
	 1 

Dear Dr. Middelburg, 
 
We thank you for handling our manuscript. Following your recommendation, we have added 
“Technical note” to the beginning of the title. Below you will find our point-by-point response to 
both reviewers, including all changes to this updated version of the manuscript (noted with page 
and line numbers corresponding to the original submission). Please also find all edits marked as 
red text in the attached marked-up version of the manuscript. 
 
Sincerely, 
Jordon Hemingway 
 
Reviewer 1: David Burdige 
 
Prof. Burdige, 
 
We thank you for your helpful concerns and feedback on our manuscript. Below you will find 
our response to your comments, along with some corresponding changes that we will make to the 
text once the discussion period ends. We invite further dialogue if anything is unclear or if you 
believe more explanation is required. 
 
This manuscript describes a mathematical technique for the analysis of serial oxidation results 
(i.e., thermograms), which effectively allows one to convert the temperature of oxidation on the 
x-axis of a thermogram to an activation energy (also on the x-axis) for the oxidation of organic 
matter occurring at that temperature. When combined with isotopic measurements of the CO2 
being produced by the oxidation, the authors suggest that this can be used to infer information 
about the reactivity of organic matter in sediments. 
 
We would like to clarify an important point (also see our response to Reviewer 2, below): we do 
not suggest that thermal reactivity measured here is equivalent to, or even necessarily scales 
with, microbial reactivity within sediments. Rather, we present thermal E distributions as a proxy 
for the distribution of chemical bonding environments. Then, by comparing E distributions and 
corresponding isotope compositions between multiple environmental samples, we propose that 
this method is able to probe how, if at all, chemical composition controls OC turnover time. For 
example, it is entirely possible that OC described by high thermal E (likely condensed, aromatic 
material) is consumed rapidly in certain environmental settings. Using our method, this would 
result in a high Fm value for this material (if it is constantly replaced by “new” material with the 
same chemical structure that is high in 14C) and/or a rapid drop in the fractional contribution of 
this material in older samples (if no replacement occurs). We do not suggest that OC with high 
thermal E will inherently be described by a slow turnover time in the environment (and thus a 
low Fm value). 
 
To emphasize this point, we add the following paragraphs starting on P2, L33: 

 
“We note that the modeling approach developed here is broadly applicable to any serial 

oxidation technique, although the resulting E distributions will differ depending on oxidation 
pathway. For example, aromatic compounds such as lignin have been shown to be highly 
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photoreactive (Spencer et al., 2009) despite their relatively high thermal recalcitrance (Williams 
et al., 2014) and will likely be described by lower E values when oxidized with uv light relative 
to PRO analysis. Here, we choose RPO because analysis is rapid (~3 hours per sample), requires 
little material (150 to 250 µg C), contains minimal preparation steps, and results in small kinetic 
isotope fractionation (Hemingway et al., 2017).  

We therefore treat E as a proxy for OC chemical structure and emphasize that thermal 
reactivity is not equivalent to microbial reactivity in the environment (Leifeld and von Lützow, 
2014). Rather, by comparing E profiles and corresponding isotope compositions across 
environmental samples, our method provides a framework to probe how, if at all, OC source and 
turnover time (as measured by d13C and Fm) is related to its chemical composition (as predicted 
by thermal E distributions).” 
 
 
I think that the results presented here for the one sample that was analyzed are interesting and 
provide intriguing results. Some of the proposed uses of this approach (e.g., p. 17 line 4 p. 21 
line 8) may indeed turn out to be correct, but these conclusions may also be a bit premature 
based on the information presented here.  
 
Thank you for the positive review of our approach. With regards to the two specific proposed 
uses, we will change the language in the modified draft to read: 
 
P17 L3-4: “We therefore propose combining p(0,E) with serial oxidation isotope measurements 
to test the effects of…” By removing “is an ideal method to,” this should remove any perceived 
speculation. 
 
P21 L8: “This result provides initial evidence for the utility of RPO E vs. isotope 
relationships…” Again, this rephrasing should remove any speculation, and more explicitly 
acknowledges that the results in the manuscript are indeed initial. 
 
Related to this I am concerned about the “validation” of the approach based on the analysis of a 
single suspended sediment sample, in part because little is presented in this analysis to 
independently verify the results.  
 
We agree that analyzing a single “test” sample is not entirely satisfactory. However, we believe 
that inclusion of additional samples is beyond the scope of this technical manuscript. As 
presented, central focus of this manuscript is the mathematical derivation of the inverse 
distributed activation energy model, not the interpretation of any given sample within the global 
carbon cycle. To include additional samples, and to properly discuss and interpret their results 
within a geochemical context, would lengthen the manuscript considerably and, in our opinion, 
would detract from this central focus. We therefore leave the analysis of large sample sets, and 
the corresponding geochemical interpretation, to a companion manuscript that is currently in 
preparation. 
 
It seems to me that one way to verify this approach would involve taking well-defined organic 
compounds whose activation energy for oxidation is either known or can be estimated, 
subjecting them to ramped pyrolysis/oxidation and seeing if the activation energies that the 
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analysis of these thermograms gives back agrees with these values. To be honest, I’m not sure 
how well-known or easy it is to obtain the activation energy for the oxidation of single organic 
compounds. However, a quick Google search of “activation energy oxidation of organic 
compounds” yielded what looked like a number of promising hits. 
 
We agree that, in theory, analyzing single organic compounds and verifying the resulting E 
values would be an ideal check of our model. In fact, we have analyzed several individual 
compounds (cellulose, n-C30 alkane, calcite). However, this is significantly more challenging in 
practice. The challenge arises from the fact that each carbon atom within any compound 
experiences a unique bonding environment and will be described by a unique activation energy 
when exposed to thermal analysis. Any single compound therefore does not result in a 
thermogram with a single peak (and thus a single E value), but rather a complex distribution (see, 
for example, results from pure cellulose in Williams et al., 2014).  
 
Additionally, any calculated / estimated E value will be specific to one oxidation pathway. 
Literature values for decay by, for example, uv light will therefore not be applicable to the 
thermal decay presented here. While there exist literature thermal E values for specific 
compounds, all of the studies that we have encountered use similar methods to those presented 
here (i.e. they are experimental rather than theoretical values) and results are highly variable (e.g. 
cellulose ranging from 150 – 250 kJ mol-1; see references compiled in Williams et al., 2014).  
 
At the same time, I think there is actually some data in the literature that could be used in some 
simple, albeit qualitative, verification of the results discussed in section 5.3. For example, 
Westrich and Berner (1988) suggest, at least in the coastal sediments they studied, that organic 
matter which is less susceptible to decomposition may have a higher activation energy for 
decomposition (as one might infer from the results here in section 5.3). Similar observations are 
also presented in Middelburg et al. (1996). Although I’m not familiar with the papers cited on p. 
12 lines 17-18, I also wonder whether information in these papers might be useful here as well.  
 
For the reasons outlined above, our focus is to derive a method to compare the distribution of E 
between samples rather than to interpret the absolute values of E. Again, we emphasize that 
thermal E distributions are not necessarily predictive of microbial E, but rather serve as a proxy 
for the differences in OC chemical structure between samples. Because of this point, we believe 
that any discussion including comparisons to OC decay in environmental samples would be 
misleading within the present study. 
 
That said, the literature mentioned by the reviewer does pose an intriguing question: how is 
thermal E related to microbial decay? Based on the results of Westrich and Berner (1988), 
Middelburg et al. (1996), and this study (albeit with a single sample), one might infer that they 
are indeed correlated. However, any such relationships are certainly speculative at this time and 
are outside the scope of our present manuscript. 
 
In general, the presentation of the method is rather dense in places and there are several places 
where I found things confusing and/or where more information about the mathematical 
derivation is needed. Note that (x,y) refers to page x, line y. 
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1. Starting near the bottom of p. 6 (line 23) “thermograms” and “mass-normalized decay rates” 
seemed to be used somewhat interchangeably (also see the captions for Fig. 2-4). However, there 
was not a clear explanation (at least that I could find) about why this is the case. This may need 
to be clarified. Addressing this question should also help explain why the y-axes in Figs. 2, 3 and 
4(b) all have different units. 
 
We apologize for the confusion – “thermograms” refers to the measured data (i.e. with units of 
ppm CO2), while “mass-normalized decay rates” refers to thermograms that have been 
normalized by the initial amount of OC loaded into the system, G0 (i.e. they integrate to unity). 
For Fig. 3, thermograms have additionally been normalized by the ramp rate, b, in order to 
properly compare between different ramp rates. 
 
To avoid confusion, we will make the following changes in the updated manuscript: 
 
P5 L 6: We will add the following sentences: “At each time point, the measured thermogram (in 
units of ppm CO2) can be converted to an instantaneous OC decay rate (in units of µgC s-1) using 
the measured gas flow rate and the ideal gas constant. ‘Thermogram’ and ‘decay rate’ are 
therefore used interchangeably throughout this manuscript.” 
 
Fig. 2 caption: “Mass-normalized thermograms (gray shaded region, unitless)” will be changed 
to “Measured thermograms (gray shaded region, ppm CO2 axis not shown)” 
 
Fig. 3: We will change the y axis label to: “G0- and b-normalized decay rate x 103 (°C-1)” for 
clarity. 
 
Fig. 4 (Also see response to reviewer’s point 4 below): We will change the y axis labels in panels 
(b) and (d) to: “G0-normalized decay rate, m(t) x 104 (s-1)” for clarity. 
 
2. (9, 20) - It was not clear which model is being referred to here by “our” model. 
 
We will replace “our model” with “the distributed activation energy model.” 
 
3. (10,19) – What are “short-range-order” minerals? 
 
“Short-range-order” is a term frequently used in the soil sciences community to refer to the 
crystalline state of specific minerals. To avoid confusion, we will change “short-range-order 
minerals” to “clay minerals” in the updated manuscript. 
 
4. (10, 22) – Is there are reason why here and in Fig. 4 the x-axis has changed from temperature 
to time? 
 
Yes, the x axis has changed in Fig. 4 from temperature to time because the test for first-order 
kinetics requires the time derivative of the amount of OC remaining, i.e. dG(t)/dt. Fig. 4 panels 
(a) and (c) are then the results of the test for first-order [Eq. (25)], shown in graphical form. 
While Fig. 4 panels (b) and (d) could be plotted with temperature on the x axis, this would make 
their connection to panels (a) and (c), as well as to Eq. (25), less clear. In contrast, Fig. 2 is 
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showing the “raw” measured data while Fig. 3 is shown specifically to illustrate the relationship 
between elution temperature and ramp rate as discussed on P6 L23-26. Both of these require 
temperature as the x axis. 
 
However, on P10 L22-24, we realize that the use of time rather than temperature could be 
confusing and is technically not accurate when referencing Fig. 2b. We therefore will make the 
following changes for clarity in the revised manuscript: 
 
P10 L22 and L24: We will change “t ~ 4500 s” to “T ~ 500 °C (corresponding to t ~ 4500 s)” in 
both instances. 
 
Fig. 4: We will change the y axis labels in panels (b) and (d) to: “G0-normalized decay rate, m(t) 
x 104 (s-1)” to more explicitly connect these panels to panels (a) and (c), as well as Eq. (25). 
 
Fig. 4 caption: We will also add the following sentence at the end of the caption to make the 
connection clearer: “For each time point in panel (a), the regression slope is equivalent to m(t) 
for that time point as shown in panel (b).” 
 
 
5. (13, 6) – Should it say “Eq. (30) can be solved for p by multiplying . . .”? 
 
Yes, specifying that we are solving for p would clarify this statement. We will change this in the 
updated manuscript.  
 
6. (13, 8) - How exactly do you find the solution (i.e., the p vector) that satisfies Eq. (32)? 
 
We will add “…using the non-negative least squares algorithm of Lawson and Hanson (1995) as 
implemented by the SciPy package for Python” after Eq. (34) to clarify how this is done. 
 
7. (14, 7-9) – How exactly does the method of Miura and Maki (1998) differ from that used 
here? 
 
As mentioned briefly on P13 L24-26, the method of Miura and Maki (1998) involves analyzing a 
given sample at multiple (at least 3) ramp rates and generating a plot of b/T2 vs. 1/T for each 
value of a, the fraction of initial OC that has been oxidized. Because any given a value will 
occur at a slightly different T for each ramp rate (e.g. Fig. 3), this will result in a straight line in 
b/T2 vs. 1/T space for each a value. The slope and y intercept of this line can then then be used 
to calculate E and w values that correspond to that particular a value. To estimate the KCE slope 
and intercept, one simply generates a plot of b/T2 vs. 1/T for multiple a values (i.e. 5 % of initial 
OC oxidized, 10 %, 15 %, etc.) and plots the resulting E and w estimates. However, as we 
mention in the text (P13 L26-27), this method requires large extrapolations and is thus subject to 
large uncertainty. 
 
In contrast, our method to generate Fig. 5 requires choosing a range of w values a priori, solving 
Eq. (32) – (34) for each value, and calculating the residual norm between the measured and 
predicted thermograms. These methods are quite different – ours is a “brute force” method that 
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does not require one to analyze a sample at multiple ramp rates. Here we simply use the method 
of Miura and Maki (1998) to independently justify our choice of a constant w value (i.e. KCE 
slope = 0).  
 
Because we only invoke the Miura and Maki (1998) method as an independent justification, and 
because they clearly outline their method within their original manuscript, we believe that further 
description is not necessary here. In our opinion, explaining their method in detail would only 
add unnecessary equations and could cause confusion. 
 
8. (14, 21-22) – If a higher ω value results in a broader p(0,E) how can it also have “no effect on 
the shape of the distribution”? What am I missing? 
 
Perhaps this wording is confusing. What we mean is that w is simply a scaling factor and 
changing its value will have no effect on the relative shape of the distribution, although the 
reviewer is certainly correct in that broadening the distribution does affect its overall shape.  
 
As an arbitrary example, assume a sample is described by two peaks, one centered at E = 150 
kJ/mol containing 75% of total OC and a second centered at E = 200 kJ/mol containing 25% of 
total OC. Increasing ω will increase E for both peaks and will increase the width between them 
accordingly, but will not change the fact that there are 2 peaks and will not affect the relative 
peak sizes (i.e. the 75 % and 25 % of total OC). 
 
We will change this line to: “…no effect on the relative shape of the distribution” in order to 
clarify this point. 
 
9. (15, 3) – What are the dimensions of R, and do the bold 0’s in the description of the first and 
last rows of this matrix mean that all of the other values in the row are 0? If this is so, other may 
also not be familiar with this notation, and I think this could be made a little clearer. 
 
R has dimensions [nE x nE] and, yes, [1 0] refers to a row of [1 0 0 0 0 …] and [0 1] refers to [… 
0 0 0 1] as the reviewer assumes. 
 
To avoid confusion, we will update P15 L13-14 in the revised manuscript to read: 
 
“…where R is the bi-diagonal first derivative operator matrix with dimensions [nE x nE]. To 
account for p being equal to zero outside the range Emin < E < Emax, we set the first and last rows 
of R to be equal to [1 0] and [0 1], respectively, where 0 refers to a zero vector of length nE – 1.” 
 
10. (15, 5) – What is meant here by “solving the constrained least squares”? I kept thinking this 
was similar in someway to how Eq. (32) was used to solve for the p vector, but Eq. (39) just 
didn’t make sense to me in that way. Again, am I missing something here? 
 
Here, “solving the constrained least squares” refers to the constraints that each value in p is non-
negative and that p sums to unity [i.e. Eqs. (33) – (34)]. The reviewer is correct in thinking that 
Eq. (39) is analogous to Eq. (32), with the only difference being that Eq. (39) now contains a 
roughness term. 
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In an attempt to clarify this point, we will change P15 L5-7 to read: 
 
“Similar to Eq. (32), the regularized inverse problem can then be solved for p by including this 
roughness term in the constrained least squares. That is, we solve  
 
[Eq. (39) goes here]  
 
for p subject to the constraints presented in Eqs. (33) – (34), where l is a scalar that determines 
how much to weight the roughness ||Rp|| relative to the residual error ||g – Ap||.” 
 
11. It’s also not clear to me how Fig. 6 was generated, and the interpretation of this figure 
starting on line 7, p. 15. 
 
Fig. 6 was generated by solving Eq. (39) for p using a range of possible l values (in this case, 
ranging from l = 0.001 to l = 100). Each l value will result in a unique solution for p that is 
described by a particular roughness norm and residual error norm. The black line in Fig. 6 is 
simply the line passing through each of these solutions. As described in Hansen (1994), solutions 
to the bottom left of this line are outside of the possible domain (i.e. it is impossible to have a p 
vector that is both smoother and fits the data with a lower residual error) while solutions above 
the line represent a poor fit of the data. 
 
At the heart of this regularization technique is determining which l value is deemed “best.” 
Tikhonov regularization states that the l value that “best fits the data but not the noise” is the one 
corresponding to the point of maximum curvature in a plot of roughness vs. residual error norm 
(i.e. the white circle in Fig. 6). We refer the reader to Hansen (1994) and Forney and Rothman 
(2012b) for a detailed description and background of this technique. 
 
To alleviate any confusion, and to refer the reader to the proper references, we will add detail to 
the caption of Fig. 6 in the revised manuscript to read: 
 
“Figure 6. Tikhonov regularization L-curve for Narayani POC (b = 5°C min-1). The black line 
represents the range of roughness and residual error norms that are the result of solving Eq. (39) 
for p using multiple l values ranging from 0.001 to 100. The white circle corresponds to the 
point of maximum curvature along this line, and is thus deemed the “best fit” l value [see 
Hansen (1994), Forney and Rothman (2012b) for further details on generating the L-curve and 
the theory behind Tikhonov regularization].” 
 
12. (16,15) – What exactly is meant by “diversify the distribution of chemical bonds”? 
 
This is meant to convey the phenomenon of increasing chemical complexity of OC with 
increasing turnover time, as shown in the referneces cited in these lines. That is, interactions with 
particles, production of new compounds by heterotrophs, partial oxidation by uv light, etc. 
should lead to a more complex OC mixture with time than was initially present. 
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However, we now realize that “diversify the distribution” is probably not the best wording. We 
will change this to “…has been shown to enhance the diversity of chemical bonds…” in the 
updated manuscript. 
 
13. The general shape of the thermogram in Fig. 2 looks awfully similar to the p(0,E) distribution 
in Fig. 7. Does that means that activation energy scales linearly (more or less) with temperature 
of pyrolysis? In general that makes intuitive sense, and this is also discussed here briefly on p. 9, 
line 15. It will be interesting to see if this is a general trend observed across a broader range of 
samples. 
 
Yes, the general similarity is striking and does make intuitive sense. The main difference is that 
the thermogram shape is “smoother,” while the p(0,E) distribution contains more features and 
“sharper” peaks. This can be explained by the fact that material at a single E value (for example, 
a delta function) will take some amount of time to fully decay and will thus decay over a wide 
temperature window when analyzed in the RPO instrument. (If interested, this thought 
experiment is shown quite nicely in Cramer, 2004). We therefore always expect that p(0,E) to 
contain more features and sharper peaks than the corresponding thermograms, and this is indeed 
the case for all samples that we have analyzed thus far. 
 
To enforce this idea, we will add the following sentences beginning on P16 L10: 
 
“Note that the p(0,E) distribution broadly resembles the initial thermogram shape (Fig. 2a and 
Fig. 7), albeit with more defined features and a higher roughness. This is a result of the fact that 
OC associated with each E value will decay over a wide temperature range in the RPO 
instrument, thus resulting in a “smoothed” thermogram relative to p(0,E) (Cramer, 2004).” 
 
References cited 
Middelburg, J. J., G. Klaver, J. Nieuwenhuize, A. Wilemake, W. de Hass, T. Vlug, and J. F. W. 
A. van der Nat. 1996. Organic matter mineralization in intertidal sediments along an estuarine 
gradient. Mar. Ecol. Prog. Ser. 132, 157-168. 
 
Westrich, J. T., and R. A. Berner. 1988. The effect of temperature on rates of sulfate reduction in 
marine sediments. Geomicrobiol. J. 6, 99-117. 
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Reviewer 2: Bernard Boudreau 
 
Prof. Boudreau, 
 
We thank you for your helpful concerns and feedback on our manuscript. Below you will find 
our response to your two reservations, along with some corresponding changes that we will make 
to the text once the discussion period ends. Because your two reservations were somewhat broad 
and open-ended, we have attempted to address them and explain our position and reasoning as 
best as possible. However, we invite further dialogue if anything is unclear or if you believe 
more explanation is required. We thank you again for your time and feedback. 
 
Hemingway et al. have offered an inverse model to extract the reactivity of organic matter (OM) 
and relate it to the isotopic composition via data obtained from a record of thermal 
decomposition of that organic matter. This is a technique that has been used with respect to 
petroleum formation and there exists published literature for that application. The present paper 
hopes to extend the method to the degradation of OM sampled in low-temperature aquatic 
systems. 
 
The mathematics of the model appear to be solid (better than my own efforts in this area), 
including the use of a Lagrange multiplier to add constraints to the model solution. I do not think 
that the paper can be faulted on this account; nevertheless, I have two strong reservations. 
 
Firstly, microbial enzymatic degradation of OM is not the same process as thermal 
decomposition. Microbes use enzymes to breakdown OM in order to increase the rate of this 
reaction. According to a very broad interpretation of transition-state theory, that result is 
obtained by altering the decay (reaction) mechanism so as to lower the activation energy of the 
reaction. The authors’ thermal method is also based on activation energy, but on the activation 
energy for a thermal decomposition reaction. Thus, the microbial and the thermal activation 
energies are not guaranteed to be the same or even comparable. Assigning the thermally derived 
results to the microbial situation is not, at this time, experimentally justified. 
 
We thank the reviewer for allowing us to clarify this issue. While other studies have begun to 
compare OM thermal E values to those for microbial decay, both using laboratory incubations 
(e.g. Leifeld and von Lützow, 2014) as well as long-term bare fallow soil experiments (e.g. Barré 
et al., 2016), this is never our intention in the present study. At no point do we imply that E 
distributions determined using the thermal analysis described here are identical, or even 
comparable, to those that would be obtained by serial oxidation by microbial respiration (e.g. 
Mahmoudi et al., 2017). In fact, to extend the reviewer’s point, we expect that every oxidation 
pathway (microbial respiration, thermal analysis, uv light, chemical hydrolysis, etc.) will involve 
a unique transition state intermediate and will therefore likely result in a different E distribution. 
For example, lignin is highly thermally recalcitrant (Williams et al., 2014) yet degrades rapidly 
under uv light (Spencer et al., 2009).   
 
Rather, here we present thermally derived E as a proxy for the range of the strength of chemical 
bonds experienced by carbon atoms within a sample. We emphasize that this is simply a method 
to separate a complex OM mixture along a particular lability “axis” (i.e. thermal lability) and 
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measure the isotope composition at multiple points along that “axis.” Thermally derived E, along 
with the corresponding isotope distributions, can then be directly compared across a sample set 
in order to infer differences in the molecular and isotope compositions between samples. For 
example, the observation that our test sample approaches an Fm value of 0 at E > 200 kJ mol-1 
implies that this material is derived from OM-rich bedrock (see P21, L3-5), but says nothing 
about microbial recalcitrance (in fact, it is possible that rock-derived OM is highly bioavailable; 
see Petsch et al., 2001). 
 
To emphasize this point, we will add and/or modify the following lines within the text: 
 

1. (P1, L2-13). Throughout the abstract, we will add “thermal” before each use of the word 
“reactivity” in order to clarify that E values calculated here apply only to thermal 
analysis. 

2. (P2, L33). We will add the following paragraphs:  
“We note that the modeling approach developed here is broadly applicable to any 

serial oxidation technique, although the resulting E distributions will differ depending on 
oxidation pathway. For example, aromatic compounds such as lignin have been shown to 
be highly photoreactive (Spencer et al., 2009) despite their relatively high thermal 
recalcitrance (Williams et al., 2014) and will likely be described by lower E values when 
oxidized with uv light relative to PRO analysis. Here, we choose RPO because analysis is 
rapid (~3 hours per sample), requires little material (150 to 250 µg C), contains minimal 
preparation steps, and results in small kinetic isotope fractionation (Hemingway et al., 
2017).  

We therefore treat E as a proxy for OC chemical structure and emphasize that 
thermal reactivity is not equivalent to microbial reactivity in the environment (Leifeld 
and von Lützow, 2014). Rather, by comparing E profiles and corresponding isotope 
compositions across environmental samples, our method provides a framework to probe 
how, if at all, OC source and turnover time (as measured by d13C and Fm) is related to its 
chemical composition (as predicted by thermal E distributions).” 

 
Secondly, only two samples were tested with the method, and one, OM from a marine sediment, 
failed the test of the model assumptions. I am unaware of any other papers that have applied this 
technique to aquatic “low-temperature” sediments. That represents meager testing of the 
applicability of the model. The low-temperature geochemical community does not at this stage 
know if the method is useful, and the theory has significantly overstepped the acceptance of the 
methodology itself. 
 
Again, we thank the reviewer for raising this concern. However, we disagree with the reviewer’s 
interpretation that the marine sediment OM sample “failed the test of the model assumptions.” 
Rather, it is the analysis of OM combined with inorganic carbon (IC) that failed the model 
assumptions. This distinction is critical. The results from this sample (e.g. Fig. 4d) emphasize the 
need to decarbonate sediment samples prior to RPO analysis. Because decarbonation likely alters 
OM composition to some degree, there exists longstanding discussion on this topic in the organic 
geochemistry literature at large and the RPO literature specifically (Plante et al., 2013). By 
including this sample within the present study, we make a kinetic argument in favor of 
decarbonation – that is, we show that IC decay is mass-dependent in the presence of OM and 
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therefore does not follow first-order kinetics. This result does not imply that OM decay from this 
sample fails the model assumptions. 
 
To the reviewer’s larger point, we agree that additional samples would aid in solidifying the 
utility of the method in describing “low-temperature” OM. However, we believe that this is 
beyond the scope of this technical manuscript. As presented, central focus of this manuscript is 
the mathematical derivation of the inverse distributed activation energy model. To include 
additional samples, and to properly discuss and interpret their results within a geochemical 
context, would lengthen the manuscript considerably and, in our opinion, would detract from this 
central focus.  
 
We note that this exact concern is the focus of a companion manuscript that is currently in 
preparation. In that publication, we subject dozens of samples to the model treatment presented 
here and interpret the environmental factors controlling differences in E distributions. Combining 
these two manuscripts would result in the mathematical treatment presented here being relegated 
to a supplemental discussion (as was the case for the original submission of our companion 
manuscript, to which those reviewers and editor suggested we separate the mathematical 
treatment). We believe that the mathematics and theory contain adequate nuance and require 
sufficient discussion to warrant this technical manuscript, rather than being relegated to a 
supplemental discussion. Thus, we believe that inclusion of multiple samples (and the 
corresponding geochemical discussion) is beyond the scope of this manuscript. 
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Abstract.
Serial oxidation coupled with stable carbon and radio-

carbon analysis of sequentially evolved CO2 is a promising
method to characterize the relationship between organic car-
bon (OC) chemical composition, source, and residence time5

in the environment. However, observed decay profiles de-
pend on experimental conditions and oxidation pathway. It is
therefore necessary to properly assess serial oxidation kinet-
ics before utilizing decay profiles as a measure of OC reactiv-
ity. We present a regularized inverse method to estimate the10

distribution of OC activation energy (E), a proxy for bond
strength, using serial oxidation. Here, we apply this method
to ramped temperature pyrolysis/oxidation (RPO) analysis
but note that this approach is broadly applicable to any serial
oxidation technique. RPO analysis directly compares thermal15

reactivity to isotope composition by determining theE range
for OC decaying within each temperature interval over which
CO2 is collected. By analyzing a decarbonated test sample at
multiple masses and oven ramp rates, we show that OC de-
cay during RPO analysis follows a superposition of parallel20

first-order kinetics and that resulting E distributions are in-
dependent of experimental conditions. We therefore propose
the E distribution as a novel proxy to describe OC thermal
reactivity and suggest that E vs. isotope relationships can
provide new insight into the compositional controls on OC25

source and residence time. This manuscript is accompanied

by an open-source Python package for performing all analy-
ses.

Copyright statement. ©Author(s) 2017. CC BY 3.0 License

1 Introduction 30

Natural organic matter present in aquatic environments, sedi-
ments, soils, and vegetation contains roughly three-fold more
carbon than the pre-industrial atmosphere (Bianchi, 2011).
As such, the balance between organic carbon (OC) synthe-
sis and remineralization exerts a major control on the global 35

carbon cycle and on atmospheric CO2 levels (Lasaga et al.,
1985). However, OC remineralization rates are spatiotempo-
rally heterogeneous, leading to decay timescales that range
from minutes to millions of years (Boudreau and Ruddick,
1991; Forney and Rothman, 2012a; Middelburg, 1989). To 40

explain this variability, it has been hypothesized that reminer-
alization depends on multiple chemical and environmental
factors such as OC molecular structure (Burdige, 2007; Tege-
laar et al., 1989), microbial community composition (Pedler
et al., 2014; Schmidt et al., 2011), secondary chemical in- 45

teractions (Schmidt et al., 2011), and physical protection by
particles (Mikutta et al., 2006; Keil and Mayer, 2014). The



2 J.D. Hemingway: Organic carbon activation energy and isotope composition

relative importance of these governing mechanisms remains
actively debated and is thought to vary depending on envi-
ronmental setting (Hedges et al., 2001; Rothman and Forney,
2007; Schmidt et al., 2011), thus limiting our mechanistic un-
derstanding of OC decay.5

This limitation is partially methodological in nature; tradi-
tional geochemical analyses often target either "bulk" OC or
trace "biomarker" molecules such as plant-wax fatty acids
(Galy et al., 2011; Galy and Eglinton, 2011; Hemingway
et al., 2016). While bulk measurements include all OC con-10

tained within a sample, they offer no information on the dis-
tribution of chemical structure or reactivity within a complex
mixture. In contrast, biomarker analysis is highly specific but
individual compounds nonetheless still represent the average
of multiple sources. Furthermore, biomarkers typically con-15

stitute ≤1 % of total OC and can be subject to production,
transport, and preservation biases (Hemingway et al., 2016).

To bridge the information gained by these methods, a
novel class of analytical techniques, termed "serial oxida-
tion," has emerged. Such analyses separate carbon within a20

bulk sample based on its susceptibility to decomposition by
chemical hydrolysis (Helfrich et al., 2007), uv light (Beaupré
et al., 2007; Follett et al., 2014), heat (Rosenheim et al.,
2008), or microbial respiration (Beaupré et al., 2016) and
measure the stable carbon (13C/12C, expressed as δ13C) and25

radiocarbon (14C/12C, here expressed as fraction modern or
Fm) content of evolved CO2. By separating CO2 into mul-
tiple lability intervals, isotope ratios are obtained for carbon
atoms exhibiting similar physical and/or chemical properties.
Because δ13C provides information on the source of organic30

matter while Fm reflects the amount of time that has passed
since organic compounds were initially synthesized, serial
oxidation is a promising method to directly probe the com-
positional controls on OC source and residence time.

Still, a theoretical treatment of serial oxidation kinetics is35

lacking, hindering our ability to correlate measured isotope
distributions with intrinsic chemical properties and reactivity.
In this study, we relate OC thermal recalcitrance to its corre-
sponding δ13C and Fm values using ramped-temperature py-
rolysis/oxidation (RPO). This method involves heating OC40

at a controlled rate while continuously quantifying and col-
lecting evolved CO2, which is binned over user-defined time
intervals (termed "fractions") and analyzed for δ13C and Fm
(Rosenheim et al., 2008; Hemingway et al., 2017). We de-
scribe non-isothermal OC decay rates as a function of E, the45

Arrhenius activation energy, using a novel inverse solution
to the distributed activation energy model (Braun and Burn-
ham, 1987; Burnham and Braun, 1999; Cramer, 2004; White
et al., 2011). By conducting a set of kinetic experiments, we
show that the E distribution within a given OC mixture does50

not depend on experimental conditions and is thus a reliable
proxy for bond strength and OC chemical composition.

We note that the modeling approach developed here is
broadly applicable to any serial oxidation technique, al-
though the resulting E distributions will differ depending55
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Figure 1. RPO instrument schematic. User-defined inputs are
printed in blue, while observed measurements are printed in red
(See Table 1 for symbol definitions).

on oxidation pathway. For example, aromatic compounds
such as lignin have been shown to be highly photoreactive
(Spencer et al., 2009) despite their relatively high thermal
recalcitrance (Williams et al., 2014) and will likely be de-
scribed by lower E values when oxidized with uv light rela- 60

tive to PRO analysis. Here, we choose RPO because analysis
is rapid (≈3 h per sample), requires little material (150 µgC
to 250 µgC), contains minimal preparation steps, and re-
sults in small kinetic isotope fractionation (Hemingway et al.,
2017). 65

We therefore treat E as a proxy for OC chemical struc-
ture and emphasize that thermal reactivity is not equivalent
to microbial reactivity in the environment (Leifeld and von
Lützow, 2014). Rather, by comparing E profiles and cor-
responding isotope compositions across environmental sam- 70

ples or experimental conditions (e.g. before and after micro-
bial degradation), our method provides a framework to probe
how, if at all, OC source and turnover time (as measured by
δ13C and Fm) are related to its chemical composition (as pre-
dicted by thermal E distributions). We begin in Section 3 by 75

deriving the governing equations to describe a parallel super-
position of first-order, non-isothermal decay. Then, in Sec-
tion 4, we describe a method to solve for the distribution
of E using a regularized inverse approach. Finally, in Sec-
tion 5, we determine the subset of E that is contained within 80

each RPO fraction and directly relate OC reaction energet-
ics to corresponding isotope values. All calculations were
performed using the accompanying ’rampedpyrox’ Python
package (Hemingway, 2017).
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Table 1. List of mathematical symbols used throughout this study.

Symbol Parameter Units

A Dynamic disordered kinetic design matrix kJmol−1

α(t) Integral of G0-normalized thermogram at time t –
β Temperature ramp rate Ks−1

δ13Cf
13C/12C ratio of RPO fraction f , expressed in per mille VPDB ‰

∆E Activation energy step kJmol−1

∆tj Time step for point j in t s
13 – 12∆E E difference between 13C- and 12C-containing compounds kJmol−1

Ei Activation energy for component i kJmol−1

E Continuous form of Ei kJmol−1

E Vector of discretized activation energy kJmol−1

Fmf
14C/12C ratio for RPO fraction f , expressed as fraction modern –

G0 Total initial mass of carbon µgC
gi(0) Initial mass of carbon in component i µgC
gi(t) Mass of carbon in component i remaining at time t µgC
G(t) Mass of total carbon remaining at time t µgC

g(0,E) Continuous form of gi(0) µgC
g(t,E) Continuous form of gi(t) µgC

g Vector of G(t)/G0 at each time point –
ki(t) First-order rate coefficient for component i at time t s−1

k(t,E) Continuous first-order rate coefficient for energy value E at time t s−1

κi(t) Discrete, time-integrated first-order decay coefficient for component i at time t –
κ(t,E) Continuous, time-integrated first-order decay coefficient for energy value E at time t –

λ Regularization weighting factor –
mf Mass of carbon (as CO2) contained in RPO fraction f µgC

m(t) G0-normalized decay rate at time t s−1

nE Number of nodes in E –
nt Number of nodes in t –

pi(0) Fraction of G0 initially in component i –
pi(t) Fraction of G0 remaining in component i at time t –

p(0,E) Continuous form of pi(0) –
p(t,E) Continuous form of pi(t) –

p Vector of p(0,E)/∆E at each energy point (kJmol−1)−1

Πf (E) Subset of p(0,E) contained in RPO fraction f –
13/12r(t) Ratio of 13C/12C decay at time t –

R Ideal gas constant kJmol−1 K−1

R First derivative operator matrix –
T (t) Temperature at time t K

t Vector of discretized time s
ω Arrhenius pre-exponential ("frequency") factor s−1

2 Materials and Methods

2.1 Sample selection and preparation

As a representative sample, we analyzed particulate organic
carbon (POC) contained in suspended sediments from the
surface of the Narayani River. This sample (PB-60) was col-5

lected at the base of the Himalayas (27.70° N, 84.43° E) and
has been analyzed for bulk OC and plant-wax carbon iso-
topes (Galy et al., 2008; Galy and Eglinton, 2011; Galy et al.,
2011). Aliquots were taken for RPO analysis from freeze-
dried, archived material and acidified under HCl fumes at10

60 ◦C for 72 h to remove carbonates (Whiteside et al., 2011).

Because residual chloride has been shown to interact with
the RPO catalyst wire (Hemingway et al., 2017), acidified
aliquots were rinsed 3× in 18.2 MΩ MilliQ water and freeze-
dried overnight at −40 ◦C prior to analysis. For consistency 15

and to properly calculate RPO isotope mass balance, bulk
%OC, δ13C, and Fm values were re-measured using fumi-
gated and rinsed material (McNichol et al., 1994a, b). Re-
sulting Fm for rinsed material is 0.04 lower than that for un-
rinsed aliquots (Galy et al., 2008), reflecting a minor loss of 20

acid soluble OC for this sample during the rinsing step.
To test if the presence of inorganic carbon (IC; e.g.

CaCO3) affects decay kinetics, we additionally analyzed a
pure CaCO3 laboratory working standard (Icelandic spar;
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Hemingway et al., 2017) as well as carbonate-rich sediment
from the Southern Ocean (60.24° S, 170.19° W) collected
for the Joint Global Ocean Flux Study (JGOFS; Sayles et al.,
2001). JGOFS aliquots were taken from archived core-top
material (0 cm to 0.5 cm, stored at −80 ◦C), freeze-dried5

overnight at −40 ◦C, and homogenized prior to RPO anal-
ysis. IC content, OC content, and bulk 13C composition were
re-quantified at NOSAMS (McNichol et al., 1994a).

2.2 Instrumental setup

RPO analysis has been described in detail previously (Rosen-10

heim et al., 2008; Hemingway et al., 2017). In summary,
a solid sample containing ≈150µgC to 250µgC is loaded
into a pre-combusted (850 ◦C, 5 h) quartz reactor and placed
into a two-stage oven, as shown in Fig. 1. The reactor is
then sealed and the sample is exposed to an atmosphere of15

92:8 He:O2 with a total flow rate of 35 mLmin−1 (oxida-
tion mode). During analysis, the oven surrounding the sam-
ple is programmed to heat at a user-defined ramp rate, termed
β (see Table 1 for symbol descriptions). Instantaneous tem-
perature within the oven is measured using two thermocou-20

ples separated by ≈1 cm to monitor temperature heterogene-
ity, which is typically <5 ◦C. Following standard practice
(Rosenheim et al., 2008), a ramp rate of 5 ◦Cmin−1 was used
for all experiments in which CO2 gas was collected for iso-
tope analysis. In the second (downstream) oven, eluent gas25

is passed over a Cu, Pt, and Ni catalyst wire held at 800 ◦C
to facilitate oxidation of reduced carbon-containing gases to
CO2.

After exiting the second oven, eluent gas is distilled
through a water trap and passed into a flow-through infrared30

gas analyzer (IRGA) to measure CO2 concentration (in parts
per million by volume; ppmCO2) with 1-s temporal resolu-
tion. Resulting ppmCO2 vs. temperature plots are referred
to as "thermograms" (Fig. 2). At each time point, the mea-
sured thermogram (in units of ppmCO2) can be converted to35

an instantaneous OC decay rate (in units of µgCs−1) using
the measured gas flow rate and the ideal gas constant. "Ther-
mogram" and "decay rate" are therefore used interchange-
ably throughout this manuscript. IRGA measurements were
calibrated using a two-point calibration curve before each40

analysis to account for instrument drift and are precise to
±5 ppmCO2 (Hemingway et al., 2017). Downstream of the
IRGA, eluent gas is passed into one of two switchable traps
and CO2 is cryogenically frozen while He and O2 are vented
to the atmosphere. Traps are switched at user-defined time45

points and CO2 is further distilled, quantified, transferred
into glass tubes packed with≈100 mgCuO and≈10 mgAg,
and flame sealed. Finally, CO2 was recombusted at 525 ◦C
for 1 h to remove trace contaminant gases.

2.3 Isotope measurement, blank correction, and data 50

analysis

Radiocarbon compositions of all bulk samples and RPO frac-
tions were measured at NOSAMS following standard graphi-
tization methods (McNichol et al., 1994b). All radiocarbon
results are expressed in fraction modern notation (Fm). We 55

note that Fm used here is corrected for 13C fractionation and
is thus identical to the F14C notation of Reimer et al. (2004).
Bulk and RPO fraction stable carbon isotope compositions
were measured on CO2 gas using a dual-inlet IRMS located
at NOSAMS (McNichol et al., 1994a), with resulting 13C 60

content expressed in δ13C per mille (‰) notation relative to
Vienna Pee Dee Belemnite (VPDB). RPO fraction masses,
δ13C values, and Fm values were corrected for blank carbon
contribution, and δ13C was additionally corrected to ensure
13C mass balance as incomplete oxidation to CO2 has been 65

shown to impart a small fractionation effect (Hemingway
et al., 2017). Analytical uncertainty was propagated through-
out all corrections. Thermograms and isotope results for both
Narayani POC and JGOFS sediment are plotted in Fig. 2,
while temperature ranges, carbon masses, and isotope values 70

are additionally reported in Tables 2–3.

3 Deriving a model of decay kinetics

We derive the distributed activation energy model by first
considering the case where OC is separated into a set of
discrete components with unique E values. We then gener- 75

alize this description to allow for a continuous E distribu-
tion (Braun and Burnham, 1987; Burnham and Braun, 1999;
Cramer, 2004).

3.1 Discrete model

During OC remineralization, the decay rate of carbon con- 80

tained in a particular component i is often described as as a
first-order process with respect to gi(t), the mass of carbon
remaining in component i at any time t (Westrich and Berner,
1984; Braun and Burnham, 1987), according to

dgi(t)

dt
=−kigi(t), (1) 85

where ki is the first-order rate coefficient associated with
component i. Total OC decay is then treated as the sum
over all components. Although it is possible that OC de-
cay in the natural environment additionally depends on ox-
idant concentration, we omit this dependency here since O2 90

is provided in excess in our experimental setup (Fig. 1). In
contrast to the "multi-G" and "reactive continuum" models
that are often used to describe environmental OC degradation
rates (Westrich and Berner, 1984; Boudreau and Ruddick,
1991; Forney and Rothman, 2012a, b), here we allow ki to 95

vary with time. Because rate coefficients are related to tem-
perature and activation energy, ki can be written as a time-
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Figure 2. RPO results. Measured thermograms (gray shaded region, ppmCO2 axes not shown), δ13C values (white circles, left axes), and
Fm values (transparent bars, right axes) for (a) Narayani POC and (b) JGOFS sediment (Fm not measured). Fm bar widths correspond to
the temperature range of collection for each RPO fraction. Fm and δ13C analytical uncertainty is always smaller than point marker and is
therefore not shown (see Tables 2–3 for values).

Table 2. Narayani POC RPO temperature ranges, carbon masses, δ13C, Fm, and E for each fraction, f . All masses and isotope values are
blank corrected following Hemingway et al. (2017). See Eqs. (41)–(42) for E calcuations.

f T (◦C) mf (µgC) δ13Cf (‰VPDB)* Fmf E (kJmol−1)**
min. max. mean std. dev. mean std. dev. mean std. dev. Ef σf

1 150 310 68.4 0.7 -29.5 0.2 0.891 0.004 134.4 8.1
2 310 367 105.6 1.1 -28.1 0.2 0.795 0.002 147.9 7.1
3 367 412 82.4 0.8 -26.7 0.2 0.676 0.003 159.0 7.5
4 412 475 92.6 0.9 -25.1 0.2 0.464 0.003 173.1 8.5
5 475 545 85.6 0.9 -25.3 0.2 0.342 0.003 190.6 10.9
6 545 610 98.4 1.0 -24.3 0.2 0.107 0.002 209.7 10.7
7 610 661 101.5 1.0 -22.9 0.2 0.022 0.002 223.4 8.0
8 664 725 125.6 1.3 -21.8 0.2 0.014 0.002 231.5 7.1
9 725 997 86.6 0.9 -23.5 0.2 0.042 0.002 260.5 17.7

*δ13Cf is additionally corrected following Hemingway et al. (2017) to ensure that the mass-weighted mean matches the measured
bulk value.
**Assuming L-curve best-fit λ value and ω = 10× 1010 s−1.

dependent function of E following the Arrhenius equation:

ki(t) = ω exp

[
− Ei
RT (t)

]
, (2)

where ω is the empirically derived Arrhenius pre-exponential
("frequency") factor, R is the ideal gas constant, Ei is the5

activation energy of carbon contained in component i, and
T (t) is the measured temperature of the system at time t. For
non-isothermal systems, time-dependent decay coefficients
can therefore be described by the static property Ei and the
observed variable T (t). Although T (t) is related to t by a10

constant ramp rate β during RPO analysis, we leave this writ-
ten as is to emphasize that our model is valid for any mea-
sured time-temperature history. Substituting Eq. (2) into Eq.
(1), we write the first-order decay at time t during a non-
isothermal process as 15

dgi(t)

dt
=−ω exp

[
− Ei
RT (t)

]
gi(t). (3)

The mass of carbon remaining in component i at time t can
be determined by integrating Eq. (3) from an initial time t=
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0:

gi(t) = gi(0)e−κi(t), (4)

where

κi(t) = ω

t∫
0

exp

[
− Ei
RT (t′)

]
dt′ (5)

is the time integrated decay coefficient at time t and gi(0) is5

the initial mass of carbon contained in component i. Equation
(5) states that gi(t) depends on the entire time-temperature
history of the experiment. That is, the evolution of dgi(t)/dt
reflects both a decrease in gi(t) as OC is remineralized and
an increase in ki(t) with increasing T (t) as the experiment10

progresses. This results in a predictable shift in RPO thermo-
grams toward higher elution temperatures with increasing β
(Miura and Maki, 1998), as shown in Fig. 3.

Following Boudreau (1997) and Westrich and Berner
(1984), an environmental sample containing a complex OC15

mixture can be described as a superposition of a finite set
of n components, each decaying according to a unique ki(t)
and thus corresponding to a unique Ei value. G(t), the to-
tal carbon mass remaining at t, is then the sum of the mass
remaining in each component:20

G(t) =

n∑
i=1

gi(t). (6)

Substituting Eq. (4) into Eq. (6), this can be written as

G(t) =

n∑
i=1

gi(0)e−κi(t). (7)

We then define G0, the initial OC mass present in the entire
sample, as the sum of initial mass contained in each compo- 25

nent:

G0 =

n∑
i=1

gi(0). (8)

Finally, we define pi(0), the fraction of total carbon initially
contained in component i, as

pi(0) =
gi(0)

G0
(9) 30

and note that
n∑
i=1

pi(0) = 1. (10)

Substituting Eq. (9) into Eq. (7) yields

G(t)

G0
=

n∑
i=1

pi(0)e−κi(t), (11)

which describes the evolution of the fraction of initial carbon 35

remaining at any time. The fraction of OC initially present
within each component, pi(0), can be determined by fitting
Eq. (11) to the observed G(t) profile measured by the RPO
instrument. While informative, this discrete description of
the model suffers from two major limitations: (i) n must be 40

set a priori or determined empirically (Boudreau and Rud-
dick, 1991) and (ii) any noise recorded in the data will result
in large uncertainty in best-fit pi(0) and Ei values (Forney
and Rothman, 2012b). To circumvent the first of these is-
sues, we derive a more general description of non-isothermal 45

first-order decay that does not assume a finite set of com-
ponents with unique Ei, but rather allows E to vary contin-
uously (Boudreau, 1997; Braun and Burnham, 1987; Burn-
ham and Braun, 1999; Cramer, 2004). Limitation (ii) is then
solved using Tikhonov regularization (Section 4.2; Forney 50

and Rothman, 2012b; Hansen, 1994).

3.2 Continuous model

In the continuous model, discrete components gi(t), κi(t)
and Ei are replaced by continuous variables g(t,E), κ(t,E)
and E, respectively (Table 1). Analogous to Eq. (3), we cal- 55

culate the decay of OC associated with an infinitesimal range
dE about any non-negative value of E following first-order
Arrhenius kinetics as

dg(t,E)

dt
=−ω exp

[
− E

RT (t)

]
g(t,E). (12)
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Table 3. JGOFS RPO temperature ranges, carbon masses, and δ13C
for each fraction, f . All masses and isotope values are blank cor-
rected following Hemingway et al. (2017).

f T (◦C) mf (µgC) δ13Cf (‰VPDB)*
min. max. mean std. dev. mean std. dev.

1 163 363 38.5 0.4 -20.1 0.2
2 363 435 45.9 0.5 -10.3 0.2
3 435 543 217.6 2.2 -0.4 0.2
4 543 597 154.4 1.5 0.3 0.2
5 597 720 497.7 5.0 0.9 0.2

*δ13Cf is additionally corrected following Hemingway et al. (2017) to ensure that
the mass-weighted mean matches the measured bulk value.

The mass of carbon associated with any value of E that re-
mains unreacted at time t is then calculated by integrating
Eq. (12) to obtain

g(t,E) = g(0,E)e−κ(t,E), (13)

where g(0,E) is the initial mass of carbon associated with5

activation energy value E and

κ(t,E) = ω

t∫
0

exp

[
− E

RT (t′)

]
dt′. (14)

The total carbon remaining at time t can now be written as
the integral of g(t,E) over all possible values of E as

G(t) =

∞∫
0

g(t,E)dE. (15)10

Substituting Eq. (13) into Eq. (15), we obtain

G(t) =

∞∫
0

g(0,E)e−κ(t,E)dE. (16)

Analogous to Eq. (9), we then define the fraction of total car-
bon initially associated with any value of E as

p(0,E) =
g(0,E)

G0
(17)15

where

∞∫
0

p(0,E)dE = 1. (18)

Substituting Eq. (17) into Eq. (16) yields:

G(t)

G0
=

∞∫
0

p(0,E)e−κ(t,E)dE. (19)

The distribution of p(0,E) over all values of E describes the 20

initial probability density function (pdf) of E that will lead
to the observed OC decay profile when a sample is analyzed
in the RPO instrument. As RPO analysis proceeds, this pdf
must evolve with time to reflect the fact that some carbon
has been remineralized to CO2. Like g(t,E), p(t,E) follows 25

first-order Arrhenius kinetics according to

dp(t,E)

dt
=−ω exp

[
− E

RT (t)

]
p(t,E), (20)

where p(t,E) is the fraction of initial carbon mass that re-
mains associated with E at time t. This can be obtained by
integrating Eq. (20) from an initial time t= 0: 30

p(t,E) = p(0,E)e−κ(t,E). (21)

This implies that the carbon initially remineralized to CO2
must be associated with the lowest E values, as low E will
lead to a κ(t,E) term in Eq. (21) that approaches zero most
rapidly. Put differently, OC that is described by higherE val- 35

ues will resist remineralization until more time has passed
and, therefore, higher temperatures have been reached – i.e.
it is more thermally recalcitrant.

3.3 First-order verification

Because the distributed activation energy model is a specific 40

case of nth-order non-isothermal kinetic models (Braun and
Burnham, 1987; White et al., 2011), we must verify that
carbon degradation within the RPO instrument behaves ac-
cording to a superposition of parallel first-order reactions
rather than higher-order processes. By replacing g(t,E) with 45

G0p(t,E) on the right-hand side of Eq. (12), it can be seen
that

dg(t,E)

dt
=−G0ω exp

[
− E

RT (t)

]
p(t,E). (22)

By integrating over all non-negative values ofE and utilizing
the definition of G(t) from Eq. (15), this can be written as 50

dG(t)

dt
=−G0

∞∫
0

ω exp

[
− E

RT (t)

]
p(t,E)dE. (23)

The first-order model describes dG(t)/dt as a linear function
of G0 multiplied by an integral term that depends on p(t,E)
but is independent of G0. In contrast, if carbon decompo-
sition within the RPO instrument were to follow a higher- 55

order process, then the relationship between dG(t)/dt and
G0 would be nonlinear and would evolve as a function of
time (Follett et al., 2014). If we define

m(t) =

∞∫
0

ω exp

[
− E

RT (t)

]
p(t,E)dE, (24)
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then the carbon decay at time t as predicted by parallel first-
order kinetics simplifies to

dG(t)

dt
=−G0m(t). (25)

Therefore, similar to the isothermal case (Follett et al., 2014),
a superposition of parallel first-order decay reactions will re-5

sult in a linear relationship between dG(t)/dt and G0 with
a zero intercept and a time-dependent slope. Thus, m(t) can
be interpreted as the G0-normalized OC decay rate at time t.

We verify that OC remineralization within the RPO in-
strument follows parallel first-order kinetics by assessing the10

linearity between Narayani POC dG(t)/dt and G0 at any
time t across a range of G0 values. For 4 arbitrarily chosen
time points, this relationship is linear with an ordinary least
squares R2 ≥ 0.999, resulting in identical G0-normalized
thermograms within analytical uncertainty (Fig. 4a–b). Thus,15

the decay of complex OC mixtures contained in carbonate-
free samples during RPO analysis can indeed be accurately
described as a superposition of parallel first-order reactions.

3.4 A note of caution on carbonates

While most RPO studies to date have isolated OC by20

acidifying to remove carbonates (e.g. Rosenheim et al.,
2008; Rosenheim and Galy, 2012; Rosenheim et al., 2013;
Schreiner et al., 2014; Bianchi et al., 2015), it has been ar-
gued that acid hydrolysis and/or dissolution of clay minerals
during acid treatment can alter the OC chemical bonding en-25

vironment and therefore affect thermal stability (Plante et al.,
2013). While analyzing samples without acid treatment can
circumvent these issues, the effect of carbonates on decay
kinetics has not yet been considered. To test if carbonate-
rich samples follow parallel first-order kinetics, we analyzed30

JGOFS sediment for a range of G0 values (Fig. 4c–d). Prior
to T ≈ 500 ◦C (corresponding to t≈ 4500 s), when δ13C val-
ues of eluted CO2 indicate a predominantly OC source (Table
3; Fig. 2b), dG(t)/dt can be accurately described as a linear
function of G0 (R2 ≥ 0.999). However, as carbonate begins35

to decompose above T ≈ 500 ◦C, the relationship between
dG(t)/dt and G0 becomes nonlinear and the carbonate peak
shifts toward higher t with increasing G0 (Fig. 4d).

To investigate if non-first-order decomposition is an in-
trinsic property of CaCO3 or if this is due to interactions40

with other materials within the sample (so-called "matrix ef-
fects"), we analyzed a pure Icelandic spar CaCO3 labroatory
standard at multiple masses (G0 = 258 µgC, 492 µgC and
1014 µgC; β = 5 ◦Cmin−1; not shown). Results indicate that
pure carbonate, unlike JGOFS sediment, does follow first-45

order kinetics with a maximum decomposition rate occurring
at (700± 6) ◦C independent of G0. Interaction with reduced
organic carbon, corresponding hetero-atoms (e.g. N, P, S), or
trace metals contained within the sample matrix are there-
fore the likeliest cause of non-first-order CaCO3 decompo-50

sition when analyzing environmental samples. Thus, while

avoiding the issues of acid treatment, the presence of carbon-
ate will result in thermograms that cannot be accurately de-
scribed by the model presented here, and we therefore argue
in favor of acid treatment when using the RPO instrument to 55

determine reaction energetics of carbonate-containing sam-
ples.

4 Finding the regularized inverse solution

Following Forney and Rothman (2012a, b), we present a
method to estimate p(0,E) by finding an inverse solution to 60

Eq. (19). In contrast to previous solutions (Braun and Burn-
ham, 1987; Burnham and Braun, 1999; Cramer, 2004), this
approach does not require an a priori assumption about the
form of p(0,E) (e.g. Gaussian). Because this problem is sen-
sitive to noise at the level of our analytical uncertainty (For- 65

ney and Rothman, 2012b), we seek a smooth solution using
Tikhonov regularization (Section 4.2; Forney and Rothman,
2012b; Hansen, 1994).

To numerically calculate p(0,E), we discretize the contin-
uous variable t over the time course of the experiment into a 70

vector t containing nt nodes such that

∆tj =
1

2
(tj+1− tj−1) , j = 2, . . . ,nt− 1. (26)

For j = 1 and j = nt, tj−1 and tj+1 in Eq. (26) are, respec-
tively, replaced by tj since t is undefined outside of this
range. For generality, and because the distributed activation 75

energy model is frequently applied over geologic timescales
with non-uniformly distributed time measurements (Braun
and Burnham, 1987; Burnham and Braun, 1999; Cramer,
2004), Eq. (26) does not require a uniform time step (i.e. it is
possible that ∆tj 6= ∆ti6=j). Similarly, we generate a vector 80

E containing nE nodes over the range values considered for
the model solution such that

∆E =
Emax−Emin

nE
, (27)

noting that E is uniformly spaced since this vector is not
constrained by observations. We constrain E to be within 85

50 kJmol−1 to 350 kJmol−1 based on published biomass
and petroleum E ranges (Braun and Burnham, 1987; Burn-
ham and Braun, 1999; Cramer, 2004; White et al., 2011).

It can be seen from Eq. (19) that the model can be sepa-
rated into two components: (i) p(0,E) and (ii) the exponenti- 90

ated, time integrated decay coefficient, exp[κ(t,E)]. Analo-
gous to the Laplace transform for the isothermal reactive con-
tinuum model (Forney and Rothman, 2012b), exp[κ(t,E)]
determines the fraction of carbon initially associated with
an activation energy value E that has decayed by time t. 95

While this integral can be calculated analytically for a con-
stant ramp rate β, here we approximate the solution nu-
merically so that our model can be applied to any time-
temperature history. Thus, we populate a matrix A by cal-
culating exp[κ(t,E)] for each tj and El contained in t and 100
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Figure 4. First-order kinetic assessment. Left column shows decay rate, dG(t)/dt, vs. G0 relationships at four arbitrarily chosen time points
(including best-fit regression lines, dashed lines) and right column shows the mass-normalized decay rates [termed m(t) in Eq. (24)–(25)]
at all time points for (a)–(b) Narayani POC and (c)–(d) JGOFS sediment. Linear relationships and nearly identical normalized decay rates
in panels (a)–(b) confirm the first-order nature of OC decay, while non-linear relationships and a shifting carbonate peak in panels (c)–(d)
indicate non-first-order CaCO3 decay kinetics. For each time point in panel (a), the regression slope is equivalent to m(t) for that time point
as shown in panel (b).

E as

Aj,l = exp

{
−

j∑
u=1

ω exp

[
− El
RT (tu)

]
∆tu

}
∆E,

j = 1, . . . ,nt,

l = 1, . . . ,nE . (28)

The A matrix is often termed the model "design matrix." We
then calculate the fraction of initial carbon remaining at each
time point as5

G(t)

G0
= 1−α(t), (29)

where α(t) is the G0-normalized, integrated RPO thermo-
gram at time t. We generate a discretized vector g by interpo-
lating G(t)/G0 onto each tj in t (j = 1, . . . ,nt). Our model
can then be written in matrix form as 10

g = A ·p, (30)

where p is an unknown, discretized vector of p(0,E) with
length nE such that

pl =
1

∆E

El+
1
2 ∆E∫

El− 1
2 ∆E

p(0,E)dE, l = 1, . . . ,nE . (31)
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While Eq. (30) can be solved for p by multiplying g by the
computed inverse of A, if g contains noisy data this may re-
sult in negative values of pl that are mathematically possible
but physically unreasonable (Forney and Rothman, 2012b).
Here, we find the solution that satisfies5

min
p
‖g−A ·p‖ ≡

 nt∑
j=1

(
gj −

nE∑
l=1

Aj,lpj

)2
 1

2

, (32)

subject to the constraints

pl ≥ 0, l = 1, . . . ,nE , (33)

and
nE∑
l=1

pl = 1, l = 1, . . . ,nE (34)10

using the non-negative least squares algorithm of Lawson
and Hanson (1995) as implemented by the SciPy package
for Python. Eqs. (32)–(34) describe the model solution that
minimizes the norm of the residual error (i.e. the root mean
square error, or RMSE) while fulfilling the constraints that p15

is non-negative and sums to unity.

4.1 Choice of frequency factor

In order to construct the A matrix and solve for p, our
method requires that the Arrhenius frequency factor ω is pre-
scribed a priori. There exists significant discussion in the lit-20

erature on the best choice of ω, as multiple values can de-
scribe laboratory results equally well but will result in dras-
tically different predictions of OC degradation rates over ge-
ologic timescales (Braun and Burnham, 1987; Dieckmann,
2005). Furthermore, it has been argued that ω represents a25

variable change in entropy associated with the decay of spe-
cific organic compounds and should therefore be parameter-
ized as a function of E (the so-called "kinetic compensation
effect" or KCE; Dieckmann, 2005; Lakshmanan et al., 1991;
Tang et al., 2000). For example, a linear ω increase with30

E from ≈108 s−1 (E = 175 kJmol−1) to ≈1026 s−1 (E =
400 kJmol−1) has been utilized to better predict petroleum
formation rates (Dieckmann, 2005). To circumvent the issue
of multiplicity, and to account for the KCE, Miura and Maki
(1998) developed a method to estimate the best-fit ω for each35

E value by comparing the shift in elution temperatures when
a sample is analyzed at multiple ramp rates. However, be-
cause this approach is based on large extrapolations in 1/T
vs. β/T 2 space, it is highly sensitive to noise in temperature
and β measurements (Burnham and Braun, 1989).40

To select a best-fit ω, we construct the A matrix for a range
of ω values and determine the residual error norm between
measuredG(t)/G0 and that predicted by the resulting p vec-
tor determined by Eqs. (32)–(34). We consider the KCE by
calculating ω as a function of E according to45

log10ω = (KCE slope)E+ (KCE intercept). (35)

residual error norm, ||g - A·p||
10-4 10-3 10-2 10-1
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Figure 5. Frequency factor assessment. Model residual error norm
using a range of KCE slopes and intercepts for Narayani POC (β
= 5 ◦Cmin−1). Each pixel represents the best-fit solution to Eqs.
(32)–(34) for a given ω as determined by Eq. (35). "Acceptable" fits
with residual error norm ≤10−4 are contained within the red dotted
line. Estimated result using the method of Miura and Maki (1998)
for 3 ramp rates (β = 2 ◦Cmin−1, 5 ◦Cmin−1 and 10 ◦Cmin−1)
is plotted as a white circle, while the point corresponding to ω =
1010 s−1 (the value chosen for samples in this study) is plotted as a
red star.

Resulting residual errors for Narayani POC using a range
of KCE slopes and intercepts are shown in Fig. 5 (β =
5 ◦Cmin−1, E ranging from 50 kJmol−1 to 350 kJmol−1).
By setting an "acceptable" residual error norm cutoff of 50

≤10−4, it can be seen that there exist multiple KCE slope and
intercept combinations that can equally fit the observed data.
Additionally, we estimate the best-fit ω using a range of ramp
rates (β = 2 ◦Cmin−1, 5 ◦Cmin−1 and 10 ◦Cmin−1) fol-
lowing the method of Miura and Maki (1998) (Fig. 5, white 55

circle). While this estimate falls outside of the cutoff range,
likely due to noise in temperature and β measurements, it re-
sults in a KCE slope near zero and suggests that ω is constant
during RPO oxidation of this sample. To accurately compare
RPO results between samples, we therefore select a constant 60

ω value of 1010 s−1, well within the cutoff range, for samples
analyzed herein (Fig. 5, red star). While a different choice of
ω will shift p(0,E) to higher or lower absolute values of E,
we emphasize that it will not affect the relative distribution of
E and that only relative changes inE between RPO fractions 65

should be interpreted.
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For example, a shift in ω from a constant value of 107 s−1

to 1012 s−1 results in an increase in the mean of the pdf of E,
termed E and calculated as

E =

nE∑
l=1

Elp(0,El)∆E, (36)

from 150 kJmol−1 to 224 kJmol−1 for Narayani POC.5

However, the relative standard deviation of the pdf of E, cal-
culated as σ/E, where

σ2 = E2−
(
E
)2
, (37)

remains constant at 20%. A higher ω value therefore results
in a broader p(0,E) distribution that is centered at a higher10

mean E value but has no effect on the relative shape of the
distribution.

4.2 Tikhonov regularization

In principle, after choosing ω and constructing the A matrix,
the pdf of E that best describes an RPO thermogram can be15

determined by solving Eqs. (32)–(34). However, the inverse
solution is sensitive to noise at the level of RPO instrument
precision (±5 ppmCO2, ±5 ◦C; Hemingway et al., 2017),
and is therefore ill-posed (Hansen, 1994; Lakshmanan et al.,
1991). We address this sensitivity to data uncertainty using20

Tikhonov regularization (Hansen, 1994; Forney and Roth-
man, 2012a, b).

This approach finds an optimal solution that minimizes
p(0,E) complexity (as determined by the intensity of fluc-
tuations, or "roughness") while maximizing solution accu-25

racy. Following Forney and Rothman (2012b), we calculate
roughness as the first derivative of the solution vector:

∥∥∥∥dp(0,E)

dE

∥∥∥∥=

[
nE−1∑
l=2

(
pl+1− pl

∆E

)2
] 1

2

≡ ‖R ·p‖, (38)

where R is the bi-diagonal first derivative operator matrix
with dimensions [nE ×nE ]. To account for p being equal30

to zero outside the range Emin <E <Emax, we set the first
and last rows of R to be equal to [1 0] and [0 − 1], re-
spectively, where 0 refers to a zero vector of length nE − 1.
Similar to Eq. (32), the regularized inverse problem can then
be solved for p by including this roughness term in the con-35

strained least squares. That is, we solve

min
p
‖g−A ·p‖+λ‖R ·p‖, (39)

for p subject to the constraints presented in Eqs. (33) – (34),
where λ is a scalar that determines how much to weight the
roughness ‖R ·p‖ relative to the residual error ‖g−A ·p‖.40

The best choice of λ is considered to be the value that opti-
mizes this balance. As described in Hansen (1994), a com-
mon approach is to choose the value corresponding to the

10-5 10-4 10-3 10-2 10-1
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Figure 6. Tikhonov Regularization L-curve for Narayani POC (β
= 5 ◦Cmin−1). The black line represents the range of roughness
and residual error norms that are the result of solving Eq. (39) for p
using multiple λ values ranging from 0.001 to 100. The white circle
corresponds to the point of maximum curvature along this line, and
is thus deemed the "best-fit" λ value [see Hansen (1994) and Forney
and Rothman (2012b) for further details on generating the L-curve
and theory behind Tikhonov regularization.]

point of maximum curvature in a log− log plot of residual
error and roughness while allowing λ to range over many or- 45

ders of magnitude (i.e. the so-called "L-curve"). From this
point, increasing λ strongly increases residual error but has
little effect on solution roughness, while decreasing λ greatly
increases roughness but has little effect on residual error.
Thus, here we choose the λ value corresponding to the corner 50

of the L-curve for each sample, as exemplified in Fig. 6.

4.3 p(0,E): A novel proxy for chemical bond strength

In order to interpret p(0,E) as an intrinsic property of OC
contained within a sample, we must show that results do not
depend on experimental conditions such as ramp rate β and 55

initial carbon mass G0. To test this, we analyzed Narayani
POC using a range of masses (G0 = 268µgC, 533µgC and
828µgC) and ramp rates (β = 2 ◦Cmin−1, 5 ◦Cmin−1 and
10 ◦Cmin−1). Fig. 7 shows that the regularized pdfs of E
are nearly identical across all experimental conditions. This 60

supports the hypothesis that the p(0,E) distribution is an in-
trinsic property of a given sample when exposed to a partic-
ular oxidation pathway (e.g. thermal decay). Although there
exist small differences between individual analyses due to
measurement uncertainty and variability in best-fit λ values 65

(ranging from 0.044 to 0.448, n= 5), the main features of
p(0,E) are robust across all conditions. Note that the p(0,E)
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Figure 7. Regularized p(0,E) distribution for Narayani POC. Mean
(black line) and standard deviation (gray shaded region) of p(0,E)
analyzed using a range of G0 and β values (n= 5). Narrow stan-
dard deviation indicates that model results are independent of ex-
perimental conditions.

distribution (Fig. 7) broadly resembles the initial thermo-
gram shape (Fig. 2a), albeit with more defined features and
a higher roughness. This is a result of the fact that OC as-
sociated with each E value will decay over a wide temper-
ature range within the RPO instrument, thus resulting in a5

"smoothed" thermogram relative to p(0,E) (Cramer, 2004).
While further study is required to assess the general ap-

plicability of this technique, we propose p(0,E) as a novel
proxy to describe the distribution of carbon bond strength
(Braun and Burnham, 1987; Burnham and Braun, 1999;10

Cramer, 2004). For example, Narayani POC is known to inte-
grate recently fixed biomass, pre-aged soils, and eroded rock-
derived material (Galy et al., 2008, 2011; Galy and Eglinton,
2011; Rosenheim and Galy, 2012). Such integration should
lead to large chemical diversity and a broad, complex E dis-15

tribution, as is observed (Fig. 7). Furthermore, slow envi-
ronmental turnover has been shown to enhance the diver-
sity of chemical bonds due to a combination of microbial
alterations (Schmidt et al., 2011), OC aggregation (Keil and
Mayer, 2014), and stabilization by mineral surfaces (Keil20

and Mayer, 2014; Mikutta et al., 2006). Thus, OC reactiv-
ity within the RPO instrument and the resulting E distribu-
tion likely reflects both the strength of covalent bonds be-
tween carbon atoms as well as interactions with mineral sur-
faces (Keil and Mayer, 2014; Mikutta et al., 2006). We there-25

fore propose combining p(0,E) with serial oxidation isotope
measurements to test the effects of mineral interactions and
selective preservation on OC turnover time.
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Figure 8. Πf (E) distributions for Narayani POC (f = 1, . . . ,9).
Each Πf (E) represents the range of E values contained within
RPO fraction f . The sum of all Πf (E) distributions shown here
thus yields the p(0,E) distribution shown in Fig. 7. Distributions
have been staggered along the y axis for visual clarity. Πf (E) distri-
butions do not follow any predictable functional form and are highly
overlapping due to the fact that OC associated with a given E value
decays over a wide time interval (Cramer, 2004).

5 Relating E and isotope composition

5.1 Determining the distribution of E within each RPO 30

fraction

To relate p(0,E) distributions to RPO isotope measurements,
we calculate the subset of the pdf of E that is contained
within each RPO fraction. Because we can predict the evolu-
tion of p(t,E) at any time t following Eq. (21), this can be 35

calculated as

Πf (E) = p(t1,E)− p(t2,E), f = 1, . . . ,nf , (40)

where nf is the number of RPO fractions collected for a
given sample, Πf (E) is the subset of p(0,E) contained in
RPO fraction f , and t1 and t2 are the initial and final time 40

points, respectively, of CO2 collection for RPO fraction f .
Resulting Πf (E) distributions for Narayani POC are shown
in Fig. 8. Finally, in order to generate E vs. δ13C and E vs.
Fm scatter plots, we calculate the mean E value contained in
each RPO fraction as 45

Ef =

nE∑
l=1

ElΠf (El)∆E, f = 1, . . . ,nf (41)
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and the standard deviation of E contained in each RPO frac-
tion as σf , where

σ2
f = E2

f −
(
Ef
)2
, f = 1, . . . ,nf . (42)

Resulting Ef and σf values are reported in Table 2. It can
be seen in Fig. 8 that Πf (E) distributions do not follow any5

particular form (e.g. Gaussian) and are highly overlapping,
reflecting the fact that the CO2 isotope composition for each
RPO fraction is itself a weighted average of multiple sources.

5.2 Kinetic isotope fractionation

While not necessary for Fm because it is fractionation-10

corrected by definition (Reimer et al., 2004), it is important
to correct for any kinetic isotope effects occurring within the
RPO instrument before interpreting δ13C as a carbon source
tracer (Hemingway et al., 2017). If kinetic fractionation is
large, as has been observed both during thermogenic methane15

formation (Tang et al., 2000; Cramer, 2004) and dissolved
OC oxidation by uv light (Oba and Naraoka, 2008), then this
effect could overprint carbon source δ13C signals. However,
when directly measured using single-compound standards,
Hemingway et al. (2017) concluded that 13C fractionation20

within the RPO instrument must be ≤2 ‰. Still, we correct
the measured δ13C values of each RPO fraction using the ra-
tio of carbon-normalized 13C and 12C decomposition rates at
each time point according to

13/12r(t) =

(
d13G(t)
dt

)
(
d12G(t)
dt

) ( 12G0
13G0

)
, (43)25

where we have added a preceding 12 or 13 superscript to
specify isotope-specific variables. Following the Arrhenius
equation, 13/12r(t) can be written as a function of the differ-
ence in E between 13C- and 12C-containing molecules:

13−12∆E = 13E− 12E. (44)30

Although 13 – 12∆E is likely not identical for all compounds
due to differences in the entropy and enthalpy of isotope sub-
stitution (Tang et al., 2000), the estimated range of values for
RPO analysis is small (0.3× 10−3 kJmol−1 to 1.8× 10−3

kJmol−1; Hemingway et al., 2017). We therefore assume a35

13 – 12∆E value of 1.8× 10−3 kJmol−1 for all RPO fractions,
noting that a choice of 0.3× 10−3 kJmol−1 would result in
δ13C values that are identical to those calculated here within
analytical uncertainty.

Values of 13/12r(t) can be determined using the ratio of40

carbon-normalized, isotope-specific decay rates by substitut-
ing p(0, 12E) and p(0, 13E) for p(0,E) in Eq. (19). Because
carbon is present as ≈99 % 12C, we set p(0, 12E) equal to
p(0,E) such that

d12G(t)

dt
=
dG(t)

dt
. (45)45

Corresponding d13G(t)/dt can then be determined using

p(0, 13E) = p(0,E+ 13−12∆E). (46)

13C-containing molecules decay at rates governed by a pdf
of E that is identical to p(0,E) but has been shifted by
1.8× 10−3 kJmol−1. We then correct the measured δ13C 50

values of each RPO fraction f according to

δ13Ccorrected
f =

1
13/12r(t)av

f

(
δ13Cf + 1000

[
13/12r(t)av

f − 1
])
,

f = 1, . . . ,nf , (47)

where 13/12r(t)av
f is the average 13/12r(t)f value over the

time of collection for RPO fraction f . For the samples an- 55

alyzed here, 13/12r(t) is initially ≈0.999, indicating slightly
faster 12C decay at low temperatures, and gradually increases
to ≈1.002 when G(t)� 0.01G0, as has been described pre-
viously (Cramer, 2004; Hemingway et al., 2017). Resulting
kinetic fractionation corrections are near or within analytical 60

uncertainty, with absolute δ13C values for all RPO fractions
shifted by <0.2 ‰.

5.3 Comparing E to δ13C and Fm

Finally, we describe a framework to directly relate OC reac-
tivity and isotope distributions by plotting Ef for each RPO 65

fraction vs. the corresponding measured δ13C and Fm val-
ues (Table 2). Resulting relationships, as well as plant-wax
fatty acid isotope values (Galy et al., 2011; Galy and Eglin-
ton, 2011), are shown in Fig. 9. Within this framework, it
can be seen that Narayani POC must contain at least two 70

end members with drastically different isotope compositions
and unique yet overlapping E distributions. Previous studies
have shown that ≈(20± 5) % of OC contained in this sam-
ple is derived from the erosion of carbon-rich bedrock (Galy
et al., 2008; Rosenheim and Galy, 2012). Rock-derived OC 75

is the likeliest source of high-E, low-Fm material, as this end
member is 14C-free by definition. Plant-wax FA δ13C and Fm
values are similar to those for low-E RPO fractions (Fig. 9),
suggesting that vascular plant OC is the source of low-E ma-
terial. Narayani POC isotope trends are thus consistent with 80

predominantly biospheric carbon below ≈150 kJmol−1, a
mixed region from ≈150 kJmol−1 to ≈200 kJmol−1, and
exclusively rock-derived OC above ≈200 kJmol−1. This re-
sult provides initial evidence for the utility of RPO E vs.
isotope relationships to directly relate the distribution of OC 85

sources, environmental turnover times, and chemical bond-
ing environments.

6 Conclusions

In this study, we present a regularized, inverse method to de-
termine the distribution of E, a measure of OC reactivity, 90
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Figure 9. E vs. isotope relationships. (a) E vs. δ13C and (b) E vs.
Fm for Narayani POC. All isotope values have been corrected for
blank carbon contribution following Hemingway et al. (2017), and
δ13C values have additionally been corrected for kinetic fractiona-
tion. Gray lines and shading are the plant-wax fatty acid biomarker
isotope values (mean ±1 std. dev. analytical uncertainty; Galy et al.,
2011; Galy and Eglinton, 2011). Note that plant-wax fatty acids are
known to contain less 13C (lower δ13C values) than corresponding
bulk biospheric OC. Each point is plotted at E = Ef . Error bars
in E are equal to σf , while δ13C and Fm analytical uncertainty is
always smaller than point marker and is therefore not shown.

when natural organic matter is exposed to serial oxidation.
We show that OC decay follows parallel, first-order kinetics.
In contrast, the kinetics of carbonate oxidation cannot be con-
strained due to matrix effects and we therefore recommend
acidification to remove carbonates prior to RPO analysis. We5

propose that p(0,E), the distribution of E contained within
a sample, is a useful proxy to describe the range of OC bond-
ing environments. Importantly, our method does not require

a priori assumptions about the distributional form of p(0,E).
Finally, we determine the subset of E contained within each 10

RPO fraction in order to directly relate reaction energetics
with the distribution of carbon isotope compositions within a
complex OC mixture. We suggest thatE vs. isotope relation-
ships can provide new insight into understanding the compo-
sitional controls on OC source and residence time, although 15

we note that further study is required in order to test the gen-
eral applicability of this result. This manuscript is accompa-
nied by an open-source Python package for performing all
analyses.

Code and data availability. All thermogram data are available 20

in the supplementary material. The open-source ’rampedpy-
rox’ package is accessible using the Python Package Index
(http://pypi.python.org/pypi/rampedpyrox).

Author contributions. J.D.H., S.Z.R., and V.V.G. performed all lab-
oratory measurements; J.D.H., V.V.G., and D.H.R. analyzed the 25

data; J.D.H. and D.H.R. developed the inverse model; J.D.H. wrote
the manuscript with input from all authors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Constructive comments by reviewers David 30

Burdige and Bernard Boudreau, as well as associate editor Jack
Middelburg, greatly improved this manuscript. We thank the entire
NOSAMS facility, especially Ann McNichol, Al Gagnon, Steven
Beaupré, and Mary Lardie, for technical assistance with the RPO
instrument. This research was supported by: the NSF Graduate 35

Research Fellowship Program grant number 2012126152 (J.D.H.);
NASA Astrobiology grant number NNA13AA90A and NSF grant
number EAR-1338810 (D.H.R); and the WHOI Independent Study
Award (V.V.G.).

References 40

Beaupré, S. R., Druffel, E. R., and Griffin, S.: A low-blank pho-
tochemical extraction system for concentration and isotopic
analyses of marine dissolved organic carbon, Limnology and
Oceanography: Methods, 5, 174–184, 2007.

Beaupré, S. R., Mahmoudi, N., and Pearson, A.: IsoCaRB: A novel 45

bioreactor system to characterize the lability and natural carbon
isotopic (14C, 13C) signatures of microbially respired organic
matter, Limnology and Oceanography: Methods, 14, 668–681,
2016.

Bianchi, T. S.: The role of terrestrially derived organic carbon in 50

the coastal ocean: A changing paradigm and the priming effect,
Proceedings of the National Academy of Sciences, 108, 19 473–
19 481, 2011.

Bianchi, T. S., Galy, V. V., Rosenheim, B. E., Shields, M., Cui, X.,
and Van Metre, P.: Paleoreconstruction of organic carbon inputs 55



J.D. Hemingway: Organic carbon activation energy and isotope composition 15

to an oxbow lake in the Mississippi River watershed: Effects of
dam construction and land use change on regional inputs, Geo-
physical Research Letters, 42, 7983–7991, 2015.

Boudreau, B. P.: Diagenetic models and their implementation, vol.
505, Springer, New York, NY, 1 edn., 1997.5

Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum repre-
sentation of organic matter diagenesis, American Journal of Sci-
ence, 291, 507–538, 1991.

Braun, R. L. and Burnham, A. K.: Analysis of chemical reaction
kinetics using a distribution of activation energies and simpler10

models, Energy & Fuels, 1, 153–611, 1987.
Burdige, D. J.: Preservation of organic matter in marine sedi-

ments: controls, mechanisms, and an imbalance in sediment or-
ganic carbon budgets?, Chemical Reviews, 107, 467–485, 2007.

Burnham, A. K. and Braun, R. L.: Development of a detailed model15

of petroleum formation, destruction, and expulsion from lacus-
trine and marine source rocks, Organic Geochemistry, 16, 27–39,
1989.

Burnham, A. K. and Braun, R. L.: Global kinetic analysis of com-
plex materials, Energy & Fuels, 13, 1–22, 1999.20

Cramer, B.: Methane generation from coal during open system py-
rolysis investigated by isotope specific, Gaussian distributed re-
action kinetics, Organic Geochemistry, 35, 379–392, 2004.

Dieckmann, V.: Modelling petroleum formation from heteroge-
neous source rocks: The influence of frequency factors on acti-25

vation energy distribution and geological prediction, Marine and
Petroleum Geology, 22, 375–390, 2005.

Follett, C. L., Repeta, D. J., Rothman, D. H., Xu, L., and Santinelli,
C.: Hidden cycle of dissolved organic carbon in the deep ocean,
Proceedings of the National Academy of Sciences, 111, 16 706–30

16 711, 2014.
Forney, D. C. and Rothman, D. H.: Common structure in the het-

erogeneity of plant-matter decay, Journal of The Royal Society
Interface, 9, 2255–2267, 2012a.

Forney, D. C. and Rothman, D. H.: Inverse method for estimat-35

ing respiration rates from decay time series, Biogeosciences, 9,
3601–3612, 2012b.

Galy, V. V. and Eglinton, T. I.: Protracted storage of biospheric
carbon in the Ganges-Brahmaputra basin, Nature Geoscience, 4,
843–847, 2011.40

Galy, V. V., Beyssac, O., France-Lanord, C., and Eglinton, T. I.:
Recycling of graphite during Himalayan erosion: A geological
stabilization of carbon in the crust, Science, 322, 943–945, 2008.

Galy, V. V., Eglinton, T. I., France-Lanord, C., and Sylva, S. P.: The
provenance of vegetation and environmental signatures encoded45

in vascular plant biomarkers carried by the Ganges-Brahmaputra
rivers, Earth and Planetary Science Letters, 304, 1–12, 2011.

Hansen, P. C.: Regularization tools: A Matlab package for analy-
sis and solution of discrete ill-posed problems, Numerical Algo-
rithms, 6, 1–35, 1994.50

Hedges, J. I., Baldock, J. A., Gelinas, Y., Lee, C., Peterson, M.,
and Wakeham, S. G.: Evidence for non-selective preservation of
organic matter in sinking marine particles, Nature, 409, 801–804,
2001.

Helfrich, M., Flessa, H., Mikutta, R., Dreves, A., and Ludwig, B.:55

Comparison of chemical fractionation methods for isolating sta-
ble soil organic carbon pools, European Journal of Soil Science,
58, 1316–1329, 2007.

Hemingway, J. D.: rampedpyrox: Open-source tools for ther-
moanalytical data analysis, 2016-, http://pypi.python.org/pypi/ 60

rampedpyrox, 2017.
Hemingway, J. D., Schefuß, E., Dinga, B. J., Pryer, H., and Galy,

V. V.: Multiple plant-wax compounds record differential sources
and ecosystem structure in large river catchments, Geochimica et
Cosmochimica Acta, 184, 20–40, 2016. 65

Hemingway, J. D., Galy, V. V., Gagnon, A. R., Grant, K. E., Rosen-
gard, S. Z., Soulet, G., Zigah, P. K., and McNichol, A. P.: As-
sessing the blank carbon contribution, isotope mass balance, and
kinetic isotope fractionation of the ramped pyrolysis/oxidation
istrument at NOSAMS, Radiocarbon, 59, 179–193, 2017. 70

Keil, R. G. and Mayer, L. M.: Mineral matrices and organic mat-
ter, in: Treatise on Geochemistry, edited by Holland, H. and
Turekian, K., pp. 337–359, Elsevier Ltd., Amsterdam, 2014.

Lakshmanan, C. C., Bennett, M. L., and White, N.: Implications
of multiplicity in kinetic parameters to petroleum exploration: 75

Distributed activation energy models, Energy & Fuels, 5, 110–
117, 1991.

Lasaga, A. C., Berner, R. A., and Garrels, R. M.: An improved geo-
chemical model of atmospheric CO2 fluctuations over the past
100 million years, in: The Carbon Cycle and Atmospheric CO2: 80

Natural Variations Archean to Present, edited by Sundquist, E. T.
and Broecker, W. S., pp. 397–411, American Geophysical Union,
Washington, D. C., 1985.

Lawson, C. and Hanson, R.: Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ, 1 edn., 1995. 85

Leifeld, J. and von Lützow, M.: Chemical and microbial activation
energies of soil organic matter decomposition, Biology and Fer-
tility of Soils, 50, 147–153, 2014.

McNichol, A. P., Jones, G. A., Hutton, D. L., Gagnon, A., and Key,
R. M.: The Rapid Preparation of Seawater ΣCO2 for Radiocar- 90

bon Analysis at the National Ocean Sciences AMS Facility, Ra-
diocarbon, 36, 237–246, 1994a.

McNichol, A. P., Osborne, E. A., Gagnon, A., Fry, B., and Jones,
G. A.: TIC, TOC, DIC, DOC, PIC, POC — unique aspects in
the preparation of oceanographic samples for 14C-AMS, Nuclear 95

Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 92, 162–165, 1994b.

Middelburg, J. J.: A simple rate model for organic matter decompo-
sition in marine sediments, Geochimica et Cosmochimica Acta,
53, 1577–1581, 1989. 100

Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R.: Stabilization of
soil organic matter: Association with minerals or chemical recal-
citrance?, Biogeochemistry, 77, 25–56, 2006.

Miura, K. and Maki, T.: A simple method for estimating f(E) and
k0(E) in the distributed activation energy model, Energy & Fuels, 105

12, 864–869, 1998.
Oba, Y. and Naraoka, H.: Carbon and hydrogen isotopic fractiona-

tion of low molecular weight organic compounds during ultravi-
olet degradation, Organic Geochemistry, 39, 501–509, 2008.

Pedler, B. E., Aluwihare, L. I., and Azam, F.: Single bacterial strain 110

capable of significant contribution to carbon cycling in the sur-
face ocean, Proceedings of the National Academy of Sciences,
111, 7202–7207, 2014.

Plante, A. F., Beaupré, S. R., Roberts, M. L., and Baisden, W. T.:
Distribution of radiocarbon ages in soil organic matter by thermal 115

fractionation, Radiocarbon, 55, 1077–1083, 2013.

http://pypi.python.org/pypi/rampedpyrox
http://pypi.python.org/pypi/rampedpyrox
http://pypi.python.org/pypi/rampedpyrox


16 J.D. Hemingway: Organic carbon activation energy and isotope composition

Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Re-
porting and calibration of post-bomb 14C data, Radiocarbon, 46,
1299–1304, 2004.

Rosenheim, B. E. and Galy, V. V.: Direct measurement of riverine
particulate organic carbon age structure, Geophysical Research5

Letters, 39, L19 703, 2012.
Rosenheim, B. E., Day, M. B., Domack, E. W., Schrum, H., Ben-

thien, A., and Hayes, J. M.: Antarctic sediment chronology
by programmed-temperature pyrolysis: Methodology and data
treatment, Geochemistry, Geophysics, Geosystems, 9, Q04 005,10

2008.
Rosenheim, B. E., Roe, K. M., Roberts, B. J., Kolker, A. S., Al-

lison, M. A., and Johannesson, K. H.: River discharge influ-
ences on particulate organic carbon age structure in the Missis-
sippi/Atchafalaya River System, Global Biogeochemical Cycles,15

27, 154–166, 2013.
Rothman, D. H. and Forney, D. C.: Physical model for the decay

and preservation of marine organic carbon, Science, 316, 1325–
1328, 2007.

Sayles, F. L., Martin, W. R., Chase, Z., and Anderson, R. F.: Benthic20

remineralization and burial of biogenic SiO2, CaCO3, organic
carbon, and detrital material in the Southern Ocean along a tran-
sect at 170° West, Deep Sea Research Part II: Topical Studies in
Oceanography, 48, 4323–4383, 2001.

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggen-25

berger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I.,
Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P.,
Weiner, S., and Trumbore, S. E.: Persistence of soil organic mat-
ter as an ecosystem property, Nature, 478, 49–56, 2011.

Schreiner, K. M., Bianchi, T. S., and Rosenheim, B. E.: Evidence30

for permafrost thaw and transport from an Alaskan North Slope
watershed, Geophysical Research Letters, 41, 3117–3126, 2014.

Spencer, R. G., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K.,
Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu,
A. M., Wabakanghanzi, J. N., and Six, J.: Photochemical degra-35

dation of dissolved organic matter and dissolved lignin phenols
from the Congo River, Journal of Geophysical Research, 114,
G03 010, 2009.

Tang, Y., Perry, J. K., Jenden, P. D., and Schoell, M.: Mathemat-
ical modeling of stable carbon isotope ratios in natural gases,40

Geochimica et Cosmochimica Acta, 64, 2637–2687, 2000.
Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C.: A

reappraisal of kerogen formation, Geochimica et Cosmochimica
Acta, 53, 3103–3106, 1989.

Westrich, J. T. and Berner, R. A.: The role of sedimentary organic45

matter in bacterial sulfate reduction: The G model tested, Lim-
nology and Oceanography, 29, 236–249, 1984.

White, J. E., Catallo, W. J., and Legendre, B. L.: Biomass pyrolysis
kinetics: A comparative critical review with relevant agricultural
residue case studies, Journal of Analytical and Applied Pyrolysis,50

91, 1–33, 2011.
Whiteside, J. H., Olsen, P. E., Eglinton, T. I., Cornet, B., McDon-

ald, N. G., and Huber, P.: Pangean great lake paleoecology on the
cusp of the end-Triassic extinction, Palaeogeography, Palaeocli-
matology, Palaeoecology, 301, 1–17, 2011.55

Williams, E. K., Rosenheim, B. E., McNichol, A. P., and Masiello,
C. A.: Charring and non-additive chemical reactions during
ramped pyrolysis: Applications to the characterization of sed-

imentary and soil organic material, Organic Geochemistry, 77,
106–114, 2014. 60


	171005_Response_to_reviewers
	171005_R1_Draft_1_markup

