
Dear Emmanuel – 

We have revised the manuscript following the reviewers’ suggestions. We agree that the 
clarification based on the reviewer’s comments leads to a much improved paper. We attach a 
version with all changes shown (using track changes in Word) along with the response to 
reviewers, as well as a version without the track changes. 

The responses to the reviewers is almost identical to that already online in the discussion, 
except that we have now added line number for revisions specific for the track-changes version 
of the revised manuscript, and corrected a few minor typos and grammatical issues. 

In response to the reviews we have added two tables (Table 2 and 3), and added extra panels to 
Fig 9. We have also redone Fig 4,5,6, 8 and 11 for clarity. 

Thank you very much for handling this paper and for earlier comments which also helped in the 
clarification and suitability to the community. 

Yours, 

Stephanie Dutkiewicz 
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We thank the reviewer for this constructive review, and respond to each point below in blue text, 
and altered text in italics. 
 
 
This manuscript provides an overview on the how a coupled biogeochemical-ecosystem-optical 
model can be used to explore ocean colour algorithms, with a focus on Chlorophyll-a. The 
authors effectively show the kind of interrogation studies that can be done with this type of 
“virtual laboratory”. They clearly demonstrate how the ocean colour community can explore the 
bias and uncertainties of algorithms and their products, by investigating the effect of (1) other 
optically significant materials on derived Chlorophyll-a, and (2) different sized and regionally 
focused training datasets on robustness of an algorithm. I think this manuscript paves the 
ground for more detailed studies on the use of a radiative transfer component in a 
biogeochemical-ecosystem model to investigate ocean colour algorithms. The manuscript is 
well-written and logically presented, but there are a couple of points where I think a bit more 
clarity would improve the presentation of the methods & results (see comments). 
 
We thank the reviewer for these positive comments, and especially the understanding of the 
premise of the paper as a “virtual laboratory”. We hope that this study will allow for others that 
use such a laboratory for studying ocean colour algorithms and products. 
 
 
Specific comments: 
P2 L20-21: the band-ratio definitely used to be the most commonly used Chl-a algorithm for 
NASA, but they switched their “default” Chl-a to a merged approach of Hu et al. (2012) and the 
OCx type algorithms in Reprocessing 2014.0. I am not suggesting you redo your analysis using 
the band-difference algorithm (because as I understand it, the point in the paper is more to 
show the kind of analysis you can do with this type of “virtual laboratory”, and dealing with 
multiple Chl-a algorithms might confuse matters - that being said, it would be an interesting 
task), but I think it might be worth acknowledging that the OCx algorithms are not the most 
common for NASA anymore. 
Hu et al. (2012), J Geophys. Res., 117(C1). doi: 10.1029/2011jc007395 
 
This is a good point. We had used OC4, because this was what was used on the OC-CCI Chl-a 
product that we show in Figure 1. We however note that the latest OC-CCI product has 
switched to a blend of OC3, OC4+CI, OC5. But the improvements in algorithms with new 
reprocessing of the NASA products is important to acknowledge. We plan to include statements 
to this effect in the introduction and conclusions of a revised paper. Including a statement that 
the model might be a good place to explore some of the newer algorithms. 
 
In the introduction (pg 2, line19-30) we now include the following (underlined are added and 
altered text): 
““There is significant ongoing work to improve algorithms. For instance, the newest National Aeronautics 
and Space Administration (NASA) reprocessing of Chl-a products has included a merged approach that 
uses different combination of reflectance bands at low Chl-a (Hu et al., 2012). There have also been 
many attempts to develop more mechanistically derived algorithms (e.g. using known relationships 
between absorption, scattering and reflectance). Here we focus on the Chl-a estimated from the 
blue/green reflectance as it is still the most commonly known product, and until very recently used in 
products downloaded from both NASA and the European Space Agency (ESA) data portals, as well as 
merged products such as the Ocean Colour Climate Change Initiative (OC-CCI). However we note that 
similar techniques used in this paper could help inform on other algorithms. That the satellite-derived 
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products have large errors and specific regional biases is relatively well understood in the ocean colour 
scientific community (Hu et al., 2000, Moore et al., 2009; Blondeau-Parissier et al., 2014; Szeto et al., 
2011). However, there remain many aspects of errors, biases and uncertainties that are poorly 
quantified, particularly…” 

 
In the conclusion (pg 15, lines 26-29), we finish with:  

“We also hope that the ocean colour community will see the potential of model approaches such as this 
for deriving sampling strategies, further studies on newer Chl-a algorithms (e.g. NASA Reprocessing 
2014.0, and OC-CCI V3 release), other ocean colour products, and will help with algorithm developments 
for current and future ocean colour measurements.” 

 
 
 
P4 L29-30: While this appears to be true for the January images, it seems to me that the July 
OC-CCI image (1d) has higher values in the northern high latitudes (around Greenland, Bering 
Sea, around Scandinavia) than actual July image (1e). 
 
Yes, this is true. The larger values are most notable in the Southern Ocean and in January in 
the North Pacific. We will make this clearer in the revised version of the paper. We alter this 
sentence (pg 5, line 7-9) to: 
 
“As noted (and discussed more fully) in Dutkiewicz et al (2015) there are biases between the model and 
the observations, in particular larger values in the Southern Ocean and seasonally in the North Pacific 
than in the real-world satellite-derived Chl-a (Fig 1a,b,d,e).” 

We also are more precise when discussing the model Chl-a (both derived and actual) to OC-
CCI at the end of section 3.1 (see below). 
 
 
 
P5 L15-27: It is a bit unclear to me which results we are comparing at different points in this 
paragraph e.g. are the “observations” (L19) the OC-CCI observations? What is the “real world 
actual Chl-a” (L24)? L19-20: Are you saying the model blue Rrs is too high in the equatorial 
regions compared to the OC-CCI, coincident with where the model “actual” Chl-a is too low 
compared to the OC-CCI? Are you meaning OC-CCI is the “real ocean”? Maybe this sentence 
could be reworded to clarify this. 
 
Indeed this is a difficult section to read (and write). We have tried to rewrite clearer, laying out 
the terminology first in the introduction. We now refer to the real world OC-CCI Chl-a product, 
rather suggesting OC-CCI is the “real ocean”. We first have a statement in the introduction (pg 
3, line 26-28) to emphasis why we use the term “real-world”: 
 
““(In this article “real-world” will be used to refer to the real ocean and the real derived ocean colour 
products that are provide by space agencies. The “real world” is thus different to the numerical 
biogeochemical/ecosystem/optical model output and the products derived from it.)” 
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And have rewritten this Rrs comparison section (pg 5 line 27 to pg 6 line 9) as (underlined is 
added or altered text): 
 
“We compare the model output to real world remotely sensed reflectance using the OC-CCI product (Fig 
2). We note that the model does not have the exact same wavebands as any of the ocean colour 
satellites, and as such here we compare to the nearest bands: 450nm model to 443nm for the OC-CCI 
product, and 550nm model to the 555nm OC-CCI product. The model captures the reversed patterns 
between blue (443nm/450nm) and green (555nm/550nm) RRS between gyres and high productive 
regions. The model blue RRS (Fig 2a,b,c,d) captures the spatial and seasonal patterns in the real world 
satellite product. However, the model has lower blue RRS in the southern Pacific gyre in January. We note 
though that the model lowest Chl-a in this region is offset from the real-world OC-CCI product (Fig 1a,b). 
Similarly the model blue RRS is too high in the equatorial Atlantic and Pacific, but where the model Chl-a 
is likely too low relative to the real world Chl-a product (see Fig 1). The model has noticeably higher 
green (550nm) RRS in the equatorial Atlantic and Indian than the satellite measurements but note that 
these are regions of high cloud cover where the real world satellite product may be biased. We also find 
higher green RRS (Fig 2 e,f,g,h) in the North Pacific, but this might be due to model Chl-a being too high in 
this region (see Fig 1). In general the differences between model and the real world satellite RRS appear 
often to be linked to discrepancies between the model and real world satellite derived Chl-a product (and 
likely also in situ measurements). The model blue and green RRS appears to be consistent with the model 
actual Chl-a fields in a way that is similar to the real world and as such we believe appropriate and useful 
to use these model remotely sensed reflectance (“model ocean colour”) to construct “satellite-like-
derived” Chl-a using the blue to green reflectance ratio algorithm.” 

 
 
P7 L4: I think this sentence could be more clearly explained. I think I understand the point you 
are making: that because the model derived Chl-a compares better with the OC-CCI Chl-a than 
the model actual Chl-a does, then some of the difference between OC-CCI and model actual 
Chl-a can be attributed to problems with the band-ratio algorithm (i.e. “product bias”)? Is this 
what you mean by “product bias” - that there is an intrinsic problem with the band ratio 
formulation? I think the use of term “model” at the end of this sentence is particularly confusing: 
often in the ocean colour community, the term “model” is used in terms of a bio-optical 
proxy/relationship e.g. Chl-a is modelled using the band-ratio. Perhaps use “ecosystem model” 
(or something similar), to make this distinction clear. 
 
Yes, you understand the point we are trying to make. We have rewritten this section to make 
this clearer, and in particular added “biogeochemical/ecosystem/optical” to clarify “model”. 
This difference in use of “model” is important and we try to be careful not to be ambiguous in 
the paper. In particular we add a sentence to the last paragraph of the introduction (pg 3, lines 
29-31) to clarify this: 
 
“Additionally when we use the word “model” in this article, we refer to the numerical 
biogeochemical/ecosystem/optical model: In the ocean colour community “model” often refers to bio-
optical relationships, we do not use “model” with this definition here.” 
 
And this section (pg 7, lines 13-31, the last paragraph in Section 3.1) has been rewritten (taking 
Reviewer 2’s comments into account as well) as (added or altered text underlined): 
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“Finally in this section, we ask: Which model Chl-a (derived versus actual) best matches real-world OC-
CCI product? We do not do this not for model validation purposes (see evaluation in Dutkiewicz et al., 
2015), but rather to re-emphasis that the satellite derived Chl-a products are proxies for real world actual 
Chl-a: The two are not the same thing. We compare climatological monthly model derived Chl-a and 
model actual Chl-a to OC-CCI monthly climatology regridded to the model configuration (1 degree 
resolution). We find that the model derived Chl-a has global RMSE of 0.2867mg/m3, which is significantly 
lower than 0.6370mg/m3 found when comparing model actual Chl-a to OC-CCI. Comparisons are 
particularly better for the Southern Ocean and North Pacific (Fig 1). Consequently, some (though 
certainly not all) of the biases noted when comparing model actual Chl-a (Fig 1b,e) to real world satellite 
derived Chl-a products (Fig 1a,d,  section 2 and in the model evaluation done in Dutkiewicz et al. 2015) 
are due to the real world Chl-a derived product bias and not a deficiency in the 
biogeochemical/ecosystem/optical model. It follows that a model satellite-like derived products (Fig 1 
c,f) might be a better evaluation tool for comparing to ocean colour products derived with the same 
algorithm (Fig 1a,d) than the model actual Chl-a fields themselves.”  

 
 
 
P10 L2-5 (& Appendix B): The exact method is a bit unclear to me here. Did you: take the 
results of the full run (i.e. those shown in Fig 5a), then take the monthly mean of Rrs output and 
Chl-a input and derive the 4th order polynomial coefficients on those monthly means? Then, for 
each of the 3 experiments, did you: do a full run with daily values, take the monthly mean of the 
model output Rrs and input Chl-a, and use the monthly band-ratio relationship with the monthly 
Rrs for input? Or did you set up the model with monthly means for the input? Perhaps this could 
be clarified in the text. 
 
The problem with the sensitivity studies was saving the daily fields for 15 years. So instead we 
saved off the monthly fields instead. Thus model output for these sensitivity studies was monthly 
means of Rrs and monthly means of Chl-a. The “default” simulation was rerun saving off the 
monthly means (rather than the daily means used in Fig 5) so that it would be directly 
comparable to the sensitivity studies. The 4th order polynomials were calculated with these 
monthly means. We try to explain this clearer in the text now (underlined are altered text). 
 
In main text we propose to have the following statement (pg 11, lines 20-24) to make this 
clearer: 
 
“However, given computational and storage constraints we used monthly averaged values of Chl-a and 
RRS to calculate the algorithm coefficients in these experiments rather than daily values (see Appendix B 
for discussion).” 
 
 
And for Appendix B (pg 16) we will suggest the following as a change (underlined are the 
altered text): 
 
“The daily values for 15 years at each grid point creates a very large datafile.  Diagnostics with, and 
storage of, this large dataset becomes extremely computationally expensive. In order to conduct 
sensitivity studies we found that we needed to reduce this data set. Here we explore only outputting 

emmanuelboss
Sticky Note
The algorithm in non-linear, e.g. averaging and then computing Chl is not the same as computing Chl and then monthly averaging. Did you look at that?
If you computed Chl every day, there is no porblem.
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monthly means of model RRS and Chl-a and thus reducing the dataset by 1/30th.  We determined the 
algorithm coefficients (a0 to a4 in Eq 1) using monthly rather than daily means and subsampling for the 
GS approach. The resulting function (Fig 4, solid black) is similar at low and intermediate Chl-a, but does 
deviate at high Chl-a from the algorithm found using daily mean values (light blue line). The r2 from this 
algorithm with coefficients defined with monthly means was also not quite as good as that found using 
daily means (see Table 2 and 3). However we found that the results were similar enough that we could 
obtain qualitative comparison between sensitivity experiments EXP-1, EXP-2, EXP-3 discussed in Section 
5). We also note that the resulting two dimensional histogram (Fig 11) has far lower density when using 
4 million relative to 140 million points. Though not perfect, using monthly output does allow us to 
perform EXP-1 through EXP-3 and still feel confident that the between experiment differences are 
robust.” 
 
 
 
Fig 11: If I am understanding correctly, Fig 11a is the same as Fig 5a, but 11a uses the monthly 
coefficients i.e. the black line in Fig 4, whereas 5a uses the light blue line. I think it would be 
useful to point this out explicitly. 
 
Yes, Fig 11a uses coefficients found using monthly mean Chl-a and RRS. And yes, the different 
functions are given by light blue and black lines in Figure 4. We plan to add a further sentence 
to Fig 11 to make this point. Thus together with the sentences already in the caption we will 
have the following to clarify this different (underlined are altered text): 
 
   
“In these plots, monthly mean output of Chl-a and RRS were used to calculate the algorithm, and only monthly mean output is 
shown (4 million versus 140 million points), thus at a great computational savings. The difference in the algorithm is shown in 
Figure 4 (the light blue line is the algorithm with coefficients found using daily values, versus the solid black line where 
coefficients where found using monthly values). Differences between 11a and 5a are due to this difference in sampling 
(discussed in Appendix B). Also notice the difference in values on the colourbars between this figure and Figure 5.” 

 
 
P12 L20-21 & L33-P13 L1: I’m not so sure it is quite as simple as this. I agree that the other 
optically significant materials are contributing to false Chl-a signals: there is a shoulder in all the 
derived Chl-a time series (Fig 8a), that aligns perfectly with the peak in CDOM and detritus (Fig 
8b). But you can see the pattern of the actual Chl-a signal in the derived values, with peaks 
aligning on around days 60 and 75 - the magnitude of these derived values are just less than 
the actual values, but I’d say these are the “true peaks” of the spring bloom. After approximately 
day 75, there is the interference from CDOM and detritus, hence when calculating the initiation 
of the spring bloom (as described in the appendix), this large “false peak/shoulder” increases 
the median Chl-a and skews the determined initiation date. So I think what your data could be 
showing is (1) the Chl-a products do capture the peak of the spring bloom, but the magnitude of 
that peak is too small, and (2) the CDOM and detritus contribute to a false Chl-a signal, which 
makes it appear as if the bloom lasts longer and (depending on how you define bloom initiation) 
makes the initiation date appear to lag compared to the model actual. 
 
We agree that that there is an alignment with the first peak (around day 60), but there is an 
offset for the maximum peak. Indeed, some of the points we make here are subject to what we 
define as the “initiation” and “peak”, and we now make this clearer in the revised text: see 
below.  
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We use the definitions of Cole et al (2012) and to make our points clearer, we have added extra 
lines to Fig 8 (see below) to show the timing of the “initiation”. Thus, for this definition of initiation 
there is indeed a lag between the derived products and the actual Chl-a. (Fig 9)  
We add text to clarify this – i.e. acknowledging that the products are capturing the peaks at 
some times and not others. We also add a figure of the maximum peak offset as an additional 
panel for Figure 9 (b), as well as for the difference in timings of initiation for CDOM and detrital 
matter in response to a comment by reviewer 2. 
 
Section 4 (pg 9 and 10) will now read (underlined indicates new or altered text): 
“We have noted that in all approaches, though even more obvious in RA, there is a seasonally altering 
pattern between the derived and actual model Chl-a (Fig 6). The amplitude of the peak of spring blooms 
is often underestimated in the products derived using global coefficients (GS and GA) in high latitude, 
especially in the subsampled algorithm (GS) (Figs 6). , Derived Chl-a values were also often higher than 
model actual Chl-a outside of bloom peaks. We consider the phenology using a single location (in the 
subpolar North Atlantic) for a single year as illustration (Fig 8a). Though the derived products show 
similar (though smaller) peaks to the actual Chl-a, and sometimes similar peak timing early in the season 
(see for instance the first distinct peak in this illustrative location), there are noticeable lags for the 
maximum peak (shown with a dotted line) and other mismatches later in the season. We also find that 
the bloom period lasts later into the year. The actual Chl-a also starts its sharp increase in spring (the 
initiation of the spring bloom, shown with dashed line) considerably before all three derived products (Fig 
8a).  We follow the approach of Cole et al (2012) for determining the “initiation of the spring bloom” as 
the time when the Chl-a first increases 5% above the annual median (horizontal dashed line, more 
description in Appendix A).  

Figure 8 shows just one location for 1 year. To consider the large scale patterns, we determine the lag in 
the spring initiation (Fig 9a) and maximum bloom timing (Fig 9b) for each location averaged over all 
years. We find that in almost all locations the derived Chl-a shows the bloom starting later than the 
model actual Chl-a (Fig 9a). This offset is typically by about 5-10 days but can be as much as 30 days. The 
maximum Chl-a from the derived product also lags the actual Chl-a in most locations, though by only a 
few days (Fig 9b). These results indicate that temporal as well as spatial biases occur as a result of 
deriving Chl-a from X and suggests care should be taken when calculating phenology from satellite 
products or when evaluating phenology in models using satellite-derived Chl-a. We discuss the reason for 
the lags in the next section.” 
 
And the following caveats in section 5 (pg 11, lines 5-11): 
“We add the caveats that the exact definition of “initiation of bloom” does impact how much of a lag 
there is in the phenology. For instance, if the first peak in the model actual Chl-a in Figure 8a was defined 
as “the spring bloom” we would suggest the derived Chl-a does capture the timing better (though not the 
magnitude). We also note that the model parameterization of CDOM and detrital particle are not 
necessarily sufficiently well developed to make quantitative statements on the likely real-world lags. 
Thus, though we do suggest there could be significant lags in phenology in the real world satellite Chl-a 
product, we do not suggest that the values in Figure 9 are necessarily accurate for the real world. This 
analysis should instead be seen as a cautionary statement about using satellite-derived products for 
phenology of the quantities for which they are proxies.” 

And more-over are careful in the rest of the text to discuss “phenology” rather than “spring 
bloom” such that the role of definitions of timing are not as relevant. 
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New versions of Figure 8 and 9 and their captions (altered of added text underline) are provide 
here. Extra panels in Figure 9 are added at Reviewer 2’s suggestion. 
 

 

Figure 8: Illustrative example timeseries for one year from a single location in the North Atlantic (shown as x on Fig 9). (a) 
“actual” Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), 
and the Chl-a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and 
detritus (green), all normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken 
to be when Chl-a reaches 5% above the annual median value  following Cole et al (2012) and discussed further in Appendix A 
(dotted horizontal line shows this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. 
Shown here is only a single year and location, however for larger scale perspective, the difference in initiation and peak timing 
between model actual and derived Chl-a averaged over all years are shown for the globe in Figure 9. 

  
 



8 
 

 
 

Figure 9: Lag in phenology. Number of days between a) the initiation of the spring bloom from model actual Chl-a and that for 
the model derived Chl-a (GS); b) yearly maximum of model actual Chl-a and that for the derived Chl-a (GS); c) initiation of 
the spring bloom from model actual Chl-a and the initiation of the CDOM increase; d) initiation of the spring bloom from 
model actual Chl-a and the initiation of detrital particle increase. Bloom initiation is defined as when Chl-a, CDOM or detrital 
particles reach 5% above their annual median value (see Appendix A). White areas indicate regions with no significant seasonal 
cycle or are not resolved by the model (e.g. Arctic Ocean). 

 
 
 
It might be useful to have a table presenting the numerical results (e.g. log/linear RMSE, 
absolute % bias, etc.) for each approach in Section 3 and 5, to make it easier to compare the 
different results. 
 
We now plan to add two tables (Table 2 and 3, shown below), one for each section. We split 
into two tables, to avoid comparison between the daily and the monthly determined algorithms. 
We also emphasis this difference in the table 3’s caption 
 
 

 Approach 1: GS Approach 2: GA Approach 3: RA 
r2 (log space) 0.9088 0.9222 0.9466 
RMSE (log space) 0.1599 0.1477 0.1215 
r2 (linear space) 0.6014 0.7670 0.8301 
RMSE (linear space) 0.4816 0.3682 0.3083 
absolute % bias 22% 23% 17% 

 

Table 2: Results of comparison between model “actual” and model “satellite-like” derived Chl-a for the 
three algorithm approaches discussed in Section 3. Statistics are calculated for each grid and each day 
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over 15 years, except for grid cells and times with low light, very low Chl-a and shallow regions (see 
text). 

 

 Default EXP-1:  
uniform aCDOM 

EXP-2:  
uniform adet 

EXP-3: 
phytoplankton 
optical same 

r2 (log space) 0.8999 0.8742 0.8905 0.9493 
RMSE (log space) 0.1678 0.1636 0.1663 0.1208 
r2 (linear space) 0.5373 0.6298 0.5991 0.7520 
RMSE (linear 
space) 

0.4420 0.3811 0.3962 0.2591 

absolute % bias 21% 20% 23% 18% 
 
 
Table 3: Results of comparison between model “actual” and model “satellite-like” derived Chl-a for the 
sensitivity experiments discussed in Section 5. All “satellite-like” derived Chl-a was calculated using the 
GS approach. “Default” is the full experiment discussed in Section 3, but with monthly RRS used to 
calculate the algorithm coefficients. Statistics are calculated for each grid cell and each month over 15 
years, except for grid cells and times with low light, very low Chl-a and shallow regions (see text). 

 
 
Fig 4 and Fig 8: Legends would make these plots easier to read. 
 
Agreed. We add these in the revised paper (see version of Fig 8 above). 
 
 
Fig 5 and Fig 11: it would be useful to have a title or text on each graph to show which subplot is 
which e.g. “(a) GS” 
 
Agreed, we add these in the revised paper. 
 
 
Fig 8: The thick black line on top of the other time series signals masks some of the detail of the 
derived Chl-a products, particularly after the first 3 months - could this be represented in a 
different way? Also, check the axis labels, I think Fig 8b is showing days, not months. 
 
We’ve redone the figure with a thinner black line, placed under the other lines. The resulting 
figures is clearer (see above). And yes, Fig 8b x-axis was days, we now change so that Fig 8a 
and 8b have the same x-axis. Thank you for catching this. 
 
 
 
Technical Corrections: 
P1 L15-16: missing the word “to” i.e. sentence should read “...derived Chl-a to the actual...“ 
 
Thank you – added in the revised text. 
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P1 L25: should be either “These results indicate” or “This result indicates” 
 
Thanks –fixed in the revised text as “These results indicate….” 
 
P9 L29: Should this sentence not end with a question mark? i.e. “. . .community structure)?” 
 
Yes, fixed in revised text. 
 
P11 L23: remove the second “like” 
 
Thanks, done. 
 
P12 L24: build should be built 
 
Yes, thank you. Will fix in revised text. 
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We thank the reviewer for their comments, and respond to each point below in blue text, and 
proposed altered text in italics. 
 

The paper ‘Modelling Ocean Colour Derived Chlorophyll-a’ by Dutkiewicz et al. uses a modified version 
of the MIT general circulation model that incorporates scattering and absorption properties of water, 
detritus, coloured dissolved organic matter (CDOM) and 9 phytoplankton types. ‘Actual’ chlorophyll-a 
concentration (Chl-a) is determined by summing the variable chlorophyll-a concentration of the 9 
phytoplankton types. Remote sensing spectral reflectance, determined from the resulting modelled 
upwelling and downwelling irradiances are used in a NASA OCx type algorithm to compute satellite-like 
‘derived’ chlorophyll-a concentration which is compared to ‘actual’ chlorophyll-a concentration. Firstly, 
the model output is used to test assumptions used in the derivation of chlorophyll-a concentration using 
the standard OCx ratio algorithm. Secondly, bloom initiation timings, determined from the ‘derived’ and 
‘actual’ chlorophyll concenrations, are compared. Lastly, the impact that other optically important 
parameters may have on ‘derived’ chlorophyll concentration is explored. The authors conclude that (a) 
applying a single set of coefficients in the OCx algorithm globally is not as accurate as applying regionally 
variable coefficients, (b) there is a temporal mismatch between the initiation of the spring bloom 
defined using ‘actual’ Chl-a compared with that de-fined using ‘derived’ Chl-a and (c) that this mismatch 
may be caused by the optical influence of other substances such as CDOM and/or detritus. 

I found this paper to be generally well-thought out and well-written. For colleagues who are not regular 
users of these products, this paper provides important caveats for the use of satellite derived data. For 
those of us who work with ocean colour derived products more often, the results may not be 
unsurprising, but it serves as a timely reminder of the limitations associated with satellite derived data. 

We thank the reviewer for these positive comments and for recognizing that though some of the results 
are not surprising to those who are experts in ocean colour products, these results offer a reminder of 
the limitations. We do believe that for non-experts of ocean colour products, these results will be very 
informative. 

 

Whilst interesting and worthy of publishing in Biogeosciences, I have some concerns with some of the 
quite sweeping conclusions that appear to be derived from comparison with a single dataset or single 
datapoint (referred to in more detail below). In addition, I have made other specific comments that I 
believe should be addressed be-fore this manuscript is suitable for publication. 

The reviewer’s comment relates to Fig 8, and the discussion of the results shown in it for one location 
and one year. This figure was only supposed to be illustrative, not the main basis for our conclusions. 
We have significantly rewritten this section to make this obvious, and include several more panels in Fig 
9 that show that the inferences we gain from that location are relevant for much of the globe. See 
below. 

 

SPECIFIC COMMENTS 
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P 1, L27 – I am unclear whether the term ‘. . .real world Chl-a. . .’ used here refers to actual in-situ 
chlorophyll-a concentration or satellite derived chlorophyll-a concentration. The term ‘real’ appears to 
be used interchangeably throughout the manuscript. 

We agree that this incident of the use of “real” was confusing and will change this to be “to real world 
satellite-derived Chl”. We have also gone through the manuscript being careful how we use “real world” 
in the text. We also add a sentence in the introduction (pg 3, line 27-29) to define “real world” for the 
rest of the paper: 

““(In this article “real-world” will be used to refer to the real ocean and the real derived ocean colour 
products that are provide by space agencies. The “real world” is thus different to the numerical 
biogeochemical/ecosystem/optical model output and the products derived from it.)” 
 

P5, L15 – Would it make more sense to swap Figures 1 and 2 so that the comparison of model and OC-
CCI reflectance appears first as Fig 1 and is followed by the product comparisons as Fig 2. If this were the 
case, would there then be anything gained by comparing model actual and derived Chl-a to the OC-CCI 
Chl-a product? As I under-stand it, this paper is more about using the model output as a test ground to 
compare model ‘actual’ to ‘derived’ Chl-a rather than testing how well the model replicates the real 
world’ values. Just a thought. 

 

We like the “thought” – it would make a cleaner paper not getting into the aspect of evaluating the 
model. However, one of the points we would like to make is that comparing model “actual” or model 
“derived” Chl-a to “real-world” satellite derived Chl-a  leads to different results. There are therefore 
important implications of our analysis for model validation (i.e. that comparing model chl-a to real-world 
satellite-derived Chla is not comparing like-for-like), so we feel this comparison is an important part of 
the paper. We have considerably rewritten the relevant paragraph (last one of section 3.1, pg 7, lines 
17-31) to make this point clearer and to emphasis that this is not a “evaluation”, but a demonstration 
(underlined is added or altered text). 

“Finally in this section, we ask: Which model Chl-a (derived versus actual) best matches real-world OC-
CCI product? We do not do this not for model validation purposes (see evaluation in Dutkiewicz et al., 
2015), but rather to re-emphasis that the satellite derived Chl-a products are proxies for real world actual 
Chl-a: The two are not the same thing. We compare climatological monthly model derived Chl-a and 
model actual Chl-a to OC-CCI monthly climatology regridded to the model configuration (1 degree 
resolution). We find that the model derived Chl-a has global RMSE of 0.2867mg/m3, which is significantly 
lower than 0.6370mg/m3 found when comparing model actual Chl-a to OC-CCI. Comparisons are 
particularly better for the Southern Ocean and North Pacific (Fig 1). Consequently, some (though 
certainly not all) of the biases noted when comparing model actual Chl-a (Fig 1b,e) to real world satellite 
derived Chl-a products (Fig 1a,d,  section 2 and in the model evaluation done in Dutkiewicz et al. 2015) 
are due to the real world Chl-a derived product bias and not a deficiency in the 
biogeochemical/ecosystem/optical model. It follows that a model satellite-like derived products (Fig 1 
c,f) might be a better evaluation tool for comparing to ocean colour products derived with the same 
algorithm (Fig 1a,d) than the model actual Chl-a fields themselves.”  
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Though we agree that it would be nice to have figure 2 (reflectance) before figure 1 (product: Chl-a) we 
could not find a way to do this without complicating the paper. So we have left as is. 

 

P6, L13 – The authors talk about comparing ‘. . .locations and dates similar to those in NOMAD.’ What is 
their definition of similar? 

The model has 1 degree resolution – so we are using the degree box within which the actual is situ 
measurements are taken. This is unnecessarily confusing though and we now state differently (pg 6, line 
27): 

“.. at locations and dates nearest in time and space to those in NOMAD” 

 

P6, L15 – Again they use ‘similar’ to describe the resulting relationship between model ‘actual’ 
chlorophyll, model X, and real world in situ observations without really defining what similar means. 

Here we had meant to reference Figure 4, where we show the OC4 and OC3M-547 functions. We now 
change this sentence (pg 6, line 29) to reflect this: 

“The resulting relationship between model blue/green reflectance ratio (X) and Chl-a from subsampling 
the model (Fig 3a) is similar to that found for real-world algorithms (Fig 4).” 

 

P6, L20 – The authors make no mention of the discrepancy between model reflectance wavebands (blue 
– 450 nm, 475 nm or 500 nm, green – 550 nm) and those used in the OC4 (blue – 443 nm, 490 nm or 510 
nm, green – 555 nm) or OC3M-547 (blue – 443 nm or 488 nm, green – 547 nm) algorithms when 
comparing coefficients in Table 1. It might make it clearer to those not familiar with the derivation of 
these algorithms that they are not comparing like with like. 

Yes, thank you. This is an important point and in the revised version we will add the following to the text 
and to the figure caption. 

We will add where we compare the model RRS to OC-CCI Rrs (pg 5, line 27-29): 

“We note that the model does not have the exact same wavebands as any of the ocean colour satellites, 
and as such here we compare to the nearest bands: 450nm model to 443nm for the OC-CCI product, and 
550nm model to the 555nm OC-CCI product.” 

Also when we compare the model GS coefficients to OC4 and OC3-457 (Fig 4 and Table 1) we now add 
the following sentence (pg 6, line 30 to pg 7, line 1): 

“Some of the differences between real-world and model coefficients is likely to come from the use of 
different exact bands in the blue and green (e.g. 550nm for model green versus 555nm for OC-CCI).” 

We also add the following to the figure caption in Figure 2: 

“We compare the model wavebands against the nearest OC-CCI wavebands, but note that they are not 
identical.” 
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P7, L1-5 – The authors compare the OC-CCI Chl-a product to model derived Chl-a (although see my 
second comment). Where are the plots to support the statistics? What monthly climatologies are used 
to generate these statistics (is it a combination of Jan and Jul or all months?) Over what period are the 
January and July OC-CCI mean values determined? Are the OC-CCI output averaged to 1 degree by 1 
degree similar to the model output? What version of the OC-CCI product is used? Are these OC-CCI 
products just OCx type output or do they include data from the Hu CI algorithm? The OC-CCI output is 
just one product. The statement at L5 seems to be quite a bold statement to make when only one 
product has been compared. 

 

The product from OC-CCI was OC4 without the Hu CI component. We discuss the Hu et al adjustments 
now in the introduction and text (see comments by Reviewer 1). 

The RMSE is determined from daily values over the full time period (not just Jan and Jul) averaged 
globally. We have regridded OC-CCI onto the same grid as the model for these comparisons. 

We would prefer not to add any additional figures, especially for this point. However, we do agree with 
the reviewers’ concern on this section and have considerably rewritten it. We add some additional text 
(also in the figure caption) to explain the statistics better and state what OC-CCI product we are using. 
Additionally we add text in both introduction and summary to highlight that OC4 is just one product, and 
that there are newer (and better) products also available. We have stuck here to the OC4 as it was the 
one that compared to the version of OC-CCI that we downloaded (a new version (V3) has just been 
released). We do specifically mention the newer OCx+CI versions. We are not convinced that the 
statement on L5 is too bold. However we do add a caveat in it. 

The paragraph questioned here is provided above for the discussion on Fig 1 above. And we add the 
following sentence to caption of Figure 1: 

“We use version 2 of the OC-CCI, which uses an OC4 algorithm for determining the Chl-a product, and 
thus comparable algorithm as used in our model derived Chl-a shown in e,f.” 

 

In the introduction (pg 3, line 19-27) we have the following (underlined is added or altered text): 

“There is significant ongoing work to improve algorithms. For instance, the newest National Aeronautics 
and Space Administration (NASA) reprocessing of Chl-a products has included a merged approach that 
uses different combination of reflectance bands at low Chl-a (Hu et al., 2012). There have also been 
many attempts to develop more mechanistically derived algorithms (e.g. using known relationships 
between absorption, scattering and reflectance). Here we focus on the Chl-a estimated from the 
blue/green reflectance as it is still the most commonly known product, and until very recently used in 
products downloaded from both NASA and the European Space Agency (ESA) data portals, as well as 
merged products such as the Ocean Colour Climate Change Initiative (OC-CCI). However we note that 
similar techniques used in this paper could help inform on other algorithms.”  
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The final sentence of the summary  (pg 15, lines 27-30) now reads (underlined is new text): 

“We also hope that the ocean colour community will see the potential of model approaches such as this 
for deriving sampling strategies, further studies on newer Chl-a algorithms (e.g. NASA Reprocessing 
2014.0, and OC-CCI V3 release), other ocean colour products, and will help with algorithm developments 
for current and future ocean colour measurements.” 

 

 

P7, L20 – Perhaps it’s my eyesight but I’m not convinced that Figs (b) and (e) show ‘. . .much lower 
biases at high latitudes. . .’. (I assume you are comparing Fig 6 (b) and (e) to Fig. 6 (a) and (d)) 

Yes we were comparing b,e to a,d – will make clearer in the revised version. And we agree that this is 
not obvious from the figure – the improvement is mostly just at the edge of the data before moving into 
the white areas. We now restate this sentence (pg 8, line 15-16, underlined is new/altered text): 

“Though there is some improvements in some regions in the higher latitudes, there is actually decrease in 
skill at lower latitudes (Fig 6b,e compared to a,d). There is in fact a slight increase in the mean % 
absolute bias (23%) between this and the GS estimates: When transformed into percent errors the 
increased biases at low Chl-a, low latitude regions become more prominent.” 

 

 

P8, L3-5 – Are grid cells with depths less than 1000m also excluded? 

Yes, will be stated in the revised version. 

 

P8, L22-24 – These statements appear to be derived from data taken from one point in the North 
Atlantic. Is this a fair representation of the global pattern or is it just representative of this location? 

We use the one location as an illustration. The results shown in figure 9 show that same lag in initiation 
of the bloom occur across much of the high latitudes. We make clear in the text and Figure 8 caption 
that this is just an illustration. To further strengthen the relevance of this discussion in space and time, 
we now include other panels in figure 9 to show the mismatch in the peak timing, as well as in the 
initiation of increase in CDOM and detrital matter relative to actual Chl-a.  

Section 4 (pg 9 and 10) now reads (underlined is altered or added text): 

“We have noted that in all approaches, though even more obvious in RA, there is a seasonally altering 
pattern between the derived and actual model Chl-a (Fig 6). The amplitude of the peak of spring blooms 
is often underestimated in the products derived using global coefficients (GS and GA) in high latitude, 
especially in the subsampled algorithm (GS) (Figs 6). , Derived Chl-a values were also often higher than 
model actual Chl-a outside of bloom peaks. We consider the phenology using a single location (in the 
subpolar North Atlantic) for a single year as illustration (Fig 8a). Though the derived products show 
similar (though smaller) peaks to the actual Chl-a, and sometimes similar peak timing early in the season 
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(see for instance the first distinct peak in this illustrative location), there are noticeable lags for the 
maximum peak (shown with a dotted line) and other mismatches later in the season. We also find that 
the bloom period lasts later into the year. The actual Chl-a also starts its sharp increase in spring (the 
initiation of the spring bloom, shown with dashed line) considerably before all three derived products (Fig 
8a).  We follow the approach of Cole et al (2012) for determining the “initiation of the spring bloom” as 
the time when the Chl-a first increases 5% above the annual median (horizontal dashed line, more 
description in Appendix A).  

Figure 8 shows just one location for 1 year. To consider the large scale patterns, we determine the lag in 
the spring initiation (Fig 9a) and maximum bloom timing (Fig 9b) for each location averaged over all 
years. We find that in almost all locations the derived Chl-a shows the bloom starting later than the 
model actual Chl-a (Fig 9a). This offset is typically by about 5-10 days but can be as much as 30 days. The 
maximum Chl-a from the derived product also lags the actual Chl-a in most locations, though by only a 
few days (Fig 9b). These results indicate that temporal as well as spatial biases occur as a result of 
deriving Chl-a from X and suggests care should be taken when calculating phenology from satellite 
products or when evaluating phenology in models using satellite-derived Chl-a. We discuss the reason for 
the lags in the next section.” 
 

  

Figure 8 is now more clearly described as just an illustration with the connection to Figure 9 made to 
make obvious that Fig 9 has the global results. We also add additional lines to Fig 8 to show the initiation 
of the bloom. We attach the new Fig 8 and 9, and captions below.  

 

Figure 8: Illustrative example timeseries for one year from a single location in the North Atlantic (shown as x on Fig 9). (a) 
“actual” Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), 
and the Chl-a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and 
detritus (green), all normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken 
to be when Chl-a reaches 5% above the annual median value  following Cole et al (2012) and discussed further in Appendix A 
(dotted horizontal line shows this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. 
Shown here is only a single year and location, however for larger scale perspective, the difference in initiation and peak timing 
between model actual and derived Chl-a averaged over all years are shown for the globe in Figure 9. 
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“actual” Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), 
and the Chl-a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and 
detritus (green), all normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken 
to be when Chl-a reaches 5% above the annual median value  following Cole et al (2012) and discussed further in Appendix A 
(dotted horizontal line shows this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. 
Shown here is only a single year and location, however for larger scale perspective, the difference in initiation and peak timing 
between model actual and derived Chl-a averaged over all years are shown for the globe in Figure 9. 
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“actual” Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), 
and the Chl-a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and 
detritus (green), all normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken 
to be when Chl-a reaches 5% above the annual median value  following Cole et al (2012) and discussed further in Appendix A 
(dotted horizontal line shows this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. 
Shown here is only a single year and location, however for larger scale perspective, the difference in initiation and peak timing 
between model actual and derived Chl-a averaged over all years are shown for the globe in Figure 9. 
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Figure 8: Illustrative example timeseries for one year from a single location in the North Atlantic (shown as x on Fig 9). (a) 
“actual” Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), 
and the Chl-a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and 
detritus (green), all normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken 
to be when Chl-a reaches 5% above the annual median value  following Cole et al (2012) and discussed further in Appendix A 
(dotted horizontal line shows this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. 
Shown here is only a single year and location, however for larger scale perspective, the difference in initiation and peak timing 
between model actual and derived Chl-a averaged over all years are shown for the globe in Figure 9. 
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Figure 9: Lag in phenology. Number of days between a) the initiation of the spring bloom from model actual Chl-a and that for 
the model derived Chl-a (GS) ;b) yearly maximum of model actual Chl-a and that for the derived Chl-a (GS); c) initiation of 
the spring bloom from model actual Chl-a and the initiation of the CDOM increase; d) initiation of the spring bloom from 
model actual Chl-a and the initiation of detrital particle increase. Bloom initiation is defined as when Chl-a, CDOM or detrital 
particles reach 5% above their annual median value (see Appendix A).  White areas indicate regions with no significant seasonal 
cycle or are not resolved by the model (e.g. Arctic Ocean). 

 

 

 

P9, L4 – The authors could reference the Dutkiewicz et al. (2015) paper again here.  

Good idea, done in the revised version. 

 

P9, L5 – The authors refer to ‘studies’ then reference a single instance. 

We add “e.g” to the text and additional references (e.g. Loisel et al., 2010; Brown et al., 2008, Siegel et 
al., 2005a, 2005b) 

Brown, C.A., Huot, Y., Werdell, P.J., Gentili, B., and Claustre, H.: The origin and global distribution of 
second order variability in satellite ocean color and its potential applications to algorithm development, 
Remote Sensing of Environment, 112, 4186-4203. 

Loisel, H., Lebac, B., Dessailly, D., Duforet-Gaurier, L., and Vantrpotte, V.: Effect of inherent optical 
properties variability on chlorophyll retrieval from ocean colr remote sensing: an in situ approach. 
Optics Express, 18,  
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Siegel, D.A., Maritorena, S. Nelson, N.B., and Behrenfeld, M.J.: Independence and interdependencies of 
global ocean color properties; Reassessing the bio-optical assumption. J. Geophys. Res., 110, C07011, 
doi:10.1029/2004JC002527, 2005a 

Siegel, D.A., Maritorena, S., Nelson, N.B., Behrenfeld, M.J. and McClain, C.R.: Colored dissolved organic 
matter and its influence on the satellite-based characterization of the ocean biosphere, Geophys. Res. 
Letters, 32, L20605, doi:10.1029/2005GL024310, 2005b. 

 

P9, L17-21 How do the authors support this statement? If it is the timeseries data in Figure 8, then these 
are data from just one point in the North Atlantic. I don’t think that data from one location and for one 
year is sufficient to warrant these conclusions. 

See our comments above for P8, L22-24 above. The results in Figure 9 show the global results averaged 
over 13 years. However we do see the reviewers point, and now add the extra panels (c,d) to Figure 9. 
We modify the text in Section 5 (original P9, L17-19) as such (underlined is added or altered text):  

“However, we find that though linked, there are noticeable lags in the sharp increase in accumulation 
(Fig 8b, Fig 9 c,d) and peak timing and decline(Fig 8b) between CDOM and detrital matter and the model 
actual Chl-a.” 

 

 

Figure 3 – How do you differentiate between zero bias and lack of data? Could I suggest that lack of data 
is coloured differently to zero bias? 

I assume you mean Figure 6? Good idea. We will do have done so in the revised paper. 

 

Figure 4 – Not sure whether the figure order works. The first mention of Fig. 4 that I can find occurs on 
P11 after reference to all the other figures. Again, if the authors are comparing the polynomials it might 
make it clearer to the reader if they acknowledge that different wavelengths have been used in the 
derivation in the legend. 

Figure 4 is mentioned first on pg 6 (line 22), but we now also reference it earlier in the newer version of 
the paper. Since two of lines in Figure 4 are those in Figure 3, it does quite naturally belong here. 

We add the acknowledgment of different wavelengths in the caption of Figure 4:  
“Note that the algorithms for the model come from band ratio of 425nm/450nm/475nm and 550nm. For the real world 
algorithms the band ratios are different and specific for the satellite sensor (SeaWifs or MODIS).” 
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Figure 8 – I don’t think the x axis matches the label in Fig 8 (b). I assume the vertical dotted line marks 
the peak in ‘actual’ Chl-a? 

Thank you for catching this – we have altered the axis to match Fig 8a. Yes, the vertical dotted line is the 
peak – we now mention this in the figure caption. We have also added a line to show the initiation of 
the spring bloom for clarity. See new figure 8 and caption above. 

 

TECHNICAL CORRECTIONS 

P1, L16 – Should read ‘. . .Chl-a to the actual. . .’ 

Thank you – we fixed this. 

 

P1, L25 – Should read ‘This result indicates. . .’ 

Actually, I think should read “These results indicate…”, so will change to this instead. Thank you for 
catching this inconsistency. 

 

P2, L15 – I think this is the first use of the acronym CDOM and so it should be defined here. 

Yes, added. 

 

P2, L18 – Should read ‘There have been. . .’ 

Yes, thank you. 

 

P2, L20 – Should read ‘product’ instead of ‘products’ 

Yes, fixed 

 

P2, L24 repeats L7 

We removed the text at L24 from the revised text. 

 

P3, L28 – In situ is italicised here but nowhere else. 

Thanks – we removed the italics to be consistent. 

 

P4, L14, 15, 17, 19 - Repeated uses of ‘explicit’. 
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Yes, have removed excessive use of “explicit”. Thank you. 

 

P5, L15 – ‘Fig.2’ is italicized 

We removed the italics. Thank you. 

 

P7, L4 – Missing figure number 

Corrected. 

P7, L19 - Should read ‘. . .lead to a better. . .’ 

Yes, thank you. 

 

P9, L3 – Should read ‘lead’ rather than ‘leads’ 

Yes, thank you 

 

P9, L21 – Should read ‘. . .remains relatively high. . .’ 

Yes, fixed 

 

P9, L29 – Don’t think there should be a comma after ‘pigments’.  

Indeed not, we have removed. 

 

P9, L31 – However, I think there should be one after ‘reflectance’.  

Yes, have fixed this in revised version. 

 

P12, L22 Should read ‘. . .by-products. . .’ 

Yes, thank you.  



1 
 

   Modelling Ocean Colour Derived Chlorophyll-a 
Stephanie Dutkiewicz1,2, Anna E. Hickman3, Oliver Jahn1 
1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, 02139 MA, 
USA  
2Center for Climate Change Science, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA  5 
3Ocean and Earth Sciences, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 
3ZH, United Kingdom. 

Correspondence to: Stephanie Dutkiewicz (stephd@mit.edu) 

Abstract. This article provides a proof-of-concept for using a biogeochemical/ecosystem/optical model with radiative transfer 

component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour Chlorophyll-a (Chl-10 

a) product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared 

directly to the real world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean 

colour satellite-like Chl-a product using an algorithm linking the blue versus green reflectance similar to that used for the real 

world. Given that the model includes complete knowledge of the (model) water constituents, optics and reflectance, we can     

explore uncertainties and their causes in this proxy for Chl-a (called “derived Chl-a” in this paper). We compare the derived 15 

Chl-a to the “actual” model Chl-a field. In the model we find that the mean absolute bias due to the algorithm is 22% between 

derived and actual Chl-a. The real world algorithm is found using concurrent in situ measurement of Chl-a and radiometry. 

We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. 

There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases 

increase. We do find that regional specific algorithms provide a significant improvement. However, in the model, we find that 20 

no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl-a and the actual 

Chl-a. These mismatches stem from temporal decoupling between Chl-a and other optically important water constituents (such 

as coloured dissolved organic matter and detrital matter). The degree of decoupling differs regionally and over time. For 

example, in many highly seasonal regions, the timing of initiation and peak of the spring bloom in the derived Chl-a lags the 

actual Chl-a by days and sometimes weeks. Theseis results indicate care should also be taken when studying phenology through 25 

satellite derived products of Chl-a. This study also re-emphasises that ocean colour derived Chl-a is not the same as the real in 

situ Chl-a. In fact the model derived Chl-a compares better to real world satellite-derived Chl-a  than the model actual Chl-a. 

Modellers should keep this is mind when evaluating model output with ocean colour Chl-a and in particular when assimilating 

this product. Our study spans several disciplines: Our goal is to illustrate the use of numerical laboratory that a) helps users of 

ocean colour, particularly modellers, gain further understanding of the products they use; and b) the ocean colour community 30 

could use to explore other ocean colour products, their biases and uncertainties, as well as to aid in future algorithm 

development. 
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1 Introduction 

Satellite ocean colour measurements have allowed the scientific community an unprecedented ability to study phytoplankton 

on a global scale and at regular and frequent intervals. In particular, ocean colour products have been used extensively to 

explore seasonal and interannual variability, trends in ocean surface chlorophyll-a (Chl-a), and in climate, biogeochemical and 5 

ecological model evaluation. And yet, there remains a large degree of uncertainty in the satellite-derived Chl-a, with estimates 

ranging from 30% to >50% (Moore et al., 2009).  Uncertainties arise from clouds, patchiness, atmospheric correction, 

measurement errors, as well as the algorithm used to deduce Chl-a. Here we focus on the uncertainty from one of these 

algorithms. 

The most commonly used algorithm for estimating Chl-a from ocean colour uses the fact that phytoplankton absorb more in 10 

the blue range of the light spectrum than the green. The ratio of amount of blue to green light reflected at the ocean surface at 

any location therefore supplies information on the concentration of Chl-a. Using datasets of coincident radiometric 

observations and in situ Chl-a, a 4th order polynomial can be constructed to estimate Chl-a from measured blue/green 

reflectance ratios (e.g. O’Reilly et al, 2000). This empirical algorithm is then used globally with satellite remotely sensed 

reflectance. The relationship is typically considered robust in open ocean conditions where the optical effects of phytoplankton 15 

co-vary with other optical constituents,  (including coloured dissolved organic matter (CDOM) and detritus), so called Case-I 

conditions (Smith and Baker 1978, Morel 1988, O’Reilly et al, 2000). Though even in these waters the error estimate is about 

35% (Moore et al., 2009). Uncertainties that arise from the type of algorithm can be attributed to the potential divergence in 

the relative role of the optically important water constituents (see e.g. Siegel et al 2005b; Brown et al., 2008). There is 

significant ongoing work to improve algorithms. For instance, the newest National Aeronautics and Space Administration 20 

(NASA) reprocessing of Chl-a products has included a merged approach that uses different combination of reflectance bands 

at low Chl-a (Hu et al., 2012). There have also been many attempts to develop more mechanistically derived algorithms (e.g. 

using known relationships between absorption, scattering and reflectance). , however Here we focus on the Chl-a estimated 

from the blue/green reflectance as it is still the most commonly known product, and until very recently used in products 

downloaded from both National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) data 25 

portals, as well as merged products such as the Ocean Colour Climate Change Initiative (OC-CCI). However we note that 

similar techniques used in this paper could help inform on other algorithms.  

That the satellite-derivedse products have large errors and specific regional biases is relatively well understood in the ocean 

colour scientific community (Hu et al., 2000, Moore et al., 2009; Blondeau-Parissier et al., 2014; Szeto et al., 2011). 

Uncertainties arise from cloud cover, patchiness, atmospheric correction, measurement errors, as well as the algorithm used to 30 

determine Chl-a from the reflectance measurements. However, there remain many aspects of errors, biases and uncertainties 

that are poorly quantified, particularly in regions where there are little or no in situ data to compare to the satellite derived 
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products. Further, many users of ocean colour products whose main expertise are in other arenas (e.g. numerical modellers) 

are less aware of these issues. Thus though some of our results may not seem especially exciting to an ocean colour expert at 

first glance, we note these results could be of much interest in an interdisciplinary context. 

Ocean colour satellite-derived Chl-a is often used as an evaluation tool for numerical models, and has been used for data 

assimilation (e.g. Gregg, 2008; Ciavatta et al. 2011, 2014; Rousseaux and Gregg, 2012). The likely biases in the Chl-a estimates 5 

are often not appreciated by the modelling community: Modellers sometimes mis-interpret mismatches that are actually 

potentially due to product biases, or worse have tuned their models or assimilated the products to capture the ocean colour 

derived Chl-a even where it is likely biased. There is also an inherent disconnect between model output and ocean colour 

products. Most biogeochemical models have a base currency of carbon, some have a dynamically varying phytoplankton 

Chl:C, very few resolve spectral irradiance, and even fewer resolve reflectance. However, there are some models that have 10 

recently incorporated more thorough treatment of the light field (e.g. Gregg and Casey, 2007; Mobley et al, 2009; Dutkiewicz 

et al, 2015), and some now include aspects such as reflectance or water leaving irradiances that more directly relate to ocean 

colour (Dutkiewicz et al 2015; Baird et al, 2015; Gregg and Rousseaux, 2017).  

By resolving variables that are similar to ocean colour measurements (e.g. reflectance) models can be used to help explore 

uncertainties in ocean colour products and potentially even to aid in algorithm development. Mouw et al. (2012) used diagnosed 15 

optical parameters offline using output from a numerical model to provide ocean colour like products such as reflectance. That 

study isolated the effects of chlorophyll concentration, phytoplankton cell size and size-varying absorption on remotely sensed 

reflectance. However, it is only recently that models have directly included the treatment of ocean optics to allow for explicitly 

including diagnostics such as remotely sensed reflectance (e.g. Dutkiewicz et al., 2015; Baird et al., 2016). Here we use one 

of these models, a global three-dimensional biogeochemical, ecosystem, and radiative transfer numerical model (Dutkiewicz 20 

et al., 2015), that can act as a virtual laboratory to explore the connections between satellite derived products and the ecosystem 

variability that they are attempting to capture. The model resolves sufficient details of the marine ecosystem, water optical 

constituents as well as explicit upwelling irradiance.   

We first briefly describe the numerical model (Section 2), before calculating a "satellite-like" derived Chl-a product from the 

model spectral reflectance output and explore the potential biases that arise between derived and “actual” model Chl-a (Section 25 

3). Here we focus only on the biases due to the choice of algorithm, and not from other uncertainties that arise in the real world 

Chl-a products. (In this article “real-world” will be used to refer to the real ocean and the real derived ocean colour products 

that are provide by space agencies. The “real world” is thus different to the numerical biogeochemical/ecosystem/optical model 

output and the products derived from it. Additionally, when we use the word “model” in this article, we refer to the numerical 

biogeochemical/ecosystem/optical model: In the ocean colour community “model” often refers to bio-optical relationships, we 30 

do not use “model” with this definition here.). Section 4 examines the temporal mismatches that occur in the derived product. 

We specifically explore how other optically important constituents, such as coloured dissolved organic matter (CDOM), 

detrital particles and accessory pigments limit the performance of the algorithm (Section 5).  
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This paper provides a proof of concept for using numerical model output to explore uncertainties and biases in information 

derived from surface ocean colour by specifically considering the potential uncertainties in the frequently used blue/green 

reflectance ratio algorithm for determining Chl-a. Here, using the knowledge of model “actual” Chl-a, other optically important 

and reflectance at every location and every day allows us to examine these uncertainties and their causes more completely than 

is possible in the real world with its limited in situ observations. 5 

 

2 The biogeochemical/ecosystem/optical model: Description and Results 

We use a biogeochemical/ecosystem/optical numerical model as configured in Dutkiewicz et al (2015). We provide a brief 

description of the pertinent features here but refer the reader to that paper for more details, equations, parameter values and 

evaluation. The model resolves the cycling of carbon, phosphorus, nitrogen silica, iron, and oxygen through inorganic, living, 10 

dissolved and particulate organic phases (including CDOM). The biogeochemical and biological tracers are transported and 

mixed by the MIT general circulation model (MITgcm, Marshall et al., 1997) constrained to be consistent with altimetric and 

hydrographic observations (the ECCO-GODAE state estimates, Wunsch and Heimbach, 2007). This three dimensional 

configuration has coarse resolution (1o×1o horizontally) and 23 levels ranging from 10m in the surface to 500m at depth. We 

resolve 9 phytoplankton functional types (diatoms, other large eukaryotes, coccolithophores, pico-eukaryotes, Synechococcus, 15 

high and low light Prochlorococcus, Trichodesmium and unicellular diazotrophs) and two grazers. These phytoplankton types 

differ in the types of nutrients they require (e.g. diatoms require silica), maximum growth rate, nutrient half saturation 

constants, sinking rates, and palatability to grazers. The phytoplankton also differ in their spectral absorption and scattering 

(see Figure 1 in Dutkiewicz et al., 2015) and maximum Chl-a:C. The different scattering and absorption spectra for each 

functional group incorporate the packaging effect (e.g. diatoms have a flatter absorption spectrum than the pico-20 

phytoplankton), but we note that the model does not incorporate changes in the shape of the absorption or scattering spectra 

due to temporal photo-acclimation. The phytoplankton have dynamic Chl-a:C ratios that change with light availability, 

temperature and nutrient stress following Geider et al (1998). Thus the model explicitly resolves the Chl-a content of each of 

the 9 phytoplankton types as model state variables. The sum of this explicit and dynamic Chl-a across all phytoplankton types 

will be referred to as model “actual” Chl-a in the rest of this manuscript. 25 

This model also explicitly includes explicit radiative transfer of spectral irradiance in 25nm bands between 400 and 700nm. 

The three stream (downward direct, Ed, downward diffuse, Es, upwelling, Eu) model follows Aas (1987), Ackelson et al (1994), 

and Gregg (2002), though here it is reduced to a tri-diagonal system that is solved explicitly (Dutkiewicz et al., 2015). The 

model captures the spectral absorption and scattering properties of water molecules, the 9 phytoplankton types, detritus and 

CDOM. Irradiance just below the surface of the ocean (direct, Edo, and diffuse, Eso, downward) is provided by the Ocean-30 

Atmosphere Spectral Irradiance Model (OASIM, Gregg and Casey, 2009).   
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The model was run for 10 years for a recurrent "typical" year and then with interannual forcing from 1992 to 2006. Model 

output compares well to in situ and satellite-derived biogeochemical and ecosystem observations (Dutkiewicz et al., 2015). In 

particular the magnitudes and patterns of absorption and scattering of different water constituents are captured along the 

Atlantic Meridional transect cruise (AMT15), as well as the spectral penetration of irradiance and key aspects of the community 

structure. Model "actual" Chl-a (the sum of the time varying Chl from each of the 9 phytoplankton types resolved) captures 5 

the regional patterns seen in a satellite-derived Chl-a. (Here we use the Ocean Colour Climate Change Initiative (OC-CCI) 

project V2 product). As noted (and discussed more fully) in Dutkiewicz et al (2015) there are biases between the model and 

the observations, in particular larger values in the high latitudesin the Southern Ocean and seasonally in the North Pacific than 

in the real-world satellite-derived Chl-a (Fig 1a,b,d,e).  

The numerical model provides spectral surface upwelling irradiance: output that is similar to measurements made by ocean 10 

colour satellites. We calculate model subsurface reflectance for each waveband as the upwelling irradiance just below the 

surface (all diffuse) divided by the total downward (direct and diffuse) irradiance also just below the surface: 

 𝑅𝑅(𝜆𝜆, 0−) = 𝐸𝐸𝑢𝑢𝑢𝑢(𝜆𝜆)
𝐸𝐸𝑑𝑑0𝑢𝑢(𝜆𝜆)+𝐸𝐸𝑠𝑠0𝑢𝑢(𝜆𝜆)

 ,  

where the z in the subscript indicates that the irradiance has been re-computed using OASIM code for a zero solar zenith angle 

to compare more directly to observed normalized reflectance. Satellite sensor measurement (e.g. NASA and ESA products) 15 

have been normalized such that they are projected as if there was zero solar zenith angle. 

To compare to satellite products, we first convert from irradiance reflectance to remote sensing reflectance using a bidirectional 

function Q: 

 𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆, 0−) = 𝑅𝑅(𝜆𝜆, 0−)/𝑄𝑄.  

The bidirectional function Q has values between 3 and 5 sr (Morel et al., 2002) and depends on several variables, including 20 

inherent optical properties of the water, wavelength, and solar zenith angles (Morel et al., 2002; Voss et al., 2007). Here for 

simplicity we assume that Q = 3 sr (see Appendix A for discussion of this assumption and for evidence that the choice of Q 

makes little difference to model results). We note that Gregg and Rousseaux (2017) make a similar choice of a constant Q. 

Secondly we convert to above surface remotely sensed reflectance using the formula of Lee et al (2002): 

 𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆, 0+) = 0.52𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆, 0−)/(1 − 1.7𝑅𝑅𝑅𝑅𝑅𝑅(𝜆𝜆, 0−)).  25 

Hereafter we will refer to this quantity as RRS.  

We compare the model output to real world remotely sensed reflectance using the OC-CCI product (Fig 2). We note that the 

model does not have the exact same wavebands as any of the ocean colour satellites, and as such here we compare to the 

nearest bands: 450nm model to 443nm for the OC-CCI product, and 550nm model to the 555nm OC-CCI product. The model 

captures the reversed patterns between blue (443nm/450nm) and green (555nm/550nm) RRS between gyres and high productive 30 

regions. The model blue RRS (Fig 2a,b,c,d) captures the spatial and seasonal patterns in the actual real world satellite product. 

However, the model hasre is lower blue RRS in the southern Pacific gyre in January. We note though that the model lowest 

Chl-a in this region is offset from the observationsthe real-world OC-CCI product (Fig 1a,b). Similarly the model blue RRS is 
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too high in the equatorial Atlantic and Pacific, but where the model Chl-a is likely too low relative to the real oceanworld Chl-

a product (see Fig 1). The model has noticeably higher green (550nm) RRS in the equatorial Atlantic and Indian than the satellite 

measurements but note that these are regions of high cloud cover where the real world satellite product may be biased. We 

also find higher green RRS (Fig 2 e,f,g,h) in the North Pacific, but this might be due to model Chl-a being too high in this region 

(see Fig 1). In general the differences between model and the real world satellite RRS appear often to be linked to discrepancies 5 

between the model and real world actual satellite derived Chl-a product (and likely also in situ measurements). The model blue 

and green RRS appears to be consistent with the model actual Chl-a fields in a way that is similar to the real world and as such 

we believe appropriate and useful to use these model remotely sensed reflectance (“model ocean colour”) to construct 

“satellite-like-derived” Chl-a using the blue to green reflectance ratio algorithm. 

 10 

3 Constructing “satellite-like” derived Chl-a 

We follow the blue/green reflectance ratio methods used to derive Chl-a from surface reflectance (e.g. O'Reilly et al., 2000). 

We first determine the log of the blue/green reflectance ratio: 𝑋𝑋 = log (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅), where RRSB is the largest of the reflectance 

at 450m, 475nm, or 500nm at any location and RRSG is the reflectance at 550nm. We calculate X using the daily model output 

from 1992 to 2006. We exclude any grid locations with daily mean PAR is less than 15 µEin/m2/s (see Appendix A for 15 

explanation of this cutoff), with "actual" Chl-a less than 0.01 mg Chl/m3 or with depths less than 1000m since the coarse 

resolution model does not adequately resolve coastal dynamics.  

The blue/green reflectance ratio method uses a 4th order polynomial such that the derived Chl-a (chld) is: 

                                    𝑐𝑐ℎ𝑙𝑙𝑑𝑑 = 10𝑎𝑎0+𝑎𝑎1𝑋𝑋+𝑎𝑎2𝑋𝑋2+𝑎𝑎3𝑋𝑋3+𝑎𝑎4𝑋𝑋4       Eq 1 

The key here is to determine the best coefficients a0 to a4. We use a least squares fit to find a0 to a4 using three different 20 

approaches in our model “virtual laboratory”.  

3.1 Approach 1: Global Coefficients using Subsampled Fields (GS) 

The first approach follows that used in real-world algorithm development (e.g. OC4 for SeaWiFS and OC-CCI, OC3M-547 

for MODIS). The NASA bio-Optical Marine Algorithm Data set (NOMAD, Werdell and Bailey, 2005) was constructed from 

coincident radiometric observations and phytoplankton pigment data and has been extensively used for satellite derived Chl-a 25 

(and other) algorithm development. For direct comparison between real-world and emergent within-model relationships we 

therefore sub-sample the model "actual" Chl-a and reflectance ratio, X, at locations and dates similar tonearest in time and 

space those in NOMAD. The resulting relationship between model blue/green reflectance ratio (X) and Chl-a from 

subsampling the model (Fig 3a) is similar to that observed in the real ocean found for real-world algorithms (Fig 4, Table 1e.g. 

Werdell and Bailey, 2005). Some of the differences between real-world and model coefficients is likely to come from the use 30 
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of different exact bands in the blue and green (e.g. 550nm for model green versus 555nm for OC-CCI).  We note that this 

subsampling is highly biased to the low latitudes.  

We use a least squares fit to find a0 to a4 from this subsampled dataset, the corresponding function is shown with a solid line 

(Fig 3a). We then used these coefficients and X from every grid cell of the model to produce a model “satellite-like” derived 

Chl-a (Fig 1c, 5a) for the entire model output (daily from each grid cell, about 140 million data points). This derived Chl-a is 5 

analogous to the real-world satellite-derived Chl-a product (e.g. the OC-CCI product). Differences in coefficients relative to 

those for real-world algorithms (Table 1) are not large and the function looks very similar to those for the real world (Figure 

4). We note that while the model world is an idealised system (and hence differences to real world are to be expected) one 

advantage is that there are no errors on the properties themselves (in contrast to measurement uncertainties on in situ Chl-a 

and satellite-derived reflectance in the real world) so the model allows for a more precise interrogation of the algorithm biases 10 

by themselves.  

The root mean square error (RMSE) between the model derived Chl-a and the model actual Chl-a is 0.4816 mg Chl/m3 (0.1599 

for log transformed output) and has an r2 of 0.6014 in linear space (0.9088 in log transformed data, see Table 2). There are 

substantial errors at higher Chl-a (Fig 5a), which translate to large biases in the high latitudes (Fig 6a,d). The mean value of 

the absolute bias for all occasions and times where the derived product could be calculated was 22%, though we find that over 15 

35% of the open ocean points (in space and time) had less than 10% absolute error (Fig 7a). We find that the monthly biases 

have regionally distinct patterns (Fig 6a,d).  

Finally in this section, we ask: Which model Chl-a (derived versus actual) best matches real-world OC-CCI product? We do 

not do this not for model validation purposes (see evaluation in Dutkiewicz et al., 2015), but rather to re-emphasis that the 

satellite derived Chl-a products are proxies for real world actual Chl-a: The two are not the same thing. The model satellite-20 

derived product compares better to the OC-CCI Chl-a product than it compares to the model “actual” Chl-a (Fig 1), in particular 

with lower values in the high latitudes. We cCompareing model climatological monthly model derived Chl-a and model actual 

Chl-a to OC-CCI monthly climatology regridded to the model configuration (1 degree resolution). We find that the model 

derived Chl-a  has gives a global RMSE of 0.2867mg/m3, which is significantly lower than 0.6370mg/m3 found when 

comparing model actual Chl-a to OC-CCI. Comparisons are particularly better for the Southern Ocean and North Pacific (Fig 25 

1). Consequently, some (though certainly not all) of the biases noted when comparing model actual Chl-a (Fig 1b,e) to real 

world satellite derived Chl-a products (Fig 1a,d,  section 2 and in the model evaluation done in ) (Dutkiewicz et al. 2015) and 

discussed in Section 2 are due to the real world Chl-a derived product bias and not a deficiency in the 

biogeochemical/ecosystem/optical model. It follows that a model satellite-like derived products (Fig 1 c,f) might be a better 

evaluation tools for comparing to ocean colour products derived with the same algorithm (Fig 1a,d) than the model fields 30 

actual Chl-a fields themselves.  
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3.2 Approach 2: Global coefficients using output from all locations (GA). 

Secondly, we tested whether a lack of data to train the algorithm leads to some of the large errors in the derived Chl-a. We 

used model output for every surface grid cell and for each day (about 140 million points) to train the algorithm (Fig 3b). We 

note this is a purely hypothetical exercise: if one knew the real Chl-a at every point and every day, why would one need to 

derive the Chl-a from a proxy (X)? However, here we are asking rather: Given almost perfect knowledge of Chl-a and X, what 5 

is the best that a global set of coefficients for the algorithm given in Eq 1 can do in capturing the actual Chl-a? In other words, 

even given perfect training dataset (and in an idealised model virtual world), how good could the global OC4-style algorithm 

possibly be? 

In contrast to sub-sampling the model (approach GS), when the full model output is included the relationship between X and 

actual Chl-a shows considerably more scatter and reveals a distinct cluster below the main body of points at low Chl-a (Fig 10 

3b, the second “tail” below the main cloud). Although this cluster contains only a minority of points (less than 0.003% of the 

points), the mismatch is of interest and will be discussed in Section 5. Though the coefficients for the algorithm for the full 

dataset are different (Table 1), the fit is very similar at low Chl-a, but diverges at intermediate and high Chl-a (see solid and 

dashed line in Fig 3b). When comparing derived and actual Chl-a the GA coefficients lead to a better r2 (Fig 5b, Table 2) than 

were achieved using the subsampled algorithm (GS). Though there is improvements in some regions in the higher latitudes, 15 

there is actually decrease in skill at lower latitudes (Fig 6b,e compared to a,d). There are much lower biases at high latitudes 

but there are also larger biases at lower latitudes (Fig 6b,e). TThere is in fact a slight increase in the mean % absolute bias 

(23%) between this and the GS estimates: When transformed into percent errors the increased biases at low Chl-a, low latitude 

regions become more prominent. 

Not surprisingly our results suggest that a 4th order polynomial with one set of global coefficients will not in fact be able to fit 20 

both high and low concentrations accurately, no matter how much “data” is available to train the algorithm. Thus, though 

getting more in situ data in the ocean will still be beneficial for future algorithm development, the use of a single set of 

coefficients, derived from an improved in situ dataset, used over the whole globe is not likely to significantly improved biases 

everywhere. 

 25 

3.3. Approach 3. Regional Coefficients (RA) 

Recognizing that waters can have distinct optical properties (Moore et al., 2009; Szeto et al, 2011), there have been several 

projects to produce regionally distinct algorithms (e.g. Szeto et al., 2011, Johnson et al., 2013, latest release (V3) of the OC-

CCI project, https://www.oceancolour.org). Here we take this concept to the extreme and construct a set of coefficients for 

each grid cell in the numerical model. We use the algorithm function as provided in Eq 1 and find the coefficients for each 30 

location using output from every day over 15 years. Here, we are testing whether X and Chl-a co-vary over time at each 

location, as opposed to over both time and space as in the previous two approaches (GS, GA). As with the global algorithm 
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described in Section 3.1 and 3.2 we exclude any grid locations with daily mean PAR less than 15 µEin/m2/s,  and with "model 

actual" Chl-a less than 0.01 mg Chl/m3, and where depths are less than 1000m.  We also exclude any grid cells where the 

output falls outside these cut offs for more than half the year. 

The regional specific algorithms provide a better Chl-a product with a significant reduction in the bias (Fig 6c,f), r2, and RMSE 

(Fig 5c, Table 2). The mean absolute bias of all places and occasions where the derived product can be calculated is 17%, 5 

lower than the global approaches (GS, GA), and more than 50% of the model output points having less than 10% error (Fig 

7c). Average over the full time period, the regional algorithms at every location performs better than either of the global 

algorithms. There are, however, still significant seasonal biases (Fig 6 c,f) (discussed more below). Note that the biases switch 

sign between seasons, such that the annual mean bias is extremely low. There are some locations where at some times in the 

year there is even less accuracy with regional approaches, as seen by the cloud of points at low derived Chl-a (Fig 5c). This 10 

indicates that in some regions Chl-a and X do not vary coherently over time and/or that Chl-a and X do not vary in a similar 

way to the global relationship (noting that the global relationship incorporates both temporal and spatial variability). In these 

locations the actual Chl-a at some times in the year is closer to the global 4th order polynomial (Eq 1) than the local. We note 

also that there is still a cloud of points below the main cluster (where derived Chl-a is higher than model actual) as was found 

for approaches GS and GA (Fig 5).  15 

4. Temporal Considerations 

We have noted that in all approaches, though even more obvious in RA, there is a seasonally altering pattern between the 

derived and actual model Chl-a (Fig 6). The amplitude of the peak of spring blooms is often underestimated in the products 

derived using global coefficients (GS and GA) in high latitude, especially in the subsampled algorithm (GS) (Figs 6). ,8a). 

Derived Chl-a values were also often higher than model actual Chl-a outside of bloom peaks. We consider the phenology, 20 

using a single location (in the subpolar North Atlantic) for a single year as illustration (Fig 8a). Though the derived products 

show similar (though smaller) peaks to the actual Chl-a, and sometimes similar peak timing early in the season (see for instance 

the first distinct peak in this illustrative location), there are noticeable lags for the maximum peak (shown with a vertical dotted 

line) and other mismatches later in the season. We also find that the bloom period lasts later into the year. The actual Chl-a 

also starts its Also noticeable is that the peak of the spring bloom, as well as the sharp increase in Chl-a,spring (the initiation 25 

of the spring bloom, shown with dashed line) are offset from the “actual” Chl-a inconsiderably before all three derived products 

(Fig 8a).  We follow the approach of Cole et al (2012) for determining the “initiation of the spring bloom” as the time when 

the Chl-a first increases 5% above the annual median (horizontal dashed line, more description in Appendix A).  

Figure 8 shows just one location for 1 year. To consider the large scale patterns, we determine the lag in the spring initiation 

(Fig 9a) and maximum bloom timing (Fig 9b) for each location averaged over all years.  30 

Since less noisy than bloom peak timing, we find it more informative to consider how the “initiation of the spring bloom” 

differs between the actual and derived Chl-a. We follow the approach of Cole et al (2012), described in Appendix A. We find 
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that in almost all locations the derived Chl-a shows the bloom starting later than the model actual Chl-a (Fig 9a). This offset 

is typically by about 5-10 days but can be as much as 30 days. The maximum Chl-a from the derived product also lags the 

actual Chl-a in most locations, though by only a few days (Fig 9b). Theseis results indicates that temporal as well as spatial 

biases occur as a result of deriving Chl-a from X and suggests care should be taken when calculating phenology from satellite 

products or when evaluating spring bloom timingsphenology in models using satellite-derived Chl-a. We discuss the reason 5 

for theis lags in the next section.  

     

5. The Role of other optically important constituents 

Chl-a is not the only optically important constituent in seawater. Phytoplankton have a variety of accessory pigments that lead 

to large difference in their spectral absorption. Additionally different morphologies and structures leads to a variety of 10 

scattering spectra (see e.g. Fig 1 in Dutkiewicz et al., 2015). CDOM and detrital particles also absorb more in the blue than the 

green. How do these other optically important constituents affect the ability of the blue/green ratio algorithm to accurately 

estimate “in situ” Chl-a? Studies have indeed suggested that second order variability in ocean colour -derived Chl-a can be 

tracked to the effect of CDOM and non-algal particles (e.g. Loisel et al, 2010; Brown et al., 2008, Siegel et al, 2005a; 2005b). 

Here, using the knowledge of all constituents in the default experiment (discussed above) in time and space, we can examine 15 

the importance of the optically important constituents on model reflectance more thoroughly than is possible in the real world 

(albeit in the simplified model ocean) and also perform a series of sensitivity experiments targeting individually the other 

optically important properties. 

There is a close connection between CDOM, detrital matter and Chl-a (Fig 10). In general most model data points lie on a 

linear line: higher Chl-a is closely linked with higher CDOM and detrital matter. The co-variation between CDOM/detrital 20 

matter is however not perfect, as has been noted in the real ocean (see e.g. Bricaud et al., 1981; Kitidis et al., 2006; Morel et 

al., 2010; Siegel et al., 2005b). In the model output there is significant scatter around the core linear relationship (Fig 10).  In 

particular high CDOM can be associated with a wide range of Chl-a concentrations. On the one hand the co-variability between 

Chl-a, CDOM and detrital matter might help the reflectance ratio algorithm since all absorb more in the blue than the green. 

However, we find that though linked, there are noticeable lags in the sharp increase in accumulation (Fig 8b, Fig 9 c,d) and 25 

peak timing and declinebetween all three (Fig 8b) between CDOM and detrital matter and the model actual Chl-a. Since 

CDOM and detrital matter are a product of primary production, there is a lag in the high latitude spring between the 

accumulation and peak of CDOM, detrital matter and Chl-a. It is the lag in the accumulation of the different constituents that 

causes the algorithms to struggle to get the bloom timingsphenology accurate. Moreover detrital particles also lag in their 

removal, and CDOM (which has relative long remineralization timescales) remains relatively high throughout summer and 30 

fall. This leads to the later decrease in derived Chl-a than actual Chl-a seen in Fig 8a. Thus the algorithms also all overestimate 

the background model actual Chl-a. This result may not seem surprising to those in the ocean colour community. In fact, the 
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role of CDOM as an independent tracer has led to the suggestion that CDOM could be used to track mixing (Nelson et al., 

2010). That there is a difference in timing between peaks and CDOM and Chl-a is also known (see e.g. Fig 8 in Nelson et al., 

2013). However to our knowledge this is the first time a numerical model has been used to pull apart the differences in timing 

of the different constituents and that impact on phenology from an algorithm derived Chl-a product. 

We add the caveats that the exact definition of “initiation of bloom” does impact how much of a lag there is in the phenology. 5 

For instance, if the first peak in the model actual Chl-a in Figure 8a was defined as “the spring bloom” we would suggest the 

derived Chl-a does capture the timing better (though not the magnitude). We also note that the model parameterization of 

CDOM and detrital particle are not necessarily sufficiently well developed to make quantitative statements on the likely real-

world lags. Thus, though we do suggest there could be significant lags in phenology in the real world satellite Chl-a product, 

we do not suggest that the values in Figure 9 are necessarily accurate for the real world.  This analysis should instead be seen 10 

as a cautionary statement about using satellite-derived products for phenology of the quantities for which they are proxies. 

That the other optically important constituents lead to a mismatch in derived and actual Chl-a leads us to ask the question: 

Would the algorithms work better if there was not a variation spatially or temporally in detrital matter, CDOM or accessory 

pigments (and phytoplankton community structure)?. The accessory pigments, and the absorption and scattering spectra differ 

between phytoplankton types and hence the community structure affects the reflectance ratio. However, how the community 15 

structure (co-)varies in relation to total Chl-a, and the corresponding combined effects on reflectance, are complex. 

To explore how these other constituents affect the algorithm, we perform three sensitivity experiments. Each experiment is 

performed similar to the “default” run (a 10 year spin-up, 1992-2006 interannually varying component) and we construct 4th 

order polynomials equivalent to Eq 1 using the subsampling approach (GS) for each experiment and derive Chl-a in each case. 

However, given computational and storage constraints we used monthly averaged values of Chl-a and RRS to calculate the 20 

algorithm coefficients in these experiments rather than daily values (see Appendix B for discussion). We compare the results 

from these experiments (Fig 11, Table 3) to the GS results from the default run (i.e. the Chl-a derived product using subset of 

the data to find the algorithm coefficients, i.e. most like the real satellite product) also using monthly values for consistency. 

 

a) EXP-1 - aCDOM: This experiment was the same as the default, but aCDOM was (artificially) set to uniform constant values, 25 

specific for each waveband (e.g. 0.016 m-1 for 450nm, approximately a globally mean). The constant aCDOM leads to substantial 

differences in biogeochemistry and community structure (see Dutkiewicz et al., 2015). We construct the satellite-like Chl-a 

using the approach explained above (Fig. 11b, compare to 11a). The algorithm derived Chl-a compares better to the model 

actual Chl-a by some metrics (see Fig 11b), but not all, than they did in the original experiment (“default”) (Fig 11a). Thus the 

correlation between Chl-a and CDOM can enhance the algorithm in some locations (see improvement at high Chl-a), but not 30 

at others (e.g. at low Chl-a, see the cloud above the 1-to1 line). However, most noticeable is the lack of points below the main 

cluster at low Chl-a that was detailed in all other experiments and all types of algorithm approaches (Fig 5 a,b,c, and Fig 

11a,c,d). The fact that this cluster of points does not occur in EXP-1 where there is no variability in aCDOM, helps explain their 

origin. CDOM is photo-bleached in the surface waters but has long remineralization timescale at depth (Nelson and Siegel, 
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2013). As such CDOM concentrations (and hence aCDOM) tend to be lower in the surface water and higher at mid-depths (see 

e.g. Nelson and Siegel, 2013); a pattern that is captured in the model (see Fig 3 in Dutkiewicz et al., 2015). When Chl-a is low 

in the model during autumn, some deep mixing brings high un-bleached CDOM to the surface. This mixing in the highly 

seasonal regions is what leads to the cluster of points with lower blue/green reflectance ratio than is typical for the actual Chl-

a concentration (in Fig 3b).  5 

 

b) EXP-2 -Detrital matter: Similar to EXP-1 experiment, the absorption and scattering by detrital matter was set (artificially) 

to a constant mean value over the entire globe in this experiment. Detritus itself continued to vary, but the impact of detritus 

on the optics was as if it constantly had a concentration of 0.36 mmolC/m3. Biogeography and community structure did change 

as a consequence of the difference in the irradiance. When we calculate the derived Chl-a in a similar manner as in the default 10 

with GS approach, we found the r2 and RMSE are very similar to the default experiment (Fig 11c). However, as with EXP-1, 

there are some times/places where the algorithm does better than in an ocean with varying optical signature of detritus (e.g. 

high Chl-a) and some where they were not. This suggest that detritus and Chl-a have a complimentary effect within the 

algorithm in many, but not all locations. 

 15 

c) EXP-3 - Differences in Phytoplankton Absorption and Scattering: Finally, to explore the role of differing absorption and 

scattering properties of the different phytoplankton types, we conduct an experiment where all phytoplankton types were 

assumed to have the same optical properties: the mean of the different absorption and scattering spectra (see black lines in Fig 

1 of Dutkiewicz et al., 2015), and same maximum Chl:C. Thus the phytoplankton are optically identical. The main 

biogeochemistry was similar between this simulation and default experiment, though there is some re-arrangement of the 20 

phytoplankton communities as species specific absorption is important to their competiveness and biogeography (Hickman et 

al., 2010; Dutkiewicz et al, 2015). We find a substantially higher r2 and lower RMSE for the derived Chl-a in this experiment. 

Thus the accessory pigments lead to a large scatter in the relationship between blue/green reflectance ratios and actual Chl-a, 

making the algorithm approach less accurate. Whether and how these known differences in absorption and scattering make it 

possible to differentiate species from optical measurements is a promising area of current research (e.g. IOCCG report 2014). 25 

 

These experiments illustrate how variability in the different optical constituents in time and space lead to significant 

inaccuracies in deriving Chl-a from the blue/green reflectance ratio, yet on the other hand correlations also enhance the 

algorithm in many locations. Some of the results and, in particular the statistics are specific to the choices made for the fixed 

values of aCDOM and detrital concentration, as well as the mean spectra chosen for EXP-3. On the other, no matter the choice 30 

of aCDOM, EXP-1 is especially useful in elucidating the role of autumn mixing that can bring high CDOM to the surface and 

impacting the derived Chl-a signature. This is to our knowledge the first time such interactions and their impacts on satellite-

derived products have been illustrated using a global biogeochemical model. We believe that similar experiments will be a 

useful tool in further studies, especially into exploring the impact of different phytoplankton absorption spectra. 
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6. Discussion and Summary 

In this study we have used a global three-dimensional biogeochemical, ecosystem, and radiative transfer numerical model to 

explore how well the magnitudes and seasonal variability of Chl-a can be captured by a product derived from a reflectance 

ratio algorithm. The model outputs spectral surface upwelling irradiance that includes the effects of the scattering and 

absorption of optically important water constituents (phytoplankton, water molecules, CDOM and detrital matter), and as such 5 

we calculate a remotely sensed reflectance that compares to actual satellite data. We then construct a frequently used algorithm 

to calculate a "satellite-like" like Chl-a product from the model blue/green reflectance ratio. Given a complete knowledge of 

all these components and derived products in the model ocean, we can explore the uncertainties and cause more completely 

than is possible in the real world. 

When the model algorithm coefficients are calculated from only a subset of data, similar to that which is available in the real 10 

world (e.g. NOMAD, Werdell and Bailey, 2005), the resulting function is similar to those used for SeaWiFs and MODIS Chl-

a products (Table 1, Fig 4). Using this algorithm, the model derived Chl-a underestimates the actual Chl-a at high latitudes 

(Fig. 6a,d). Overall the algorithm has a mean absolute bias of 22% in capturing the actual Chl-a, but more than 35% of the 

model output have less than a 10% absolute error (Fig 7a). However seasonally the errors can be substantially higher and the 

biases can shift from positive to negative (Fig 6a,d). This study only considers the errors involved in the algorithm 15 

development. It does not explore the other potential errors that arise in the real world, for instance from cloud cover, errors in 

atmospheric correction, instrument drift, and in situ measurement errors and does not resolve all the complexity in the real-

world optical constituents. As such, the errors and biases we calculate are underestimates relative to the real world. However, 

they do suggest that the error of 35% in ocean colour Chl-a estimates that had been desired (e.g. McClain et al 2006) is 

theoretically possible in many regions of the ocean.  20 

We explored the potential to reduce the error by having a much larger dataset (i.e. knowledge of Chl-a at every location every 

day) for calculating the coefficients of the reflectance ratio algorithm. Although there was improvement in the bias at high 

Chl-a concentrations, there was also an increase in % bias at low Chl-a concentrations. It is perhaps not surprising that a single 

set of coefficients for the whole globe will not produce an accurate Chl-a product, even with much improved coverage of data 

to train the algorithm. 25 

Several studies have explored regional specific algorithms and have indeed found different sets of coefficients work better for 

different locations (e.g. Szeto et al. 2011, Johnson et al., 2013). To explore this using the model, we again assumed a large 

dataset (i.e. knowledge of Chl-a at every location and day) and calculated the coefficients for an algorithm unique to each grid 

cell of the model. The improvement is large, reducing to 17% absolute bias, and almost 50% of the model output points have 

less than 10% error (Fig. 7c). Though this result is based on the “best case” scenario, it nonetheless suggests that significant 30 

improvements in detecting Chl-a from space will be possible with regional specific algorithms. However seasonal biases (Fig 

6c,f) can be quite large (though they do cancel out over the course of the year, such that the annual bias is small). Thus temporal 

variations in Chl-a and reflectance ratio (X) are also not perfectly captured by a 4th order polynomial. 
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Significantly, there is a mismatch between the timing of the spring bloom between any of the algorithm derived products and 

the actual Chl-a. In almost all seasonal regions the derived Chl-a products suggest the initiation (and peak) of the spring bloom 

occur later than the actual model Chl-a. We showed how this mismatch could be explained by the role of other optically 

important water constituents. 

Because CDOM and detrital matter are also byi-products of primary production and subsequent heterotrophic processes, they 5 

vary, at least in the surface ocean, in a similar manner to Chl-a (Fig 10) and have a similar effect on the blue/green reflectance 

ratio. The blue/green ratio algorithm has these co-variations intrinsically builtd into it (e.g. Morel 1988, 2009). Previous studies 

have noted that there are however discrepancies with this approach (Bricaud et al., 1998; Siegel et al, 2005a; Siegel et al., 

2005b; Brown et al., 2008). In fact, the differences in how CDOM, and detrital matter absorb and scatter light has been used 

in algorithm development (e.g. Sathyendranath et al., 1989; Roesler and Perry, 1995; Maritorena et al, 2002). The largest 10 

discrepancies between algorithms that explicitly include or exclude the differences in the optical properties is most noticeable 

at high latitudes (Siegel et al., 2005b), and CDOM and non-algal particles are noted to be especially important (Brown et al., 

2008). Additionally it has been found that there are strong seasonal trends in variability of reflectance and reflectance ratios 

(Brown et al., 2008). Here, we have used the model to show that indeed when the detrital matter and CDOM are distinctly 

decoupled from Chl-a there are stronger mismatches between actual and satellite-derived Chl-a. In particular we find that since 15 

CDOM and detrital matter in the surface water accumulate later in the spring than Chl-a (Fig 8b), the derived Chl-a increases 

and peaks later than the actual Chl-a (Fig 8a). Our model suggest that the timing of the spring bloom can be several days to 

weeks off when using satellite data to determine phenology (Fig 9).   

CDOM can also muddy the signal at other times. CDOM is bleached in the surface waters (and is therefore mostly in low 

concentration) but is higher at depth where a long remineralization timescale allows it to accumulate.  During the fall when in 20 

situ Chl-a is low, deep mixing can bring CDOM to the surface. At these times there is an anti-correlation between Chl-a and 

CDOM, and as such the algorithms tend to overestimate the Chl-a. This leads to the cloud of points where reflectance is lower 

than anticipated given the in situ Chl-a (Fig 3b), providing higher derived Chl-a than is actually there (Fig 5a,b,c).  We suggest 

that care should be taken when defining a fall bloom from satellite derived products given the effects of CDOM on reflectance 

during deep mixing.  25 

It has been recognised that second order variability in reflectance spectra provides a potential method to determine 

phytoplankton species from space (e.g. Alvain et al, 2005). Using differences in the absorption and scattering spectra by various 

phytoplankton types to distinguish them optically is an important topic of research (e.g. IOCCG report 2014, see many 

techniques cited therein; Werdell et al., 2014; Bracher et al., 2017). Here our model results echo this promising direction in 

showing that a large amount of the variability in the reflectance ratio versus Chl-a variability is due to the optical differences 30 

in phytoplankton (Fig 11d). In our sensitivity study, this appears in fact to have a larger effect than CDOM or detrital particles. 

The fact that temporal changes in the shape of the Chl-a specific light absorption and scattering spectra for each phytoplankton 

type does not vary with photo-acclimation in the model formulation means this result is likely under-estimated, though such 
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within-type variability is likely to have a small effect on sea surface reflectance compared to differences in spectra between 

types. 

Chl-a derived from the model reflectance compares better to the OC-CCI Chl-a than the model actual Chl-a (Fig 1), with a 

significantly lower RMSE. These differences can particularly be seen in the high latitudes. This finding serves to highlight that 

Chl-a and reflectance-derived Chl-a are not the same thing and suggests that modellers should be careful in attempting to 5 

compare too strongly with satellite derived Chl-a, especially in high latitudes where mismatches between derived and actual 

Chl-a are shown to be important. Biases are particularly noticeable in the Southern Ocean, which appears to have a very 

different optical signature (e.g. Szeto et al. 2011; Johnson et al., 2013). Our model results suggest that deep mixer layers 

(bringing high CDOM to the surface), a potentially different species composition (e.g. Ward, 2015), and high seasonality 

(leading to mismatches in timing of the peaks in the different optically important constituents) leads these waters to have very 10 

different and seasonally varying optical characteristics. 

The results presented here provide a novel assessment of the interactions between optical constituents, their effects on 

reflectance and derived Chl-a that compliment those that are possible for the real world (e.g. Moore et al. 2009; 2014; OCCI 

uncertainty products, http://www.esa-oceancolour-cci.org/?q=webfm_send/321). In the model all properties are known 

precisely everywhere allowing details of how the optical constituents and their interactions impacts reflectance and the derived 15 

products. However, the results should be taken in context of a modelling approach. The uncertainty estimates reflect only the 

subset of constituents and mechanisms resolved in the model and the model does not perfectly capture the Chl-a, optics or the 

reflectance algorithm. Thus the biases presented here should be considered qualitatively, rather than expecting the exact values 

and statistic to apply to the real ocean. The mismatch in bloom timing should also be interpreted in this way. It is unlikely that 

the model captures the correct lag between accumulation of CDOM and detrital matter. Thus the exact number of days that the 20 

derived Chl-a product lags the actual Chl-a is likely to be different in the real ocean. However the model captures enough of 

the real world to give insight into the interpretation of the ocean colour product.  

A key motivation for this study was to demonstrate that a biogeochemical/ecosystem/optical model with radiative transfer 

component can be used as a laboratory to explore aspects of ocean colour. As such this study bridges between disciplines: 

particularly ocean colour and numerical modelling. We believe that our approach could help modellers understand some of 25 

the limitations of ocean colour, something that is often lacking when their expertise in not in satellite measurements. We also 

hope that the ocean colour community will see the potential of model approaches such as this for deriving sampling strategies, 

further studies on newer Chl-a algorithms (e.g. NASA Reprocessing 2014.0, and OC-CCI V3 release), other different ocean 

colour products, and will help with algorithm developments for current and future ocean colour measurements. 

 30 
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Appendix A. Assumptions and Definitions 

Value of bi-directional factor, Q: The bidirectional function Q has values between 3 and 5 sr (Morel et al., 2002) and depends 

on several variables, including inherent optical properties of the water, wavelength, and solar zenith angles (Morel et al., 2002; 

Voss et al., 2007). We calculated model reflectance both with a constant value (3 sr) and with time/space/wavelength varying 

values calculated from the table of Morel et al. (2002).  The differences in the relationships between Chl-a and blue/green 5 

reflectance ratio with variable and uniform Q was almost imperceptible (Fig 4). We used the constant/uniform Q (similar to 

that used in Gregg and Rousseaux, 2017) in this paper. However we note that the resulting values would only be slightly 

different if we had used the variable Q, and, in particular, the choice of Q would not have changed the interpretation and 

implications of our results. 

 10 

PAR cutoff: Satellite measurements of ocean colour cannot be obtained when irradiance fields are too low. These occasions 

occur during the winter in high latitudes. To compare better to satellite measurements, we choose to not include model data in 

similar conditions. We examined where and when satellite RRS (from OC-CCI) lacked data (due to low light) at the high 

latitudes, and found that the geographic locations and times matched well to when the OASIM input irradiance fields were less 

than 15 µEin/m2/s (see Fig 1,2) . We thus used this value as a cutoff for calculating derived Chl-a. 15 

 

Determining the Initiation of the Spring Bloom: We found that the determining the spring bloom peak was quite noisy such 

that it was more informative to consider “initiation of the spring bloom”. We therefore compared the timing of the bloom 

initiation between the actual and derived Chl-a. Following the approach of Cole et al (2012), we first reset each “year” at each 

grid cell by centring to the peak model actual Chl. We then determine when the model actual Chl-a reaches 5% above the 20 

annual median value. We define this as the actual “initiation of the spring bloom”. To determine the lag in the initiation (Fig. 

9) we calculated the day that the GS derived Chl-a product (that is closest to the real-world satellite-like derived Chl-a. e.g. 

OC4-like) reaches 5% of its respective median values. 

 

Appendix B. Exploring impact of using monthly means to determine algorithm coefficients 25 

The daily values for 15 years, at each grid point creates a very large datafile.  Diagnostics with, and storage of, this large 

dataset becomes extremely computationally expensive. In order to conduct sensitivity studies we found that we needed to 

reduce this data set. Here we explore using only outputting monthly means of model output (RRS and Chl-a) and thus reducing 

the dataset by 1/30th.  We determined the algorithm coefficients (a0 to a4 in Eq 1) using monthly rather than daily means and 

subsampling for the GS approach. The resulting function (Fig 4, solid black) is similar at low and intermediate of Chl-a, but 30 

does deviate at high Chl-a from the algorithm found using daily mean values (light blue line). The r2 from this  algorithm with 
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coefficients defined with monthly means was also not quite as good as that found using daily means (Fig 11asee Table 2 and 

3). However we found that the results were similar enough that we could obtain qualitative comparison between sensitivity 

experiments EXP-1, EXP-2, EXP-3 discussed in Ssection 5). We also note that the resulting two dimensional histogram (Fig 

11) has far lower density when using 4 million relative to 140 million points. Though not perfect, using monthly output does 

allow us to perform EXP-1 through EXP-3 and still feel confident that the between experiment differences are robust. 5 
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Table 1: Coefficients for model global derived algorithms (Eq 1) and for the SeaWiFS and MODIS default algorithms  

 10 

 

 Approach 1: GS Approach 2: GA Approach 3: RA 

r2 (log space) 0.9088 0.9222 0.9466 

RMSE (log space) 0.1599 0.1477 0.1215 

r2 (linear space) 0.6014 0.7670 0.8301 

RMSE (linear space) 0.4816 0.3682 0.3083 

absolute % bias 22% 23% 17% 

 

Table 2: Results of comparison between model “actual” and model “satellite-like” derived Chl-a for the three algorithm 

approaches discussed in Section 3. Statistics are calculated for each grid and each day over 15 years, except for grid 

cells and times with low light, very low Chl-a and shallow regions (see text). 15 

 

 

 

 Default EXP-1:  

uniform aCDOM 

EXP-2:  

uniform adet 

EXP-3: 

phytoplankton 

optical same 

r2 (log space) 0.8999 0.8742 0.8905 0.9493 

RMSE (log space) 0.1678 0.1636 0.1663 0.1208 

r2 (linear space) 0.5373 0.6298 0.5991 0.7520 

RMSE (linear space) 0.4420 0.3811 0.3962 0.2591 

 a0 a1 a2 a3 a4 

model (GS, subsampled) 0.4507 -2.6040 -1.2876 6.5324 -5.1420 

model (GA, all output) 0.6588 -3.2742 0.5860 3.2253 -3.0903 

OC4 (SeaWiFS) 0.3272 -2.9940 2.7218 -1.2259 -0.5683 

OC3M-547 (MODIS) 0.2424 -2.7423 1.8017 0.0015 -1.2280 
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absolute % bias 21% 20% 23% 18% 

 

Table 3: Results of comparison between model “actual” and model “satellite-like” derived Chl-a for the sensitivity 

experiments discussed in Section 5. All “satellite-like” derived Chl-a was calculated using the GS approach. “Default” 

is the full experiment discussed in Section 3, but with monthly RRS used to calculate the algorithm coefficients. Statistics 

are calculated for each grid cell and each month over 15 years, except for grid cells and times with low light, very low 5 

Chl-a and shallow regions (see text). 

 

 

 

 10 
Figure 1: Annual mean Chl-a (mg/m3). (a) and (d) OC-CCI-derived; (b) and (e) default model "actual" 0-50m (summed over the 9 
phytoplankton types); (c) and (f) default model "derived" (calculated from reflectance ratio and satellite-like algorithm trained with 
subsampled dataset, GS). Top row are January mean, bottom row are July mean. OC-CCI products (a and d) have no data when 
irradiances are too low. The model does not resolve the Arctic and thus there is not output here in (b), (c), (e), and (f). Additional 
lack of output in (c) and (f) indicates regions where PAR is less than 15 µEin/m2/s. OC-CCI products were downloaded from 15 
https://www.oceancolour.org. We use version 2 of the OC-CCI, which uses an OC4 algorithm for determining the Chl-a product, 
and thus comparable algorithm as used in our model derived Chl-a shown in e,f. 
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Figure 2: Remotely sensed reflectance (1/Sr) for (a) OC-CCI at 443nm, January; (b) model at 450nm, January; (c) OC-CCI at 
443nm, July; (d) model at 450nm, July; (e) OC-CCI at 555nm, January; (f) model at 550nm, January; (g)  OC-CCI at 555nm, July; 
(h) model at 550nm, July. ). We compare the model wavebands against the nearest OC-CCI wavebands, but note that they are not 
identical. OC-CCI products (a,c,e,f) have no data when irradiances are too low. For model lack of output indicates regions where 5 
PAR is less than 15 µEin/m2/s or the unresolved Arctic region. OC-CCI products were downloaded from 
https://www.oceancolour.org. 

 

 

 10 
Figure 3: Model "actual" Chl-a and model blue/green reflectance ratio (X) for (a) subset of model output similar to that available 
from real world in situ observations (e.g NOMAD, Werdell and Bailey, 2005); (b) full model output (every day for 15 years from 
each grid cell, about 140 million points). Black solid line indicates the algorithm for chld for where coefficients were determined from 
the subsampled datasets (GS), and in (b) dashed line is the algorithm where coefficients were calculated using the full dataset (GA). 
Dots are coloured red for locations equatorward of 30o, light blue for 30o to 60o, and dark blue for poleward of 60o.  15 
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Figure 4: Polynomials for Chl-a algorithm using the blue/green reflectance ratio. Shown are two real world algorithms: NASA 
OC4 (red solid, used in SeaWiFS and  OC-CCI products) and NASA OC3M-547 (red dashed, used for MODIS product). Model 
algorithms shown are GS (light blue,  same as in Fig 3a), where coefficients are found from subset of model output as dictated 
from real world in situ observations) and GA (dark blue,  same as dashed line in Fig 3b), where coefficients are found using the 5 
full data set). Also shown are two additional polynomials discussed in the Appendix: one found using a variable bi-directional 
coefficient, Q, and a subsampling of output as in GS (dotted black line almost exactly on top of the light blue line), and another 
where coefficients were found from a subsampling as in GS but using monthly average reflectance and Chl-a (black line). Note 
that the algorithms for the model come from band ratio of 425nm/450nm/475nm and 550nm. For the real world algorithms the 
band ratios are different and specific for the satellite sensor (SeaWifs or MODIS). 10 
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Figure 5: Two dimensional density histogram of model "actual" and model "derived" Chl-a using algorithm coefficients found for: 
(a) default experiment using approach 1 (global, subsampled output, GS), (b) default experiment using approach 2 (global, all output, 
GA), (c) default experiment using approach 3 (regional, RA), Dashed line indicates 1 to 1.  Colour indicate the log of the fraction of 
all data that occur in phase space (the lightest yellow reflects a single instance in that bin). Statistics noted on the plot are for the log 5 
transformed output. TIn linear space the r2 is (a) 0.6014, (b) 0.7670, (c) 0.8301 and RMSE is (a) 0.4816, (b) 0.3682, (c) 0.3083in linear 
space is provided in Table 2. 

 

Figure 6: Percentage bias between monthly mean model "actual" Chl-a and model "derived” Chl-a (chld) using algorithm 
coefficients found for: (a,d) subset of output (GS); (b,e) full model output (GA);  and (c,f) each grid cell (regional specific, RA).  Top 10 
row is for January, Bottom row is for July. ). White areasLack of output indicates unresolved Arctic and regions where PAR is less 
than 15 µEin/m2/s. 
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Figure 7: Distribution of percentage of model output (time and space, about 140 million “data” points) with absolute percent error 
between model derived Chl-a and model actual Chl-a for (a) global subsampled approach (GS), (b) global all output approach (GA), 5 
and (c) regional approach (RA). 
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Figure 8: Illustrative example tTimeseries for one year from a single location in the North Atlantic (shown as x on Fig 9). (a) “actual” 
Chl-a (black), derived Chl-a using subsampled output (GS, light blue), derived Chl-a using all output (GA, dark blue), and the Chl-
a product derived using a regional specific algorithm (RA, purple). (b) actual Chl-a (black), CDOM (red) and detritus (green), all 
normalized to their peak value. Dashed vertical line indicates the “initiation of the bloom” which is taken to be when Chl-a reaches 5 
5% above the annual median value following Cole et al (2012) and discussed further in Appendix A  (dotted horizontal line shows 
this value for the model actual Chl-a). The vertical dotted line indicates the peak of the bloom. Shown here is only a single year and 
location, however for larger scale perspective, the difference in initiation and peak timing between model actual and derived Chl-a 
averaged over all years are shown for the globe in Figure 9. 
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Figure 9: Lag in phenology. Number of days between a) Number of days between the initiation of the spring bloom from model 
actual Chl-a and that for the model derived Chl-a (GS).; Bloom initiation is defined as when Chl-a reaches 5% above the annual 
median value (see Appendix A). b) yearly maximum of model actual Chl-a and that for the derived Chl-a (GS); c) initiation of the 5 
spring bloom from model actual Chl-a and the initiation of the CDOM increase; d) initiation of the spring bloom from model actual 
Chl-a and the initiation of detrital particle increase. Bloom initiation is defined as when Chl-a, CDOM or detrital particles reaches 
5% above their annual median value (see Appendix A).  Lack of outputWhite areas indicate did regions with no significant seasonal 
cycle or are not resolved by the model (e.g. Arctic Ocean). 
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Figure 10: Two dimensional histogram of model output for "actual" Chl-a (mg/m3) plotted against: (a) model CDOM (mmol C/m3), 
(b) detritus (mmol C/m3). Colour indicate the log of the fraction of all data that occur in bins in the phase space (the light yellow 
reflects a single instance in that bin).  
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Figure 11: Sensitivity Experiments. Two dimensional density histogram of model "actual" and model "derived" Chl-a using 
algorithm coefficients found for: (a) default experiment using approach 1 (global, subsampled output, GS), (b) EXP-1 (uniform and 
constant aCDOM) approach 1, and (c) EXP-2 (uniform and constant adet and bdet) approach 1, (d) EXP-3 (no optical differences between 
phytoplankton) approach 1. Dashed line indicates 1 to 1.  Colour indicate the log of the fraction of all data that occur in phase space 5 
(the lightest yellow reflects a single instance in that bin). Statistics noted on the plot are for the log transformed output. In. The r2 
and RMSE in linear space is provided in Table 3. linear space the r2 is (a) 0.5373, (b) 0.6298, (c) 0.5991, (d) 0.7520 and RMSE is (a) 
0.4420, (b) 0.3811, (c) 0.3962, (d) 0.2591. In these plots, monthly mean output of Chl-a and RRS were used to calculate the algorithm, 
and only monthly mean output is shown (4 million versus 140 million points), thus at a great computational savings. The difference 
in the algorithm is shown in Figure 4 (the light blue line is the algorithm with coefficients found using daily values, versus the solid 10 
black line where coefficients where found using monthly values). Differences between 11a and 5a are due to this difference in 
sampling (discussed in Appendix B). Also notice the difference in values on the colourbars between this figure and Figure 5. 
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