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Response to Editor Comments: 
 

 

76: Supplemental table S1 has 177 entries, which matches your statement in the abstract, but not what is 

being said here. Further, entry 196 in the supplemental table lacks results, so is seemingly not included? (I.e. 

should total number of profiles be 176?) 

We thank you for catching this error. The number ‘196’ soil profile has been deleted in the supplemental table. 

So, the final dataset included 176 soil profiles, and we have corrected this in the abstract (Line 12) and the 

text (Line 76, 82, 89, 127 and 391). 

 

 

103-105 Replace “We applied […] millennial time-scales” by: “In order to calculate the SOM decomposition 

rate constant, we assumed that input of organic matter to soil and decomposition are in equilibrium with no 

change in SOM stocks over time (steady state assumption). We acknowledge that this assumption is not valid 

in most disturbed environments, including agricultural systems, but it provides a reasonable approximation 

in natural ecosystems, where SOC turnover has equilibrated on century to millennial time-scales.” (This is a 

suggestion from me, please feel free to rephrase. I think that simply stating “steady state assumption” was 

not clear enough and that a slightly more elaborate justification was needed.) 

Thank you very much. We agree with your suggestion and have replaced the sentence in the revision (Line 

106-109). 

 

228-234: This section is important, but it is poorly integrated into the overall discussion. These points reflect 

the concerns of referee 1 well, but the reader is left not knowing how significant these uncertainties are for 

your findings. I suggest moving this section up into the main part of the discussion and qualifying whether 

you think that the patterns you observe in your study are robust despite these limitations. I’m not asking for 

a lengthy elaboration of implications, but a clearer indication of whether, in your judgement, these limitations 

are a major limitation to your conclusions. 

Thank you for your suggestion. We moved this part up into the method (Line 85-87) and discussion (Line 

208-209 and 213-214). 

 

 

 

Figure 4: In panel B, the axes are seemingly labelled incorrectly. To match data in panel A, k seems to be 

scaled on the y-axis, and ln(-beta) on the x-axis, but your axis labelling suggests the opposite. 

Thank you. We have changed the axes. 
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Abstract. Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 9 

concentrations and global climate change; however, reliably measuring SOC turnover rates at large spatial and temporal scales 10 

remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of 11 

vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical 12 

properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship 13 

between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC 14 

pools. ln(-β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship 15 

with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content 16 

correlate strongly and positively with ln(-β), revealing the additional influence of nutrients and physical soil properties on SOC 17 

decomposition rates. Furthermore, a strong (R2 = 0.76; p < 0.001) linear relationship between ln(-β) and estimates of litter and root 18 

decomposition rates suggests similar controls over rates of organic matter decay among the generalized soil C stocks. Overall, 19 

these findings demonstrate the utility of soil δ13C for independently benchmarking global models of soil C turnover and thereby 20 

improving predictions of multiple global change influences over terrestrial C-climate feedback.  21 

1 Introduction 22 

Soil contains a large amount of organic carbon (C) and plays a crucial role in regulating Earth’s C cycle and climate system 23 

(Schmidt et al., 2011;Reichstein et al., 2013). Approximately 1500 Gt of soil organic carbon (SOC) is stored in the upper meter of 24 

global mineral soil (Scharlemann et al., 2014), which is equivalent to ~160 years-worth of current fossil fuel CO2 emissions. 25 

Disagreement exists, however, over the residence time of this vulnerable C stock and its relationship to factors of ongoing change, 26 

particularly climate changes and widespread nitrogen pollution (Reay et al., 2008;Reichstein et al., 2013). Biogeochemical models 27 

rely heavily on turnover rates of discrete SOC pools (active, intermediate, and recalcitrant) derived from lab incubation studies 28 

(Davidson and Janssens, 2006;Xu et al., 2016). In practice, however, SOC pools fall along a continuum of characteristic turnover 29 

times (from days to centuries; (Schmidt et al., 2011;Lehmann and Kleber, 2015)), in a given ecosystem site. Furthermore, lab-30 

derived estimates of SOC turnover disrupts the sensitive balance between plant-soil-microbe interactions in ecosystems, adding 31 

questions on the reliability of such techniques when applied to real-world conditions. 32 

The rate of SOC turnover is an important parameter for process-based ecosystem models (Davidson and Janssens, 33 

2006;Schimel et al., 1994) and those used to forecast the global carbon cycle and climate system in the future (Friedlingstein et al., 34 

2006). Global biogeochemical models often use climatic factors such as precipitation and temperature to  predict SOC turnover 35 

rates (Schimel et al., 1994;Nishina et al., 2014). While several studies reported positive relationships between temperature and 36 
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SOC turnover (Chen et al., 2013;Trumbore et al., 1996;Bird et al., 1996;Trumbore, 1993;Carvalhais et al., 2014), however, others 37 

have called the generality of such relationships into question (Giardina and Ryan, 2000). This discrepancy could be due to 38 

interactions among factors which are difficult to separate in the field, for example, among soil temperature, soil moisture and 39 

nutrient controls over SOC decomposition (Davidson and Janssens, 2006). Nitrogen (N) in particular can affect SOC 40 

decomposition by changing microbial community structure, microbial activity or both (Curiel et al., 2007). Incorporation of factors 41 

besides climate is crucial for improving model performance and predicting the feedback-response of the terrestrial carbon cycle to 42 

climate change (Nishina et al., 2014).  43 

In addition, questions remain regarding whether the turnover of different C stocks behaves fundamentally similarly. For 44 

example, climate is considered to be a “master regulator” of leaf litter (Zhang et al., 2008), root (Gill and Jackson, 2000;Silver and 45 

Miya, 2001) and soil organic C pools (Davidson and Janssens, 2006). However, recent findings have pointed out that soil microbial 46 

community composition may play a more important role in litter decomposition rates than climate or litter quality  (Bradford et al., 47 

2016;Keiser and Bradford, 2017). Due to the different microbial communities among leaves, roots and soils, and different chemical 48 

composition of such pools, rates of C turnover have the potential to vary widely across generalized classes of C stocks.  49 

Stable carbon isotope composition (δ13C) provides relatively non-disruptive insights into the turnover of SOC (Garten et al., 50 

2000;Accoe et al., 2002;Powers and Schlesinger, 2002;Bird et al., 1996). For sites with reasonably stable vegetation stocks, 51 

measures of vertical soil-profile δ13C can provide constraints on SOC turnover rates in ecosystems (Acton et al., 2013;Garten et 52 

al., 2000;Wynn et al., 2006).  Soil δ13C generally increases from shallow to deep mineral soils in relatively well-drained systems, 53 

concomitant with decreasing SOC concentrations (Fig. S1). The vertical distribution of the δ13C reflects microbial preferences for 54 

12C vs. 13C in decomposing substrates (Garten et al., 2000), which, in turn, increases the 13C/12C of residual organic C fractions 55 

with a kinetic isotope effect defined by ε (Fig. S1). Therefore, SOC δ13C tends to increase with depth along vertical soil profiles 56 

until it reaches a maximum value at which point a steady-state is achieved (Kohl et al., 2015;Accoe et al., 2002;Brunn et al., 57 

2014;Garten et al., 2000;Wynn et al., 2006;Brunn et al., 2016). These trends result in a negative linear relationship between the 58 

log-transformed SOC concentration and soil δ13C (Acton et al., 2013;Garten et al., 2000;Garten and Hanson, 2006;Powers and 59 

Schlesinger, 2002). The slope of the linear regression between soil δ13C and the log-transformed SOC concentration is defined as 60 

beta (β), which has been proposed as a proxy for SOC turnover rate in a select number of sites (Acton et al., 2013;Garten et al., 61 

2000;Powers and Schlesinger, 2002). β has also been assessed in set of regional scale analyses (Acton et al., 2013;Brunn et al., 62 

2014); however, whether β values can be used to constrain rates and controls on SOC turnover is yet to be explored at the global 63 

scale. Furthermore, the Suess effect (the atmospheric isotopically depleted fossil fuel CO2 lowering atmospheric δ13C-CO2) 64 

(Boström et al., 2007;Wynn et al., 2006) and the mixing of different C sources (Acton et al., 2013;Diochon and Kellman, 65 

2008;Wynn, 2007) may also influence the profile of soil δ13C with depth. Identifying the relative influence of different factors in 66 

vertical profiles of soil δ13C is essential to applying this proxy to patterns of SOM turnover. 67 

Here, we examine the efficacy of β as a proxy for SOC turnover rates by synthesizing soil profile data from sites around the 68 

world (Fig. 1). To understand the overall utility of C isotope composition for constraining SOC turnover rates, we explore the 69 

relationship between β and modeled SOC decomposition constant k and environmental factors, particularly climate, soil clay 70 

content and nutrient availability. We also compare the variation of β with that of root and litter turnover rates across latitude 71 

(thermal) gradient to examine whether and how the decomposition of generalized C pools varies as a function of likely controls.  72 
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2 Materials and Methods 73 

2.1 Data compilation 74 

Using the key words of ‘carbon isotope & vertical profile’, ‘δ13C & soil depth profile’, or ‘soil carbon turnover & stable isotope' 75 

on the Web of Science source, we assembled a total of 149 soil profiles from 51 journal papers (Fig. 1; A list of the literature 76 

sources is given in Table S1). Only soil profiles under pure C3 vegetation without significant human disturbance were selected. For 77 

each profile, we collected carbon isotope (δ13C), organic carbon (SOC) and N concentration of leaf/litter and mineral soil layers at 78 

different depths if the data is available, and more than four δ13C values should be provided within the top 1 meter. Where data were 79 

not available in tables, Data Thief software (http://www.datathief.org/) was used to acquire values from figures. We also noted the 80 

experiment location (latitude and longitude), biome types, mean annual precipitation (MAP), and mean annual temperature (MAT) 81 

for each soil profile. In cases where climate variables were not reported (15 soil profiles out of 176), we used the WorldClim data 82 

(http://www.worldclim.com/), which have average monthly temperature and precipitation between 1970 to 2000 with a resolution 83 

of ~1 km2 at the global scale, to reconstruct climate values based on latitude and longitude coordinates in ArcGIS version 10.0 84 

using Spatial Analysis tool (ESRI, Redlands, CA). The extracted model data may not precisely match the actual climate data of 85 

these 15 soil profiles. However, because the model has been widely tested and accepted (Harbert and Nixon, 2015) and the 86 

resolution is high (Hijmans et al., 2005), any deviation should be relatively small. 87 

In addition, a previous reported arid and semi-arid grassland transect along 3000 km with 27 sampling locations was added 88 

into the dataset (Wang et al., 2017), which results in a total of 176 soil profiles in the compilation. Those sampling sites are 89 

dominated by C3 plants and cover approximately 16° longitude ranging from 104°52′ E to 120°21′ E and 10° latitude ranging from 90 

40°41′ N to 50°03′ N. The MAP ranges from 90 mm to 420 mm and MAT ranges from -2 oC to +7 oC.  At each location, five 1 m 91 

× 1 m sub-plots (or one 5 m ×5 m sub-plot in areas with shrub as the dominating plants) were setup within a 50 m × 50 m plot. 92 

Twenty soil cores (0 - 100 cm) in each 1 m × 1 m sub-plot were collected and divided into 0-10 cm, 10-20 cm, 20-40 cm, 40-60 93 

cm and 60-100 cm depth segments and bulked to form one composite sample for each segment per sub-plot. Leaf samples of five 94 

dominating genera (Stipa, Leymus, Caragana, Reaumuria and Nitraria) were sampled for carbon isotope analysis if these genera 95 

were present in the sub-plots. 96 

In laboratory, leaf samples were washed with deionized water to remove dust particles and then dried at 65  oC for 48 h. Both 97 

soil and leaf samples were ground in a ball mill and stored in a plastic bag. Soil carbonate was removed from soil samples using 98 

0.5 M HCl. Organic carbon concentration and isotope composition of soil and leaf were carried out at the Stable Isotope Faculty 99 

of University of California, Davis.  100 

2.2 Beta calculation 101 

A negative linear regression between the log10-transformed SOC concentration and δ13C for each soil depth profile was conducted 102 

(Fig. S1). The slope of the this linear regression is defined as beta  (β) value (Acton et al., 2013;Garten et al., 2000;Powers and 103 

Schlesinger, 2002). 104 

2.3 Soil decomposition rate constant (k) 105 

In order to calculate the SOM decomposition rate constant, we assumed steady-state between organic matter inputs to the soil and 106 

decomposition rates. We acknowledge that this assumption is not valid in most disturbed environments, including agricultural 107 

systems, but it provides a reasonable approximation in natural ecosystems, where SOC turnover does not show significant 108 

deviations on century to millennial time-scales. The carbon decomposition rate constant (k) was estimated as the ratio between soil 109 

http://www.datathief.org/
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heterotrophic respiration (RH) and soil organic carbon stock (SOC) (Sanderman et al., 2003): k = RH/ SOC. The SOC stock for 110 

each soil profile was extracted from a global soil organic carbon map (within 1 m depth), which was created by IGBP-DIS (1998) 111 

with a resolution of 0.5 by 0.5 degree; the mean annual soil total respiration (Rs) was extracted from a long-term dataset with a 112 

resolution of 0.5 by 0.5 degree (Raich et al., 2002). We added the two datasets and the coordinate of soil profiles in ArcGIS (version 113 

10.0, ESRI, Redlands, CA) to extract SOC stock and respiration rates for each profile using the Spatial Analysis tool. Then, we 114 

used the linear relationship between soil respiration (RS) and RH to calculate RH (Bond‐Lamberty et al., 2004): ln (RH) = 1.22 + 115 

0.73 × ln (RS).  116 

2.4 Data analysis 117 

Negative β value and decomposition rate constant k were log-transformed to perform statistical tests. Larger ln(-β) translated to 118 

faster SOC decomposition rates (Acton et al., 2013;Powers and Schlesinger, 2002). Soil ln(-β) was analyzed and summarized 119 

across different biome types. Soil ln(-β) was also compared with litter and root decomposition rate along latitude at the global 120 

scale. Two-variable regression analysis was first performed to explore the relationship between ln(-β) and ln(k), or ln(-β) and 121 

climate variables (MAP and MAT) as well as soil edaphic factors (N and clay content). Multiple regression analysis was then used 122 

to examine the relationship between ln(-β) and these variables (MAP, MAT, soil N and clay content). Akaike information criterion 123 

(AIC) was used to estimate the quality of model when increasing the number of parameters. 124 

3 Results 125 

3.1 Worldwide patterns of β  126 

A total of 176 soil profiles from all continents other than Antarctica were encapsulated in our compiled dataset (Fig. 1). Carbon 127 

isotope composition (δ13C) increased with soil depth in the majority of examined profiles and was strongly correlated with the 128 

logarithm of SOC (Table. S1). ln(-β) was significantly positively related with site-based estimates of the soil C decomposition 129 

constant, ln(k) with R2 = 0.34 (Fig. 2). 130 

The values for ln (-β) ranged from -0.50 to 2.20 across sites (non-transformed β values ranged from -0.60 to -7.41, Table S1). 131 

Highest mean ln(-β) was observed in tropical forests (Fig. 3), followed by deserts, temperate forests, and temperate grasslands, 132 

with a mean value of 1.15, 0.70, 0.58 and 0.49, respectively. MAP among those four biomes increased from desert < temperate 133 

grassland < temperate forest < tropical forest and MAT increased from temperate grassland < desert < temperate forest < tropical 134 

forest (Fig. 3).  135 

Along the latitude gradient, ln(-β) decreased from the equator to poles, but was higher at 20-30° N compared to the 10-20° N 136 

latitudinal band (Fig. 4a). The mean decomposition rate of leaf-litter and root C displayed similar latitudinal patterns (R2 = 0.76; 137 

p<0.001, Fig. 4b). 138 

3.2 Controls on β across ecosystems 139 

The ln(-β) and MAT displayed a strong, positive relationship across the global dataset (R2 = 0.43; P < 0.001; Fig. 5a).  Ln(-β) did 140 

not show a simple linear correlation with MAP, but instead showed a polynomial relationship with a tipping point at MAP = 3000 141 

mm (Fig. 5b). When MAP was less than 3000 mm, ln(-β) was positively correlated with MAP (R2 = 0.23, P < 0.001); ln(-β) 142 

decreased with the increasing of MAP in areas receiving > 3000 mm of MAP. A quadratic equation provided the best fit to the 143 

relationship between ln(-β) and MAP for all sites (R2 = 0.24, P < 0.001; Fig. 5b). Soil N explained 20% of the variations in ln(-β) 144 

(P < 0.001; Fig. 5c). Moreover, a quadratic equation best described the relationship between soil clay and ln(-β), with R2 = 0.49 (P 145 
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< 0.001; Fig. 5d). AIC analysis showed that the full-factors model (i.e., MAT, MAP, soil N and clay) accounted for more of the 146 

variation in ln(-β) than any other regression model in the global data set (Table 1). 147 

4 Discussion  148 

Our global data synthesis reveals significant relationships between ln(-β) and the turnover of soil, litter and root C pools at 149 

geographically broad scales (Fig. 2 and 4). These findings build on site-based observations and regional assessments (Accoe et al., 150 

2002;Garten et al., 2000;Powers and Schlesinger, 2002;Brunn et al., 2014;Brunn et al., 2016), and suggest that C isotope 151 

composition is a useful proxy for understanding generalized patterns of SOC turnover and the underlying controls over soil C 152 

metabolism. That our results hold across all major soil C pools implies that SOC, root and litter turnover share common controls, 153 

in particular those related to climate and soil nitrogen contents. These findings suggest that decomposition of belowground and 154 

aboveground soil C may have similar responses to global climate change, such as global warming and increasing atmospheric N 155 

deposition. Furthermore, our results highlight the potential of incorporating natural stable C isotopes in global biogeochemical and 156 

Earth system models to constraint soil and litter decomposition rates that are vital to climate change forecasts. 157 

Within the terrestrial biosphere, our findings point to highest mean ln(-β) in tropical forest ecosystems, indicating a high SOC 158 

decomposition rate in these regions, which is consistent with previous studies (Carvalhais et al., 2014). At the other extreme, our 159 

analysis suggests that slowest mean rates of SOC decomposition occur in temperate grassland (Fig. 3), consistent with results from 160 

previous simulation modeling (Carvalhais et al., 2014;Schimel et al., 1994). Relatively slow decomposition rates have been 161 

observed for plant litter decay in arid grassland sites (Zhang et al., 2008), and largely reflects strong moisture controls on 162 

decomposition. In addition, microbial biomass and microbial activities are much lower in arid/semi-arid vs. mesic or humid sites 163 

(Fierer et al., 2009), thus leading to low rates of SOC and litter decomposition. 164 

4.1 Climate and nutrient dependences of β 165 

The differences of β value among different biomes reflect several controlling variables- especially mean annual temperature, mean 166 

annual precipitation, soil N contents, and clay content. Of particular importance is temperature-driven controls over β, in which 167 

MAT explains  43% of the variation of ln(-β) in our global data compilation (Table 1; Fig. 5a). A recent meta-analysis, which 168 

included 24 soil profiles across a range of cool temperate to tropical forest sites, reported similarly strong temperature-dependencies 169 

of β (Acton et al., 2013). Our findings broaden this perspective to a global range of terrestrial biomes and climates, and indicate 170 

that, with increasing MAT, SOC turnover is substantially accelerated. This result agrees with previous studies which have identified 171 

temperature as the strongest regulator of soil C decomposition among all known controls (Carvalhais et al., 2014;Schimel et al., 172 

1994), and is consistent with global C-climate feedback models, which project acclereated rates of CO2 efflux from the land 173 

biosphere with climate warming (Ciais et al., 2014). 174 

Our study also points to significant relationships between β and precipitation-climates, which are more complex than those 175 

observed for MAT. Rather, we find an inflection point in β in our global data set at MAP ~ 3000 mm (Fig. 5b). This relationship 176 

reveals negative effects of moisture on change of soil δ13C in very wet climates. A cross-system compilation of the smaller though 177 

more dynamic litter pool shows a similar pattern of decreasing decay rates in regions with MAP > 3000 mm compared to drier 178 

sites (Zhang et al., 2008). In addition, Schuur (2001) showed that leaf and root decomposition rates declined significantly with 179 

increasing precipitation along a highly constrained rainfall sequence in Hawaiian forest sequence (from 2020 mm < MAP < 5050 180 

mm), thereby resulting in slower rates of nutrient mineralization and declines in net primary production (NPP) in the wettest sites. 181 

The consistencies between our study and past work suggests that precipitation affects the decomposition of SOC and litter in 182 

similar ways, slowing decomposition rates when MAP is very high and anaerobic conditions dominate (i.e. MAP > 3000 mm; 183 
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Schuur 2001). 184 

In addition to climate, nutrients influence the magnitude of ln(-β) in our compilation, with SOC turnover rates generally 185 

increasing with soil N concentrations across ecosystem sites (Table 1, Fig. 5c). Although soil N has been suggested as an important 186 

control over SOC decomposition in previous work (Schimel et al., 1994), our study is one of the few to confirm the existence of 187 

such a relationship at the global scale. Positive correlations between litter decomposition rates and litter N contents during the early 188 

stages of decay have been reported previously (Berg, 2000). Past work has also suggested that high N availability enhances soil 189 

degrading enzyme activities (Fioretto et al., 2007). 190 

Finally, our results suggest that soil physical factors, particularly soil clay content, plays a role in ln(-β) and soil organic C 191 

turnover (Fig. 5d), consistent with previous expectations (Schimel et al., 1994;Xu et al., 2016). In sites where clay content is < 50% 192 

(i.e., sandy soils), for example, ln(-β) increases with the soil clay content; however, when clay content is > 50% (loamy or clayey 193 

soils), no clear relationship between ln(-β) and clay content is observed (Fig. 5d). The change in this relationship could be explained 194 

by the higher “preservation capacity” of clayey soils (Vogel et al., 2014).  195 

SOC turnover is an important parameter for process-based models and Earth system models (Schimel et al., 1994;Davidson 196 

and Janssens, 2006), and models used to forecast the carbon cycle and climate system into the future (Friedlingstein et al., 2006). 197 

Global biogeochemical models commonly use climatic factors as predictors of SOC turnover rates (Carvalhais et al., 2014). In 198 

contrast, our results point to factors beyond climate singly, soil N content and soil texture, in altering organic C turnover across the 199 

terrestrial biosphere. Taken together, for instance, our multiple regression analysis considering all factors (i.e., MAT, MAP, soil 200 

N and clay) explains nearly 70% of variation of ln(-β) (R2= 0.66, P<0.001; Table 1), suggesting the high dependence of SOC 201 

turnover on these factors. We therefore suggest the need for models that include all of these factors when forecasting global C 202 

cycle response to change. 203 

In addition, our findings suggest that the C isotope composition of the soil can help to improve global C model performance. 204 

A common problem in global C research is finding consistent and sufficiently integrated metrics against which the performance of 205 

different biogeochemical models can be quantitatively analyzed (Tian et al., 2015). The strong relationships we observe between 206 

β and SOC turnover (k) suggest that this natural-isotope proxy can be used to ground-truth large-scale patterns of model-simulated 207 

soil C dynamics. It should be noted that k values were based on multiple data sources of soil carbon storage and respiration, which 208 

might add uncertainty to the regression statistics between ln(-β) and ln (k).  209 

Future work to collect and analyze C isotope data in vertical soil profiles, which is a relatively inexpensive process, can further 210 

extend the regional coverage of β and help benchmark SOC turnover estimates among global model simulations. This is important 211 

given the potential for SOC turnover to respond to multiple global changes and produce significant feedbacks on climate at the 212 

global scale (Carvalhais et al., 2014;Lehmann and Kleber, 2015). Further, application of our results to ecosystems that are far from 213 

steady-state should be approached with caution. 214 

4.2 Alternative controls over soil  δ13C with depth 215 

Several processes have been proposed to explain the widely observed pattern of increasing  δ13C from shallow to deep soils beyond 216 

those related to kinetic isotope fractionation during decomposition. For example, atmospheric δ13C-CO2 has been decreasing since 217 

the industrial revolution owing to the combustion of 13C-depleted fossil fuels, which could lead to lower δ13C in surface soils vs. 218 

deeper horizons (Friedli et al., 1987). However, the magnitude of this effect is small (i.e., 1.4 - 1.5‰) compared to the substantial 219 

variation of soil δ13C along depth profiles (~3.5‰) in our dataset. Based on a 100-year-old soil archive (i.e. soil collected before 220 

extensive fossil fuel CO2 emissions) and modern samples collected from a common site in the Russian steppe, Torn et al.(2002) 221 

demonstrated that δ13C profiles of modern and pre-industrial soils were similar. Thus, the δ13C values of SOM in soil profiles that 222 
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can be attributed to the changes in the δ13C of atmospheric CO2 should be small. 223 

In addition, bioturbation and consequent mixing of C from different sources has the potential to alter soil δ13C profiles (Acton 224 

et al., 2013;Ehleringer et al., 2000). The δ13C of root material is generally higher than that of above ground biomass, such as leaves 225 

(Powers and Schlesinger, 2002), and so the δ13C of SOC at the soil surface may be lower than deep soils. Because microbes, 226 

invertebrates, and other soil fauna are typically enriched in δ13C compared to source-substrates, biological migration and physical 227 

mixing of soils may alter relationships between soil C concentrations and δ13C (Wynn et al., 2006). Kohl et al. (2015) suggested 228 

that increased proportions of soil bacteria (13C enriched) relative to fungi (13C depleted) biomass might also contribute to increasing 229 

δ13C with depth; however the process-based modeling predicts the opposite pattern (Acton et al., 2013).  230 

Moreover, in extremely wet sites, it is likely that leaching of dissolved organic carbon (DOC) from soils to streams affects the 231 

relationship between decomposition and isotope effect expression (Powers and Schlesinger, 2002). Previous studies have shown 232 

that DOC increases with increasing soil depth (Kaiser et al., 2001). Because DOC is generally 13C-enriched (Kaiser et al., 2001), 233 

increasing DOC leaching into very wet sites would be expected to induce a larger change in soil δ13C with depth, and hence, 234 

increasing ln(-β). 235 

4.3 Uncertainty on carbon isotope method 236 

It is important to stress that we applied steady-state assumptions in estimating turnover, which would not hold for all sites, 237 

especially highly disturbed or human altered environments, such as agricultural soils. Application of our results to ecosystems that 238 

are for from steady-state should be approached with caution. Further, we used multiple data sources to estimate soil carbon store 239 

and respiration for profiles in our dataset and then calculated the k values, which might add uncertainty to the comparison between 240 

ln(-β) and ln (k). Finally, the coordinates that we used to extract climate data for some soil profiles (15 soil profiles out of ) from a 241 

world climate dataset may not match the exact locations of these soil profiles.  242 

5 Conclusion  243 

Our analysis provides a globally integrative tool for understanding variations of SOC turnover rate, which can be applied spatially 244 

based on estimates of factors such as climate and soil properties. Compared with other methods, utilization of C isotope 245 

composition ratios in soil profile provides an independent approach that does not rely on disruption of plant-soil-microbe 246 

interactions. It has the added benefit of integrating over longer time scales (decade to centuries), and thus provides a common 247 

measurement for model-based benchmarking and calibration schemes.  248 
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Table 1: Multiple regressions between ln(-β) and climate and other edaphic factors at global scale. 386 

Variables R2 n AIC 

ln(-β) = 0.046 MAT  0.058 MAP + 0.225 0.43*** 176 167.30 

ln(-β) = 0.053 MAT - 0.137 MAP + 0.384 N + 0.150 0.55*** 104 64.71 

ln(-β) = 0.046 MAT - 0.222 MAP + 0.849 N + 0.006 Clay + 0.069 0.66*** 70 28.95 

MAT: Mean Annual Temperature (℃); MAP: Mean Annual Precipitation (m); N: Soil nitrogen concentration (%) in topsoil. Clay: 387 

Soil clay concentration (%) in topsoil. n is the number of data, and R2 is the coefficient of determination for the regression line. 388 

AIC: Akaike information criterion. ***represents significant at p less than 0.001.  389 
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 390 

Figure 1. Locations of the 176 soil profiles used to calculate β values in this study.  391 
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 392 

Figure 2. Link between β value and modeled soil carbon turnover rate (k), which was estimated as the ratio between 393 

soil heterotrophic respiration and soil carbon stocks. Solid line is regression line and dashed lines denote 95% 394 

prediction interval.  395 
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 396 

Figure 3. Variations of mean β with biome types. Blue and red points present mean annual precipitation (MAP) and 397 

mean annual temperature (MAT) for each biome, respectively.  398 
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 399 

Figure 4. Variation of mean ln(-β) value across latitude (bar chart), litter decomposition rate k (yr-1, red dots, Zhang et 400 

al., 2008) and root decomposition rate k (yr-1, blue dots, Silver and Miya, 2001) at the global scale. The inner panel is 401 

the regression between soil ln(-β) value and litter and root decomposition rate k.  402 
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 403 

Figure 5. Beta varied with climatic and edaphic factors. Relationships between ln(-β) and MAT (a), MAP (b), soil N 404 

(c), and clay concentration (d) for global dataset. Solid line is regression line and dashed lines denote 95% prediction 405 

interval. 406 


