
Species composition and forest structure explain the temperature
sensitivity patterns of productivity in temperate forests.
Friedrich J. Bohn1, Felix May2, and Andreas Huth1,2,3

1Helmholtz Centre for Environmental Research - UFZ / Permoserstr. 15 / 04318 Leipzig / Germany
2German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig / Deutscher Platz 5e / 04103 Leipzig /
Germany
3University of Osnabrück / Barbarastr. 12 / 49076 Osnabrück / Germany

Correspondence to: Friedrich J. Bohn (friedrich.bohn@ufz.de)

Abstract. Rising temperatures due to climate change influence the wood production of forests. Observations show that some

temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species

composition and forest structure properties influence the temperature sensitivity of above-ground wood production (AWP).

It further investigates which forests will increase their productivity the most with rising temperatures. We described forest

structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional5

diversity index (Rao’s Q) and a species distribution index (ΩAWP ). ΩAWP quantifid how well species are distributed over

the different forest layers regarding AWP. We analysed 370,170 forest stands, generated with a forest gap model. These forest

stands covered a wide range of possible forest types. For each stand we estimated annual above-ground wood production and

performed a climate sensitivity analysis based on 320 different climate time series (of one year length). The scenarios differed

in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as10

the relative change in productivity resulting from a 1◦C rise in mean annual temperature or annual temperature amplitude. In-

creasing ΩAWP positivly influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped

relationship with both indices. Further, we found forests in each successional stage that are positively affected by tempera-

ture rise. For such forests, large ΩAWP -values were important. In case of young forest, low functional diversity and small tree

height heterogeneity was associated with a positive effect of temperature on wood production. During later successional stages,15

higher species diversity and larger tree height heterogeneity was an advantage. To achieve such a development, one could plant

below the closed canopy of even-aged, pioneer trees a climax-species-rich understory that will build the canopy of the mature

forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature

sensitivity of wood production.
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1 Introduction

Climate change alters wood production by modifying the rates of photosynthesis and respiration rates of trees (Barber et al.,

2000; Luo, 2007; Peñuelas and Filella, 2009; Reyer et al., 2014). Changes in forest productivity have been observed in past

decades all over the world (Nemani et al., 2003; Boisvenue and Running, 2006; Seddon et al., 2016). The carbon stock of

forests and their role as carbon sinks are therefore changing. These findings have stimulated discussions about whether forest5

management strategies can be adapted to reduce forest vulnerability to climate change, to support recovery after extreme events

and foster the carbon sink function of forests (Spittlehouse and Stewart, 2004; Spittlehouse, 2005; Bonan, 2008).

Wood production is influenced by several factors, such as CO2 fertilization, nitrogen deposition, precipitation, and tempera-

ture. (Barford et al., 2001). For instance, rising CO2 increases wateruse efficiency of forests (Keenan et al., 2013), which could

compensate negative effects of climate change on European forest growth (Reyer et al., 2014). Another important process is10

fertilization (De Vries et al., 2006, 2009). Due to depositions of nitrogen in the second half of the last century, wood production

had increased in European forests (Solberg et al., 2009). However, temperature modifies photosynthesis, respiration and growth

rates of trees (Dillon et al., 2010; Piao et al., 2010; Wang et al., 2011; Jeong et al., 2011; Heskel et al., 2016). In the temperate

biome, positive effects on wood production (Bontemps et al., 2010; Delpierre et al., 2009; Pan et al., 2013; McMahon et al.,

2010, e.g.) as well as negative ones have been found (Barber et al., 2000; Jump et al., 2006; Charru et al., 2010, e.g.). However,15

it remains unclear why forests react differently to temperature change.

In addition to the influence of climate variables, wood production is also affected by internal forest properties. These prop-

erties can be grouped into two types: properties which describe forest structure, and those which describe species composition

(Fig. 1). For instance, changes in productivity can result from changes in basal area (Vilà et al., 2013), in leaf area index (Asner

et al., 2003) or in the heterogeneity of tree heights within a forest (Bohn and Huth, 2017). Furthermore, wood production often20

increases with the increasing number of species (Zhang et al., 2012; Vilà et al., 2007).

Forest stands, which differ in their forest properties, might respond differently to the same climate change (Huete, 2016). For

instance, the positive effect of increasing temperature on wood production fades with forest age in temperate deciduous forest

(McMahon et al., 2010; Bontemps et al., 2010, e.g.) and Morin et al. (2014) showed that higher diversity buffers the effect

of inter-annual variability on wood production. However, these studies include only a few forest properties and rarely include25

properties related to both species composition and forest structure. Hence, it is unclear, how these forest properties influence

wood production change due to temperature rise and which forests will benefit from rising temperatures.

As far as we know, there is no data set available that covers forests, differing in structure and diversity, under almost identical

climatic conditions. Even if a larger number of forest stands were available, it would be difficult to manipulate for instance

temperature while keeping all other climate variables constant. Forest simulations models offer an alternative to the analysis30

of field experiments. Such models are able to estimate wood production under different climate conditions (Lasch et al., 2005;

Bohn et al., 2014, e.g.). For instance, Reyer et al. (2014) investigated the effect of climatic change on forests by simulating 30-

years time slices of a range of different future climates for 135 inventoried forest stands. There are also model-based studies,

which systematically analysed the effect of species diversity on productivity and stability over long periods (Morin et al.,
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Figure 1. Overview of drivers influencing wood production. External variables in this study are temperature, radiation, and precipitation.

Forest properties are divided into two groups: species composition properties (e.g., Rao’s Q as a measure of functional diversity and species

distribution index ΩAWP ) and forest structure properties (e.g., forest height, leaf area index and tree height heterogeneity).

2011, 2014). However, disturbed or managed forest stands and the influence of climate change have not been included in these

analyses.

In this study we therefore propose a new simulation-based approach. First, we generate a large number of forest stands

covering various forest structures and species compositions (for up to eight temperate tree species). Annual above-ground

wood production (AWP) is then calculated for all forest stands based on climate time series. These time series differ in the mean5

annual temperature and the intra-annual temperature amplitude. We aim to analyze (i) how productivity of forest stands (AWP)

is influenced by increasing mean annual temperature and (ii) by increasing intra-annual temperature amplitude? Furthermore,

we address the question (iii) of which forest stands will benefit most from rising temperatures.
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2 Method

To analyse the effect of temperature on the productivity of forest stands, we applied the "forest factory" model approach (Bohn

and Huth, 2017). The forest factory generated 370,170 different forest stands (see section 2.1) and allowed the estimation of

aboveground wood production (AWP) under various climate time series (see section 2.2). The 320 scenarios differed in mean

annual temperature and annual temperature amplitude. Finally, we calculated the forest stand-specific sensitivity of productivity5

to temperature change as the relative change of wood production per temperature change of 1 °C (see section 2.2). To relate

these sensitivities to forest structure and species composition, we characterised every forest stand with five properties (see

section 2.4). We analysed the influence of the five forest properties on temperature sensitivity using boosted regression trees

(see section 2.5). Finally, we analysed which combination of forest properties resulted in the highest sensitivity values for

different successional stages (see section 2.6).10

2.1 The forest factory approach

The forest factory creates forest patches based on different stem size distributions and species mixtures. We used 15 stem

size distributions covering a gradient from young to old and disturbed to undisturbed forests. Species mixtures included all

256 possible combinations of Pinus sylvestris, Picea abies, Fagus sylvatica, Quercus robur, Fraxinus excelsior, Populus x

canadensis, Betula pendula and Robinia pseudostuga. We used the species parameter set and algorithms of the FORMIND15

model version for temperate forests within the forest factory (Bohn et al., 2014; Fischer et al., 2016). 100 forests patches of

each combination were built.

To generate forest patches, the forest facotry randomly choose trees from the stem size distribution, assigned a species

identity and plant them within a patch of 400 m2 size. To place a tree within a patch the following rules must be met: (i) there

must be enough space available for crowns of every tree and (ii) every tree in the forest must have a positive productivity under20

its environmental conditions (light, temperature, water).

We used climate time series from the year 2007, measured at Hainich National Park, central Germany. We assumed this

time series to be a typical example for a temperate year (in principle it possible to use climate data from any other location). In

contrast to an artificially generated climate, this climate is perfectly physically consistent (regarding light, air temperature and

precipitation).25

In a few cases not all species of the mixture could be placed within a patch by the algorithm, so we rejected such forests. We

ended up with 370,100 forest stands. For more details regarding the forest factory see Bohn and Huth (2017).

2.2 Wood production

The calculation of above-ground wood production (AWP) of trees was based on algorithms of the model FORMIND (Bohn

et al., 2014; Fischer et al., 2016). In this model, the wood production of a single tree is calculated as the difference between30

climate variables driven respiration rates and photosynthesis. The photosynthesis rate (Ptree) results from the crown size, self-

shading within the crown and available light at the top of the tree. The available light depends on the radiation above the canopy,
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reduced by the shading of larger trees within the forest stand. Furthermore, productivity can be limited due to air temperature

and available soil water, which is expressed by the photosynthesis-limiting factor φ for each tree (Gutiérrez, 2010; Fischer,

2013; Bohn et al., 2014). Available soil water within the stand results from precipitation, interception, evapotranspiration of

trees and run-off.

One part of the photosynthesis production of a tree (Ptree) is allocated to its maintenance respiration (and to non-wood5

tissues; Rm). Maintenance respiration depends on tree biomass and temperature ψ (Piao et al., 2010). The remaining organic

carbon is transformed into newly grown above-ground wood (AWPtree) and a proportional growth respiration (rg).

AWPtree = (φPtree −ψRm)(1− rg) (1)

AWPtree was summed over all trees to obtain the productivity of the modeled forest stand - AWP (for a more detailed

description of growth processes, see Bohn et al. (2014); Bohn and Huth (2017) ).10

2.3 Climate sensitivity

To generate a set of 320 annual climate time series, we selected daily climate measurements of the Hainich station in central

Germany between the years 2000 and 2004. This time series includes mean daily radiation, precipitation and air temperature

(see Appendix A1; Fig. A1)). We separated these time series into five distinct time series of one-year length. First, we increased

or decreased the mean annual temperature of each year by adding or subtracting 0.5 °C steps between -1.5 °C and +2 °C.15

Second, we changed the amplitude of the annual temperature cycle for these time series variation of each year. To do so, we

modified the standard deviation of each year by 4% steps between -12 % and +16 %. We ended up with five sets of climate

times series (of one-year length) that differ in temperature, precipitation and radiation. Each of these five sets includes 64 time

series, which differ only in temperature (see Appendix A1 , Fig. A2). Temperature change was quantified using two indices:

(i) mean annual temperature and (ii) annual temperature amplitude, which described the 95 % inter-quantile range of all daily20

temperature values of a given year. We did not model the effects of nitrogen and CO2 fertilization (as both do not vary strongly

within one year) or extreme anomalies (e.g., pathogen attacks) on wood production. Figure 2 (a-c) shows the above-ground

wood production (AWP) for different annual temperatures for three different forest stands.

We analysed the sensitivity of every forest stand to temperature change following the approach of Piao et al. (2010). For

every forest stand, a general linear model was fitted relating wood production mean annual temperature (MAT) and intra-annual25

temperature amplitude (Q95), as well as the nuisance parameter year.

AWP = αxMAT +βxQ95 + γxyear + ε (2)

For every forest, we calculated the relative change of productivity resulting from an increase of 1 °C:
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Figure 2. Overview of forest properties and resulting temperature sensitivity of above-ground wood production (AWP) of three exemplary

forests: a) old even-aged spruce forest; b) mature deciduous forest; c) a quite young mixed species forest. The middle panel (subfigures

d, e & f) shows the corresponding stem size distributions and provides information on the highest tree in the forest (Hforest) and species

distribution index ΩAWP (which quantifies the suitability of a species distributed within the forest structure regarding AWP). Each forest is

treated with 320 climate time series: The last panel shows the AWP as a a function of mean annual temperature (MAT). The colours indicate

different inter-annual temperature amplitudes (Q95) of the used time series. (The coloured bands show the standard deviation due to the

variability of the five different time series that exist for each combination of mean annual temperaturemean and intra-annual temperature

amplitude).

SIMAT =
α

AWP
(3)

SIQ95 =
β

AWP
(4)
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Figure 3. SIMAT values of seven different forest types derived from the analysis of the German forest inventory vs. SIMAT values derived

from corresponding forest types of the forest factory. Only those SIMAT values of the field data are analysed, which showed p-values smaller

then 0.05.

In our analysis we excluded all forests stands for which AWP turns negative if the temperature rises by 1 °C (This occurs in

2 % of all stands).

We also determined the sensitivity of forests to temperature change using the German forest inventory to validate our results.

However, the inventory does not include leaf area index (LAI) measurements. We therefore assumed the basal area as a proxy

for LAI, and we selected subsamples of forests stands with similar structure (basal area, tree height heterogeneity, forest height,5

and same species mixtures). In addition, we used elevation as a proxy for mean annual temperature, assuming temperature

changes of 0.65 °C per 100 metres on average (Foken and Nappo, 2008). Only in the case of spruce and beech monocultures

did we find enough data to calculate SIMAT values for several forest structures (for more details see Appendix A3, Fig. A3).

The comparison between the SIMAT -estimation based on the German forest inventory with SIMAT values of corresponding

forests from the forest factory showed quite good agreement (R2 = 0.65). However, the simulated SIMAT values of the forest10

factory slightly overestimated the sensitivity compared to the inventory-based values (Fig. 3). This might be explained by the

difference in the methods used because, in case of the inventory, we used basal area instead of LAI and altitude instead of

temperature. Another explanation could be that in our approach the climate time series showed relatively high and regular

precipitation. In the German forest inventory warmer sites might be more frequently exposed to water stress, which than

reduced the SI values.15

2.4 Five forest properties to describe forest stands

We used three indices to describe the forest structure: leaf area index (LAI), maximum forest height (Hforest), which corre-

sponds to the height of the largest tree in a forest stand, and tree height heterogeneity (θ), which was quantified by the standard
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deviation of the tree heights. To describe species composition, we used Rao’s Q and species distribution index (ΩAWP ). Rao’s

Q quantified functional diversity based on species abundances and differences in species traits (Botta-Dukát, 2005, for details

see Appendix A2). ΩAWP analysed the optimal location of species within the forest structure. ΩAWP is defined as the ratio

of the forest’s productivity to the maximum possible productivity of the forest without changing tree sizes or number (Bohn

and Huth, 2017). Hence, the maximum productivity can be obtained by varying only the species identities of trees in the forest5

stand. We changed the assigned species of each tree until we found the optimal species for each individual tree and its specific

environmental condition. All five indices were nearly uncorrelated for the investigated forest stands ( Appendix A2 Table A1).

2.5 Boosted regression trees

We applied boosted regression trees to quantify the influence of the five forest properties on SIMAT and SIQ95. Boosted

regression trees are a machine learning algorithm using multiple decision (or regression) trees. It is able to address unidentified10

distributions (De´Ath, 2007; Elith et al., 2008). Each model was fitted in a forward stage-wise procedure to predict the response

of the dependent variable on (SIMAT or SIQ95) to multiple predictors tree height heterogeneity, forest height, LAI, Rao’s Q,

and ΩAWP ). To omit an over-fitting regarding maximal forest height, we classified forest stands into 18 classes. Each class

had a width of 2 metres, starting with 4 to 6 metres and finishing with 36 to 38 metres. The boosted regression trees tried

an iterative process to minimise the squared error between predicted SI values and those of the data set. Hereby, part of the15

data was used for a fitting procedure and the other part was used for computing out-of-sample estimates of the loss function

(Ridgeway, 2015). This boosted regression tree analysis was performed in the R-package gbm 2.1.1 (Ridgeway, 2015).

We used a quarter of the data (randomly sampled) for the machine learning procedure. To get the best model, we varied

the following four parameters of the boosted regression tree algorithm: learning rate (0.1, 0.05 and 0.01), the bag-fractions

(0.33, 0.5 and 0.66), the interactions depth (1, 3 and 5) and the cross-validation (3-, 6- and 9-fold) assuming a Gaussian error20

structure (the default setting). The best fitted boosted regression tree for both SIMAT and SIQ95 showed a learning rate of

0.1, a bag-fraction of 0.66, an interaction depth of 5 and a 3-fold cross validation. These two models were used for all further

analyses. The remaining 75% of the data were used to validate the fitted boosted regression tree algorithm.

2.6 Finding the forest stands for different successional stages that benefit the most increasing temperatures

Here, we assumed forest height as a proxy for the successional stage of a forest. In every height class, we selected those 5% of25

forests that showed the highest sensitivity values (SIMAT and SIQ95). We removed the forest height classes between 10 and

14 metres, as they only contained a few forests (15). For all other classes, we analysed the relationship between height class

and the forest properties (ΩAWP , Rao’s Q, LAI and tree height heterogeneity).

3 Result

We analysed the sensitivity of productivity (AWP) to temperature for forest stands that differ in forest properties (species30

distribution index (ΩAWP ), functional diversity (Rao’s Q), tree height heterogeneity (θ), forest height class and LAI). The
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Figure 4. Partial dependency plots of the five forest properties ΩAWP (species distribution index), forest height class, Rao’s Q (functional

diversity), tree height heterogeneity and LAI (leaf area index) for SIMAT (sensitivity to changes inthe mean annual temperature) and SIQ95

(sensitivity to changes in annual temperature amplitude). Relative importance (RI) compares the influence of different input variables on the

variability of a target variable. Histograms show the frequency of forest property values in the analysed data set. Note, a ΩAWP is the ratio

of the current AWP of a forest and the highest possible AWP optained by shuffling ony species identies without changing the forest structure.

annual above-ground wood production (AWP) was estimated for each forest stand using 320 different climate time series.

We then quantified the changes in productivity resulting from changes in mean annual temperature (SIMAT ) and intra-annual

amplitude (SIQ95). For the analysed forest stands, the average SIMAT is 1.5 % °C -1 and the average SIQ95 is -5.4 % °C -1

(see also the frequency distribution in Appendix B1, Fig. B1).

With a boosted regression tree algorithm, we analysed how the five forest properties influence the temperature sensitivity of5

forests. To validated the fitted boosted regression tree algorithm, we compared SI values, which are not used for the fitting, with

the SI value predicted by the boosted regression tree algorithm (Fig. 4). The sensitivities to mean annual temperature change

(SIMAT ) correlated very well (R2 of 0.84) and showd a low RMSE of ± 2.9 % °C -1 (see Appendix B2 Fig. B3).The RMSE

even decreased to ± 1.5 % °C -1 if a subset of the forest stands was analysed that showed SIMAT values larger than -5 % °C
-1 (90 % of the data). The accuracy of the sensitivities to temperature amplitude change (SIQ95) was even slightly better. In10

addition, a subset that included SIQ95 values larger than -15 % °C -1 (93% of the data) showed a RMSE of only ± 1.1 % °C -1

(see Appendix B2 Fig. B4).

According to boosted regression tree analysis, ΩAWP was the most relevant forest property to explain temperature sensitiv-

ities (relative influence of 87 % for SIMAT and 89 % for SIQ95; see also Appendix B2, Fig. B2). However, the influence of
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Figure 5. Analysis of those forests that show the highest 5 % of the SI values depending on forest height. Lines indicate mean values of the

forest subsamples which includes the best 5% regarding SIMAT of each hight class. The grey band indicates the inter quartile range. Figure

a) shows temperature sensitivity of above-ground wood production over forest height, analysing only the best the forest subsample. b) to d)

shows the change of the remaining forest properties within the forest subsamples (ΩAWP = optimal species distribution; LAI = leaf area

index; Rao s Q quantifies functional diversity).

ΩAWP on temperature sensitivity flattened out for high ΩAWP levels (Fig. 5). The second relevant forest property was forest

height (Hforest). Forests with heights between 25 and 30 m benefited the most from increasing mean annual temperatures. The

other three properties (LAI, Rao’s Q, and tree height heterogeneity) had a low influence on SIMAT .

Both sensitivity indices showed similar relationships to the five forest properties. However, an increase in annual temperature

amplitude always reduced productivity, whereas increasing mean annual temperature could result in a positive effect on wood5

production. To detect those stands that benefit the most from increasing temperature, we selected the 5 % of forest stands

that showed the highest SIMAT values in each forest height class (Fig. 5). In all forests classes, we found forest stands that

would benefit from increasing temperatures. Analyses of their forest properties revealed that the ΩAWP levels were always

high. Young forests (low forest height), which had a positive temperature sensitivity, show low functional diversity and low

tree height heterogeneity (θ). For older forests (of intermediate and high forest height) with positive temperature sensitivity,10

we found an intermediate level of functional diversity. Interestingly, for three variables (Rao’s Q, tree height heterogeneity and

LAI), the relationships changed their character between young and intermediate forest heights. We obtained similar simulation

patterns for SIQ95 ( Appendix B3 Fig. B5).
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Figure 6. Analysis of the sensitivity index of AWP against mean annual temperature (SIMAT ) values of single trees within three different

forests. The diagram shows the calculated SIMAT value of individual trees for every combination of tree height and available light (for pinus

sylvestris between SIMAT -levels of 6.5 and - 6.5; other species show similar patterns). The dots indicate the different trees of the three forest

examples. The white dots belong to trees with the corresponding number of forest A, grey dots belong to the trees of forest B and dark grey

dots belong to forest C. Note that in the case of forest C, all trees have the same height and the same light, so that all three dots are at the

same place in the diagram.

3.1 Understanding the patterns

3.1.1 The influence of forest structure on temperature sensitivity

Forest structure affects the wood production of single trees in two ways. First, it determines the amount of light available to

each individual tree and second, the size of trees influences their photosynthesis and respiration rates (Fig. B6). Hence, based

on the height of a tree and the amount of light available to it, it was possible to calculate its SI values (for a detailed discussion5

of these calculations, see Appendix B4).

In even-aged forests, all trees have the same height and receive full light (e.g., Fig. 6, forest C). In our study, such forests

showed a bell-shaped relationship between forest height and temperature sensitivity (Fig. 6, SI values for 100 % available light

depending on tree height).

In case of a forest consisting of trees of different heights smaller trees receive less light due to shading. Note that, even if10

trees receive less light, the bell-shaped relationship between tree height and productivity persisted (Fig. 6). Two cases will be

discussed (assuming identical LAI as forest C, Fig. 6). In the first case all trees have not yet reached their maximal SI values

(Fig. 6, forest A,); and in the second case all trees have already passed their maximal SI values (Fig. 6, forest B). In the case

of forest A, trees in the shade of larger trees always had lower SI values if they belong to the same species (see Appendix B4).

Hence, the temperature sensitivity level of this forest was lower than the sensitivity of an even-aged forest, whose trees have15
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the same size as the largest tree in forest A (Fig. 6, tree 1). Hence, if maximal SI values were not reached, increasing height

heterogeneity decreases SI values of a forest.

In forest B (Fig. 6), SI values of the shaded trees can be similar (or even higher) than the SI value of the largest trees in

the forest (SI values of tree 1 show similar levels to tree 2, 3 and 4 in forest B, Fig. 6). Hence, if maximal SI values were

passed, increasing tree height heterogeneity resulted in similar (or even more positive) temperature sensitivity levels compared5

to even-aged forest trees (an even-aged forest consisting only of trees similar to tree 1 of forest B in Fig. 6). These general

considerations explain the change from low levels of height heterogeneity in young forests to a more heterogeneous structure

in the analysis of those forests, which will benefit from increasing temperature (see Fig. 5 d).

3.1.2 The effect of species composition on temperature sensitivity

In this study, we use the new index ΩAWP called the species distribution index (Bohn and Huth, 2017). ΩAWP is the ratio10

between current AWP and the highest possible AWP of the forest which can be reached due to shuffling of species identities.

Its huge importance on forest temperature sensitivity might be illustrated by the following considerations: If species are un-

favourably distributed within the forest (low ΩAWP ), the AWP of the forest is low and, in consequence, the SI values are low

as well (see Appendix). If the AWP is low the forest will suffer from increasing temperatures, which results in negative slopes

(Equation 2). These values are then divided by low AWP values (Equation 4), which results in large negative values of SIMAT15

and SIQ95. (See Appendix B5).

Increasing functional diversity (Rao’s Q) stabilised the forests’ sensitivity to temperature. This corresponds to results of

Morin et al. (2014) and the theoretical consideration of Yachi and Loreau (1999). The analysis of the single species can give

additional insight into the mechanisms behind those species that benefited the most from temperature increase, which were

deciduous trees under most conditions. This is reasonable as warmer regions host more deciduous species than needle-leaf20

species. The highest functional diversity (Rao’s Q), one the other hand, occured in mixtures of deciduous and needle-leaf

trees (Appendix B5 Fig. B7). As only two needle-leaf species were considered here in the species pool, low Rao’s Q values

were dominated by mixtures of deciduous trees. Such deciduous tree mixtures mostly benefited from temperature increases. In

consequence, mixtures with high Rao’s Q values, which mostly included both functional types, reacted more poorly (Fig. 4;

Appendix B5 Fig. B7).25

We developed two diagrams that show the species with the highest temperature sensitivity and with the highest productivity

for different conditions (available light and height of a tree) (Fig. 7). Interestingly, the species with the highest productivity

differed from the species that benefit most from rising temperatures in many cases. This has important implications. The

highest benefit due to increasing temperatures was optained by forests with high but not maximal ΩAWP (Fig. 5). Additionally,

deciduous trees benefited more than coniferous trees from rising temperatures (Fig. 7, Appendix B5, Fig. B7). Hence, young30

forests should consist of deciduous trees (compare Fig. 6, forest A, and Fig. 7), although the highest productivity values are

found for coniferous trees (Fig. 7; forest A). Forests including large trees obtained the highest sensitivity values if intermediate

sized trees differed in their species identity from the largest trees (Fig. 7).
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Figure 7. Graphic (a) shows which species have the highest productivity ( ΩAWP value of 1) under the current climate for different heights

and different light conditions. Graphic (b) shows which species shows the highest increase in productivity due to rising temperatures for

different heights und different light conditions. Red colours indicate coniferous trees, whereas green colours indicate deciduous trees. Darker

colours indicate late successional species, whereas lighter colours indicate pioneers. The dots indicate the different trees of the two forest

examples (A and B). The white dots belong to trees with the corresponding number of forest A. Note, that all trees have the same height and

the same light, so all five dots are at the same place in the diagram. Grey dots belong to the corresponding trees with the same number of

forest B.

4 Discussion

4.1 The study design

In this theoretical study, we present a new climate sensitivity analysis (regarding temperature) of AWP. This approach extends

field observations and long-term model simulations, as it allows the analysis of exsisting forests, but also of those that might

exist in the future due to management changes and/or disturbances. Our approach includes only forest stands in which every5

tree has positive productivity and enough space for its crown. Hence, it is impossible, for instance, that light-demanding species

grow below a closed canopy or forests are overcrowded. However, the data set also include a few very unusual stands structures

or species combinations, which can not emerge in a natural system, but may result from disturbances or management. In the

case of field observations, it is difficult to explore the influence of a single climate variable (e.g., temperature) on one target

variable (e.g., AWP), as in most cases, several variables are altered at the same time (see also Appendix A3). Process-based10

models are one option to analyse such relationships and separate these effects. The simulation of AWP with the FORMIND-
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model in temperate forests has been successfully compared to Eddy flux sites (Rödig et al., 2017b), the national German forest

inventory (Bohn and Huth, 2017), and European yield tables Bohn et al. (2014).

An advantage of the forest factory approach is the huge set of various forests stands that can be analysed. The dataset

includes forest stands that often occur in temperate forests (even-aged spruce, pine and beech stands). However, it also includes

hypothetical ones that could occur through alternative forest management or disturbances (fire, bark beetles, etc.). Hence, our5

data set of forest stands covers a much larger variety of forest property combinations compared to long-term forest simulations

with the focus on natural forests in their equilibrium state (Morin et al., 2011, e.g.) or on monocultures (Reyer et al., 2014, e.g.).

Long term simulations with ecosystem models, which process modelled climate projections, face a trade-off between cascade

uncertainty and path dependency (Wilby and Dessai, 2010; Reyer et al., 2014). The accumulations of model uncertainties

over such a process chain result in increasing uncertainty. Our study design tries to minimise this uncertainty and omit path10

dependencies by including only those processes that might be relevant for the research question. In this study, for instance, we

omit the effect of climate change on regeneration and mortality. Furthermore, using several climate variables as model inputs

but only analysing the effect of one variable might lead to incorrect interpretations of its effect. For example, temperature and

radiation often correlate, and both might increase productivity. Therefore, in this study, we only vary one variable in all 5 sets

of time series. This guarantees that there are no relationships between the target climate variable and the remaining climate15

variables.

As an increase in global mean temperature of 1.5 °C to 2 °C can hardly be avoided, even under the RCP 2.6 climate

scenarios (IPCC, 2013), this study focuses on temperature change. This RCP scenario predicts only small changes in annual

precipitation levels for temperate regions. Hence, our approach focuses only on the effect of temperature change on wood

production. However, this might be critical for the analysis of strong temperature changes (e.g. RCP 8.5) which will result20

in an increased incidence of drought and changes in the annual temperature cycles and a strong change in CO2. Such more

complex scenarios should be analysed in future studies. Further, we neglect the effect of time lags (e.g. bud building in the

previous year). However, it is possible to extend the used time series to analyse the behaviour of the forest over longer time

periods and study not only productivity, but also effects on regeneration or mortality.

To characterise the annual temperature cycles we used two variables: mean annual temperature and intra-annual temperature25

amplitude. Both variables can be varied independently. In case of higher mean annual temperature we observe an elongation

of the vegetation period. This leads to higher forest productivity (if other resources are not limiting (Luo, 2007) and explains

why SIMAT is often positive. However, warmer summer temperatures can also lead to a decline in wood production due to

an increase in respiration. In case of increasing intra-annual temperature amplitude, more days with extreme temperatures will

occur in a year. Thus, an increase of 1 ◦C−1 of intra-annual temperature amplitude will increase respiration more strongly30

compared to an increase of 1 ◦C−1 of mean annual temperature. Hence, the increase of intra-annual temperature amplitude

normally has negative effects on the productivity (negative SI values).

The temperature sensitivity values obtained here are in the same range as those found for temperate ecosystems in heating

experiments (Lu et al., 2013, 4.4 ± 2.2 % °C -1). Within the 16 analysed studies reviewed by Lu et al. (2013), the experimental

plots show almost identical environmental conditions (soil, radiation, and precipitation) and species composition. To heat the35
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plots, greenhouses or infrared heaters were used. Another study, based on natural forest stands in New Zealand, found an

AWP increase of between 5 and 20 % °C -1 for forest, assuming no change in forest structure and species composition (Coomes

et al., 2014). The analysed plots were spread throughout New Zealand, and warmer temperatures coincide with higher radiation

(Mackintosh, 2016). Hence, the analysed temperature effect also includes the influence of radiation. In our setting, however,

the influence of temperature is independent of radiation (Lu et al., 2013, as in). We also found a good correlation between SI5

values derived from growth measurements of the German forest inventory and simulated SI values based on the forest factory

( Appendix A3 Fig. A3 & 3 ).

4.2 Implications for forest management

Our findings might be relevant for future management strategies for temperate forests. Specifically, our new understanding of

which species benefit most from rising temperatures (Fig 6) suggests possible strategies, e.g. replacing spruce monocultures10

with mixtures of deciduous trees. Further, based on the analysis of which forest structure benefits most from rising temperatures

(Fig. 4, Fig 5, Fig 6), early-stage even-aged forests should include mainly pioneer species. In the mature stage, we predict a

positive effect of temperatures on wood production for a mixture of climax species including different tree sizes. These climax

species could be planted below the canopy of the pioneer species in young forests. In our approach, we do not simulate the

establishment of very young trees. However, during the conversion between these two forest types one big challenge might be15

the removal of the pioneer trees without damaging the young trees that will build the mature forest.

4.3 Implications for global vegetation modelling

Most global vegetation models represent vegetation as fractional cover of different plant functional types within a grid cell

(e.g. LPJ Sitch et al., 2003). Only a few global vegetation models include a more detailed representation of vegetation structure

and functional diversity (Sato et al., 2007; Scheiter et al., 2013; Sakschewski et al., 2016). It would be interesting to perform20

the analysis presented here with global vegetation models which include structure to better understand the mechanisms driving

forest systems’ sensitivity to climate change.

Besides the global vegetation models, forest gap models, which have been restricted to local stands, are now able to simulate

forest dynamics in regions or even entire continents (Seidl and Lexer, 2013; Rödig et al., 2017a). Studies using global veg-

etation models or large-scale forest gap models simulate natural succession. Our analysis indicates that natural and managed25

(or disturbed) forest systems, which differ in forest structure, might react differently to climate change. Hence, we suggest

considering forest structure in future analyses of global vegetation. Such information on forest structure might be derived from

remote sensing.
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5 Conclusions

The temperature sensitivity of wood production in temperate forests is influenced by forest structure and species diversity as

our study showed. The species distribution index (ΩAWP ) and forest height seems to be the most important forest properties

influencing temperature sensitivity.

Temperate forests that benefit most from temperature rise are those which consist of even-aged deciduous pioneer species5

in the case of young forests; mature forests benefit most if tree height heterogeneity is large and the forest includes different

deciduous climax species.

This study also attemps to explain why certain forests types will decrease their productivity and others not. Our findings

highlight the importance of forest structure for future studies investigating wood production under climate change.

Data availability. The R-workspace which includes the dataset of the analysed forests "foreststands" and the calculated SI values "SIValues"10

can be found in the online supplement.
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Appendix A: Additional information regarding methods and validation

A1 Climate data

The construction of the 320 climate time series is based on measured climate time series of the eddy-flux station Hainich in

Central Germany (Knohl et al., 2003) for the years 2000-2004 (Fig. A1). Mean annual temperature of these five years does not

correlate with the annual precipitation sum, nor with the mean annual radiation (Fig. A2). Radiation and precipitation within5

these years correlate quite well (Pearson’s r = 0.73).

Figure A1. The climate time series measured at FLUXNET station Hainich from 2000 to 2004 which are used to generate the 320 climate

time series: (a) daily precipitation [mm], (b) daily air temperature [% °C -1], (c) daily incoming radiation [photoactive photon flux density

µ mol m−1s−1].
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Figure A2. Mean annual temperature, annual precipitation sum and mean annual radiation of the five climate time series measured at Hainich

station from 2000 to 2004.

A2 Forest properties

We use three forest properties to describe forest structure (tree height heterogeneity (theta), forest height class and LAI)

and two properties to describe species diversity (Rao’s Q describes functional diversity and ΩAWP describes suitability).

The calculation of Rao’s Q is based on 12 species-specific parameters which are relevant for productivity (AWP) and species

abundance (based on crown area). None of the properties correlate (table A1).5

Table A1. Coefficient of Determination (R2) between all used internal forest properties for 370,170 stands of the forest factory. θ = tree

height heterogeneity; LAI = leaf area index; ΩAWP = species distribution index

Variables Rao’s Q θ forest height class LAI

ΩAWP 0 0.02 0 0.2

LAI 0 0.23 0.06

forest height class 0.01 0.2

θ 0.02
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A3 Validation with the German forest inventory

We analysed the influence of forest structure on temperature sensitivity within the German forest inventory (beech monocul-

tures and spruce monocultures. Tree height was used to calculate forest height (Hforest) and tree height heterogeneity (θ).

We replaced LAI, which is not measured, by basal area (both properties correlate quite well in the forest factory data set;

R2 = 0.74). The forest stands of each species were classified into six structure classes: three classes which are based on the5

height of the largest tree in the forest stand (10-15 m, 20-25 m and 30-35 m), and two classes representing different tree height

heterogeneities (0-1 and >1.6 m). Only plots that are located on flat terrain (slop less than 15 %) and have a maximum dbh of

0.5 m) were analysed.A linear model was fitted to the data of every class using basal area and elevation as input variables to

predict above-ground wood productivity (AWP).

Figure A3. Analysis of the influence of forest structure on the relationship between elevation and above-ground wood production (AWP).

Figures (a) - (c) are based on spruce monocultures and d)-e) on beech monocultures. For each species, forest stands were classified into three

forest height classes which were based on the largest tree (Hmax) in a forest stand. These forest stand classes were additionally separated

into two tree height heterogeneity classes (0-1 m in grey and >1.6 m in blue). Intensities of the colours indicate the ratio between basal area

of the stand and maximal basal area found within one class. Lines show the results of the linear model with mean basal area. The amount of

stars behind the SI values indicates the significance of the slope within a linear model: (***) indicate a p-value below 0.001 and (*) indicates

a p-value between 0.01 and 0.05. No star indicates p-values above 0.1. The unit of SI∗MAT is % °C-1 .
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Appendix B

B1 Frequency distribution of sensitivity values

The analysed forest stands show a large range of temperature sensitivity levels, which reach up to 8.5 % °C -1 in case of

SIMAT (Fig. ref4Bf1a). This means that one forest increases its productivity by 8.5 % due to an increase in the mean annual

temperature of one ◦C. In case of the annual temperature amplitude, the best forest reduces its productivity by -0.5 % ◦C−15

(Fig. ref4Bf1b). The mean SIMAT is 1.5 % °C -1 and the interquartile range (iqr) ranges from 1.6 % °C -1 to. 5.2 % °C -1. The

mean SIQ95 is -5.4 % °C -1 and the iqr ranges from -5.2 % °C -1 to -2.2 % °C -1.

Figure B1. Frequency distribution of SIMAT values (a) and SIQ95 values (b) of all forest stands.

B2 Analysis with boosted regression trees

Boosted regression trees provide information about the underlying relationship between input variables (here forest properties)

and output variables (here SI values). Several techniques were developed to visualise and interpret the high-dimensional rela-10

tionship of input and target variables (Friedman, 2001). The comparisons between SI values of the forest factory and predicted

SI values (based on the five properties as input), show a very high agreement (Fig. B2 & B3). The obtained vertical patterns

for SIMat = 0 % °C -1 and SIQ95 = -6 % °C -1 are probably artefacts of the boosted regression tree algorithm.

Other commonly used visualization of the relationship of input and target variable are partial dependency plots (Fig. 4).

These plots show the influence of an input variable on the target variable considering the influence of all input variables which15

have higher relative importance. In our study, the most important variable is ΩAWP , hence the first plot shows the relationship

between suitability and SI values. The second relationship (forest height on SI values) based on the residuals of the first

relationship (here between SI values and ΩAWP ; Becker et al., 1996). Although a collection of such plots can seldom provide

a comprehensive analysis of the boosted regression trees, it can often produce helpful hints, especially if variables show very

low correlations, as in this study.20
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Figure B2. Comparisons of temperature sensitivity (SIMAT and SIQ95) based on the forest factory and boosted regression tree model.

Colours indicate point density. Diagonal is the 1:1 line.

Figure B3. Comparison of temperature sensitivity calculations (SIMAT and SIQ95) based on the forest factory and boosted regression tree

model. Colours indicate point density. Diagonal is the 1:1 line. a) Contains 90% of the forest factory data set and b) contains 93% of the

forest factory data set.

B3 Forest stands properties with highest SIQ95 values over a forest height gradient
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Figure B4. Analysis of those forests which lie above the 95% percentile of SIMAT , depending on forest heightHforest. Lines indicate mean

values of the subsamples and the grey bands indicate the inter quartile range. Figure a) shows the temperature sensitivity of productivity to

forest height, analysing only values above the 95% percentile b) to d) shows the change of the remaining forest properties within the

subsamples.

B4 SI values of single trees

To understand the origin of the SI values, we make the following assumptions: An increase of 1 % °C -1 always results in an in-

crease of 8.6 % of the respiration rate in the model (Fig. B5 b; Piao et al. (2010)). The positive effect of a temperature increase

of 1 % °C -1 on the photosynthesis rate varies between the years due to the assumed species-specific bell-shaped relationship

(Fig. B5 a). In case of deciduous trees the length of the vegetation period (leaf onset to fall) additionally affects the annual5

photoproduction (e.g., Haxeltine and Prentice, 1996; Luo, 2007; Horn and Schulz, 2011; Gutiérrez and Huth, 2012; Sato et al.,

2007). If the photosynthesis rate is much larger than the respiration rate (high AWP; for instance, low ratio of maintenance res-

piration to photosynthesis under full light in Fig. B6 b), the positive effect of temperature on photosynthesis causes an increase

of AWP in some simulated years. If both rates show the same magnitude (ratio of maintenance respiration to photosynthesis

under full light is closed to 1 in Fig. B6 b), higher temperatures increase respiration stronger than photoproduction (in most10

years), which results in a decrease of AWP.
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Figure B5. a) Species-specific reduction factor of photosynthesis due to a change in air temperature. b) Species-unspecific correction factor

for maintenance respiration due to a change in air temperature.

Figure B6. a) Photosynthesis (green line - Ptree) and maintenance respiration (red line - Rm) rates of a single beech tree over stem diameter

(dbh) under full light. b) The ratio between maintenance respiration and photosynthesis of the same beech tree.
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B5 Functional diversity and temperature sensitivity

To analyse the effect of functional diversity on temperature sensitivity, we first calculated SIMAT for every species depending

on tree height and light availability (as done for pine trees in figure 6). Then, we calculated a mean SIMAT value for each

species mixture for all light-height combinations . Finally, we averaged those SI-values which are larger than -7.5 % °C -1

( ¯SIMAT ) and calculate the Rao’s Q of the mixtures (based on equal abundances). The highest ¯SIMAT values were found5

for deciduous forests (Fig. B7). Mixed forests with deciduous and needle leaf trees showed lower values than the deciduous

forests, but higher Rao’s Q-values.

Figure B7. Rao’s Q (with equal abundances) against ¯SIMAT values of all possible species mixtures (from the forest factory). The ¯SIMAT

values are the average over all SIMAT values for all light-height combinations and with values larger than -7.5 % °C-1. For mixtures, we

assumed equal abundances and calculate the mean over the SIMAT values of all species within the mixture. Green dots indicate forests that

consist only of deciduous trees; red dots indicate forests that consist only of needle leaf trees; blue dots indicate forests that contain both tree

types.

24



Author contributions. F.J.B. F.M. and A.H. conceived of the study. F.J.B. implemented and analysed the simulation model and wrote the first

draft of the manuscript. A.H. and F.M contributed to the text. All authors gave their final approval for publication.

Competing interests. We have no competing interests.

Acknowledgements. We thank Edna Rödig, Franziska Taubert, Nikolaj Knapp, Rico Fischer and Kristin Bohn and for providing many helpful

suggestions and comments. We also thank the Department of Bioclimatology of the University Göttingen and the Max Planck Institute of5

Biogeochemistry for providing climate data and the administration of Hainich National Park for permission to conduct research there.

25



References

26



References

Asner, G. P., Scurlock, J. M., and A Hicke, J.: Global synthesis of leaf area index observations: implications for ecological and remote sensing

studies, Global Ecology and Biogeography, 12, 191–205, https://doi.org/10.1046/j.1466-822X.2003.00026.x, 2003.

Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced

drought stress, Nature, 405, 668–673, https://doi.org/10.1038/35015049, 2000.5

Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., and

Moore, K.: Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest, Science, 294, 1688–1691,

https://doi.org/10.1126/science.1062962, 2001.

Becker, R. A., Cleveland, W. S., and Shyu, M.-J.: The visual design and control of trellis display, Journal of computational and Graphical

Statistics, 5, 123–155, 1996.10

Bohn, F. J. and Huth, A.: The importance of forest structure to biodiversity–productivity relationships, Royal Society open science, 3,

160 521, https://doi.org/10.1098/rsos.160521, 2017.

Bohn, F. J., Frank, K., and Huth, A.: Of climate and its resulting tree growth: Simulating the productivity of temperate forests, Ecological

Modelling, 278, 9–17, https://doi.org/0.1016/j.ecolmodel.2014.01.021, 2014.

Boisvenue, C. and Running, S. W.: Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century,15

Global Change Biology, 12, 862–882, https://doi.org/10.1111/j.1365-2486.2006.01134.x, 2006.

Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444–1449,

https://doi.org/10.1126/science.1155121, 2008.

Bontemps, J.-D., Hervé, J.-C., and Dhôte, J.-F.: Dominant radial and height growth reveal comparable historical variations for common beech

in north-eastern France, Forest Ecology and Management, 259, 1455–1463, https://doi.org/10.1016/j.foreco.2010.01.019, 2010.20

Botta-Dukát, Z.: Rao’s quadratic entropy as a measure of functional diversity based on multiple traits, Journal of vegetation science, 16,

533–540, https://doi.org/10.1111/j.1654-1103.2005.tb02393.x, 2005.

Charru, M., Seynave, I., Morneau, F., and Bontemps, J.-D.: Recent changes in forest productivity: an analysis of national forest in-

ventory data for common beech (Fagus sylvatica L.) in north-eastern France, Forest Ecology and Management, 260, 864–874,

https://doi.org/10.1016/j.foreco.2010.06.005, 2010.25

Coomes, D. A., Flores, O., Holdaway, R., Jucker, T., Lines, E. R., and Vanderwel, M. C.: Wood production response to climate change will

depend critically on forest composition and structure, Global change biology, 20, 3632–3645, https://doi.org/10.1111/gcb.12622, 2014.

De Vries, W., Reinds, G. J., Gundersen, P., and Sterba, H.: The impact of nitrogen deposition on carbon sequestration in European forests

and forest soils, Global Change Biology, 12, 1151–1173, https://doi.org/10.1111/j.1365-2486.2006.01151.x, 2006.

De Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G., et al.:30

The impact of nitrogen deposition on carbon sequestration by European forests and heathlands, Forest Ecology and Management, 258,

1814–1823, https://doi.org/10.1016/j.foreco.2009.02.034, 2009.

Delpierre, N., Soudani, K., Francois, C., Köstner, B., PONTAILLER, J.-Y., Nikinmaa, E., Misson, L., Aubinet, M., Bernhofer, C., Granier,

A., et al.: Exceptional carbon uptake in European forests during the warm spring of 2007: a data–model analysis, Global Change Biology,

15, 1455–1474, https://doi.org/10.1111/j.1365-2486.2008.01835.x, 2009.35

De´Ath, G.: Boosted trees for ecological modeling and prediction, Ecology, 88, 243–251, https://doi.org/10.1890/0012-

9658(2007)88[243:BTFEMA]2.0.CO;2, 2007.

27

https://doi.org/10.1046/j.1466-822X.2003.00026.x
https://doi.org/10.1038/35015049
https://doi.org/10.1126/science.1062962
https://doi.org/10.1098/rsos.160521
https://doi.org/0.1016/j.ecolmodel.2014.01.021
https://doi.org/10.1111/j.1365-2486.2006.01134.x
https://doi.org/10.1126/science.1155121
https://doi.org/10.1016/j.foreco.2010.01.019
https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
https://doi.org/10.1016/j.foreco.2010.06.005
https://doi.org/10.1111/gcb.12622
https://doi.org/10.1111/j.1365-2486.2006.01151.x
https://doi.org/10.1016/j.foreco.2009.02.034
https://doi.org/10.1111/j.1365-2486.2008.01835.x
https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2


Dillon, M. E., Wang, G., and Huey, R. B.: Global metabolic impacts of recent climate warming, Nature, 467, 704–706,

https://doi.org/10.1038/nature09407, 2010.

Elith, J., Leathwick, J. R., and Hastie, T.: A working guide to boosted regression trees, Journal of Animal Ecology, 77, 802–813,

https://doi.org/10.1111/j.1365-2656.2008.01390.x, 2008.

Fischer, R.: Modellierung der dynamic afrikanischer tropenwälder, Ph.D. thesis, Universität Osnabrück, 2013.5

Fischer, R., Bohn, F., de Paula, M. D., Dislich, C., Groeneveld, J., Gutiérrez, A. G., Kazmierczak, M., Knapp, N., Lehmann, S., Paulick,

S., Pütz, S., Rödig, E., Taubert, F., Köhler, P., and Huth, A.: Lessons learned from applying a forest gap model to understand ecosystem

and carbon dynamics of complex tropical forests, Ecological Modelling, 326, 124–133, https://doi.org/10.1016/j.ecolmodel.2015.11.018,

2016.

Foken, T. and Nappo, C. J.: Micrometeorology, Springer Science & Business Media, 2008.10

Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Annals of statistics, pp. 1189–1232, 2001.

Gutiérrez, A. G.: Long-term dynamics and the response of temperate rainforests of Chiloé Island (Chile) to climate change, Ph.D. thesis,

München, Techn. Univ., Diss., 2010, 2010.

Gutiérrez, A. G. and Huth, A.: Successional stages of primary temperate rainforests of Chiloé Island, Chile, Perspectives in Plant Ecology,

Evolution and Systematics, 14, 243–256, https://doi.org/10.1016/j.ppees.2012.01.004, 2012.15

Haxeltine, A. and Prentice, I. C.: BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource avail-

ability, and competition among plant functional types, Global Biogeochemical Cycles, 10, 693–709, https://doi.org/10.1029/96gb02344,

1996.

Heskel, M. A., O’Sullivan, O. S., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., Egerton, J. J., Creek, D., Bloomfield, K. J.,

Xiang, J., et al.: Convergence in the temperature response of leaf respiration across biomes and plant functional types, Proceedings of the20

National Academy of Sciences, 113, 3832–3837, https://doi.org/10.1073/pnas.1520282113, 2016.

Horn, J. E. and Schulz, K.: Identification of a general light use efficiency model for gross primary production, Biogeosciences, 8, 999–1021,

https://doi.org/10.5194/bg-8-999-2011, 2011.

Huete, A.: Ecology: Vegetation´s responses to climate variability, Nature, 531, 181–182, https://doi.org/10.1038/nature17301, 2016.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergov-25

ernmental Panel on Climate Change Status and Trends in Sustainable Forest Management in Europe, Tech. rep., Intergovernmental Panel

on Climate Change, IPCC, 2013.

Jeong, S.-J., HO, C.-H., GIM, H.-J., and Brown, M. E.: Phenology shifts at start vs. end of growing season in temperate vegeta-

tion over the Northern Hemisphere for the period 1982–2008, Global Change Biology, 17, 2385–2399, https://doi.org/10.1111/j.1365-

2486.2011.02397.x, 2011.30

Jump, A. S., Hunt, J. M., and Penuelas, J.: Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica, Global

Change Biology, 12, 2163–2174, https://doi.org/10.1111/j.1365-2486.2006.01250.x, 2006.

Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use

efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, https://doi.org/10.1038/nature12291, 2013.

Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central35

Germany, Agricultural and Forest Meteorology, 118, 151–167, https://doi.org/10.1016/S0168- 1923(03)00115-1, 2003.

Lasch, P., Badeck, F.-W., Suckow, F., Lindner, M., and Mohr, P.: Model-based analysis of management alternatives at stand and regional level

in Brandenburg (Germany), Forest Ecology and Management, 207, 59–74, https://doi.org/10.1016/j.foreco.2004.10.034, 2005.

28

https://doi.org/10.1038/nature09407
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1016/j.ecolmodel.2015.11.018
https://doi.org/10.1016/j.ppees.2012.01.004
https://doi.org/10.1029/96gb02344
https://doi.org/10.1073/pnas.1520282113
https://doi.org/10.5194/bg-8-999-2011
https://doi.org/10.1038/nature17301
https://doi.org/10.1111/j.1365-2486.2011.02397.x
https://doi.org/10.1111/j.1365-2486.2011.02397.x
https://doi.org/10.1111/j.1365-2486.2011.02397.x
https://doi.org/10.1111/j.1365-2486.2006.01250.x
https://doi.org/10.1038/nature12291
https://doi.org/10.1016/S0168- 1923(03)00115-1
https://doi.org/10.1016/j.foreco.2004.10.034


Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., and Li, B.: Responses of ecosystem carbon cycle to experimental

warming: a meta-analysis, Ecology, 94, 726–738, https://doi.org/10.1890/12-0279.1, 2013.

Luo, Y.: Terrestrial carbon-cycle feedback to climate warming, Annual Review of Ecology, Evolution, and Systematics, pp. 683–712,

https://doi.org/10.1146/annurev.ecolsys.38.091206.095808, 2007.

Mackintosh, L.: Overview of New Zealand’s climate, https://www.niwa.co.nz/education-and-training/schools/resources/climate/overview,5

accessed: 2016-12-19, 2016.

McMahon, S. M., Parker, G. G., and Miller, D. R.: Evidence for a recent increase in forest growth, Proceedings of the National Academy of

Sciences, 107, 3611–3615, https://doi.org/10.1073/pnas.0912376107, 2010.

Morin, X., Fahse, L., Scherer-Lorenzen, M., and Bugmann, H.: Tree species richness promotes productivity in temperate forests through

strong complementarity between species, Ecology Letters, 14, 1211–1219, https://doi.org/10.1111/j.1461-0248.2011.01691.x, 2011.10

Morin, X., Fahse, L., Mazancourt, C., Scherer-Lorenzen, M., and Bugmann, H.: Temporal stability in forest productivity increases with tree

diversity due to asynchrony in species dynamics, Ecology letters, 17, 1526–1535, https://doi.org/doi: 10.1111/ele.12357, 2014.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven in-

creases in global terrestrial net primary production from 1982 to 1999, science, 300, 1560–1563, https://doi.org/10.1126/science.1082750,

2003.15

Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The structure, distribution, and biomass of the world’s forests, Annual Review of

Ecology, Evolution, and Systematics, 44, 593–622, https://doi.org/10.1146/annurev-ecolsys-110512-135914, 2013.

Peñuelas, J. and Filella, I.: Phenology feedbacks on climate change, Science, 324, 887–888, 2009.

Piao, S., Luyssaert, S., Ciais, P., Janssens, I. A., Chen, A., Cao, C., Fang, J., Friedlingstein, P., Luo, Y., and Wang, S.: Forest annual carbon

cost: a global-scale analysis of autotrophic respiration, Ecology, 91, 652–661, https://doi.org/10.1890/08-2176.1, 2010.20

Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T.: Projections of regional changes in forest net primary

productivity for different tree species in Europe driven by climate change and carbon dioxide, Annals of forest science, 71, 211–225,

https://doi.org/10.1007/s13595-013-0306-8, 2014.

Ridgeway, G.: Generalized boosted regression models. Documentation on the R Package gbm, version 2.1.1, http://cran.r-project.org/web/

packages/gbm/gbm.pdf, 2015.25

Rödig, E., Cuntz, M., Heinke, J., Rammig, A., and Huth, A.: Spatial heterogeneity of biomass and forest structure of the Amazon rain forest:

Linking remote sensing, forest modelling and field inventory, Global Ecology and Biogeography, 26, 1292–1302, 2017a.

Rödig, E., Huth, A., Bohn, F., Rebmann, C., and Cuntz, M.: Estimating the carbon fluxes of forests with an individual-based forest model,

Forest Ecosystems, 4, 4, 2017b.

Sakschewski, B., Von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., Joshi, J., and Thonicke, K.: Resilience of Amazon forests30

emerges from plant trait diversity, Nature Climate Change, 6, 1032–1036, 2016.

Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based

approach, Ecological Modelling, 200, 279–307, 2007.

Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global vegetation models: learning from community ecology, New

Phytologist, 198, 957–969, 2013.35

Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., and Willis, K. J.: Sensitivity of global terrestrial ecosystems to climate variability,

Nature, 531, 229–232, https://doi.org/10.1038/nature16986, 2016.

29

https://doi.org/10.1890/12-0279.1
https://doi.org/10.1146/annurev.ecolsys.38.091206.095808
https://www.niwa.co.nz/education-and-training/schools/resources/climate/overview
https://doi.org/10.1073/pnas.0912376107
https://doi.org/10.1111/j.1461-0248.2011.01691.x
https://doi.org/doi: 10.1111/ele.12357
https://doi.org/10.1126/science.1082750
https://doi.org/10.1146/annurev-ecolsys-110512-135914
https://doi.org/10.1890/08-2176.1
https://doi.org/10.1007/s13595-013-0306-8
http://cran.r-project.org/web/packages/gbm/gbm.pdf
http://cran.r-project.org/web/packages/gbm/gbm.pdf
http://cran.r-project.org/web/packages/gbm/gbm.pdf
https://doi.org/10.1038/nature16986


Seidl, R. and Lexer, M.: Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and

fostering adaptive capacity, Journal of Environmental Management, 114, 461–469, https://doi.org/10.1016/j.jenvman.2012.09.028, 2013.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K.,

and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation

model, Global Change Biology, 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.5

Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., Hildingsson, A., and de Vries, W.: Analyses of the

impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach, Forest

Ecology and Management, 258, 1735–1750, https://doi.org/10.1016/j.foreco.2008.09.057, 2009.

Spittlehouse, D. L.: Integrating climate change adaptation into forest management, The Forestry Chronicle, 81, 691–695,

https://doi.org/10.5558/tfc2014-134, 2005.10

Spittlehouse, D. L. and Stewart, R. B.: Adaptation to climate change in forest management, Journal of Ecosystems and Management, 4,

http://www.forrex.org/jem/2003/vol4/no1/art1.pdf, 2004.

Vilà, M., Vayreda, J., Comas, L., Ibáñez, J. J., Mata, T., and Obón, B.: Species richness and wood production: a positive association in

Mediterranean forests, Ecology Letters, 10, 241–250, https://doi.org/10.1111/j.1461-0248.2007.01016.x, 2007.

Vilà, M., Carrillo-Gavilán, A., Vayreda, J., Bugmann, H., Fridman, J., Grodzki, W., Haase, J., Kunstler, G., Schelhaas,15

M., and Trasobares, A.: Disentangling biodiversity and climatic determinants of wood production, PLoS One, 8, e53 530,

https://doi.org/10.1371/journal.pone.0053530, 2013.

Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., and Chen, A.: Spring temperature change and its implication in the

change of vegetation growth in North America from 1982 to 2006, Proceedings of the National Academy of Sciences, 108, 1240–1245,

https://doi.org/10.1073/pnas.1014425108, 2011.20

Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather, 65, 180–185, https://doi.org/10.1002/wea.543, 2010.

Yachi, S. and Loreau, M.: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis, Proceedings of

the National Academy of Sciences, 96, 1463–1468, https://doi.org/10.1073/pnas.96.4.1463, 1999.

Zhang, Y., Chen, H. Y. H., and Reich, P. B.: Forest productivity increases with evenness, species richness and trait variation: a global meta-

analysis, Journal of Ecology, 100, 742–749, https://doi.org/10.1111/j.1365-2745.2011.01944.x, 2012.25

30

https://doi.org/10.1016/j.jenvman.2012.09.028
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1016/j.foreco.2008.09.057
https://doi.org/10.5558/tfc2014-134
http://www.forrex.org/jem/2003/vol4/no1/art1.pdf
https://doi.org/10.1111/j.1461-0248.2007.01016.x
https://doi.org/10.1371/journal.pone.0053530
https://doi.org/10.1073/pnas.1014425108
https://doi.org/10.1002/wea.543
https://doi.org/10.1073/pnas.96.4.1463
https://doi.org/10.1111/j.1365-2745.2011.01944.x

