing the ?_AWP index. Why exactly 

370,170 stands? 

We did not perform any spin-off. Trees are “planted” with a certain size derived from the 
stem size distribution considering that each tree of a forest has a positive productivity and 
enough space for its crown. The forest factory creates forests, which are based on 15 
different stem size distributions and 256 species mixtures. 100 forest patches with a size of 
400m² of each combination were built (in total 384,000). To generate these 100 forests of 
each combination, we randomly selected a tree from a stem size distribution, assigned a 
species and checked if the tree has enough space and a positive productivity. In a few cases 
not all species of the mixture could be placed within a forest by the algorithm, so we rejected 
such forests. We end up with 370,170 forest stands. We will reformulate the text in 2.2 of the 
Methods section. 

 

In Line 28 of page 4 it is said “We end up with five climate scenario sets of one-year length 
that differ in precipitation and radiation.”  But since these scenarios are derived from five 
different real years, they should also differ in absolute temperature values? As I understand 
it, within each synthetic scenario, radiation and precipitation are the same and only 
temperature changes at the specified steps. Among the five scenarios, the absolute values 
of all variables should be different.  Please explain better this part to the reader. 

Thanks for mentioning this point. The absolute temperature values differ between the 5 time 
series. We will explain this point in more detail. 

 

In Fig. 2, what does the shading in the middle panels mean? The meaning of H_forest is not 
explained in the caption.  

Thanks for mentioning this point. The shading represents the standard deviation obtained from 
the analysis of five different time series (with the same modification of MAT and Q95). We will 
rewrite the text and explain $H_{forest}$. 

-Results and Discussion  

I found many passages in these sections very difficult to follow. There are result statements 
with no reference to the figures or tables that leave the 
reader guessing the corresponding figures. The results section is rather short and most of 



the discussion is still results.} 

We will move figure 5 und 6 (and the corresponding text) from the Discussion into the Result 
section. We further will expand the Discussion by two new sections, which will discuss the 
implications for forest management and vegetation modelling (see 4.2 Implications for forest 
management and 4.3 Implications for global vegetation modelling).  Finally we will carefully 
revise the results and discussion to improve the text and link the statements with the 
corresponding figures. 

 

Figure B1 shows a long negative tail in the distribution of the obtained sensitivities. The 
authors focus exclusively on the positive sensitivities and neglect negative values, despite 
declaring in the introduction that responses can be both positive and negative. Why the 
simulated sensitivities are so asymmetrical and the negative values are not discussed? 

We will explain the large negative values and the long negative tail of the sensitivity values 
in more detail. However, we don´t know the reason for the asymmetric distribution. In 
addition, we will modify figure 5 and replace forest C by an old-growth forest with negative 
SI-values. 

 

In the discussion I miss a more complete explanation of the underlying ecophysiological and 
metabolic mechanisms (e.g„  Figs 5 and 6).  Also,  there is no discussion of the potential 
limitations of the model and the modelling experiments performed here.  For 
instance,  autotrophic respiration seems to be a critical factor affecting the response of net 
productivity to changes in temperature in the model.  How well is this process represented in 
the model version used? Would you get the same result if you account for uncertainties in 
parameterisation of this process? 

Thanks for mentioning these points. The forest factory is based on the well-established 
and often applied forest gap model FORMIND. The parametrization was used and 
discussed in several previous studies (Bohn et al 2014, Bohn et al 2017, Rödig et al. 
2017). We will make this clearer in the Method section. We further will enlarge the 
section “4.1. The study-design” and enlarge the explanations in the Appendix discussing 
photosynthesis and respiration rates of single trees (Figure B7). In general, the 
parameters with the highest uncertainty within the FORMIND-model are establishment 
and mortality, which are not used in this study. 

 

Finally, what are the implications of the main finding for the wider ecosystem and climate 
modelling communities that usually rely on global models that have no explicit forest 
structure? Any recommendation? 

This is a good point. Thank you. We will add a new section, which discusses the implication 
of our analysis on global vegetation modelling (see 4.3 Implications for global vegetation 
modelling). 

 

-Conclusion Rather brief.   Here the authors could wrap-up the wider implications of their 
main findings. 

We will extend the conclusions to include implications of our study for future forest modelling and 
forest management. (See also Appendix R3 : new conclusion). 



 

-Figures   

The  figures  are  excellent  but  the  captions  are  not  sufficiently  informative. Please 
improve the captions.   

We will revise the captions. 

 

Fig 3 could be merged with Fig B2.  The latter is important to understand the overall result. 

We will do this. 

 

-English and grammar. 

 There are many grammar errors and typos through the text. Please revise English and 
correct typos. 

We will send the revised manuscript to an language expert to improve the English and 
grammar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of major changes 

 Revised section 2.2 forest factory approach 

 Revision of most captions of the figures 

 Revision of former section 4.2 The influence of forest structure on temperature sensitivity - now 

section 3.1.1. 

 Revision of former section 4.3 The effect of species composition on temperature sensitivity - 

now 3.1.2 

 Extention of the discussion of the study design (section 4.1) 

 Two new sections 4.2 Implications for forest management and 4.3 Implications for global 

vegetation modelling 

 Revision of the conclusion. 

 

 



Species composition and forest structure explain the temperature
sensitivity patterns of productivity in temperate forests.
Friedrich J. Bohn1, Felix May2, and Andreas Huth1,2,3

1Helmholtz Centre for Environmental Research - UFZ Permoserstr. 15 / 04318 Leipzig / Germany
2German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig / Deutscher Platz 5e / 04103 Leipzig /
Germany
3University of Osnabrück / Barbarastr. 12 / 49076 Osnabrück / Germany

Correspondence to: Friedrich J. Bohn (friedrich.bohn@ufz.de)

Abstract. Rising temperatures due to climate change influence the wood production of forests. Observations c1show that

some temperate forests increase their productivity, whereas others reduce their productivity. This study focus on how species

composition and forest structure properties influences c2the temperature sensitivity of c3above-ground wood production (AWP).

It further investigates, which forests will c4increase in their productivity the most with rising temperatures. We describe forest

structure by leaf area index, forest height and tree height heterogeneity. Species composition is described by a functional5

diversity index (Rao’s Q) and c5species distribution index (ΩAWP ). ΩAWP quantifies c6how well species are distributed over

the different forest layers regarding AWP. c7. We analyzed 370,170 forest stands, generated with a forest gap model. These

forest stands c8cover a wide range of possible forest types. c9For each stand we estimate annual above-ground wood production

and perform a climate sensitivity test based on 320 different climate time series (of one year length). The scenarios differ

in mean annual temperature and annual temperature amplitude. Temperature sensitivity of c10wood production is quantified10

as relative change of productivity due to a 1◦C temperature rise in mean annual temperature or rather annual temperature

amplitude. Increasing ΩAWP influences positively both temperature sensitivity indices of forest, whereas forest height shows a

bell-shaped relationship with both indices. Further, we reveal that there are forests in each successional stage that are positively

affected by temperature rise. For such forests, large ΩAWP -values are important. In case of young forest, low functional

diversity and small tree height c11heterogeneity is associated with a positive effect of temperature on c12wood production.15

During later successional stages, higher species diversity and larger tree height heterogeneity is an advantage.c13To archieve

c1 discovered
c2 this
c3 forest productivity
c4 rising temperatures increase productivity strongest
c5 optimal species distribution
c6 how well species are distributed within the forest structure regarding
c7 with the given environmental conditions of each single tree
c8 cover a large number of possible
c9 For each forest stand we estimate annual above-ground wood production under 320 climate scenarios (of one year length)

c10 forest productivity
c11 heterogeneity support
c12 forest productivity
c13 Text added.
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such a development, one could plant below the closed canopy of even-aged, pioneer trees a climx-species-rich understory that

will build the the canopy of the mature forest. This study highlights that forest structure and species composition are both

relevant c14in understanding the temperature sensitivity of c15wood production.

Copyright statement. TEXT

1 Introduction5

Climate change alters c1wood production by modifying c2the rates of photosynthesis and respiration rates of trees (Barber et al.,

2000; Luo, 2007; Peñuelas and Filella, 2009; Reyer et al., 2014). Changes in forest productivity have been observed in past

decades all over the world (Nemani et al., 2003; Boisvenue and Running, 2006; Seddon et al., 2016). c3The carbon stock of

forests and their role as carbon sink are therefore changing. These c4findings have stimulated discussions about whether forest

management strategies can be adapted to reduce forest vulnerability to climate change, to support recovery after extreme events10

and c5foster the carbon sink function of forests (Spittlehouse and Stewart, 2004; Spittlehouse, 2005; Bonan, 2008).
c6Wood production is influenced by several factors c7, such as CO2 fertilization, nitrogen deposition, precipitation, and tem-

perature. (Barford et al., 2001)c8. c9 For instance, rising CO2 increases water use efficiency of forests (Keenan et al., 2013)
c10, which could compensate negative effects of climate change on European forest growth (whereas, with constant CO2 at

350ppm, forest growth declines on several sites due to climate change - see Reyer et al. 2014). Another important process is15

the fertilization (De Vries et al., 2006, 2009)c11. Due to depositions of nitrogen in the second half of the last century wood

production had increased in European forests (Solberg et al., 2009). However, temperature modifies photosynthesis, respiration

and growth rates of trees (Dillon et al., 2010; Piao et al., 2010; Wang et al., 2011; Jeong et al., 2011; Heskel et al., 2016). In

the temperate biome, positive effects on c12wood production (Bontemps et al., 2010; Delpierre et al., 2009; Pan et al., 2013;

McMahon et al., 2010, e.g.) as well as negative ones have been found (Barber et al., 2000; Jump et al., 2006; Charru et al.,20

2010, e.g.). However, it remains unclear why forests react differently to temperature change.

c14 to understand
c15 forest productivity
c1 forest growth
c2 Text added.
c3 Text added.
c4 observations
c5 to compensate for anthropogenic CO2-emissions
c6 Forest productivity
c7 Temperature can strongly alter forest productivity, in addition to other climate variables
c8 such as CO2-fertilization or nitrogen deposition
c9 Text added.

c10 Text added.
c11 Text added.
c12 forest productivity
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Figure 1. Overview of drivers influencing c15wood production. External variables in this study are temperature, radiation, and precipitation.

Forest properties are divided into two groups: species composition properties (e.g., the Rao’s Q as a measure of functional diversity and
c16species distribution index ΩAWP ) and forest structure properties (e.g., forest height, leaf area index and tree height heterogeneity).

In addition to the influence of climate variables, c13wood production is also affected by internal forest properties. These

properties can be grouped into two types: properties which describe forest structure, and those which describe species com-

position (Fig. 1). For instance, changes in productivity can result from changes in basal area (Vilà et al., 2013), in leaf area

index (Asner et al., 2003) or in the heterogeneity of tree heights within a forest (Bohn and Huth, 2017). Furthermore, c14wood

production often increases with the increasing number of species (Zhang et al., 2012; Vilà et al., 2007).5

Forest stands, which differ in their forest properties, might respond differently to the same climate change (Huete, 2016).

For instance, the positive effect of increasing temperature on c1wood production fades with forest age in temperate deciduous

forest (McMahon et al., 2010; Bontemps et al., 2010, e.g.) and Morin et al. (2014) showed that higher diversity buffer the

effect of inter-annual variability on c2wood production. However, these studies include only a few forest properties and rarely

c13 forest productivity
c14 forest productivity
c1 forest productivity
c2 forest productivity
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include c3properties related to both species composition and forest structure. Hence, it c4is unclear, how c5these forest properties

influence c6wood production change due to temperature rise and which forests will benefit from rising temperatures.

As far as we know, there is no data set availablec1 that covers forests, differing in structure and diversity, under almost

identical climatic conditions. Even if a larger number of forest stands c2were available, it would be difficult to manipulate

for instance temperature while keeping all other climate variables constant. An alternative option to c3such field experiments5

analysis is offered by forest simulation models. Such models are able to estimate c4wood production under different climate

conditions (Lasch et al., 2005; Bohn et al., 2014, e.g.). For instance, Reyer et al. (2014) investigated the effect of climatic

change on forests by simulating 30 c5year time slices of a range of different future climates for 135 inventoried forest stands.

There are also model-based studies, which systematically analyzed the effect of species diversity on productivity and stability

over long periods (Morin et al., 2011, 2014). However, disturbed or managed forest stands and the influence of climate change10

have been not included in these analyses.

In this study we therefore propose a new simulation-based approach. First, we generate a c6large number of forest stands

covering various forest structures and species compositionc7s (for up to eight temperate tree species). Annual above-ground

wood production (AWP) is then calculated for all forest stands based on climate c8time series. These c9time series differ in the

mean annual temperature (MAT) and the intra-annual temperature amplitude (Q95). We aim to analyze (i) how productivity of15

forest stands (AWP) is influenced by increasing temperature (MAT) and (ii) by increasing intra-annual temperature amplitude?

Furthermore, we address the question (iii) c10of which forest stands will benefit most from rising temperatures.

2 Method

To analyse the effect of temperature on the productivity of forest stands, we apply the "forest factory" model approach (Bohn

and Huth, 2017). c11The forest factory generates 370,170 different forest stands (see section 2.1) and c12allows the estimatc13ion20

of above ground wood production (AWP) under various climate c14time series (see section 2.2). The 320 scenarios differ

c3 both properties of both types,
c4 remains
c5 Text added.
c6 forest productivity
c1 , which
c2 would be
c3 field data
c4 forest productivity
c5 years into the future for
c6 huge
c7 Text added.
c8 scenarios
c9 senarios

c10 Text added.
c11 With this approach, we generate
c12 Text added.
c13 e the
c14 scenarios
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in mean annual temperature (MAT) and annual temperature amplitude (Q95). Finally, we calculate the forest stand-specific

sensitivity of productivity against temperature change (SIMAT and SIQ95) as the relative change of c15wood production per

temperature change of 1 °C (see section 2.2). To relate these sensitivities to forest structure and species composition, we

characterize every forest stand with five properties (see section 2.4). We analyse the influence of the five forest properties

on temperature sensitivity using boosted regression trees (see section 2.5). Finally, we analyse which combination of forest5

properties results in the highest sensitivity values for different successional stages (see section 2.6).

2.1 The forest factory approach

The forest factory c1 creates forest patches which is based on 15 different stem size distributions c2and 256 species mix-

tures.c3100 forests patches of each combination are built.

The stem size distributions cover a gradient from young to old and disturbed to undisturbed forests. Species mixtures include10

all possible combinations of c4 Pinus sylvestris, Picea abies, Fagus sylvatica, Quercus robur, Fraxinus excelsior, Populus x

canadensis, Betula pendula and Robinia pseudostuga. c5We use the species parameter set and algorithms of the FORMIND-

model version for temperate forests c6 within the forest factory (Bohn et al., 2014; Fischer et al., 2016). c7To generate forest

patches, we randomly choose trees from the stem size distribution, assign a species identity and plant them within a patch of

400m2c8size.15
c9To place a tree within a patch the following rules must be meet: (i) c10there must be available enough space for crowns of

every tree (ii) every tree c11in the forest must have a positive productivity under c12its environmental conditions (light, temper-

ature, water). c13We use climate time series of the year 2007, measured at Hainich National Park, central Germany. We assume

this time series as a typical example for a temperate year (in principle it possible to use climate data of every other location). In

contrast to an artificially generated climate this climate is perfectly physically consistent (regarding light, air temperature and20

precipitation).
c14In a few cases not all species of the mixture could be placed within a patch by the algorithm, so we rejected such forests.

We end up with 370,100 forest stands. For more details regarding the forest factory see Bohn and Huth (2017).

c15 forest productivity
c1 combines
c2 with
c3 Text added.
c4 pine, spruce, beech, oak, ash, poplar, birch and robinia
c5 The
c6 are used
c7 Text added.
c8 Text added.
c9 The forest factory generates forest stands with a size of 400m2 using the following rules:

c10 space limit the maximal number of trees and
c11 Text added.
c12 a typical temperate climate
c13 For a typical temperate climate, we employ a climate time series from the year 2007, measured at Hainich National Park in central Germany. presented a

detailed description and discussion of the forest factory.
c14 Text added.

5



2.2 The wood production

c1The calculation of above-ground wood production (AWP) of trees is based on algorithms of the model FORMIND (Bohn

et al., 2014; Fischer et al., 2016). The c2wood production of a single tree is calculated as the difference between climate

variables driven respiration rates and photosynthesis. The photosynthesis rate (Ptree) results from the crown size, self-shading

within the crown and available light at the top of the tree. The available light depends on the radiation above the canopy,5

reduced by the shading of larger trees within the forest stand. Furthermore, productivity can be limited due to air temperature

and available soil water, which is expressed by c3the photosynthesis-limiting factor φ for each tree (Gutiérrez, 2010; Fischer,

2013; Bohn et al., 2014). Available soil water within the stand results from precipitation, interception, evapotranspiration of

trees and run-off.

One part of the photosynthesis production of a tree (Ptree) is allocated to its maintenance respiration (and to non-wood10

tissues; Rm). Rm depends on tree biomass and temperature ψ (Piao et al., 2010). The remaining organic carbon is transformed

into newly grown above-ground wood (AWPtree) and a proportional growth respiration (rg).

AWPtree = (φPtree −ψRm)(1− rg) (1)

AWPtree is summed over all trees to obtain the productivity of the forest stand - AWP (for a more detailed description of

growth processes, see Bohn et al. (2014); Bohn and Huth (2017) ).15

2.3 climate sensitivity

To generate a set of 320 annual climate c4time series, we selected daily climate measurements of the Hainich station in central

Germany between the years 2000 and 2004. This time series includes mean daily radiation, precipitation and air temperature

(see Appendix A1; Fig. A1)). We separated these time series into five distinct time series of one-year length. First, we increase

or decrease the mean annual temperature of each year by adding or subtracting 0.5 °C steps between -1.5 °C and +2 °C. Second,20

we change the amplitude of the annual temperature cycle for these time series c5variation of each year. c6To do so, we modify

the standard deviation of each year by 4% steps between -12 % and +16 %. We end up with five c7sets of climate times series

(of one-year length) that differ in c8temperature, precipitation and radiation. Each c9of these five sets includes 64 time series,

which differ only in temperature (see Appendix A1 , Fig. A2). Temperature change is quantified using two indices: (i) mean

annual temperature (MAT) and (ii) annual temperature amplitude (Q95), which describes the 95% inter-quantile range of all25

c1 Text added.
c2 productivity (AWP)
c3 Text added.
c4 scenarios
c5 Text added.
c6 by modifying
c7 climate scenario sets
c8 Text added.
c9 Text added.
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Figure 2. Overview of c1forest properties and resulting temperature sensitivity of above-ground wood production (AWP) of three exemplary

forests: a) old even-aged spruce forest; b) mature deciduous forest; c) a quite young mixed species forest. c2The middle panel (subfigures

d, e & f) shows the corresponding stem size distributions and inform about the forest height (the highest tree) and species distribution in-

dexΩAWP
c3(which quantifies, how suitable a species distributed with in the forest structure regarding AWP). c4 c5Each forest is treated with

320 climate time series: The last panel shows the AWP as a a function of mean annual temperature (MAT). The colours indicate different in-

ter-annual amplitudes of the temperature (Q95) of the used time series. (The coloured bands show the standard deviation due to the variability

of the five different time series, which exist for each combination of MAT and Q95).

daily temperature values of a given year. We c10do not model the effects of nitrogen and CO2 fertilization (as both do not

vary strongly within one year) or extreme anomalies (e.g., pathogen attacks) on c11wood production. Figure 2 (a-c) shows the

above-ground wood production (AWP) for different annual temperatures for three different forest stands.

c10 exclude
c11 forest productivity
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We analysed the sensitivity of every forest stand c6to temperature change by following the approach of Piao et al. (2010).

For every forest stand, a general linear model is fitted relating c7wood production and the two temperature indices MAT and

Q95, as well as the nuisance parameter year.

AWP = αxMAT +βxQ95 + γxyear + ε (2)

For every forest, we calculate the relative change of productivity due to an increase of 1 °C:5

SIMAT =
α

AWP
(3)

SIQ95 =
β

AWP
(4)

In our analysis we exclude all forests stands for which AWP c1turns negative if the temperature rises by 1 °C (c2This occures

in 2% of all stands).

We also determine the sensitivity of forests against temperature change using the German forest inventory to validate our10

results. However, the inventory does not include LAI measurements. We therefore assume the basal area as a proxy for LAI,

and we select subsamples of forests stands with similar structure (basal area, tree height heterogeneity, forest height, and same

species mixtures). In addition, we use elevation as a proxy for mean annual temperature, assuming temperature changes of

0.65 °C per 100 metres on average (Foken and Nappo, 2008). Only in the case of spruce and beech monocultures did we find

enough data to calculate SIMAT -values for several forest structures (see Appendix A3, Fig. A3 & A4 ). The correlation of the15

sensitivity values based on field data and simulation data was quite high (R2 = 0.65).

2.4 Five forest properties to describe forest stands

We use three indices to describe the forest structure: leaf area index (LAI), c3maximum forest height (hmax ) and tree height

heterogeneity (θ). hmax corresponds to the height of the largest tree in a forest stand, and θ is quantified by the standard

deviation of the tree heights.20

To describe species composition, we use Rao’s Q and c4species distribution index (ΩAWP ). Rao’s Q quantifies functional di-

versity based on species abundances and differences in species traits (Botta-Dukát, 2005, for details see Appendix A2). ΩAWP

analyses the optimal location of species within the forest structure. ΩAWP is defined as the ratio of the forest’s productivity to

the maximum possible productivity of the forest without changing tree sizes or number. Hence, the maximum productivity can

be obtained by varying only the species identities of trees in the forest stand. We change the assigned species of each tree until25

c6 against
c7 forest productivity
c1 is
c2 Text added.
c3 maximal
c4 optimal species distribution
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we find the optimal species for each individual tree and its specific environmental condition (Bohn and Huth, 2017). All five

indices are nearly uncorrelated for the investigated forest stands ( Appendix A2 Table A1).

2.5 Boosted regression trees

We applied boosted regression trees (BRT) to quantify the influence of the five forest properties on SIMAT and SIQ95. BRT

is a machine learning algorithm using multiple decision (or regression) trees. It is able to address unidentified distributions5

(De´Ath, 2007; Elith et al., 2008). Each model is fitted in a forward stage-wise procedure to predict the response of the

dependent variable on (SIMAT or SIQ95) to multiple predictors (θ, hmax, LAI, Rao’s Q, and ΩAWP ). To omit an over-fitting

regarding maximal forest height, we classify forest stands into 18 classes (Hmax). Each class has a width of 2 metres, starting

with 4 to six metres and finishing with 36 to 38 metres. The BRT try an iterative process to minimize the squared error between

predicted SI values and those of the data set. Hereby, part of the data is used for a fitting procedure and the other part is used for10

computing out-of-sample estimates of the loss function (Ridgeway, 2015). This BRT-analysis was performed in the R-package

gbm 2.1.1 (Ridgeway, 2015).

We used a quarter of the data (randomly sampled) for the machine learning procedure. To get the best model, we vary the

following four BRT parameters: learning rate (0.1, 0.05 and 0.01), the bag-fractions (0.33, 0.5 and 0.66), the interactions depth

(1, 3 and 5) and the cross-validation (3-, 6- and 9-fold) assuming a Gaussian error structure c1(the default setting). The best15

fitted BRT for both SIMAT and SIQ95 show a learning rate of 0.1, a bag-fraction of 0.66, an interaction depth of 5 and a

3-foldcross validation. These two models were used for all further analyses. The remaining 75% of the data are used to validate

the fitted BRT algorithm.

2.6 Finding the forest stands for different successional stages that benefit the most increasing temperatures

Here, we assume forest height as a proxy for the successional stage of a forest. In every height class, (Hmax) we select those20

5% of forests that show the highest sensitivity values (SIMAT and SIQ95). We removed the forest height classes between 10

and 14 metres, as they only contain a few forests (15). For all other classes, we analyse the relationship between Hmax and the

forest properties (ΩAWP , Rao’s Q, LAI and θ).

3 Result

We analysed the sensitivity of productivity (AWP) against temperature for forest stands that differ in forest properties (c2species25

distribution index (ΩAWP ), functional diversity (Rao’s Q), tree height heterogeneity (θ), and forest height class (Hmax) and

LAI). The annual above-ground wood production (AWP) was estimated for each forest stand using 320 different climate

c1 Text added.
c2 optimal species distribution
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Figure 3. Partial dependency plots of the five forest properties ΩAWP (c1species distribution index), forest height class hmax, Rao’s Q

(functional diversity), θ (tree height heterogeneity) and LAI (leaf area index) for SIMAT (sensitivity against changes inthe mean annual

temperature) and SIQ95 (sensitivity against changes in the annual temperature amplitude). c2Relative importance (RI) compares the influ-

ence of different input variables on the variability of a target variable. Histograms show the frequency of forest property values in the analysed

data set. c3Note, a ΩAWP is the ratio of the current AWP of a forest and the highest possible AWP optained by shuffling ony species identies

without changing the forest structure.

c3time series. We than quantified the changes in productivity due to c4 changes in c5MAT (SIMAT ) and c6Q95 (SIQ95). For

the analysed forest stands, the average SIMAT is 1.5 % °C -1 and the average SIQ95 is -5.4 % °C -1 (see also the frequency

distribution in Appendix B1, Fig. B1).

With a boosted regression tree algorithm, we analysed how the five forest properties influence the temperature sensitivity

of forests. To validate the fitted BRT algorithm, we compare SI-values, which are not used for the fitting, with the SI-value5

predicted by the BRT algorithm (Fig. 3). The sensitivities against mean annual temperature change (SIMAT ) correlate very

well (R2 of 0.84) and show a low RMSE of ± 2.9 % °C -1 (see Appendix B2 Fig. B3).The RMSE even decreases to ± 1.5 % °C
-1 if a subset of the forest stands is analysed that shows SIMAT values larger than -5 % °C -1 (90% of the data). The accuracy

of the sensitivities against temperature amplitude change (SIQ95) was even slightly better. In addition, a subset that includes

SIQ95-values larger than -15 % °C -1 (93% of the data) shows a RMSE of only ± 1.1 % °C -1 (see Appendix B2 Fig. B4).10

c3 scenarios
c4 the
c5 mean annual temperature
c6 amplitude of inter-annual temperature
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Figure 4. Analysis of those forests that show the highest 5% of the SI-values depending of forest height. Lines indicate mean values of the
c1forest subsamples c2which includes the best 5% regarding SIMAT

c3of each hight class. c4The grey band indicates the inter quartile range.

Figure a) shows temperature sensitivity of above-ground wood production c5over forest height, analysing only the best c6the forest subsample.

b) to d) shows the change of the remaining forest properties within the c7forest subsamples (ΩAWP = optimal species distribution; θ = tree

height heterogeneity; LAI = leaf area index; Rao s Q quantiles functional diversity).

data set. According to BRT analysis, ΩAWP is the most relevant forest property to explain temperature sensitivities (relative

influence of 87 % for SIMAT and 89% for SIQ95; see also Appendix B2, Fig. B2). However, the influence of ΩAWP on

temperature sensitivity flattens out for high ΩAWP levels (Fig. 4). The second relevant forest property is forest height (Hmax).

Forest with heights between 25 and 30 m benefit the most from increasing mean annual temperatures. The other three properties

(LAI, Rao’s Q, and θ) have a low influence on SIMAT .5

Both sensitivity indices show similar relationships to the five forest properties. However, an increase in annual temperature

amplitude always reduces productivity, whereas increasing mean annual temperature can result in a positive effect on c8wood

production. To detect those stands that benefit the most from increasing temperature, we select the 5% of forest stands that

showed the highest SIMAT -values in each forest height class (Fig. 4). In all forests classes, we found forest stands that would

benefit from increasing temperatures. c9Analysing of their forest properties reveals that the ΩAWP levels were always high.10

Young forests (low forest height), which have a positive temperature sensitivity, show low functional diversity and low tree

height heterogeneity (θ). For older forests (of intermediate and high forest height) with positive temperature sensitivity, we

found an intermediate level of functional diversity. Interestingly, for three variables (Rao’s Q, θ and LAI), the relationships

c8 forest productivity
c9 The analysis
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change their character between young and intermediate forest heights. We obtain similar simulation patterns for SIQ95 (

Appendix B3 Fig. B5).

3.1 Understanding the patterns

3.1.1 The influence of forest structure on temperature sensitivity

Forest structure affects c1wood production of the single trees in two ways. First, it determines the available light for each single5

tree and second, the size of trees influences photosynthesis and respiration rates c2(Fig. B6). Hence, based on the height of a

tree and its available light, it is possible to calculate its SI-values (for a detailed discussion of these calculations, see Appendix

B4).
c3In c4even-aged forestc5s c6, all trees have the same height and receive full light (e.g., c7 Fig. 5c8, forest C). Such forests

show a bell-shaped relationship between forest height and temperature sensitivity (Fig. 5 SI values for 100% available light10

depending on tree height). c9

c13In case of a forest consisting of trees with different heights c14smaller trees receive less light due to shading. Note that,

even if trees reveive less light, the bell-shaped relationship between tree height and productivity persists (Fig. 5). Two cases

will be discussed c15(assuming identical LAI as forest C, Fig. 5 c16). c17In the first case all trees have not yet reached their

maximal SI-values (Fig. 5, forest A,); and c18in the second case all trees c19already passed their maximal SI-values (Fig. 5,15

forest B). In the case of forest A, trees in the shade of larger trees always have lower SI-values if they belong to the same

species (see Appendix B4). Hence, the temperature sensitivity level of this forest is lower than the sensitivity of an even-aged

forest, whose trees have the same size as the largest tree in forest A (Fig. 5,c20 tree 1). Hence, if maximal SI-Values are not

reached, increasing height heterogeneity decreases SI-values of a forest.

c1 productivity
c2 Text added.
c3 For instance, i
c4 Text added.
c5 Text added.
c6 of even-aged trees
c7 forest C in
c8 Text added.
c9 Even if trees receive less light, the bell-shaped curve persists (see also Fig. 3)

c13 In a forest that consists
c14 (but similar LAI as an even-aged forest), smaller trees receive less light due to shading.
c15 Text added.
c16 Text added.
c17 first, a case in which
c18 second, a case in which
c19 are larger than
c20 Text added.
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Figure 5. Analysis of SIMAT values of single trees within three different forests. The diagram shows the calculated SIMAT value of

individual trees for every combination of tree height and available light c10(for pinus sylvestris between SIMAT
c11-levels of 6.5 and - 6.5;

other species show similar patterns). The dots indicate the different trees of the three forest examples c12The white dots belong to trees with

the corresponding number of forest A, gray dots belong to the trees of forest B and dark gray dots belong to forest C. Note that in the case of

forest C, all trees have the same height and the same light, so that all three dots are at the same place in the diagram.

In forest B c21(Fig. 5), SI-values of the shaded trees can be similar (or even higher) than the SI-value of the largest trees

in the forest c22(SI-values of tree 1 show similar levels as tree 2, 3 and 4 in forest B, Fig. 5). c23Hence, if maximal SI-values

are passed, increasing tree height heterogeneity results in similar c24 (or even c25more positive) temperature sensitivity levels

compared to an even-aged forest c26 trees c27(an even-aged forest consisting only of trees similar to tree 1 of forest B in Fig. 5).

These general considerations explain the change from low levels of height heterogeneity in young forests to a more hetero-5

geneous structure c1in the analysis of those forests, which will benefit from increasing temperature (see Fig. 4 d).

3.1.2 The effect of species composition on temperature sensitivity

In this study, we use the new index ΩAWP called c2species distribution index (Bohn and Huth, 2017). ΩAWP
c3 is the ratio

between current AWP and the highest possible AWP of the forest which can be reached due to shuffling of species identi-

ties. Its huge importance on forest temperature sensitivity might be illustrated by the following considerations: If species are10

c21 Text added.
c22 Text added.
c23 SI-values of tree 1 show similar values to trees 2, 3 and 4. This
c24 to
c25 higher than
c26 which only consists of the largest
c27 Text added.
c1 for the optimal forests analysis
c2 optimal species distribution
c3 describes the ratio of the realized to the maximal possible productivity, which can be reached by shuffling species identities in the given forest stand
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Figure 6. Graphic (a) shows which species c1have the highest productivity ( ΩAWP
c2 value of 1) under the current climate for different

heights and different light conditions. Graphic (b) shows which species shows the highest c3increase of productivity due to rising temper-

atures for different heights und different light conditions. Red colours indicate coniferous trees, whereas green colours indicate deciduous

trees. Darker colours indicate late successional species, whereas lighter colours indicate pioneers. The dots indicate the different trees of the

two forest examplesc4(A and B). The white dots belong to trees with the corresponding number of forest A. Note, that all trees have the same

height and the same light, so all five dots are at the same place in the diagram. Gray dots belong to the corresponding trees with the same

number of forest B.

unfavourably distributed within the forest (low ΩAWP ), the AWP of the forest is low c4. If AWP is low the forest will suffer

from increasing temperatures, which results in negative slopes (∆AWP / ∆T). These values are than divided by low AWP

values (Equation 4), which results in large negative values of SIMAT and SIQ95. (See Appendix B5).

Increasing functional diversity (Rao’s Q) c5stabilizes the forests’ sensitivity to temperature. This corresponds to results of

Morin et al. (2014) and the theoretical consideration of Yachi and Loreau (1999). The analysis of the single species can5

give additional insight into the mechanisms behind those species that benefit the most from temperature increase, which are

deciduous trees under most conditions. This is reasonable as warmer regions host more deciduous species than needle-leaf

species. The highest functional diversity (Rao’s Q) instead occurs in mixtures of deciduous and needle-leaf trees (Appendix

B5 Fig. B7). As only two needle-leaf species are considered here in the species pool, low Rao’s Q values are dominated by

mixtures of deciduous trees. Such deciduous tree mixtures mostly benefit from temperature increases. In consequence, mixtures10

with high Rao’s Q values which mostly include both functional types react more poorly (Fig. 3; Appendix B5 Fig. B7).

c4 and in consequence, the SI values are low as well (see Appendix)
c5 has a stabilizing effect (in the case of mean temperature sensitivity)
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We developed two diagrams that show the species with the highest temperature sensitivity and with the highest productivity

for different conditions (available light and height of a tree) (Fig. 6). Interestingly, the species with the highest productivity

differ from the species that benefit most from rising temperatures in many cases. This has important consequences. The highest

benefit due to increasing temperatures obtain forests with high but not maximal ΩAWP (Fig. 4). Additionally, deciduous trees

benefit more than coniferous trees from rising temperatures (Fig. 6, Appendix B5, Fig. B7). Hence, young forests should consist5

of deciduous trees (compare Fig. 5, forest A, and Fig. 6), although the highest productivity values are found for coniferous

trees (Fig. 6; forest A). Forests including large trees obtain the highest sensitivity values if intermediate sized trees differ in

their species identity from the largest trees (Fig. 6).

4 Discussion

In this study, we analyse how temperature changes affect c1above-ground wood production (AWP) and quantify the effect of10

five different forest properties on this relationship. The change of c2 AWP was investigated for 370,170 forest stands under

320 different climate c3time series. Our analysis shows a high influence of ΩAWP and Hmax on the temperature sensitivity

of AWP. Further, for all successional stages of forests, we detect some forests with a specific c4set of forest properties which

benefit from temperature rise. This specific combination varies with forest height.

4.1 The study design15

In this theoretical study, we present a new c5climate sensitivity analysis (c6regarding temperature) on c7 AWP. This approach

extends field observation and long-term model simulations, as it allows the analysis of forests, which already exist but also

which might exist in the future due to management changes and/or disturbances.c8Our approach includes only forest stands in

which every tree in a forest has a positive productivity and enough space for its crown. Hence it is impossible for instance,

that light demanding species grow below a closed canopy or forests are overcrowded. However, the data set include also a20

few very unusual stands structures or species combinations, which can not emerge in a natural system, but may result from

disturbances or managment. In the case of field observations, it is difficult to explore the influence of a single climate variable

(e.g., temperature) on one target variable (e.g., AWP), as in most cases, several variables are altered at the same time (see also

Appendix A3). Process-based models are one option to analyse such relationships and separate these effects. The simulation of
c9AWP with the FORMIND-model in temperate forests has been successfully compared to Eddy flux sites Rödig et al. (2017b),25

the national German forest inventory (Bohn and Huth, 2017), and European yield tables Bohn et al. (2014).

c1 forest productivity
c2 forest productivity
c3 scenarios
c4 value combination
c5 approach to investigate the effects of climate change
c6 here
c7 forest productivity
c8 Text added.
c9 forest productivity
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An advantage of the forest factory approach is the huge set of various forests stands that can be analysed. The dataset in-

cludes forest stands that often occur in temperate forests (even-aged spruce, pine and beech stands). However, it also includes

hypothetical ones that could occur through alternative forest management or disturbances (fire, bark beetles, etc.). Hence, our

data set of forest stands covers a much larger variety of forest property combinations compared to long term forest simulations

with the focus on natural forests in their equilibrium state (Morin et al., 2011, e.g.) or on monocultures (Reyer et al., 2014,5

e.g.). c10 Long term simulations with ecosystem models, which process modelled climate projections, face a trade-off between

cascade uncertainty and path dependency (Wilby and Dessai, 2010; Reyer et al., 2014). The accumulations of model uncer-

tainties over such a process chain result in an increasing uncertainty. Our study design tries to minimize this uncertainty and

omit path dependencies by including only those processes that might be relevant for the research question. In this study, for

instance, we omit the effect of climate change on regeneration and mortality. Furthermore, using several climate variables as10

model inputs but only analysing the effect of one variable might lead to incorrect interpretations of its effect. For example,

temperature and radiation often correlate, and both might increase productivity. Therefore, in this study, we only vary one

variable in all 5 c11sets of time series. This guarantees no relationships between the target climate variable and the remaining

climate variables.

As an increase in global mean temperature of 1.5 °C to 2 °C can hardly be avoided, even under the RCP 2.c16 climate15

scenarios IPCC (2013), this study focuses on temperature change. c2This RCP scenario predicts only small changes of annual

precipitation levels for temperate regions. Hence, our approach focuses only impacts of change in temperature. However, this

might be critical for analysis of strong temperature changes (e.g. RCP 8.5), which will result in an increase of droughts and

changes in the annual temperature cycles and a strong change in CO2. Such more complex scenarios should be analyzed in

future studies. Further, we neglect the effect of time lags (e.g. bud building in the previous year). However, it is possible to20

extent the used time series to analyze the behaviour of the forest over longer time periods and study not only productivity, but

also effects on regeneration or mortality.
c3To characterize the annual cycles of temperature we used two variables: mean annual temperature (MAT) and inter annual

temperature amplitude (Q95). Both variables can be varied independently. In case of higher MAT we observe an elongation of

the vegetation period. This leads to higher forest productivity (if other resources are not limiting (Luo, 2007) c4and explains25

why SIMAT is often positive. However, warmer summer temperatures can also lead to a decline in wood production due to an

increase in respiration. In case of increasing Q95, more days with extreme temperatures will occur in a year. Thus, an increase

c10 However, it would be possible to reconstruct a forest succession based on three forest factory by selecting forest stands in an appropriate order.
c11 scenarios
c1 5
c2 This scenario predicts only a small change of annual precipitation levels for many areas of the temperate biome. However, other scenarios, which result

in a stronger climate change, predict an increase in droughts and changes in annual temperature cycles. Such a more complex scenario should be analysed in

future studies.
c3 We choose two variables to characterize the intra-annual temperature cycle. Higher MAT results in longer vegetation periods, especially if other resources

are sufficiently available, and leads to higher forest productivity citep Luo et al. 2007. On the other hand, high temperatures increase respiration citep Piao et

al. 2010 , resulting in higher respiration rates, especially in years with high intra-annual temperature amplitude (whereby MAT could stay constant).
c4 Text added.
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of 1 ◦C−1 of Q95 will increase respiration more strongly compared to an increase of 1 ◦C−1 of MAT. Hence, the increase of

Q95 has normally negative effects on the productivity (negative SI values).

The temperature sensitivity values obtained here are in the same range as that found for temperate ecosystems in heating

experiments (Lu et al., 2013, 4.4 ± 2.2 % °C -1). Within the 16 analysed studies reviewed by Lu et al. (2013), the experimental

plots show almost identical environmental conditions (soil, radiation, and precipitation) and species composition. To heat the5

plots, greenhouses or infrared heaters were used. Another study, based on natural forest stands in New Zealand, found an

AWP increase between 5 and 20 % °C -1 for forest, assuming no change in forest structure and species composition Coomes

et al. (2014). The analysed plots were spread all over New Zeeland, and warmer temperatures coincide with higher radiation

Mackintosh (2016). Hence, the analysed temperature effect also includes the influence of radiation. In our setting, however,

the influence of temperature is independent from radiation Lu et al. (2013, as in). We also found a good correlation between SI10

values derived from growth measurements of the German forest inventory and simulated SI values based on the forest factory

( Appendix A3 Fig. A3 & A4 ).

4.2 Implications for forest management

c1 Our findings might be relevant for future management strategies of temperate forests. Specifically, our new understanding of

which species benefit most from rising temperatures (Fig 6), suggests possible strategies, e.g. replacing spruce monocultures15

with mixtures of deciduous trees. Further, based on the analysis of which forest structure benefits most from rising temperatures

(Fig. 4, Fig 5, Fig 6), early stage even-aged forests should include mainly pioneer species. In the mature stage, we predict a

positive effect of temperatures on wood production for a mixture of climax species including different tree sizes. These climax

species could be planted below the canopy of the pioneer species in young forests. In our approach, we do not simulate the

establishment of very young trees. However, during the conversion between these two forest types one big challenge might be20

the removal of the pioneer trees without damaging the young trees, which will build the mature forest.

4.3 Implications for global vegetation modelling

c2 Most global vegetation models (DGVM) represent vegetation as fractional cover of different plant functional types within a

grid cell (e.g. LPJ Sitch et al., 2003). c3Only a few global vegetation models include a more detailed representation of vegetation

structure and functional diversity (Sato et al., 2007; Scheiter et al., 2013; Sakschewski et al., 2016). c4It would be interesting25

to perform the here presented analysis also with global vegetation models which include structure, to better understand the

mechanisms driving the sensitivity of forest systems against climate change. Beside the global vegetation models, forest gap

models, which have been restricted to local stands in the past are now able to simulate forest dynamics in regions or even

entire continents (Seidl and Lexer, 2013; Rödig et al., 2017a). c5Studies using DGVMs or large scale forest gap models sim-

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
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ulate natural succession. Our analysis indicates that natural and managed (or disturbed) forest systems, which differ in forest

structure, might react differently on climate change. Hence, we suggest considering forest structure in future analysis of global

vegetation. Such information on forest structure might be derived from remote sensing.

5 Conclusions

c1The temperature sensitivity of wood production in temperate forests is influenced by forest structure and species diversity as5

our study showed. The species distribution index (ΩAWP ) and forest height seems to be the most important forest properties

influencing temperature sensitivity.

Temperate forests that benefit most from temperature rise are those which consist of even-aged deciduous pioneer species

in the case of young forests. Mature forests benefit most if tree height heterogeneity is large and the forest includes different

deciduous climax species.10

This study tries also to explain why certain forests types will decrease their productivityand others not. Our findings highlight

the importance of forest structure for future studies investigating wood production under climate change.

Data availability. In the online supplement you find the a R-workspace which includes the dataset of the analysed forests "foreststands" and

the calculated SI-values "SIValues".

c1 The temperature sensitivity of above-ground wood production is driven by forest structure and species diversity. Most relevant to the temperature-pro-

ductivity-relationship are the optimal species distribution (ΩAWP ) and forest height. Forests that benefit most under temperature rise consist of deciduous

tree species, whereby young forests show low and old forests show high tree height heterogeneity.
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Appendix A: Additional information regarding methods and validation

A1 Climate data

The development of the 320 climate c1time series, is based on measured climate time series of the eddy-flux station Hainich in

central Germany (Knohl et al., 2003) for the years 2000-2004 (Fig. A1). Mean annual temperature of these five years does not

correlate with the annual precipitation sum, nor with the mean annual radiation (Fig. A2). Radiation and precipitation within5

these years correlate quite well (Pearson’s r =0.73).

Figure A1. The climate time series measured at FLUXNET-station Hainich from 2000 to 2004 which are used to generate the 320 climate
c2time series: (a) daily precipitation [mm], (b) daily air temperature [% °C -1], (c) daily incoming radiation [photoactive photon flux density

µmolm−1s−1].

c1 scenarios
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Figure A2. Mean annual temperature, c3 annual precipitation c4sum and mean annual radiation of the five climate c5time series measured at

Hainich station from 2000 to 2004.

A2 Forest properties

We use three forest properties to describe forest structure (tree height heterogeneity θ, forest height Hmax and LAI) and

two properties to describe species diversity (Rao’s Q describes functional diversity and ΩAWP describes suitability). The

calculation of Rao’s Q is based on 12 species-specific parameters which are relevant for productivity and the species abundance

(based on crown area). None of the properties correlate (table A1).5

Table A1. Coefficient of Determination (R2) between all used internal forest properties for 370,170 stands of the forest factory. θ = tree

height heterogeneity; Hmax = forest height; LAI = leaf area index; ΩAWP = c1species distribution index

Variables Rao’s Q θ Hmax LAI

ΩAWP 0 0.02 0 0.2

LAI 0 0.23 0.06

Hmax 0.01 0.2

θ 0.02
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A3 Validation with the German forest inventory

We analyse the influence of forest structure on temperature sensitivity within the German forest inventory. We analyzed forest

stands of beech monocultures and spruce monocultures. Tree height data are used to calculate forest height (hmax ) and tree

height heterogeneity (θ). We replace LAI, which is not measured, by basal area (both properties correlate quite well in the

forest factory data set; R2=0.74). The forest stands of each species were classified into six structure classes: three forest height5

classes which are based on the height of the largest tree in the forest stand (10-15 m, 20-25m and 30-35 m), and two classes

representing different tree height heterogeneities (0-1 and >1.6 m). We analyse only plots that are located on flat terrain (sloped

at less than 15 %) and have a maximum dbh of 0.5 m). We fit a linear model to the data of every class using basal area and

elevation as input variables to predict above-ground wood productivity (AWP).
c1The comparison between the SIMAT

c2-estimation based on the German forest inventory with SIMAT
c3 values of corre-10

sponding forests from the forest factory show a quite good agreement. However, the simulated SIMAT
c4-values of the forest

factory slightly overestimate the sensitivity compared to the inventory-based values. The reason might be the difference in the

methods as in case of the inventory we use basal area instead of LAI and altitude instead of temperature. Another reason could

be, that in our approach the climate time series show relative high and regular precipitation. In the German forest inventory

instead, warmer sites might exposed more often to water stress, which than reduces the SI-Values.15

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
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Figure A3. Analysis of the influence of forest structure on the relationship between elevation and above-ground wood production. Figure (a)

- (c) are based on spruce monocultures and d)-e) are based on beech monocultures. For each species, forest stands are classified into three

forest height classes which are based on the largest tree (hmax) in a forest stand. These forest stand classes are additionally separated into

two tree height heterogeneity classes (0-1 m in grey and >1.6 in blue). Intensities of the colours indicate the ration between basal area of the

stand and maximal basal area found within one class. Lines show the results of the linear model with mean basal area. The amount of stars

behind the SI-values indicates the significance of the slope within a linear model: (***) indicate a p-value below 0.001 and (*) indicates a

p-value between 0.01 and 0.05. No star indicates p-values above 0.1. The unit of SI∗MAT is % °C-1 .
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Figure A4. SIMAT *-values derived from the BWI-analysis vs. SIMAT -values derived from corresponding forest types of the forest factory.

Only field data with p-values smaller 0.05 are analysed.
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Appendix B

B1 Frequency distribution of sensitivity values

The analysed forest stands show a large range of temperature sensitivities levels, which reach up to 8.5 % °C -1 in case of

SIMAT (Fig. ref4Bf1a). c1This means that one forest increases it productivity by 8.5% due to an increase of the mean annual

temperature by one ◦C. c2In case of the annual temperature amplitude, the best forest reduces its productivity by -0.5 % ◦C−15

(Fig. ref4Bf1b). The mean SIMAT is 1.5 % °C -1 and the interquartile range (iqr) ranges from 1.6 % °C -1 to. 5.2 % °C -1. The

mean SIQ95 is -5.4 % °C -1 and the iqr ranges from -5.2 % °C -1 to -2.2 % °C -1.

Figure B1. Frequency distribution of SIMAT -values (a) and SIQ95-values (b) of all forest stands.

B2 Analysis with boosted regression trees

Boosted regression trees provide information about the underlying relationship between input variables (here forest properties)

and output variables (here SI-values). Several technics were developed to visualize and interpret the high-dimensional relation-10

ship of input and target variables (Friedman, 2001). c3. c4The comparisons between SI values of the forest factory and predicted

SI values (based on the five properties as input), show a very high agreement (Fig. B2 & B3c5). The optained vertical patterns

for SIMat
c6= 0 and SIQ95

c7= -6 are probably artefacts of the boosted regression tree algorithm.

c1 Text added.
c2 and up to
c3 One of the most useful visualizations is the concept of relative importance which compares the influence of different input variables on the variability of

a target variable (Fig.B2)
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
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Other commonly used visualization of the relationship of input and target variable are partial dependency plots (Fig. 3).

These plots show the influence of an input variable on the target variable considering the influence of all input variables which

have higher relative importance. In our study, the most important variable is ΩAWP , hence the first plot shows the relationship

between suitability and SI-values. The second relationship (forest height on SI-values) is based on the residuals of the first

relationship (here between SI-values and ΩAWP ; Becker et al. (1996)). Although a collection of such plots can seldom provide5

a comprehensive analysis of the BRT, it can often produce helpful hints, especially if variables show very low correlations, as

in this study.

Figure B2. Comparisons of temperature sensitivity (SIMAT and SIQ95) based on Forest factory and boosted regression tree model. Colours

indicate point density. Diagonal is the 1:1 line.
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Figure B3. Comparison of temperature sensitivity calculations (SIMAT and SIQ95) based on the forest factory and boosted regression tree

model. Colours indicate point density. Diagonal is the 1:1 line. a) Contains 90% of the forest factory data set and b) contains 93% of the

forest factory data set.

B3 Forest stands properties with highest SIQ95 values over a forest height gradient

Figure B4. Analysis of those forests which lie above the 95% percentile of SIMAT , depending on forest height. Lines indicate mean values of

the subsamples and the gray bands indicate the inter quartile range. Figure a) shows the temperature sensitivity of productivity against forest

height, analysing only Values above the 95% percentile b) to d) shows the change of the remaining forest properties within the subsamples.
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Figure B5. a) Species-specific reduction factor of photosynthesis due to a change in air temperature. b) Species-unspecific correction factor

for maintenance respiration due to a change in air temperature.

B4 SI-values of single trees

To understand the origin of the SI-values, we make the following considerations: An increase of 1 % °C -1 always results in

an increase of 8.6% of the respiration rate in the model (Fig. B5 b; Piao et al. (2010)). The positive effect of an temperature

increase of 1 % °C -1 on the photosynthesis rate varies between the years due to the assumed species-specific bell-shaped

relationship (Fig. B5 a). In case of deciduous trees the length of the vegetation period c1(leaf onset to fall) affects addition-5

ally the annual photoproduction (e.g. Haxeltine and Prentice, 1996; Luo, 2007; Horn and Schulz, 2011; Gutiérrez and Huth,

2012; Sato et al., 2007). If the photosynthesis rate is much larger than the respiration rate (high AWPc2; for instance, low

ratio of maintenance respiration to photosynthesis (RMP) under full light in Fig. B6 b), the positive effect of temperature on

photosynthesis causes an increase of AWP in c3some simulated years. If both rates show the same magnitude c4(RMP under

full light is closed to 1 in Fig. B6 b), higher temperatures increase respiration stronger than photoproduction (in most years)c5,10

which result in a decrease of AWP.

c1 Text added.
c2 Text added.
c3 most
c4 Text added.
c5 Text added.
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Figure B6. a) Photosynthesis (green) and maintenance respiration (red) rates of a single beech tree over stem diameter (dbh) under full light.

b) The ratio between maintenance respiration and photosynthesis of the same beech tree.

B5 Functional diversity and temperature sensitivity

To analyse the effect of functional diversity on temperature sensitivity, we first calculate the SIMAT -values for every species

depending on tree height and light availability (as done for pine trees in figure 5). Then, we c1calculate a mean SIMAT -value

for each species mixture for all light-height combinations (SIh,l). Finally, we average all SIh,l which are larger than -7.5 % °C
-1 (barSIMAT ) and calculate the Rao’s Q of the mixtures (based on equal abundances). The highest barSIMAT -values were5

found for deciduous forests (Fig. B7). Mixed forests with deciduous and needle leaf trees show lower values than the deciduous

forests, but higher Rao’s Q-values.

c1 build
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Figure B7. Rao’s Q (with equal abundances) against barSIMAT -values of all possible species mixtures (from the forest factory). The

barSIMAT -values are the average over all SIh,l values for all light-height combinations and with values larger than -7.5 % °C-1. For

mixtures, we assume equal abundances and calculate the mean over the SIh,l values of all species within the mixture. Green dots indicate

forests that consist only of deciduous trees; red dots indicate forests that consist only of needle leaf trees; blue dots indicate forests that

contain both tree types.
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Abstract. Rising temperatures due to climate change influence the wood production of forests. Observations c1show that

some temperate forests increase their productivity, whereas others reduce their productivity. This study focus on how species

composition and forest structure properties influences c2the temperature sensitivity of c3above-ground wood production (AWP).

It further investigates, which forests will c4increase in their productivity the most with rising temperatures. We describe forest

structure by leaf area index, forest height and tree height heterogeneity. Species composition is described by a functional5

diversity index (Rao’s Q) and c5species distribution index (ΩAWP ). ΩAWP quantifies c6how well species are distributed over

the different forest layers regarding AWP. c7. We analyzed 370,170 forest stands, generated with a forest gap model. These

forest stands c8cover a wide range of possible forest types. c9For each stand we estimate annual above-ground wood production

and perform a climate sensitivity test based on 320 different climate time series (of one year length). The scenarios differ

in mean annual temperature and annual temperature amplitude. Temperature sensitivity of c10wood production is quantified10

as relative change of productivity due to a 1◦C temperature rise in mean annual temperature or rather annual temperature

amplitude. Increasing ΩAWP influences positively both temperature sensitivity indices of forest, whereas forest height shows a

bell-shaped relationship with both indices. Further, we reveal that there are forests in each successional stage that are positively

affected by temperature rise. For such forests, large ΩAWP -values are important. In case of young forest, low functional

diversity and small tree height c11heterogeneity is associated with a positive effect of temperature on c12wood production.15

During later successional stages, higher species diversity and larger tree height heterogeneity is an advantage.c13To archieve

c1 discovered
c2 this
c3 forest productivity
c4 rising temperatures increase productivity strongest
c5 optimal species distribution
c6 how well species are distributed within the forest structure regarding
c7 with the given environmental conditions of each single tree
c8 cover a large number of possible
c9 For each forest stand we estimate annual above-ground wood production under 320 climate scenarios (of one year length)

c10 forest productivity
c11 heterogeneity support
c12 forest productivity
c13 Text added.
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such a development, one could plant below the closed canopy of even-aged, pioneer trees a climx-species-rich understory that

will build the the canopy of the mature forest. This study highlights that forest structure and species composition are both

relevant c14in understanding the temperature sensitivity of c15wood production.

Copyright statement. TEXT

1 Introduction5

Climate change alters c1wood production by modifying c2the rates of photosynthesis and respiration rates of trees (Barber et al.,

2000; Luo, 2007; Peñuelas and Filella, 2009; Reyer et al., 2014). Changes in forest productivity have been observed in past

decades all over the world (Nemani et al., 2003; Boisvenue and Running, 2006; Seddon et al., 2016). c3The carbon stock of

forests and their role as carbon sink are therefore changing. These c4findings have stimulated discussions about whether forest

management strategies can be adapted to reduce forest vulnerability to climate change, to support recovery after extreme events10

and c5foster the carbon sink function of forests (Spittlehouse and Stewart, 2004; Spittlehouse, 2005; Bonan, 2008).
c6Wood production is influenced by several factors c7, such as CO2 fertilization, nitrogen deposition, precipitation, and tem-

perature. (Barford et al., 2001)c8. c9 For instance, rising CO2 increases water use efficiency of forests (Keenan et al., 2013)
c10, which could compensate negative effects of climate change on European forest growth (whereas, with constant CO2 at

350ppm, forest growth declines on several sites due to climate change - see Reyer et al. 2014). Another important process is15

the fertilization (De Vries et al., 2006, 2009)c11. Due to depositions of nitrogen in the second half of the last century wood

production had increased in European forests (Solberg et al., 2009). However, temperature modifies photosynthesis, respiration

and growth rates of trees (Dillon et al., 2010; Piao et al., 2010; Wang et al., 2011; Jeong et al., 2011; Heskel et al., 2016). In

the temperate biome, positive effects on c12wood production (Bontemps et al., 2010; Delpierre et al., 2009; Pan et al., 2013;

McMahon et al., 2010, e.g.) as well as negative ones have been found (Barber et al., 2000; Jump et al., 2006; Charru et al.,20

2010, e.g.). However, it remains unclear why forests react differently to temperature change.

c14 to understand
c15 forest productivity
c1 forest growth
c2 Text added.
c3 Text added.
c4 observations
c5 to compensate for anthropogenic CO2-emissions
c6 Forest productivity
c7 Temperature can strongly alter forest productivity, in addition to other climate variables
c8 such as CO2-fertilization or nitrogen deposition
c9 Text added.

c10 Text added.
c11 Text added.
c12 forest productivity
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Figure 1. Overview of drivers influencing c15wood production. External variables in this study are temperature, radiation, and precipitation.

Forest properties are divided into two groups: species composition properties (e.g., the Rao’s Q as a measure of functional diversity and
c16species distribution index ΩAWP ) and forest structure properties (e.g., forest height, leaf area index and tree height heterogeneity).

In addition to the influence of climate variables, c13wood production is also affected by internal forest properties. These

properties can be grouped into two types: properties which describe forest structure, and those which describe species com-

position (Fig. 1). For instance, changes in productivity can result from changes in basal area (Vilà et al., 2013), in leaf area

index (Asner et al., 2003) or in the heterogeneity of tree heights within a forest (Bohn and Huth, 2017). Furthermore, c14wood

production often increases with the increasing number of species (Zhang et al., 2012; Vilà et al., 2007).5

Forest stands, which differ in their forest properties, might respond differently to the same climate change (Huete, 2016).

For instance, the positive effect of increasing temperature on c1wood production fades with forest age in temperate deciduous

forest (McMahon et al., 2010; Bontemps et al., 2010, e.g.) and Morin et al. (2014) showed that higher diversity buffer the

effect of inter-annual variability on c2wood production. However, these studies include only a few forest properties and rarely

c13 forest productivity
c14 forest productivity
c1 forest productivity
c2 forest productivity
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include c3properties related to both species composition and forest structure. Hence, it c4is unclear, how c5these forest properties

influence c6wood production change due to temperature rise and which forests will benefit from rising temperatures.

As far as we know, there is no data set availablec1 that covers forests, differing in structure and diversity, under almost

identical climatic conditions. Even if a larger number of forest stands c2were available, it would be difficult to manipulate

for instance temperature while keeping all other climate variables constant. An alternative option to c3such field experiments5

analysis is offered by forest simulation models. Such models are able to estimate c4wood production under different climate

conditions (Lasch et al., 2005; Bohn et al., 2014, e.g.). For instance, Reyer et al. (2014) investigated the effect of climatic

change on forests by simulating 30 c5year time slices of a range of different future climates for 135 inventoried forest stands.

There are also model-based studies, which systematically analyzed the effect of species diversity on productivity and stability

over long periods (Morin et al., 2011, 2014). However, disturbed or managed forest stands and the influence of climate change10

have been not included in these analyses.

In this study we therefore propose a new simulation-based approach. First, we generate a c6large number of forest stands

covering various forest structures and species compositionc7s (for up to eight temperate tree species). Annual above-ground

wood production (AWP) is then calculated for all forest stands based on climate c8time series. These c9time series differ in the

mean annual temperature (MAT) and the intra-annual temperature amplitude (Q95). We aim to analyze (i) how productivity of15

forest stands (AWP) is influenced by increasing temperature (MAT) and (ii) by increasing intra-annual temperature amplitude?

Furthermore, we address the question (iii) c10of which forest stands will benefit most from rising temperatures.

2 Method

To analyse the effect of temperature on the productivity of forest stands, we apply the "forest factory" model approach (Bohn

and Huth, 2017). c11The forest factory generates 370,170 different forest stands (see section 2.1) and c12allows the estimatc13ion20

of above ground wood production (AWP) under various climate c14time series (see section 2.2). The 320 scenarios differ

c3 both properties of both types,
c4 remains
c5 Text added.
c6 forest productivity
c1 , which
c2 would be
c3 field data
c4 forest productivity
c5 years into the future for
c6 huge
c7 Text added.
c8 scenarios
c9 senarios

c10 Text added.
c11 With this approach, we generate
c12 Text added.
c13 e the
c14 scenarios
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in mean annual temperature (MAT) and annual temperature amplitude (Q95). Finally, we calculate the forest stand-specific

sensitivity of productivity against temperature change (SIMAT and SIQ95) as the relative change of c15wood production per

temperature change of 1 °C (see section 2.2). To relate these sensitivities to forest structure and species composition, we

characterize every forest stand with five properties (see section 2.4). We analyse the influence of the five forest properties

on temperature sensitivity using boosted regression trees (see section 2.5). Finally, we analyse which combination of forest5

properties results in the highest sensitivity values for different successional stages (see section 2.6).

2.1 The forest factory approach

The forest factory c1 creates forest patches which is based on 15 different stem size distributions c2and 256 species mix-

tures.c3100 forests patches of each combination are built.

The stem size distributions cover a gradient from young to old and disturbed to undisturbed forests. Species mixtures include10

all possible combinations of c4 Pinus sylvestris, Picea abies, Fagus sylvatica, Quercus robur, Fraxinus excelsior, Populus x

canadensis, Betula pendula and Robinia pseudostuga. c5We use the species parameter set and algorithms of the FORMIND-

model version for temperate forests c6 within the forest factory (Bohn et al., 2014; Fischer et al., 2016). c7To generate forest

patches, we randomly choose trees from the stem size distribution, assign a species identity and plant them within a patch of

400m2c8size.15
c9To place a tree within a patch the following rules must be meet: (i) c10there must be available enough space for crowns of

every tree (ii) every tree c11in the forest must have a positive productivity under c12its environmental conditions (light, temper-

ature, water). c13We use climate time series of the year 2007, measured at Hainich National Park, central Germany. We assume

this time series as a typical example for a temperate year (in principle it possible to use climate data of every other location). In

contrast to an artificially generated climate this climate is perfectly physically consistent (regarding light, air temperature and20

precipitation).
c14In a few cases not all species of the mixture could be placed within a patch by the algorithm, so we rejected such forests.

We end up with 370,100 forest stands. For more details regarding the forest factory see Bohn and Huth (2017).

c15 forest productivity
c1 combines
c2 with
c3 Text added.
c4 pine, spruce, beech, oak, ash, poplar, birch and robinia
c5 The
c6 are used
c7 Text added.
c8 Text added.
c9 The forest factory generates forest stands with a size of 400m2 using the following rules:

c10 space limit the maximal number of trees and
c11 Text added.
c12 a typical temperate climate
c13 For a typical temperate climate, we employ a climate time series from the year 2007, measured at Hainich National Park in central Germany. presented a

detailed description and discussion of the forest factory.
c14 Text added.
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2.2 The wood production

c1The calculation of above-ground wood production (AWP) of trees is based on algorithms of the model FORMIND (Bohn

et al., 2014; Fischer et al., 2016). The c2wood production of a single tree is calculated as the difference between climate

variables driven respiration rates and photosynthesis. The photosynthesis rate (Ptree) results from the crown size, self-shading

within the crown and available light at the top of the tree. The available light depends on the radiation above the canopy,5

reduced by the shading of larger trees within the forest stand. Furthermore, productivity can be limited due to air temperature

and available soil water, which is expressed by c3the photosynthesis-limiting factor φ for each tree (Gutiérrez, 2010; Fischer,

2013; Bohn et al., 2014). Available soil water within the stand results from precipitation, interception, evapotranspiration of

trees and run-off.

One part of the photosynthesis production of a tree (Ptree) is allocated to its maintenance respiration (and to non-wood10

tissues; Rm). Rm depends on tree biomass and temperature ψ (Piao et al., 2010). The remaining organic carbon is transformed

into newly grown above-ground wood (AWPtree) and a proportional growth respiration (rg).

AWPtree = (φPtree −ψRm)(1− rg) (1)

AWPtree is summed over all trees to obtain the productivity of the forest stand - AWP (for a more detailed description of

growth processes, see Bohn et al. (2014); Bohn and Huth (2017) ).15

2.3 climate sensitivity

To generate a set of 320 annual climate c4time series, we selected daily climate measurements of the Hainich station in central

Germany between the years 2000 and 2004. This time series includes mean daily radiation, precipitation and air temperature

(see Appendix A1; Fig. A1)). We separated these time series into five distinct time series of one-year length. First, we increase

or decrease the mean annual temperature of each year by adding or subtracting 0.5 °C steps between -1.5 °C and +2 °C. Second,20

we change the amplitude of the annual temperature cycle for these time series c5variation of each year. c6To do so, we modify

the standard deviation of each year by 4% steps between -12 % and +16 %. We end up with five c7sets of climate times series

(of one-year length) that differ in c8temperature, precipitation and radiation. Each c9of these five sets includes 64 time series,

which differ only in temperature (see Appendix A1 , Fig. A2). Temperature change is quantified using two indices: (i) mean

annual temperature (MAT) and (ii) annual temperature amplitude (Q95), which describes the 95% inter-quantile range of all25

c1 Text added.
c2 productivity (AWP)
c3 Text added.
c4 scenarios
c5 Text added.
c6 by modifying
c7 climate scenario sets
c8 Text added.
c9 Text added.
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Figure 2. Overview of c1forest properties and resulting temperature sensitivity of above-ground wood production (AWP) of three exemplary

forests: a) old even-aged spruce forest; b) mature deciduous forest; c) a quite young mixed species forest. c2The middle panel (subfigures

d, e & f) shows the corresponding stem size distributions and inform about the forest height (the highest tree) and species distribution in-

dexΩAWP
c3(which quantifies, how suitable a species distributed with in the forest structure regarding AWP). c4 c5Each forest is treated with

320 climate time series: The last panel shows the AWP as a a function of mean annual temperature (MAT). The colours indicate different in-

ter-annual amplitudes of the temperature (Q95) of the used time series. (The coloured bands show the standard deviation due to the variability

of the five different time series, which exist for each combination of MAT and Q95).

daily temperature values of a given year. We c10do not model the effects of nitrogen and CO2 fertilization (as both do not

vary strongly within one year) or extreme anomalies (e.g., pathogen attacks) on c11wood production. Figure 2 (a-c) shows the

above-ground wood production (AWP) for different annual temperatures for three different forest stands.

c10 exclude
c11 forest productivity
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We analysed the sensitivity of every forest stand c6to temperature change by following the approach of Piao et al. (2010).

For every forest stand, a general linear model is fitted relating c7wood production and the two temperature indices MAT and

Q95, as well as the nuisance parameter year.

AWP = αxMAT +βxQ95 + γxyear + ε (2)

For every forest, we calculate the relative change of productivity due to an increase of 1 °C:5

SIMAT =
α

AWP
(3)

SIQ95 =
β

AWP
(4)

In our analysis we exclude all forests stands for which AWP c1turns negative if the temperature rises by 1 °C (c2This occures

in 2% of all stands).

We also determine the sensitivity of forests against temperature change using the German forest inventory to validate our10

results. However, the inventory does not include LAI measurements. We therefore assume the basal area as a proxy for LAI,

and we select subsamples of forests stands with similar structure (basal area, tree height heterogeneity, forest height, and same

species mixtures). In addition, we use elevation as a proxy for mean annual temperature, assuming temperature changes of

0.65 °C per 100 metres on average (Foken and Nappo, 2008). Only in the case of spruce and beech monocultures did we find

enough data to calculate SIMAT -values for several forest structures (see Appendix A3, Fig. A3 & A4 ). The correlation of the15

sensitivity values based on field data and simulation data was quite high (R2 = 0.65).

2.4 Five forest properties to describe forest stands

We use three indices to describe the forest structure: leaf area index (LAI), c3maximum forest height (hmax ) and tree height

heterogeneity (θ). hmax corresponds to the height of the largest tree in a forest stand, and θ is quantified by the standard

deviation of the tree heights.20

To describe species composition, we use Rao’s Q and c4species distribution index (ΩAWP ). Rao’s Q quantifies functional di-

versity based on species abundances and differences in species traits (Botta-Dukát, 2005, for details see Appendix A2). ΩAWP

analyses the optimal location of species within the forest structure. ΩAWP is defined as the ratio of the forest’s productivity to

the maximum possible productivity of the forest without changing tree sizes or number. Hence, the maximum productivity can

be obtained by varying only the species identities of trees in the forest stand. We change the assigned species of each tree until25

c6 against
c7 forest productivity
c1 is
c2 Text added.
c3 maximal
c4 optimal species distribution
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we find the optimal species for each individual tree and its specific environmental condition (Bohn and Huth, 2017). All five

indices are nearly uncorrelated for the investigated forest stands ( Appendix A2 Table A1).

2.5 Boosted regression trees

We applied boosted regression trees (BRT) to quantify the influence of the five forest properties on SIMAT and SIQ95. BRT

is a machine learning algorithm using multiple decision (or regression) trees. It is able to address unidentified distributions5

(De´Ath, 2007; Elith et al., 2008). Each model is fitted in a forward stage-wise procedure to predict the response of the

dependent variable on (SIMAT or SIQ95) to multiple predictors (θ, hmax, LAI, Rao’s Q, and ΩAWP ). To omit an over-fitting

regarding maximal forest height, we classify forest stands into 18 classes (Hmax). Each class has a width of 2 metres, starting

with 4 to six metres and finishing with 36 to 38 metres. The BRT try an iterative process to minimize the squared error between

predicted SI values and those of the data set. Hereby, part of the data is used for a fitting procedure and the other part is used for10

computing out-of-sample estimates of the loss function (Ridgeway, 2015). This BRT-analysis was performed in the R-package

gbm 2.1.1 (Ridgeway, 2015).

We used a quarter of the data (randomly sampled) for the machine learning procedure. To get the best model, we vary the

following four BRT parameters: learning rate (0.1, 0.05 and 0.01), the bag-fractions (0.33, 0.5 and 0.66), the interactions depth

(1, 3 and 5) and the cross-validation (3-, 6- and 9-fold) assuming a Gaussian error structure c1(the default setting). The best15

fitted BRT for both SIMAT and SIQ95 show a learning rate of 0.1, a bag-fraction of 0.66, an interaction depth of 5 and a

3-foldcross validation. These two models were used for all further analyses. The remaining 75% of the data are used to validate

the fitted BRT algorithm.

2.6 Finding the forest stands for different successional stages that benefit the most increasing temperatures

Here, we assume forest height as a proxy for the successional stage of a forest. In every height class, (Hmax) we select those20

5% of forests that show the highest sensitivity values (SIMAT and SIQ95). We removed the forest height classes between 10

and 14 metres, as they only contain a few forests (15). For all other classes, we analyse the relationship between Hmax and the

forest properties (ΩAWP , Rao’s Q, LAI and θ).

3 Result

We analysed the sensitivity of productivity (AWP) against temperature for forest stands that differ in forest properties (c2species25

distribution index (ΩAWP ), functional diversity (Rao’s Q), tree height heterogeneity (θ), and forest height class (Hmax) and

LAI). The annual above-ground wood production (AWP) was estimated for each forest stand using 320 different climate

c1 Text added.
c2 optimal species distribution
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Figure 3. Partial dependency plots of the five forest properties ΩAWP (c1species distribution index), forest height class hmax, Rao’s Q

(functional diversity), θ (tree height heterogeneity) and LAI (leaf area index) for SIMAT (sensitivity against changes inthe mean annual

temperature) and SIQ95 (sensitivity against changes in the annual temperature amplitude). c2Relative importance (RI) compares the influ-

ence of different input variables on the variability of a target variable. Histograms show the frequency of forest property values in the analysed

data set. c3Note, a ΩAWP is the ratio of the current AWP of a forest and the highest possible AWP optained by shuffling ony species identies

without changing the forest structure.

c3time series. We than quantified the changes in productivity due to c4 changes in c5MAT (SIMAT ) and c6Q95 (SIQ95). For

the analysed forest stands, the average SIMAT is 1.5 % °C -1 and the average SIQ95 is -5.4 % °C -1 (see also the frequency

distribution in Appendix B1, Fig. B1).

With a boosted regression tree algorithm, we analysed how the five forest properties influence the temperature sensitivity

of forests. To validate the fitted BRT algorithm, we compare SI-values, which are not used for the fitting, with the SI-value5

predicted by the BRT algorithm (Fig. 3). The sensitivities against mean annual temperature change (SIMAT ) correlate very

well (R2 of 0.84) and show a low RMSE of ± 2.9 % °C -1 (see Appendix B2 Fig. B3).The RMSE even decreases to ± 1.5 % °C
-1 if a subset of the forest stands is analysed that shows SIMAT values larger than -5 % °C -1 (90% of the data). The accuracy

of the sensitivities against temperature amplitude change (SIQ95) was even slightly better. In addition, a subset that includes

SIQ95-values larger than -15 % °C -1 (93% of the data) shows a RMSE of only ± 1.1 % °C -1 (see Appendix B2 Fig. B4).10

c3 scenarios
c4 the
c5 mean annual temperature
c6 amplitude of inter-annual temperature
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Figure 4. Analysis of those forests that show the highest 5% of the SI-values depending of forest height. Lines indicate mean values of the
c1forest subsamples c2which includes the best 5% regarding SIMAT

c3of each hight class. c4The grey band indicates the inter quartile range.

Figure a) shows temperature sensitivity of above-ground wood production c5over forest height, analysing only the best c6the forest subsample.

b) to d) shows the change of the remaining forest properties within the c7forest subsamples (ΩAWP = optimal species distribution; θ = tree

height heterogeneity; LAI = leaf area index; Rao s Q quantiles functional diversity).

data set. According to BRT analysis, ΩAWP is the most relevant forest property to explain temperature sensitivities (relative

influence of 87 % for SIMAT and 89% for SIQ95; see also Appendix B2, Fig. B2). However, the influence of ΩAWP on

temperature sensitivity flattens out for high ΩAWP levels (Fig. 4). The second relevant forest property is forest height (Hmax).

Forest with heights between 25 and 30 m benefit the most from increasing mean annual temperatures. The other three properties

(LAI, Rao’s Q, and θ) have a low influence on SIMAT .5

Both sensitivity indices show similar relationships to the five forest properties. However, an increase in annual temperature

amplitude always reduces productivity, whereas increasing mean annual temperature can result in a positive effect on c8wood

production. To detect those stands that benefit the most from increasing temperature, we select the 5% of forest stands that

showed the highest SIMAT -values in each forest height class (Fig. 4). In all forests classes, we found forest stands that would

benefit from increasing temperatures. c9Analysing of their forest properties reveals that the ΩAWP levels were always high.10

Young forests (low forest height), which have a positive temperature sensitivity, show low functional diversity and low tree

height heterogeneity (θ). For older forests (of intermediate and high forest height) with positive temperature sensitivity, we

found an intermediate level of functional diversity. Interestingly, for three variables (Rao’s Q, θ and LAI), the relationships

c8 forest productivity
c9 The analysis
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change their character between young and intermediate forest heights. We obtain similar simulation patterns for SIQ95 (

Appendix B3 Fig. B5).

3.1 Understanding the patterns

3.1.1 The influence of forest structure on temperature sensitivity

Forest structure affects c1wood production of the single trees in two ways. First, it determines the available light for each single5

tree and second, the size of trees influences photosynthesis and respiration rates c2(Fig. B6). Hence, based on the height of a

tree and its available light, it is possible to calculate its SI-values (for a detailed discussion of these calculations, see Appendix

B4).
c3In c4even-aged forestc5s c6, all trees have the same height and receive full light (e.g., c7 Fig. 5c8, forest C). Such forests

show a bell-shaped relationship between forest height and temperature sensitivity (Fig. 5 SI values for 100% available light10

depending on tree height). c9

c13In case of a forest consisting of trees with different heights c14smaller trees receive less light due to shading. Note that,

even if trees reveive less light, the bell-shaped relationship between tree height and productivity persists (Fig. 5). Two cases

will be discussed c15(assuming identical LAI as forest C, Fig. 5 c16). c17In the first case all trees have not yet reached their

maximal SI-values (Fig. 5, forest A,); and c18in the second case all trees c19already passed their maximal SI-values (Fig. 5,15

forest B). In the case of forest A, trees in the shade of larger trees always have lower SI-values if they belong to the same

species (see Appendix B4). Hence, the temperature sensitivity level of this forest is lower than the sensitivity of an even-aged

forest, whose trees have the same size as the largest tree in forest A (Fig. 5,c20 tree 1). Hence, if maximal SI-Values are not

reached, increasing height heterogeneity decreases SI-values of a forest.

c1 productivity
c2 Text added.
c3 For instance, i
c4 Text added.
c5 Text added.
c6 of even-aged trees
c7 forest C in
c8 Text added.
c9 Even if trees receive less light, the bell-shaped curve persists (see also Fig. 3)

c13 In a forest that consists
c14 (but similar LAI as an even-aged forest), smaller trees receive less light due to shading.
c15 Text added.
c16 Text added.
c17 first, a case in which
c18 second, a case in which
c19 are larger than
c20 Text added.
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Figure 5. Analysis of SIMAT values of single trees within three different forests. The diagram shows the calculated SIMAT value of

individual trees for every combination of tree height and available light c10(for pinus sylvestris between SIMAT
c11-levels of 6.5 and - 6.5;

other species show similar patterns). The dots indicate the different trees of the three forest examples c12The white dots belong to trees with

the corresponding number of forest A, gray dots belong to the trees of forest B and dark gray dots belong to forest C. Note that in the case of

forest C, all trees have the same height and the same light, so that all three dots are at the same place in the diagram.

In forest B c21(Fig. 5), SI-values of the shaded trees can be similar (or even higher) than the SI-value of the largest trees

in the forest c22(SI-values of tree 1 show similar levels as tree 2, 3 and 4 in forest B, Fig. 5). c23Hence, if maximal SI-values

are passed, increasing tree height heterogeneity results in similar c24 (or even c25more positive) temperature sensitivity levels

compared to an even-aged forest c26 trees c27(an even-aged forest consisting only of trees similar to tree 1 of forest B in Fig. 5).

These general considerations explain the change from low levels of height heterogeneity in young forests to a more hetero-5

geneous structure c1in the analysis of those forests, which will benefit from increasing temperature (see Fig. 4 d).

3.1.2 The effect of species composition on temperature sensitivity

In this study, we use the new index ΩAWP called c2species distribution index (Bohn and Huth, 2017). ΩAWP
c3 is the ratio

between current AWP and the highest possible AWP of the forest which can be reached due to shuffling of species identi-

ties. Its huge importance on forest temperature sensitivity might be illustrated by the following considerations: If species are10

c21 Text added.
c22 Text added.
c23 SI-values of tree 1 show similar values to trees 2, 3 and 4. This
c24 to
c25 higher than
c26 which only consists of the largest
c27 Text added.
c1 for the optimal forests analysis
c2 optimal species distribution
c3 describes the ratio of the realized to the maximal possible productivity, which can be reached by shuffling species identities in the given forest stand
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Figure 6. Graphic (a) shows which species c1have the highest productivity ( ΩAWP
c2 value of 1) under the current climate for different

heights and different light conditions. Graphic (b) shows which species shows the highest c3increase of productivity due to rising temper-

atures for different heights und different light conditions. Red colours indicate coniferous trees, whereas green colours indicate deciduous

trees. Darker colours indicate late successional species, whereas lighter colours indicate pioneers. The dots indicate the different trees of the

two forest examplesc4(A and B). The white dots belong to trees with the corresponding number of forest A. Note, that all trees have the same

height and the same light, so all five dots are at the same place in the diagram. Gray dots belong to the corresponding trees with the same

number of forest B.

unfavourably distributed within the forest (low ΩAWP ), the AWP of the forest is low c4. If AWP is low the forest will suffer

from increasing temperatures, which results in negative slopes (∆AWP / ∆T). These values are than divided by low AWP

values (Equation 4), which results in large negative values of SIMAT and SIQ95. (See Appendix B5).

Increasing functional diversity (Rao’s Q) c5stabilizes the forests’ sensitivity to temperature. This corresponds to results of

Morin et al. (2014) and the theoretical consideration of Yachi and Loreau (1999). The analysis of the single species can5

give additional insight into the mechanisms behind those species that benefit the most from temperature increase, which are

deciduous trees under most conditions. This is reasonable as warmer regions host more deciduous species than needle-leaf

species. The highest functional diversity (Rao’s Q) instead occurs in mixtures of deciduous and needle-leaf trees (Appendix

B5 Fig. B7). As only two needle-leaf species are considered here in the species pool, low Rao’s Q values are dominated by

mixtures of deciduous trees. Such deciduous tree mixtures mostly benefit from temperature increases. In consequence, mixtures10

with high Rao’s Q values which mostly include both functional types react more poorly (Fig. 3; Appendix B5 Fig. B7).

c4 and in consequence, the SI values are low as well (see Appendix)
c5 has a stabilizing effect (in the case of mean temperature sensitivity)
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We developed two diagrams that show the species with the highest temperature sensitivity and with the highest productivity

for different conditions (available light and height of a tree) (Fig. 6). Interestingly, the species with the highest productivity

differ from the species that benefit most from rising temperatures in many cases. This has important consequences. The highest

benefit due to increasing temperatures obtain forests with high but not maximal ΩAWP (Fig. 4). Additionally, deciduous trees

benefit more than coniferous trees from rising temperatures (Fig. 6, Appendix B5, Fig. B7). Hence, young forests should consist5

of deciduous trees (compare Fig. 5, forest A, and Fig. 6), although the highest productivity values are found for coniferous

trees (Fig. 6; forest A). Forests including large trees obtain the highest sensitivity values if intermediate sized trees differ in

their species identity from the largest trees (Fig. 6).

4 Discussion

In this study, we analyse how temperature changes affect c1above-ground wood production (AWP) and quantify the effect of10

five different forest properties on this relationship. The change of c2 AWP was investigated for 370,170 forest stands under

320 different climate c3time series. Our analysis shows a high influence of ΩAWP and Hmax on the temperature sensitivity

of AWP. Further, for all successional stages of forests, we detect some forests with a specific c4set of forest properties which

benefit from temperature rise. This specific combination varies with forest height.

4.1 The study design15

In this theoretical study, we present a new c5climate sensitivity analysis (c6regarding temperature) on c7 AWP. This approach

extends field observation and long-term model simulations, as it allows the analysis of forests, which already exist but also

which might exist in the future due to management changes and/or disturbances.c8Our approach includes only forest stands in

which every tree in a forest has a positive productivity and enough space for its crown. Hence it is impossible for instance,

that light demanding species grow below a closed canopy or forests are overcrowded. However, the data set include also a20

few very unusual stands structures or species combinations, which can not emerge in a natural system, but may result from

disturbances or managment. In the case of field observations, it is difficult to explore the influence of a single climate variable

(e.g., temperature) on one target variable (e.g., AWP), as in most cases, several variables are altered at the same time (see also

Appendix A3). Process-based models are one option to analyse such relationships and separate these effects. The simulation of
c9AWP with the FORMIND-model in temperate forests has been successfully compared to Eddy flux sites Rödig et al. (2017b),25

the national German forest inventory (Bohn and Huth, 2017), and European yield tables Bohn et al. (2014).

c1 forest productivity
c2 forest productivity
c3 scenarios
c4 value combination
c5 approach to investigate the effects of climate change
c6 here
c7 forest productivity
c8 Text added.
c9 forest productivity
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An advantage of the forest factory approach is the huge set of various forests stands that can be analysed. The dataset in-

cludes forest stands that often occur in temperate forests (even-aged spruce, pine and beech stands). However, it also includes

hypothetical ones that could occur through alternative forest management or disturbances (fire, bark beetles, etc.). Hence, our

data set of forest stands covers a much larger variety of forest property combinations compared to long term forest simulations

with the focus on natural forests in their equilibrium state (Morin et al., 2011, e.g.) or on monocultures (Reyer et al., 2014,5

e.g.). c10 Long term simulations with ecosystem models, which process modelled climate projections, face a trade-off between

cascade uncertainty and path dependency (Wilby and Dessai, 2010; Reyer et al., 2014). The accumulations of model uncer-

tainties over such a process chain result in an increasing uncertainty. Our study design tries to minimize this uncertainty and

omit path dependencies by including only those processes that might be relevant for the research question. In this study, for

instance, we omit the effect of climate change on regeneration and mortality. Furthermore, using several climate variables as10

model inputs but only analysing the effect of one variable might lead to incorrect interpretations of its effect. For example,

temperature and radiation often correlate, and both might increase productivity. Therefore, in this study, we only vary one

variable in all 5 c11sets of time series. This guarantees no relationships between the target climate variable and the remaining

climate variables.

As an increase in global mean temperature of 1.5 °C to 2 °C can hardly be avoided, even under the RCP 2.c16 climate15

scenarios IPCC (2013), this study focuses on temperature change. c2This RCP scenario predicts only small changes of annual

precipitation levels for temperate regions. Hence, our approach focuses only impacts of change in temperature. However, this

might be critical for analysis of strong temperature changes (e.g. RCP 8.5), which will result in an increase of droughts and

changes in the annual temperature cycles and a strong change in CO2. Such more complex scenarios should be analyzed in

future studies. Further, we neglect the effect of time lags (e.g. bud building in the previous year). However, it is possible to20

extent the used time series to analyze the behaviour of the forest over longer time periods and study not only productivity, but

also effects on regeneration or mortality.
c3To characterize the annual cycles of temperature we used two variables: mean annual temperature (MAT) and inter annual

temperature amplitude (Q95). Both variables can be varied independently. In case of higher MAT we observe an elongation of

the vegetation period. This leads to higher forest productivity (if other resources are not limiting (Luo, 2007) c4and explains25

why SIMAT is often positive. However, warmer summer temperatures can also lead to a decline in wood production due to an

increase in respiration. In case of increasing Q95, more days with extreme temperatures will occur in a year. Thus, an increase

c10 However, it would be possible to reconstruct a forest succession based on three forest factory by selecting forest stands in an appropriate order.
c11 scenarios
c1 5
c2 This scenario predicts only a small change of annual precipitation levels for many areas of the temperate biome. However, other scenarios, which result

in a stronger climate change, predict an increase in droughts and changes in annual temperature cycles. Such a more complex scenario should be analysed in

future studies.
c3 We choose two variables to characterize the intra-annual temperature cycle. Higher MAT results in longer vegetation periods, especially if other resources

are sufficiently available, and leads to higher forest productivity citep Luo et al. 2007. On the other hand, high temperatures increase respiration citep Piao et

al. 2010 , resulting in higher respiration rates, especially in years with high intra-annual temperature amplitude (whereby MAT could stay constant).
c4 Text added.
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of 1 ◦C−1 of Q95 will increase respiration more strongly compared to an increase of 1 ◦C−1 of MAT. Hence, the increase of

Q95 has normally negative effects on the productivity (negative SI values).

The temperature sensitivity values obtained here are in the same range as that found for temperate ecosystems in heating

experiments (Lu et al., 2013, 4.4 ± 2.2 % °C -1). Within the 16 analysed studies reviewed by Lu et al. (2013), the experimental

plots show almost identical environmental conditions (soil, radiation, and precipitation) and species composition. To heat the5

plots, greenhouses or infrared heaters were used. Another study, based on natural forest stands in New Zealand, found an

AWP increase between 5 and 20 % °C -1 for forest, assuming no change in forest structure and species composition Coomes

et al. (2014). The analysed plots were spread all over New Zeeland, and warmer temperatures coincide with higher radiation

Mackintosh (2016). Hence, the analysed temperature effect also includes the influence of radiation. In our setting, however,

the influence of temperature is independent from radiation Lu et al. (2013, as in). We also found a good correlation between SI10

values derived from growth measurements of the German forest inventory and simulated SI values based on the forest factory

( Appendix A3 Fig. A3 & A4 ).

4.2 Implications for forest management

c1 Our findings might be relevant for future management strategies of temperate forests. Specifically, our new understanding of

which species benefit most from rising temperatures (Fig 6), suggests possible strategies, e.g. replacing spruce monocultures15

with mixtures of deciduous trees. Further, based on the analysis of which forest structure benefits most from rising temperatures

(Fig. 4, Fig 5, Fig 6), early stage even-aged forests should include mainly pioneer species. In the mature stage, we predict a

positive effect of temperatures on wood production for a mixture of climax species including different tree sizes. These climax

species could be planted below the canopy of the pioneer species in young forests. In our approach, we do not simulate the

establishment of very young trees. However, during the conversion between these two forest types one big challenge might be20

the removal of the pioneer trees without damaging the young trees, which will build the mature forest.

4.3 Implications for global vegetation modelling

c2 Most global vegetation models (DGVM) represent vegetation as fractional cover of different plant functional types within a

grid cell (e.g. LPJ Sitch et al., 2003). c3Only a few global vegetation models include a more detailed representation of vegetation

structure and functional diversity (Sato et al., 2007; Scheiter et al., 2013; Sakschewski et al., 2016). c4It would be interesting25

to perform the here presented analysis also with global vegetation models which include structure, to better understand the

mechanisms driving the sensitivity of forest systems against climate change. Beside the global vegetation models, forest gap

models, which have been restricted to local stands in the past are now able to simulate forest dynamics in regions or even

entire continents (Seidl and Lexer, 2013; Rödig et al., 2017a). c5Studies using DGVMs or large scale forest gap models sim-

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 Text added.
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ulate natural succession. Our analysis indicates that natural and managed (or disturbed) forest systems, which differ in forest

structure, might react differently on climate change. Hence, we suggest considering forest structure in future analysis of global

vegetation. Such information on forest structure might be derived from remote sensing.

5 Conclusions

c1The temperature sensitivity of wood production in temperate forests is influenced by forest structure and species diversity as5

our study showed. The species distribution index (ΩAWP ) and forest height seems to be the most important forest properties

influencing temperature sensitivity.

Temperate forests that benefit most from temperature rise are those which consist of even-aged deciduous pioneer species

in the case of young forests. Mature forests benefit most if tree height heterogeneity is large and the forest includes different

deciduous climax species.10

This study tries also to explain why certain forests types will decrease their productivityand others not. Our findings highlight

the importance of forest structure for future studies investigating wood production under climate change.

Data availability. In the online supplement you find the a R-workspace which includes the dataset of the analysed forests "foreststands" and

the calculated SI-values "SIValues".

c1 The temperature sensitivity of above-ground wood production is driven by forest structure and species diversity. Most relevant to the temperature-pro-

ductivity-relationship are the optimal species distribution (ΩAWP ) and forest height. Forests that benefit most under temperature rise consist of deciduous

tree species, whereby young forests show low and old forests show high tree height heterogeneity.
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Appendix A: Additional information regarding methods and validation

A1 Climate data

The development of the 320 climate c1time series, is based on measured climate time series of the eddy-flux station Hainich in

central Germany (Knohl et al., 2003) for the years 2000-2004 (Fig. A1). Mean annual temperature of these five years does not

correlate with the annual precipitation sum, nor with the mean annual radiation (Fig. A2). Radiation and precipitation within5

these years correlate quite well (Pearson’s r =0.73).

Figure A1. The climate time series measured at FLUXNET-station Hainich from 2000 to 2004 which are used to generate the 320 climate
c2time series: (a) daily precipitation [mm], (b) daily air temperature [% °C -1], (c) daily incoming radiation [photoactive photon flux density

µmolm−1s−1].

c1 scenarios
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Figure A2. Mean annual temperature, c3 annual precipitation c4sum and mean annual radiation of the five climate c5time series measured at

Hainich station from 2000 to 2004.

A2 Forest properties

We use three forest properties to describe forest structure (tree height heterogeneity θ, forest height Hmax and LAI) and

two properties to describe species diversity (Rao’s Q describes functional diversity and ΩAWP describes suitability). The

calculation of Rao’s Q is based on 12 species-specific parameters which are relevant for productivity and the species abundance

(based on crown area). None of the properties correlate (table A1).5

Table A1. Coefficient of Determination (R2) between all used internal forest properties for 370,170 stands of the forest factory. θ = tree

height heterogeneity; Hmax = forest height; LAI = leaf area index; ΩAWP = c1species distribution index

Variables Rao’s Q θ Hmax LAI

ΩAWP 0 0.02 0 0.2

LAI 0 0.23 0.06

Hmax 0.01 0.2

θ 0.02
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A3 Validation with the German forest inventory

We analyse the influence of forest structure on temperature sensitivity within the German forest inventory. We analyzed forest

stands of beech monocultures and spruce monocultures. Tree height data are used to calculate forest height (hmax ) and tree

height heterogeneity (θ). We replace LAI, which is not measured, by basal area (both properties correlate quite well in the

forest factory data set; R2=0.74). The forest stands of each species were classified into six structure classes: three forest height5

classes which are based on the height of the largest tree in the forest stand (10-15 m, 20-25m and 30-35 m), and two classes

representing different tree height heterogeneities (0-1 and >1.6 m). We analyse only plots that are located on flat terrain (sloped

at less than 15 %) and have a maximum dbh of 0.5 m). We fit a linear model to the data of every class using basal area and

elevation as input variables to predict above-ground wood productivity (AWP).
c1The comparison between the SIMAT

c2-estimation based on the German forest inventory with SIMAT
c3 values of corre-10

sponding forests from the forest factory show a quite good agreement. However, the simulated SIMAT
c4-values of the forest

factory slightly overestimate the sensitivity compared to the inventory-based values. The reason might be the difference in the

methods as in case of the inventory we use basal area instead of LAI and altitude instead of temperature. Another reason could

be, that in our approach the climate time series show relative high and regular precipitation. In the German forest inventory

instead, warmer sites might exposed more often to water stress, which than reduces the SI-Values.15

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
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Figure A3. Analysis of the influence of forest structure on the relationship between elevation and above-ground wood production. Figure (a)

- (c) are based on spruce monocultures and d)-e) are based on beech monocultures. For each species, forest stands are classified into three

forest height classes which are based on the largest tree (hmax) in a forest stand. These forest stand classes are additionally separated into

two tree height heterogeneity classes (0-1 m in grey and >1.6 in blue). Intensities of the colours indicate the ration between basal area of the

stand and maximal basal area found within one class. Lines show the results of the linear model with mean basal area. The amount of stars

behind the SI-values indicates the significance of the slope within a linear model: (***) indicate a p-value below 0.001 and (*) indicates a

p-value between 0.01 and 0.05. No star indicates p-values above 0.1. The unit of SI∗MAT is % °C-1 .
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Figure A4. SIMAT *-values derived from the BWI-analysis vs. SIMAT -values derived from corresponding forest types of the forest factory.

Only field data with p-values smaller 0.05 are analysed.
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Appendix B

B1 Frequency distribution of sensitivity values

The analysed forest stands show a large range of temperature sensitivities levels, which reach up to 8.5 % °C -1 in case of

SIMAT (Fig. ref4Bf1a). c1This means that one forest increases it productivity by 8.5% due to an increase of the mean annual

temperature by one ◦C. c2In case of the annual temperature amplitude, the best forest reduces its productivity by -0.5 % ◦C−15

(Fig. ref4Bf1b). The mean SIMAT is 1.5 % °C -1 and the interquartile range (iqr) ranges from 1.6 % °C -1 to. 5.2 % °C -1. The

mean SIQ95 is -5.4 % °C -1 and the iqr ranges from -5.2 % °C -1 to -2.2 % °C -1.

Figure B1. Frequency distribution of SIMAT -values (a) and SIQ95-values (b) of all forest stands.

B2 Analysis with boosted regression trees

Boosted regression trees provide information about the underlying relationship between input variables (here forest properties)

and output variables (here SI-values). Several technics were developed to visualize and interpret the high-dimensional relation-10

ship of input and target variables (Friedman, 2001). c3. c4The comparisons between SI values of the forest factory and predicted

SI values (based on the five properties as input), show a very high agreement (Fig. B2 & B3c5). The optained vertical patterns

for SIMat
c6= 0 and SIQ95

c7= -6 are probably artefacts of the boosted regression tree algorithm.

c1 Text added.
c2 and up to
c3 One of the most useful visualizations is the concept of relative importance which compares the influence of different input variables on the variability of

a target variable (Fig.B2)
c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
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Other commonly used visualization of the relationship of input and target variable are partial dependency plots (Fig. 3).

These plots show the influence of an input variable on the target variable considering the influence of all input variables which

have higher relative importance. In our study, the most important variable is ΩAWP , hence the first plot shows the relationship

between suitability and SI-values. The second relationship (forest height on SI-values) is based on the residuals of the first

relationship (here between SI-values and ΩAWP ; Becker et al. (1996)). Although a collection of such plots can seldom provide5

a comprehensive analysis of the BRT, it can often produce helpful hints, especially if variables show very low correlations, as

in this study.

Figure B2. Comparisons of temperature sensitivity (SIMAT and SIQ95) based on Forest factory and boosted regression tree model. Colours

indicate point density. Diagonal is the 1:1 line.
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Figure B3. Comparison of temperature sensitivity calculations (SIMAT and SIQ95) based on the forest factory and boosted regression tree

model. Colours indicate point density. Diagonal is the 1:1 line. a) Contains 90% of the forest factory data set and b) contains 93% of the

forest factory data set.

B3 Forest stands properties with highest SIQ95 values over a forest height gradient

Figure B4. Analysis of those forests which lie above the 95% percentile of SIMAT , depending on forest height. Lines indicate mean values of

the subsamples and the gray bands indicate the inter quartile range. Figure a) shows the temperature sensitivity of productivity against forest

height, analysing only Values above the 95% percentile b) to d) shows the change of the remaining forest properties within the subsamples.
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Figure B5. a) Species-specific reduction factor of photosynthesis due to a change in air temperature. b) Species-unspecific correction factor

for maintenance respiration due to a change in air temperature.

B4 SI-values of single trees

To understand the origin of the SI-values, we make the following considerations: An increase of 1 % °C -1 always results in

an increase of 8.6% of the respiration rate in the model (Fig. B5 b; Piao et al. (2010)). The positive effect of an temperature

increase of 1 % °C -1 on the photosynthesis rate varies between the years due to the assumed species-specific bell-shaped

relationship (Fig. B5 a). In case of deciduous trees the length of the vegetation period c1(leaf onset to fall) affects addition-5

ally the annual photoproduction (e.g. Haxeltine and Prentice, 1996; Luo, 2007; Horn and Schulz, 2011; Gutiérrez and Huth,

2012; Sato et al., 2007). If the photosynthesis rate is much larger than the respiration rate (high AWPc2; for instance, low

ratio of maintenance respiration to photosynthesis (RMP) under full light in Fig. B6 b), the positive effect of temperature on

photosynthesis causes an increase of AWP in c3some simulated years. If both rates show the same magnitude c4(RMP under

full light is closed to 1 in Fig. B6 b), higher temperatures increase respiration stronger than photoproduction (in most years)c5,10

which result in a decrease of AWP.

c1 Text added.
c2 Text added.
c3 most
c4 Text added.
c5 Text added.
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Figure B6. a) Photosynthesis (green) and maintenance respiration (red) rates of a single beech tree over stem diameter (dbh) under full light.

b) The ratio between maintenance respiration and photosynthesis of the same beech tree.

B5 Functional diversity and temperature sensitivity

To analyse the effect of functional diversity on temperature sensitivity, we first calculate the SIMAT -values for every species

depending on tree height and light availability (as done for pine trees in figure 5). Then, we c1calculate a mean SIMAT -value

for each species mixture for all light-height combinations (SIh,l). Finally, we average all SIh,l which are larger than -7.5 % °C
-1 (barSIMAT ) and calculate the Rao’s Q of the mixtures (based on equal abundances). The highest barSIMAT -values were5

found for deciduous forests (Fig. B7). Mixed forests with deciduous and needle leaf trees show lower values than the deciduous

forests, but higher Rao’s Q-values.

c1 build
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Figure B7. Rao’s Q (with equal abundances) against barSIMAT -values of all possible species mixtures (from the forest factory). The

barSIMAT -values are the average over all SIh,l values for all light-height combinations and with values larger than -7.5 % °C-1. For

mixtures, we assume equal abundances and calculate the mean over the SIh,l values of all species within the mixture. Green dots indicate

forests that consist only of deciduous trees; red dots indicate forests that consist only of needle leaf trees; blue dots indicate forests that

contain both tree types.
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