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Abstract  13 

 14 

The performance of the competition module of the CLASS-CTEM (Canadian Land Surface 15 

Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° 16 

spatial resolution over North America by comparing the simulated geographical distribution of 17 

its plant functional types (PFTs) with two observation-based estimates. The model successfully 18 

reproduces the broad geographical distribution of trees, grasses and bare ground although 19 

limitations remain. In particular, compared to the two observation-based estimates, the simulated 20 

fractional vegetation coverage is lower in the arid south-west North American region and higher 21 

in the Arctic region. The lower than observed simulated vegetation coverage in the south-west 22 

region is attributed to lack of representation of shrubs in the model and plausible errors in the 23 

observation-based data sets. The observation-based data indicates vegetation fractional coverage 24 

of more than 60% in this arid region, despite only 200-300 mm of precipitation that the region 25 

receives annually and observation-based leaf area index (LAI) values in the region are lower than 26 

one. The higher than observed vegetation fractional coverage in the Arctic is likely due to the 27 

lack of representation of moss and lichen PFTs and also likely because of inadequate 28 

representation of permafrost in the model as a result of which the C3 grass PFT performs overly 29 

well in the region. The model generally reproduces the broad spatial distribution and the total 30 

area covered by the two primary tree PFTs (needleleaf evergreen and broadleaf cold deciduous 31 



2 
 

 

trees) reasonably well. The simulated fractional coverage of tree PFTs increases after 1960s in 32 

response to the CO2 fertilization effect and climate warming. Differences between observed and 33 

simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, 34 

and moss and lichen PFTs, and an adequate representation of permafrost will help improve 35 

model performance.   36 

 37 

  38 
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1 Introduction 44 

 45 

The terrestrial ecosystem plays an important role in regulating climate and weather through land-46 

atmosphere exchange of water and energy (Cramer et al., 2001; Garnaud et al., 2015; Pielke et 47 

al., 1998; Ran et al., 2016) and in mitigating climate change by sequestering atmospheric CO2 48 

(Bonan, 2008; Timmons et al., 2016). The projected sink of atmospheric CO2 is uncertain due to 49 

disagreements among the Earth system models (ESMs) (Arora et al., 2013; Friedlingstein et al., 50 

2006) primarily due to differing responses of their terrestrial ecosystem modules to future 51 

changes in atmospheric CO2. This uncertainty arises primarily because of the differences in the 52 

strength of the CO2 fertilization effect on the land carbon cycle components (Arora et al., 2013; 53 

Cramer et al., 2001; Friend et al., 2013) but also because of differences in the response of  54 

vegetation. Models differ in how the spatial distribution of vegetation, and its composition, 55 

changes in response to changing climate and increasing CO2 (Cramer et al., 2001). These 56 

differences are also resolution dependent. For example, models with coarse grid resolutions 57 

cannot explicitly resolve climatic niches, which in turn potentially contributes to biases in 58 

simulated vegetation distribution (Melton and Arora, 2016; Shrestha et al., 2016).  59 

 60 

Vegetation responds to changes in climate and atmospheric CO2 concentration by changing its 61 

structural attributes including leaf area index (LAI), rooting depth, vegetation height, and canopy 62 

mass, as well as its areal extent. Structural vegetation changes generally occur over seasonal to 63 

decadal time scales (Kramer and Kozlowski, 1979), while the slower areal extent changes 64 

typically occur on decadal to centennial time scales (Ritchie and Macdonald, 1986). The 65 

dynamic behavior of vegetation affects weather and climate due to its strong control over 66 

biophysical processes. At hourly to daily timescales, vegetation affects the exchange of water 67 

and energy between the land surface and the atmosphere primarily through the control of leaf 68 

stomata. At longer seasonal, annual and decadal timescales, vegetation affects components of 69 

energy and water balance through its structure (LAI, rooting depth, etc.) and its areal extent and 70 

thereby land surface albedo. Conversely, dynamics of vegetation is directly influenced by 71 

climate and the competitive ability of the plants. In this way vegetation responds to climate by 72 

changing its structure and areal extent depending on the colonization ability of plants. These 73 
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climate-vegetation interactions have been well documented (e.g. Gobron et al., 2010; Wang et 76 

al., 2011). 77 

 78 

Natural vegetation is typically characterized in dynamic global vegetation models (DGVMs) 79 

based on a limited number of PFTs (Sitch et al., 2003) because it is impossible to represent 80 

thousands of species in a model. Species characterized by similar attributes, mainly based on 81 

their form and interactions with the environment (Box, 1996), are grouped together as a single 82 

PFT. For example, tree species with similar leaf form such as fir (Abies), spruce (Picea) and pine 83 

(Pinus) are classified as needleleaf evergreen trees. The geographical distribution of the PFTs in 84 

DGVMs is determined by their ability to grow and increase their areal extent given certain 85 

climate and soil conditions and their competitive ability.  86 

 87 

One way of representing competition between PFTs in DGVMs is through the use of the Lotka-88 

Volterra (LV) equations. While originally developed for predator-prey competition, the LV 89 

equations have been used in a number of DGVMs (Arora and Boer, 2006; Brentnall et al., 2005; 90 

Cox, 2001; Zhang et al., 2015). The use of the classical form of the LV equations for modelling 91 

competition between PFTs, however, leads to an amplified expression of dominance in that the 92 

dominant PFT ends up occupying a disproportionately large fraction of a grid cell leading to 93 

little co-existence between PFTs. Arora and Boer (2006) proposed changes to the classical 94 

implementation of the LV equations for modelling competition between PFTs to reduce this 95 

amplified expression of dominance. Their approach, which has been implemented in the CLASS-96 

CTEM modelling framework and which allows improved co-existence of PFTs compared to the 97 

classical LV equations, has been shown to simulate vegetation distribution reasonably well at the 98 

global  (Melton and Arora, 2016) as well as point (Shrestha et al., 2016) scales. Both these 99 

studies used climate averaged over ~3.75° spatial resolution. The CLASS-CTEM framework 100 

consists of the Canadian Land Surface Scheme (CLASS) coupled to the Canadian Terrestrial 101 

Ecosystem Model (CTEM) which is a dynamic vegetation model. 102 

 103 

In this paper, we evaluate the competition module of the CLASS-CTEM modelling framework at 104 

the regional scale over the North American domain at 1° spatial resolution. This resolution is 105 

much finer than the 3.75° resolution used in the Melton and Arora (2016) study and therefore in 106 
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principle should allow a more realistic simulation of geographical distribution of PFTs as climate 108 

niches are resolved.  109 

 110 

The rest of this paper is organized as follows: Section 2 describes the CLASS-CTEM modelling 111 

framework, details of the observation-based data and the experimental setup. Results are 112 

presented in section 3 and a discussion follows in section 4.  Finally, a summary and conclusions 113 

are provided in section 5.  114 

  115 

2 Model, data and methods  116 

 117 

2.1 CLASS-CTEM model 118 

 119 

The results presented here are obtained by coupling version 2.0 of CTEM (Melton and Arora, 120 

2016), which dynamically simulates fractional coverage of its PFTs, to version 3.6 of CLASS 121 

(Verseghy et al., 1993). CTEM simulates terrestrial processes for seven non-crop and two crop 122 

PFTs (Table 1) and prognostically tracks carbon in three living vegetation components (leaves, 123 

stems and roots) and two dead carbon pools (litter and soil). The terrestrial ecosystem processes 124 

simulated in this study include photosynthesis, autotrophic respiration, heterotrophic respiration, 125 

dynamic leaf phenology, allocation of carbon from leaves to stem and root components, fire, 126 

land use change, and competition between PFTs which dynamically determines the fractional 127 

coverage of each PFT. The amount of carbon in the leaf, stem and root components is used to 128 

estimate structural attributes of vegetation.  LAI is calculated from leaf biomass using PFT-129 

dependent specific leaf area (SLA) which determines area of leaves that can be constructed per 130 

kg C of leaf biomass (Arora and Boer, 2005); vegetation height is calculated based on stem 131 

biomass for tree PFTs and LAI for grass PFTs; and rooting depth is calculated based on root 132 

biomass (Arora and Boer, 2003). CTEM operates at a time step of one day except for 133 

photosynthesis and leaf respiration which are calculated every 30 minutes for consistency with 134 

CLASS’ energy and water balance calculations which require stomatal resistance calculated by 135 

the photosynthesis module of CTEM.  136 

 137 
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CLASS simulates the energy and water balance components at the land surface and operates at a 139 

30 minutes time step. Liquid and frozen soil moisture and soil temperature are evaluated for 140 

three soil layers (with maximum thicknesses of 0.1, 0.25 and 3.75 m). The actual thicknesses of 141 

these permeable soil layers are determined by the depth to bedrock, which is specified on the 142 

basis of the global data set of Zobler (1986). CLASS distinguishes four PFTs (needleleaf trees, 143 

broadleaf trees, crops and grasses) which map directly to the nine PFTs represented in CTEM as 144 

shown in Table 1. Needleleaf trees in CTEM are divided into deciduous and evergreen types, 145 

broadleaf trees are divided into cold and drought deciduous and evergreen types, and crops and 146 

grasses are divided into C3 and C4 types based on their photosynthetic pathways.  In coupled 147 

mode, CLASS uses the dynamically simulated vegetation attributes (including LAI, vegetation 148 

height, canopy mass and rooting depth) and stomatal resistance calculated by CTEM, and CTEM 149 

uses the soil moisture, soil temperature and net shortwave radiation calculated by CLASS. The 150 

coupling frequency between CLASS and CTEM is one day. 151 

 152 

2.1.1 Competition parameterization 153 

 154 

Competition between PFTs in CTEM is parameterized following Arora and Boer (2006) who 155 

presented a modified version of the LV equations. The approach is described in detail by Melton 156 

and Arora (2016) and briefly summarized here. Consider, for simplicity, two PFTs that exist in a 157 

grid cell with fractional coverages ଵ݂ and ଶ݂. Let PFT 1 represent a tree PFT and PFT 2 represent 158 

a grass PFT. The bare fraction of grid cell not covered by any vegetation is represented by ݂. As 159 

a result, ଵ݂  ଶ݂  ݂ ൌ 1. The rate of change of fractional coverages of the two PFTs and bare 160 

fraction, for this example, are given by,  161 

 162 

ௗభ
ௗ௧
	ൌ 	 ܿଵ ଵ݂

ఉሺ1 െ 	 ଵ݂ሻ െ	݉ଵ ଵ݂                                                                     ( 1 ) 163 

 164 

ௗమ
ௗ௧
ൌ 	 ܿଶ ଶ݂

ఉሺ1 െ	 ଵ݂	 െ 	 ଶ݂ሻ െ	ܿଵ ଵ݂
ఉ

ଶ݂ െ	݉ଶ ଶ݂                                            ( 2 ) 165 

 166 

ௗಳ
ௗ௧

ൌ 	െ	ܿଵ ଵ݂
ఉ

݂ െ	ܿଶ ଶ݂
ఉ

݂ 	݉ଵ ଵ݂	  	݉ଶ ଶ݂		                                             ( 3 ) 167 

 168 



7 
 

 

where c1, c2 and m1, m2 are the colonization and mortality rates for PFT 1 and PFT 2, 169 

respectively. Colonization and mortality rates cannot be negative. Equations (1) and (2) show 170 

that PFT 1 can invade the fraction covered by PFT 2 and the bare fraction; and that PFT 2 can 171 

only invade the bare fraction. PFT 2 is not allowed to invade the fraction covered by PFT 1 172 

because it is ranked lower than PFT 1. In CTEM, the superiority or ranking of the seven natural 173 

non-crop PFTs is based on the tree-grass distinction and their colonization rates. Trees are always 174 

considered to be superior than grasses because of their ability to shade them (Siemann and 175 

Rogers, 2003). Within the tree and grass PFTs the dominance is determined dynamically based 176 

on the colonization rate. The exponent β (0 ≤ β ≤ 1), an empirical parameter, controls the 177 

behaviour of the LV equations. For β = 1, the equations represent the classical form of the LV 178 

equations. The equilibrium fractional coverages for PFT 1 and 2 and bare fraction for this 179 

classical form of the LV equations, denoted by fሚଵ, fሚଶ	and  are given by, 180 

 181 

 ሚ݂ଵ ൌ 	max ቄቀ
భି	భ

భ
ቁ , 0ቅ                                                         ( 4 )   182 

 183 

 ሚ݂ଶ ൌ 	max ቊቆ
ሺమି	మሻି	ቀଵା	

మ
భ
ቁ	ሺభି	భሻ	

మ
ቇ , 0ቋ                                       ( 5 ) 184 

 185 

ሚ݂
 ൌ 	

൫భሚభା	మሚమ൯

൫భሚభା	మሚమ൯
                                                               ( 6 ) 186 

 187 

In equations (1) and (2), if the fractional coverages of PFT 1 and PFT 2 are initially zero then the 188 

PFTs cannot expand for β = 1, implying that a minimum seeding fraction is always required.  189 

Furthermore, in equation (5) as long as (c1m1) is greater than (c2m2) then the equilibrium 190 

solution for f2 will always be zero and PFT 2 will not be able to coexist with PFT 1. These 191 

features of the classical form of the LV equations are avoided when β = 0, following Arora and 192 

Boer (2006). The equilibrium fractional coverages for PFT 1 and 2 and bare fraction for the case 193 

with β = 0 are given by, 194 

 195 

ሚ݂
ଵ ൌ 	 ቀ

భ
భା	భ

ቁ                                                              ( 7 )   196 

ሚ݂
ଶ ൌ 		

మ൫ଵି	ሚభ൯

ሺభା	మା	మሻ
ൌ ቀ

మభ

ሺభ	ା	భሻ	ሺభା	మା	మሻ
ቁ                                   ( 8 )  197 
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ሚ݂
 ൌ 	

൫భሚభା	మሚమ൯

ሺభା	మሻ
                                                             ( 9 ) 198 

Unlike the classical version of the LV equations, the modified version of the equations with β = 0  199 

does not require a minimum seeding fraction, and PFTs are able to increase their areal extent as 200 

long as the climate is favorable and ci is positive. Also, as long as m1 > 0 and c2 > 0 then PFT 2 201 

is able to coexist at equilibrium with PFT 1. Other values of β between 0 and 1 give the dominant 202 

PFT varying levels of access to sub-dominant PFTs but coexistence is most possible in the case 203 

with β = 0.  204 

 205 

The calculations of colonization and mortality rates are described in detail in Melton and Arora 206 

(2016). Briefly, the colonization rate depends on the net primary productivity of a PFT. The 207 

better a PFT performs for given climatic and soil conditions; the higher is its colonization rate. 208 

The mortality rate represents the combined effect of four different processes: intrinsic or age-209 

related mortality, growth or stress mortality, mortality due to disturbance, and mortality due to 210 

adverse climate which ensures that tree PFTs do not venture outside their bioclimatic zones. 211 

 212 

2.2 Forcing data 213 

 214 

The Climate Research Unit – National Centre for Environmental Prediction (CRU-NCEP) 215 

reanalysis dataset (Viovy, 2012), is used to drive the model. The meteorological variables 216 

(surface temperature, pressure, precipitation, wind, specific humidity, and incident short-wave 217 

and long-wave radiation fluxes) are available at a spatial resolution of 0.5°  0.5° and at a six 218 

hourly time interval for the period 1901-2010. These data are interpolated to 1° resolution 219 

spatially, and disaggregated to half-hourly time resolution, a standard CLASS-CTEM model 220 

integration time step. Temperature, pressure, wind, specific humidity, and long-wave radiation 221 

are linearly interpolated in time while short-wave radiation is assumed to change with the solar 222 

zenith angle with maximum radiation occurring at solar noon. Following Arora (1997), the six-223 

hourly precipitation amount (P, mm/6-hour) is used to estimate the number of wet half-hours 224 

(wh) in a given six-hour period for ܲ  0 as 225 

 226 

ݓ ൌ integerሺmaxሾ1,minሺ12, 2.6 logሺ6.93	ܲሻሻሿሻ.                                        (10) 227 
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 229 

The total precipitation amount is then distributed randomly but conservatively over these wet 230 

half-hours. For instance, if seven out of 12 half hours intervals are calculated to be wet using 231 

equation (10) then seven random numbers varying between 0 and 1 are generated and the six- 232 

hourly precipitation amount is divided into seven parts in proportion to their respective random 233 

numbers  234 

 235 

Figure 1 shows the spatial distribution of mean annual precipitation and surface temperature over 236 

the North American domain considered in this study. Mean annual precipitation values range 237 

from less than 200 mm in the arid south-west United States and the high Arctic to more than 238 

1500 mm on the Pacific coast. Mean annual temperature varies from around 24° C near the 239 

southern limit of the domain in Mexico to less than -20° C in the Arctic tundra. 240 

 241 

2.3 Observation-based data 242 

2.3.1 Fractional coverage of PFTs 243 

 244 

Observation-based estimates of fractional coverages of PFTs are based on a modified version of 245 

the Wang et al. (2006) data set (hereafter WANG06) and the Moderate Resolution Imaging 246 

Spectroradiometer land cover product (Friedl et al., 2013) (hereafter MODIS). These data are 247 

used to evaluate the model results.  248 

 249 

The WANG06 data set was developed for use by CTEM in simulations in which competition is 250 

turned off and prescribed fractional coverage of PFTs is used. It combines observation- and 251 

model-based data to estimate the annual change in fractional coverage of CTEM’s nine PFTs 252 

from 1850 to 2000. The Global Land Cover for the year 2000 (GLC2000), which is considered 253 

as a base year for environmental assessment, divides the global land cover in 22 types is 254 

available at 1 km resolution. WANG06 (their Table 2) mapped the GLC2000 data to CTEM’s 255 

nine PFTs aggregated to 0.5° resolution. The GLC2000 data were then extrapolated back to 1850 256 

by adjusting the changes in crop area based on the then available Ramankutty and Foley (1999) 257 

crop data set. Here, we use a modified version of the WANG06 data set which is based on the 258 
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HYDE v.3.1 crop data set (Hurtt et al., 2011) and generate an estimate of fractional coverage of 259 

CTEM PFTs for the period 1850-2012.  260 

 261 

The MODIS data set is based on the International Geosphere-Biosphere Programme (IGBP) 262 

global vegetation data and University of Maryland’s Science Data Set classification schemes at 263 

0.25° spatial resolution. The data are derived from NASA HDF-EOS MODIS/Terra land cover 264 

type. The data set is for the period 2001 to 2014 and contains 17 land cover types which we map 265 

to CTEM’s nine PFTs following the logic used in Wang et al. (2006) as shown in Table 2. The 266 

fractional coverage of each of the nine CTEM PFT is first obtained at 0.25 degree resolution for 267 

each year using the mapping scheme described in Table 2. These fractional coverages are then 268 

re-gridded to the 1° spatial resolution for individual years. Finally, the data are averaged over the 269 

period 2001-2014 to evaluate model results. MODIS data are known to exhibit substantial 270 

interannual variability. Broxton et al. (2014), for instance, report that globally 40% of land pixels 271 

show land cover change one or more times during 2001–2010 period. This does not necessarily 272 

indicate changes in land cover but rather these differences are due to low accuracy in 273 

categorizing the remotely sensed vegetation into one of the 17 MODIS land cover types, as 274 

Broxton et al. (2014) note. This low accuracy is itself attributed to the fact that many landscapes 275 

include mixtures of vegetation classes. Our re-gridding of fractional coverages to 1° spatial 276 

resolution and averaging over the 2001-2014 time period to obtain climatology of land cover 277 

alleviates some of the uncertainty since the effect of inaccurately classified land cover categories 278 

is reduced due to both spatial and temporal averaging.  279 

 280 

The separation of the broadleaf deciduous PFT into its drought and cold deciduous components 281 

is performed via the approach used by WANG06. They assumed that below 24 °N deciduousness 282 

is caused by soil moisture limitation and hence all broadleaf deciduous trees below this latitude 283 

are drought deciduous, and above 34 °N deciduousness is caused by low temperatures and so all 284 

broadleaf deciduous trees above this latitude are cold deciduous. Between 24 °N and 34 °N, 285 

following WANG06 we assume a linear transition from drought deciduous to cold deciduous 286 

trees. Finally, the separation of grasses into their C3 and C4 components is based on the 287 

geographical distributions of the C3 and C4 fractions in the WANG06 data set. 288 
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2.3.2 Gross primary productivity and LAI 289 

 290 

Observation-based estimates of gross primary productivity (GPP) are based on Beer et al. (2010). 291 

These data are based on the ecosystem level GPP obtained using eddy covariance measurements 292 

from more than 250 stations across the globe. Beer et al. (2010) extrapolated GPP values based 293 

on these eddy covariance flux data to the global scale using diagnostic models for the period 294 

1982 – 2008, and the average over this time period is used to evaluate the model results. LAI 295 

data used for validation are the same as those used by Anav et al. (2013) and are based on Zhu et 296 

al. (2013) who use normalized difference vegetation index (NDVI) data from the Advanced Very 297 

High Resolution Radiometer (AVHRR) satellite to calculate average LAI for the period 1981 – 298 

2010.  299 

 300 

2.4 Experimental setup 301 

 302 

2.4.1 Equilibrium pre-industrial simulation 303 

 304 

The equilibrium pre-industrial simulation was initialized from zero biomass and zero fractional 305 

coverage for all non-crop PFTs. The fractions of C3 and C4 crop PFTs in each grid cell are 306 

specified corresponding to year 1850 based on the HYDE 3.1 dataset. The model was then run 307 

for 600 years driven by 1901-1925 CRU-NCEP climate data cycled repeatedly. These data do 308 

not show any warming trend (Wen et al., 2011) as opposed to the later part of the 20th century. 309 

Atmospheric CO2 concentration was set to 285 ppm corresponding to the pre-industrial 1850 310 

level. This pre-industrial equilibrium simulation yields initial conditions including fractional 311 

coverages of PFTs and carbon in all the live and dead pools for the transient 1850-2010 312 

simulation. The 600 years simulation is sufficient for fractional vegetation cover and carbon 313 

pools to reach equilibrium. 314 

2.4.2 Transient historical simulation 315 

 316 

The transient historical simulation is performed for the period 1851-2010 and its carbon pools 317 

and fractional coverage of non-crop PFTs are initialized from the equilibrium pre-industrial 318 

simulation as mentioned above. The years 1851 to 1900 of this historical simulation are driven 319 
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with CRU-NCEP climate data corresponding to the period 1901-1925, cycled twice. For the 321 

period 1901-2010 the climate data corresponding to each year are used. Time varying 322 

concentrations of atmospheric CO2 are supplied for the period 1851-2010 based on the values 323 

used in the fifth Coupled Modelling Intercomparison Project (CMIP5, 324 

http://tntcat.iiasa.ac.at/RcpDb/) which are extended past 2005 to 2010 based on data from the 325 

National Oceanic and Atmospheric Administration 326 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_gl.txt). The annual time-varying 327 

fractional coverages of C3 and C4 crop PFTs in each grid cell are based on the HYDE 3.1 dataset.  328 

The crop fractions in a grid cell are not available for colonization and neither are they subject to 329 

disturbance by fire.  Competition between PFTs occurs over the remaining non-crop fraction of a 330 

grid cell. As total crop fraction in a grid cell changes over time (based on the HYDE 3.1 dataset) 331 

the fractional area available for competition also changes.  332 

 333 

The simulated results are evaluated against their observation-based counterparts using averaged 334 

values over the last 30 years of the simulation corresponding to the period 1981-2010. This is the 335 

same and/or very close to the time period for modified WANG06 land cover data set (1981-336 

2010), Beer et al. (2010) GPP (1982-2008), and Zhu et al. (2013) LAI (1981-2010). The only 337 

exception is the MODIS-based land cover data which are available for the 2001-2014 period.  338 

3 Results  339 

 340 

3.1 Continental scale values of PFT coverage  341 

 342 

Figures 2a compares the simulated vegetation areas summed over our North American domain 343 

with the WANG06 and MODIS observation-based estimates. In the absence of another measure 344 

of uncertainty, we use the range between these two observation-based estimates and assess if 345 

simulated areal coverage of a given land cover type lies within or outside this range. The 346 

simulated total vegetated area over North America (14.8  106 km2) is very similar to the 347 

modified WANG06 (14.4  106 km2) and MODIS derived (14.2  106 km2). At the most basic 348 

tree-grass-bare ground level, the simulated areas are closer to the MODIS-based estimates, than 349 

to the estimate based on the modified WANG06 data. The simulated area covered by tree PFTs 350 
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(7.8  106 km2) is 6% lower than the MODIS derived estimate (8.2  106 km2) and 21% lower 351 

than WANG06 (9.7  106 km2). The simulated grass coverage (4.7  106 km2) is 35% higher 352 

than the MODIS derived estimate (3.5  106 km2). Both simulated and MODIS-based estimates 353 

of area covered by grass PFTs are, however, substantially higher than the WANG06 (2.4  106 354 

km2) estimate. Averaged over the North American region, the simulated partitioning of land area 355 

(excluding cropland area) covered by trees, grasses and bare ground (45%, 27%, 28%) is much 356 

closer to the MODIS based data (48%, 20% and 32%) than to the modified WANG06 based data 357 

(56%, 14%, 30%).  358 

 359 

Figure 2b shows a comparison of simulated areas of individual PFTs with observation-based 360 

estimates. This is a more stringent test of the performance of the competition module of CTEM. 361 

The observation-based estimates of areas of all individual PFTs are available for the modified 362 

WANG06 dataset. The MODIS based estimates were derived based on the mapping of MODIS’ 363 

17 land cover types to CTEM PFTs as shown in Table 2, which itself is mostly based on 364 

WANG06. In Figure 2b, the observation-based estimates show that needleleaf evergreen (NDL 365 

EVG) and broadleaf cold deciduous (BDL DCD CLD) are the dominant tree PFTs across North 366 

America and the model is able to reproduce this aspect. The simulated total area of the NDL 367 

EVG tree PFT (3.9  106 km2) is 28% less than WANG06 (5.3  106 km2) and 15% less than the 368 

MODIS based estimate (4.7  106 km2). The simulated total area of BDL DCD CLD tree PFT (3 369 

 106 km2) is 13% less than WANG06 (3.4  106 km2) and 3% greater than MODIS based (2.9  370 

106 km2) estimate. Overall, the model is able to capture the areas covered by individual PFTs 371 

reasonably well. However, differences remain between observations-based and simulated 372 

estimates especially the larger simulated area for C3 grasses than both observation-based 373 

estimates. Reasons for these differences include limitations in the model but also the manner in 374 

which remotely-sensed vegetation is categorized into broad-scale vegetation types and then 375 

mapped onto CTEM’s nine PFTs, as discussed later.  376 

 377 

In both Figures 2a and 2b although simulated areal coverages at the basic tree-grass-bare ground 378 

level and for individual PFTs (except for C3 grasses) are comparable to observation-based 379 
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estimates they are outside the range defined by difference of the WANG06 and MODIS based 382 

estimates. 383 

 384 

Figure 2c shows the time series of simulated areas summed over the domain covered by tree and 385 

grass PFTs, the total vegetated area and the remaining bare ground. The specified area covered 386 

by crop PFTs, based on the HYDE 3.1 data set, is also shown and first increases over the 387 

historical period and then stabilizes and in fact somewhat decreases in association with cropland 388 

abandonment over the north-eastern United States. The increase in the crop area results in a 389 

decrease in the area covered by tree and grass PFTs up until the time when the crop area 390 

stabilizes around 1970. In the model, this causes land use change emissions associated with 391 

deforestation. After this time, as vegetation productivity responds to increasing atmospheric CO2 392 

concentration, the area covered by tree PFTs increases somewhat and colonizes available bare 393 

areas and those covered by grass PFTs. This leads to a small reduction in the area covered by 394 

grass PFTs as well as bare ground and the associated increase in the total vegetated area. 395 

 396 

3.2 Geographical distribution of PFTs 397 

 398 

3.2.1 Total vegetated and bare ground fractions  399 

 400 

Figures 3 and 4 compare the geographical distribution of simulated total vegetated and bare 401 

fractions across North America with the two observation-based estimates derived from the 402 

modified WANG06 and MODIS data sets. The two observation-based estimates are also 403 

compared amongst themselves. The metrics used are averaged root mean square difference 404 

(RMSD) and spatial correlations (R2).  405 

 406 

The observation-based geographical distribution of vegetated fraction in Figure 3 (middle 407 

column) shows densely vegetated land over the eastern part of the continent and less vegetation 408 

coverage over colder regions in the North and drier regions in the south-central and south-west 409 

United States. These broad scale patterns are consistent with the precipitation and temperature 410 

climatologies of the region (Figure 1). The model reasonably reproduces the observed vegetation 411 

distribution (left panel) with some obvious limitations. Simulated vegetation cover is 412 
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underestimated across the arid south-west United States, Great Plains and part of the Canadian 413 

Prairies (right panel) due to lower simulated fractional coverage of tree and grass PFTs over 414 

these regions (shown in the next section). The model overestimates vegetation coverage in 415 

Northern Canada because of higher simulated grass cover in the Arctic as discussed below in 416 

more detail. The spatial correlation and RMSD when comparing simulated vegetated fraction to 417 

both observation-based estimates are 0.79 and around 18%, respectively. The spatial correlation 418 

and RMSD between the two observation-based estimates themselves are 0.86 and around 14%, 419 

respectively.  420 

 421 

The simulated and observation-based bare ground fractions across North America are compared 422 

in Figure 4. The observation-based estimates show that bare ground fraction is higher in Arctic 423 

Canada and Alaska where, of course, cold temperatures limit vegetation growth and in the south-424 

west United States, Great Plains and the Prairies where low rainfall limits vegetation growth 425 

(Figure 1). The biases in simulated bare ground fraction mirror those in the simulated vegetated 426 

fraction but in an opposite manner. The model underestimates bare ground fraction across Arctic 427 

Canada due to higher simulated grass cover as discussed in the next section. The model 428 

overestimates the bare ground fraction generally across the arid and semi-arid south-west United 429 

States, Great Plains and the Prairies. The spatial correlations and RMSDs when comparing 430 

simulated bare ground fraction to both observation-based estimates, and when comparing the two 431 

observation-based data sets amongst themselves are the same as those for the total vegetation 432 

fraction in Figure 3.  433 

 434 

3.2.2 Tree and grass cover  435 

 436 

Figure 5 compares the simulated tree cover with the two observation-based estimates. The model 437 

reasonably reproduces the broad scale patterns including the Canadian boreal forest and the 438 

temperate forests across the southeastern United States. However, the model simulates lower tree 439 

cover across the western part of the continent compared to both observation-based estimates 440 

particularly over the southwestern United States which is characterized by arid climate (Figure 441 

1). The observation-based estimates do not particularly well agree over this region either. The 442 

MODIS derived estimate suggests around 25% tree cover in the southwestern United States 443 
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while the WANG06 derived estimate suggests a tree cover of around 60% over a large area in 451 

the region. The spatial correlation and RMSD when comparing simulated tree cover to both 452 

observation-based estimates are around 0.68 and around 17%, respectively. The spatial 453 

correlation and RMSD between the two observation-based estimates themselves are 0.75 and 454 

around 15%, respectively. Possible reasons for differences between simulated and observation-455 

based estimates are discussed in detail in the discussion section and include the fact that the 456 

CLASS-CTEM framework does not currently represent shrubs and there are limitations in the 457 

observation-based data sets themselves. Shrubs are more prevalent in arid and semi-arid regions 458 

where they are better suited to grow compared to both trees and grasses.  459 

 460 

Figure 6 compares the geographical distribution of the simulated grass cover with the two 461 

observation-based estimates. The broad geographical distribution of simulated grass cover 462 

compares well with the two observation-based estimates with the notable exception of the Arctic 463 

region including Alaska and northern Canada, where the model overestimates grass cover. This 464 

overestimation of grass cover in the Arctic region is also the reason for the overestimation of 465 

total vegetation fraction and the underestimation of bare fraction that was seen earlier in Figures 466 

3 and 4 respectively.  467 

 468 

As shown in Figure 6, the spatial correlation and RMSD when comparing simulated grass cover 469 

to both observation-based estimates lie between 0.33 and 0.38 and between around 15-17%, 470 

respectively. The spatial correlation and RMSD between the two observation-based estimates 471 

themselves are 0.54 and around 9%, respectively. The two observation-based estimates disagree 472 

most markedly over the western half of the United States where the MODIS derived estimates of 473 

grass cover are higher.  474 

 475 

3.2.3 Needleleaf evergreen and broadleaf cold deciduous trees 476 

 477 

Figures 7a and 7b compare the geographical distribution of NDL EVG and BDL DCD CLD 478 

trees, respectively, with their observation-based estimates. These two are the primary tree PFTs 479 

which exist in the North American domain considered here.  480 

 481 
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In Figure 7a, the overall simulated coverage of NDL EVG trees is lower than both observation-482 

based estimates as was also seen in Figure 2b. The simulated values are primarily lower in 483 

western Canada and over a large area in the western United States according to estimates based 484 

on the modified WANG06 data set. This is also the case along the wide swath of the Canadian 485 

boreal forest. The model overestimates the coverage of NDL EVG trees in the eastern United 486 

States. The spatial correlation and RMSD when comparing simulated coverage of NDL EVG 487 

trees to both observation-based estimates lie between 0.36 and 0.40 and between around 16-17%, 488 

respectively. The spatial correlation and RMSD between the two observation-based estimates 489 

themselves are 0.52 and around 16%, respectively. 490 

 491 

The geographical distribution of BDL DCD CLD trees is compared with its observation-based 492 

estimates in Figure 7b. Although the simulated domain summed area of BDL DCD CLD trees (3 493 

 106 km2) is comparable to estimates based on the modified WANG06 (3.4  106 km2) and 494 

MODIS (2.9  106 km2) data sets, there are two primary limitations in its simulated geographical 495 

distribution. First, the simulated values are generally overestimated in Canadian boreal forests 496 

and underestimated in the eastern United States. Second, the model simulates near zero coverage 497 

in the arid south-western United States. The spatial correlation and RMSD when comparing 498 

simulated coverage of BDL DCD CLD trees to both observation-based estimates are around 0.3 499 

and around 12%, respectively. The spatial correlation and RMSD between the two observation-500 

based estimates themselves are 0.60 and around 8%, respectively. 501 

 502 

3.2.4 C3 and C4 grasses 503 

 504 

Figures 8a and 8b compare the simulated geographical distribution of C3 and C4 grasses with 505 

observation-based estimates.  506 

 507 

In Figure 8a, the most obvious limitation of the model is its excessive simulated grass coverage 508 

in Alaska and in Arctic Canada. Other than this, the model reproduces the broad geographical 509 

distribution of C3 grasses including the Great Plains of United States and the Canadian Prairies, 510 

where a large extent of grasslands is observed. The overestimated grass coverage at high 511 

latitudes leads to a total  simulated C3 grass area (4.4  106 km2) that is higher than estimates 512 
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based on the modified WANG06 (1.9  106 km2) and MODIS (2.8  106 km2) data sets. The 513 

spatial correlation and RMSD when comparing simulated coverage of C3 grasses to both 514 

observation-based estimates lie between 0.34-0.38 and between around 15-17%, respectively. 515 

The spatial correlation and RMSD between the two observation-based estimates themselves are 516 

0.54 and around 12%, respectively. 517 

 518 

Figure 8b shows the distribution of C4 grasses which mostly occur in the tropics and do not 519 

occupy large areas in North America (as was also seen in Figure 2b). The modelled geographical 520 

distribution of C4 grasses is larger than observation-based estimates but the absolute fractions 521 

remain small so that the simulated area covered over the whole domain (0.35  106 km2) is 522 

actually smaller than estimates based on the modified WANG06 (0.45  106 km2) and MODIS 523 

(0.7  106 km2) data sets. The spatial correlation and RMSD when comparing simulated 524 

coverage of C4 grasses to both observation-based estimates lie between 0.12-0.16 and between 525 

around 3-5%, respectively. The spatial correlation and RMSD between the two observation-526 

based estimates themselves are 0.62 and around 5%, respectively. 527 

 528 

We do not compare the spatial distribution of broadleaf evergreen (BDL EVG) and broadleaf 529 

drought deciduous (BDL DCD DRY) trees  with the two observation-based estimates for three 530 

reasons: 1) the geographical distribution of these PFTs is limited to a small total area in our 531 

domain, 2) the geographical distribution of the BDL EVG tree PFT based on observations cannot 532 

be directly compared to simulated values because, when mapping land cover types to CTEM 533 

PFTs in WANG06, evergreen shrubs (which exist much farther north than 30 °N) are assigned to 534 

the BDL EVG tree PFT, and 3) the geographical distribution of the BDL DCD DRY tree PFT in 535 

the observation-based data sets is based on the arbitrary latitudinal thresholds of 24 °N and 34 °N 536 

as mentioned earlier.  537 

 538 

3.3 LAI and GPP 539 

 540 

Figure 9 compares the geographical distribution of simulated LAI and GPP with observation-541 

based estimates for the present day.  In Figure 9a, the simulated geographical distribution of LAI 542 

compares well with the observation-based estimates. The spatial correlation and RMSD between 543 
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simulated and observation-based estimates are 0.74 and 0.81 m2/m2, respectively. The domain 565 

averaged simulated LAI of 2.5 m2/m2 is higher than the observation-based estimate of 2.1 m2/m2. 566 

The model captures the broad geographical patterns with higher LAI over the boreal forest 567 

region in Canada and also in the eastern United States similar to observations. However, some 568 

differences remain particularly over the drier southwest United States where the model simulates 569 

bare ground with negligible LAI but observations suggest a small LAI of around 1 m2/m2. In 570 

contrast, the model slightly overestimates LAI over northern and Arctic Canada where it 571 

simulates a higher fractional coverage of C3 grasses, as seen earlier. 572 

 573 

Consistent with the geographical distribution of LAI, the simulated GPP is overestimated in the 574 

eastern United States and the Canadian boreal forest (Figure 9b). The broad geographical 575 

distribution of GPP, similar to LAI, is consistent with the observation-based estimates. The 576 

spatial correlation and RMSD between simulated and observation-based estimates are 0.78 and 577 

225 gC/m2.year, respectively. The domain averaged simulated GPP of 737 gC/m2.year is higher 578 

than the observation-based estimate of 628 gC/m2.year. As with LAI, the simulated GPP is lower 579 

than observations over the drier southwest region of the United States where the model simulates 580 

more bare ground than observation-based estimates, and the model overestimates GPP over the 581 

northern and Arctic Canada. 582 

 583 

Figure 10 shows the time series of annual domain averaged GPP, LAI, net primary productivity 584 

(NPP) and domain summed net biome productivity (NBP). The NBP term is essentially the net 585 

atmosphere-land CO2 flux which is the result of all terrestrial ecosystem processes including 586 

photosynthesis, autotrophic and heterotrophic respiration, fire and land use change. NBP values 587 

of zero indicate that the system is in equilibrium such that carbon gained by photosynthesis is 588 

equal to carbon lost by respiration and other processes. Simulated GPP, LAI and NPP all show 589 

an increase over the 20th century due to the increase in atmospheric CO2 concentration and the 590 

associated change in climate. The increase in CO2 drives the increase in GPP and subsequently in 591 

NPP and LAI through the CO2 fertilization effect. The net result of this gradually increasing NPP 592 

is that the terrestrial ecosystems become a sink of carbon and this is seen in the resulting positive 593 

values of NBP. The simulated sink over the North American domain for the periods 1990-2000 594 

and 2000-2010 is around 0.4 and 0.5 Pg C/year, respectively. Crevoisier et al. (2010) compare 595 
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the carbon sink over the North American region from five studies (their Table 1) for time periods 598 

in the 1990s and 2000s. These reported sinks vary from 0.81±0.72 to 1.26±0.23 Pg C/year for the 599 

period 1992-1996, 0.58 Pg C/yr for the period 2001-2006 and Crevoisier et al. (2010) themselves 600 

estimate a value of 0.51 ± 0.41 Pg C/yr for the period 2004-2006. The sinks simulated by 601 

CLASS-CTEM over the 1990s and 2000s are broadly consistent with these estimates. 602 

  603 

3.4 Added value of finer spatial resolution 604 

 605 

Figure 11 assesses the added value of running the model and performing competition between 606 

PFTs at the 1° spatial resolution used in this study compared to the 3.75° resolution used in 607 

Melton and Arora (2016) study which evaluated the performance of CLASS-CTEM’s 608 

competition module at the global scale. For Figure 11, the Melton and Arora (2016) results were 609 

extracted for the North American domain used in this study and observation-based estimates of 610 

fractional coverage of tree, grass and total vegetation from the modified WANG06 land cover 611 

product were re-gridded to the 3.75° resolution. The resulting spatial correlations and RMSDs 612 

between the simulated and the WANG06 estimates for fractional coverage of tree, grass and total 613 

vegetation, at the two spatial resolutions, are summarized in Figure 11. When compared to the 614 

modified WANG06 data the RMSDs are somewhat lower (Figure 11a), and spatial correlations 615 

(Figure 11b) are slightly higher for model’s implementation at 3.75° resolution, compared to 616 

model’s implementation at 1° resolution. This indicates that the model’s performance is slightly 617 

better at the coarser 3.75° resolution. Recall that competition between PFTs occurs over the non-618 

crop fraction of each grid cell. For this reason, we do not perform this analysis for MODIS based 619 

land cover product because the crop areas that are specified in the model are exactly same as 620 

those in the modified WANG06 land cover product making comparison of simulated and 621 

observation-based fractional coverages of PFTs more consistent for the modified WANG06 land 622 

cover product. 623 

 624 

4 Discussion 625 

 626 

Competition between PFTs, that determines their fractional coverage, is one of the several 627 

processes that the CLASS-CTEM modelling framework simulates. Other than competition 628 
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between PFTs, terrestrial ecosystem processes of photosynthesis, autotrophic and heterotrophic 630 

respiration, allocation of carbon from leaves to stem and root components, dynamic leaf 631 

phenology, fire, and land use change are also modelled. These aspects of the model have been 632 

evaluated at point (Arora, 2003; Arora and Boer, 2005; Melton et al., 2015), regional (Garnaud et 633 

al., 2015; Peng et al., 2014; Arora et al., 2016) and global (Arora and Boer, 2010; Melton and 634 

Arora, 2014; Melton and Arora, 2016) scales. A typical model evaluation exercise at the global 635 

scale compares model simulated geographical and latitudinal distribution of GPP, vegetation 636 

biomass, and soil carbon with their respective observation-based estimates such as those from 637 

Beer et al. (2010), Ruesch and Holly (2008) and Harmonized World Soil Database 638 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). Model evaluation exercises help in identifying model 639 

limitations but also yield opportunities to improve model performance by tuning model 640 

parameters. CLASS-CTEM model also participated in the 2016 TRENDY intercomparison of 641 

terrestrial ecosystem models whose results contributed to the global carbon project (Le Quéré et 642 

al., 2016). The competition module of the CLASS-CTEM modelling framework has been 643 

previously evaluated at point scales (Arora and Boer, 2006; Shrestha et al., 2016). In addition to 644 

assessing fractional coverage at which PFTs equilibrate, these point scale evaluations also assess 645 

the time the PFTs take to reach their equilibrium fractional coverages against empirical data and 646 

if the succession patterns are realistically simulated (e.g. grasses should colonize a given area 647 

before trees invade the area covered by grasses). This manuscript focusses on evaluation of the 648 

competition module of the CLASS-CTEM modelling framework at a regional scale.  649 

 650 

Dynamically simulated fractional coverages of PFTs adds another degree of freedom to a model 651 

compared to the case where the fractional coverages of its PFTs are specified. This is a more 652 

stringent test of a model’s performance. Errors in the simulated geographical distribution of 653 

PFTs will, of course, lead to corresponding errors in the geographical distribution of primary 654 

terrestrial ecosystem carbon pools and fluxes. Yet, the CLASS-CTEM model is broadly able to 655 

reproduce the geographical distributions of GPP and LAI. Limitations, of course, remain. In 656 

particular, the simulated LAI and GPP are high in Alaska and in northern and Arctic Canada, and 657 

these variables are lower than their observation-based estimates in arid regions of the western 658 

United States. The simulated fractional vegetation coverage reflects these patterns.  659 

 660 
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It is difficult to conclusively determine whether these model limitations are due to the limitations 666 

in the biogeochemistry parameterizations of the model for its existing PFTs or the simple 667 

structural limitation that the model does not represent shrub, moss and lichen PFTs. Shrubs are 668 

adapted to grow in arid and semi-arid regions, whether in cold or hot climates (where neither 669 

grasses nor trees are able to grow) and their representation in the model would likely help to 670 

increase the fractional vegetation cover in arid regions including those in the western United 671 

States. At high latitudes grass growth is inhibited by mosses and lichens which flourish in cold 672 

and damp conditions. A representation of moss and lichen PFTs and improved representation of 673 

permafrost in the model would likely help to decrease simulated grass coverage in Arctic 674 

regions. In the current version of the CLASS-CTEM model bioclimatic limits are used only for 675 

tree PFTs to ensure that these PFTs do not venture outside their pre-determined bioclimatic 676 

zones. In the model, bioclimatic limits are not used for grasses and their geographical 677 

distribution is entirely the result of plant physiological processes and their competitive 678 

interactions with the tree PFTs and amongst themselves. Since, in the Arctic region, grasses do 679 

not face competition from tree PFTs, and moss and lichen PFTs are not represented in the model, 680 

they are free to increase their expanse – climate permitting, of course. Another possible reason 681 

for higher than observed grass coverage in the Arctic region is that in the current implementation 682 

of CLASS only three permeable soil layers with maximum thicknesses of 0.1, 0.25 and 3.75 m 683 

are represented and a boundary condition of zero heat flux is assumed across the bottommost 684 

layer. This simple representation does not allow to model permafrost realistically. Permafrost is 685 

more realistically modelled with multiple permeable and impermeable (extending into the bed 686 

rock) layers that go sufficiently deep (> 30 m at least) to capture the slow evolution of soil 687 

temperatures in response to climate warming (Teufel et al., 2017). The current set up of three 688 

layers that go only 4.1 m deep produces soil temperatures that are warmer than in the set up 689 

when permeable and impermeable layers are sufficiently deep and produces permafrost extent 690 

that is lower than observation-based estimates (Koven et al., 2013). It is likely that warmly 691 

biased soil temperatures in the current set up contribute to promote grass growth and allow it to 692 

cover a larger area in the Arctic region than would be the case when permafrost is more 693 

realistically modelled. 694 

 695 
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The lower than observed fractional vegetation cover in the arid and semi-arid regions of the 696 

western United States, however, may not solely be due to model limitations alone. Here, we 697 

argue that the manner in which remotely sensed land cover types are mapped to CTEM PFTs, 698 

and the errors in calculating bare ground fraction in remotely sensed products also contribute to 699 

mismatch between modelled and observation-based values of fractional vegetation cover. We 700 

illustrate this by comparing the functional relationship between LAI and total vegetation cover. 701 

Figure 12a shows this relationship for model simulated values. As expected, as LAI increases so 702 

does the total vegetation cover. The relationship between these two variables is fairly tight in the 703 

model and the green line is an exponential fit. The red dots in the figure correspond to grid cells 704 

that lie in the region identified in the inset in Figure 12d and broadly correspond to the western 705 

half of the United States. Figures 12b and 12c show the same relationship but between the 706 

observation-based estimate of LAI from Zhu et al. (2013) (as mentioned in Section 2.3.2) and the 707 

total vegetation cover based on the WANG06 and MODIS derived land cover data sets, 708 

respectively. The blue and magenta lines in Figures 12b and 12c are the corresponding 709 

exponential fits. When compared with Figure 12a, Figures 12b and 12c show much more scatter 710 

around the fitted curves, and the overall relationship appears to break down for the red dots 711 

corresponding to the grid cells in the western United States. A careful look at the red dots in 712 

Figures 12b and 12c shows that the observation-based vegetation cover in the Western United 713 

States for a large fraction of grid cells is around 60% regardless of the observation-based LAI 714 

which ranges between 0.1 and 1.5 m2/m2. Clearly, it is physically unrealistic to achieve fractional 715 

vegetation coverage of 60% below LAI values of 0.6 m2/m2 (the m2/m2 unit implies m2 of leaf 716 

area per m2 of ground area) and this indicates that the fractional vegetation cover in this region is 717 

likely overestimated in both observation-based data sets.  718 

 719 

There are at least two ways in which errors in total vegetation cover can occur. The first relates 720 

to the method by which the fractional vegetation cover is calculated for the land cover types in 721 

the original remotely sensed land cover products: that is, for the 22 land cover types in the 722 

GLC2000 data set upon which the WANG06 data are based and the 17 land cover types in the 723 

MODIS data set. An example of such an error for arid regions is illustrated by Lawley et al. 724 

(2014) who suggest that the MODIS soil fractional cover product, at least in its present form, is 725 

unsuited to monitoring sparsely vegetated arid landscapes and generally unable to separate soil 726 
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from vegetation in situations where normalized difference vegetation index (NDVI) is low. The 727 

second way in which errors are introduced is through the mapping of the remotely sensed land 728 

cover types to the CTEM PFTs following Table 2 of WANG06 for the GLC2000 land cover 729 

types, and following Table 2 in this manuscript for the MODIS land cover types.  This mapping 730 

is based on available information in the literature but is also based on expert judgement which 731 

introduces subjectiveness. For instance, it is debatable what fraction of the “open shrublands” 732 

MODIS land cover type, which exists over much of the arid southwestern United States, is in 733 

fact bare ground. In Table 2, we have allocated a fraction of 0.4 of “open shrublands” to bare 734 

ground following WANG06. Had WANG06 allocated a higher value than this to bare ground, 735 

our simulated values would have compared better with the observation-based values of bare 736 

ground fraction over arid regions. Nevertheless this would not have changed the relationship, or 737 

rather the lack thereof, between the observation-based estimates of LAI and the total vegetation 738 

cover in the western half of the United States seen in Figures 12b and 12c. 739 

 740 

Both model and observation-based results are also affected by a common limitation associated 741 

with peatlands which exists in the Hudson Bay lowlands region. Both the GLC2000 data set, 742 

upon which the modified WANG06 land cover product is based, and the MODIS land cover data 743 

do not represent peatland vegetation. In these data sets the peatland vegetation is classified either 744 

as grasses, shrubs or trees. The model also does not represent peatlands and as a result the model 745 

grows trees and grasses in regions where peatlands exists. Work is under way to incorporate a 746 

peatland model developed for CLASS-CTEM (Wu et al., 2016) into our modelling framework.  747 

 748 

The simulated areas covered by the primary two tree PFTs (NDL EVG and BDL DCD COLD) 749 

have their weaknesses but large differences also exist between the two observation-based 750 

estimates especially for the NDL EVG PFT. Modelling competition between two tree PFTs is 751 

much more difficult than between trees and grasses. In the latter case trees are always considered 752 

superior to grasses, but in the case of competition between two tree PFTs the superiority is based 753 

on parameterized colonization rates which depend on simulated NPP. Based on comparisons 754 

with observation-based estimates, the main limitation in model results here is that the model 755 

overestimates the coverage of NDL EVG trees, and underestimates the coverage of BDL DCD 756 

COLD trees in the eastern United States, while the opposite is true in western Canada. The 757 
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model, of course, does not represent individual species, while in the real world competition 761 

occurs at the species level that is modulated by soils and nutrient availability. An example that 762 

illustrates this limitation of the model is the Jack pine tree species which occupies ecological 763 

niche of nutrient poor soils in Boreal Canada (e.g. see Ste-Marie et al., 2007). The coupling of 764 

carbon and nutrient cycles is currently not represented in CLASS-CTEM and optimizing model 765 

parameters for hundreds of species is currently extremely difficult given limited available data at 766 

the species level. Most likely before the model is applied at the species level, as a first step, the 767 

number of PFTs represented in the model should be increased. An example of how additional 768 

PFTs in the CLASS-CTEM framework can lead to improved model performance is illustrated by 769 

Peng et al. (2014). This application of the model shows how sub-dividing the NDL EVG PFT 770 

into coastal and interior types for the province of British Columbia in Canada leads to 771 

improvement in simulated LAI and GPP. A recent attempt to explicitly represent physiological 772 

process in a model to simulate competition between needleleaf and broadleaf cold deciduous 773 

trees at a regional scale is illustrated in (Fisher et al., 2015) who incorporated the concepts from 774 

the Ecosystem Demographics (ED) model into the community land model – dynamic vegetation 775 

model (CLM-DGVM). Their results provide some interesting insights; however, validation of 776 

this approach at the global scale over a wide range of PFTs remains challenging. 777 

 778 

Finally, one of the objectives of this study was to evaluate if resolving climate niches by 779 

performing CLASS-CTEM simulation at a finer resolution of 1° in this study allowed improved 780 

simulation of geographical distribution of PFTs than in the Melton and Arora (2016) study that 781 

evaluated the competition module of the CLASS-CTEM model at 3.75° spatial resolution at the 782 

global scale. Figure 11 addresses this objective and shows that while the spatial correlations and 783 

RMSDs between the simulated and the modified WANG06 land cover product for fractional 784 

coverage of tree, grass and total vegetation are fairly similar for the model outputs at 1° and 785 

3.75° resolutions, these metrics are somewhat better for model’s application at the coarser 3.75° 786 

resolution. One possible reason for the slightly worse model performance at the finer resolution 787 

is that while climate niches are resolved better at the finer resolution the model does not have the 788 

additional differentiation in PFTs (the number of model PFTs is still nine) that is required to gain 789 

benefit from the resolved climate niches. In addition, comparing Melton and Arora (2016) results 790 

over North America with ones obtained here we note that the primary model limitations remain 791 
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unchanged in the application of the model at both spatial resolutions. These include lower 802 

simulated fractional vegetation coverage in the arid south-west North American region and 803 

higher in the Arctic region (due to higher grass coverage). In addition, in both applications of the 804 

model the differences in simulated geographical distribution of NDL EVG and BDL DCD CLD 805 

PFTs, compared to the WANG06 land cover data, are also similar. Model differences, compared 806 

to the WANG06 data, therefore remain more or less similar in the application of the model at 807 

both spatial resolutions. These results are, however, based on offline applications of the CLASS-808 

CTEM model where it is driven by reanalysis data. In a fully-coupled simulation where CLASS-809 

CTEM is coupled to an atmospheric model it is possible that model performance at low spatial 810 

resolution is different from its performance at high spatial resolution. 811 

 812 

The comparison between observation-based and simulated fractional coverages is the most 813 

robust at the basic tree-grass-bare ground level. The subjectiveness introduced in the process of 814 

mapping remotely sensed land cover types to the PFTs represented in a model, as mentioned 815 

above, makes the comparison of simulated and observation-based fractional coverages for 816 

individual PFTs less robust. Nevertheless, comparisons with observations allow useful insights 817 

into model limitations as we have seen here.  818 

 819 

 820 

5 Summary and conclusions 821 

 822 

This study evaluates the CLASS-CTEM simulated fractional coverages of PFTs, when driven 823 

with observed meteorological forcing, against the observation-based estimates from MODIS and 824 

the modified WANG06 data sets over the North American region. In the past, performance of the 825 

competition module of the CLASS-CTEM modelling framework has been assessed at global 826 

scale, at a coarse spatial resolution of 3.75° (Melton and Arora, 2016), as well as at point scale, 827 

for a range of locations across the globe (Shrestha et al., 2016). Our objective here was to assess 828 

the performance of the CLASS-CTEM competition module at a higher spatial resolution of 1° 829 

over North America. To achieve this objective we compared simulated present day geographical 830 

distributions of fractional coverages of PFTs, but also LAI and GPP with their observation-based 831 

estimates. 832 

Deleted: climate 
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 834 

The CLASS-CTEM modelling framework is generally able to reproduce the dominant features 835 

of the geographic distribution of PFT coverage, and LAI and GPP over the North American 836 

region. After 1960, the model simulates increasing GPP and LAI in response to changing climate 837 

as well as increased atmospheric CO2 concentrations and the resulting sink for the 1990s and 838 

2000s is broadly consistent with other estimates.  839 

 840 

The simulated geographical distribution of PFTs, when compared to observation-based 841 

estimates, show two primary limitations which are excessive grass cover in the Arctic region and 842 

low vegetation cover in the arid western United States, although for the latter the observation-843 

based estimates themselves may have their own weaknesses. There are three main factors in the 844 

CLASS-CTEM modelling framework that may have contributed to these differences: 1) the 845 

absence of a shrub PFT, which we believe is the reason for low simulated vegetation coverage in 846 

the arid to semi-arid western United States, 2) the absence of moss and lichen PFTs that may 847 

inhibit the establishment of grasses, and 3) probably a lack of sensitivity of C3 grasses to high 848 

latitude climate and an inadequate representation of permafrost. Future model developments will 849 

focus on these aspects with a view to improving model performance. 850 

 851 
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 1081 

 1082 

Table 1: Plant functional types (PFTs) represented in CTEM and their relation to CLASS PFTs. 1083 

 1084 

  1085 

CLASS PFTs CTEM PFTs CTEM PFT Symbol 

Needleleaf trees Needleleaf Evergreen trees NDL-EVG 

 Needleleaf Deciduous trees NDL-DCD 

Broadleaf trees Broadleaf Evergreen trees BDL-EVG 

 Broadleaf Cold Deciduous trees BDL-DCD-CLD 

 Broadleaf Drought/Dry Deciduous trees BDL-DCD-DRY 

Crops C3 Crops CROP-C3 

 C4 Crops CROP-C4 

Grasses C3 Grasses GRASS-C3 

  C4 Grasses GRASS-C4 
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Table 2: Reclassification of the 17 MODIS land cover classes into the nine CTEM PFTs  

SN Items 
Tree 

Crop Grass Bare  Reference  
NDL EVG NDL DCD BDL EVG BDL DCD 

1 Woody Savanna     0.1 0.4  0.25 0.25 Dai et al.  (2001) 

2 Water bodies        1  

3 Urban built up areas 0.05   0.05  0.1 0.8 Dai et al. (2001) 

4 Savanna   0.05 0.3  0.4 0.25 Wang et al. (2006) 

5 Permanent Wetlands      0.25 0.75 Dai et al. (2001) 

6 Permanent snow and ice       1 Wang et al. (2006) 

7 Open Shurblands 0.1   0.15  0.35 0.4 Wang et al. (2006) 

8 Needleleaf evergreen 1       Wang et al. (2006) 

9 Needleleaf deciduous  0.8    0.1 0.1 Wang et al. (2006) 

10 Mixed forest 0.45   0.45  0.1  Wang et al. (2006) 

11 Grasslands      0.65 0.35 Wang et al. (2006) 

12 Croplands     0.9  0.1 Wang et al. (2006) 

13 Cropland natural veg. mosaic   0.2  0.5 0.2 0.1 Wang et al. (2006) 

14 Closed shrublands 0.2 0.2  0.4  0.2  Wang et al. (2006) 

15 Broadleaf evergreen   1     Wang et al. (2006) 

16 Broadleaf deciduous    1    Wang et al. (2006) 

17 Bare ground          1 Wang et al. (2006) 

                          

 
 



36 
 

 1 

 2 

 3 

 4 

Figure 1. Spatial distribution of mean annual a) precipitation (mm), and b) temperature (°C) 5 

across North America. Grid cells with permanent ice/glaciers have been masked out. 6 

   7 
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 8 

 9 

Figure 2. Comparison of observation-based and simulated vegetation areas summed over the 10 

North American domain a) grass, treed, crop, bare ground and total vegetated area, b) individual 11 

PFT areas, and c) evolution of simulated vegetation areas summed over the domain.  12 
   13 
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 14 

 15 

Figure 3. Spatial distribution of total vegetated coverage across North America. Simulated, 16 

observation-based, and differences are presented in the left, middle and right columns, 17 

respectively. The differences column includes model biases with respect to WANG06 (top panel) 18 

and MODIS (middle panel), and the difference between the two observation-based estimates 19 

(bottom panel). Root mean square difference (rmsd) and coefficient of determination (r2) are also 20 

shown in each case.  21 

   22 
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 23 

 24 

Figure 4. Spatial distribution of bare ground coverage across North America. Simulated, 25 

observation-based, and differences are presented in the left, middle and right columns, 26 

respectively. The differences column includes model biases with respect to WANG06 (top panel) 27 

and MODIS (middle panel), and the difference between the two observation-based estimates 28 

(bottom panel). Root mean square difference (rmsd) and coefficient of determination (r2) are also 29 

shown in each case.  30 

 31 

 32 
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 33 

Figure 5. Spatial distribution of tree coverage across North America. Simulated, observation-34 

based, and differences are presented in the left, middle and right columns, respectively. The 35 

differences column includes model biases with respect to WANG06 (top panel) and MODIS 36 

(middle panel), and the difference between the two observation-based estimates (bottom panel). 37 

Root mean square difference (rmsd) and coefficient of determination (r2) are also shown in each 38 

case.  39 

   40 
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 42 

Figure 6. Spatial distribution of grass coverage across North America. Simulated, observation-43 

based, and differences are presented in the left, middle and right columns, respectively. The 44 

differences column includes model biases with respect to WANG06 (top panel) and MODIS 45 

(middle panel), and the difference between the two observation-based estimates (bottom panel). 46 

Root mean square difference (rmsd) and coefficient of determination (r2) are also shown in each 47 

case.  48 

 49 

 50 

   51 
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 52 

Figure 7. Spatial distribution of a) needleleaf evergreen tree, and b) broadleaf cold deciduous tree 53 

across North America. Simulated, observation-based, and differences are presented in the left, 54 

middle and right columns, respectively. The differences column includes model biases with 55 

respect to WANG06 (top panel) and MODIS (middle panel), and the difference between the 56 

observation-based estimates (bottom panel). Root mean square difference (rmsd) and coefficient 57 

of determination (r2) are also shown in each case.  58 
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 59 

Figure 8. Spatial distribution of a) C3 grasses, and b) C4 grasses across North America. 60 

Simulated, observation-based, and differences are presented in the left, middle and right 61 

columns, respectively. The differences column includes model biases with respect to WANG06 62 

(top panel) and MODIS (middle panel), and the difference between the the observation-based 63 

estimates (bottom panel). Root mean square difference (rmsd) and coefficient of determination 64 

(r2) are also shown in each case. 65 
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Figure 9. Spatial distribution of a) grid averaged maximum LAI (m2 m-2), and b) grid averaged 72 

GPP (g C m2 y-1) across North America. Simulated, observation-based, and differences between 73 

them are presented in the left, middle and right columns, respectively. Root mean square 74 

difference (rmsd) and coefficient of determination (r2) are also shown in each case. 75 
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Figure 10. Time series evolution of a) domain averaged GPP (g C m-2 y-1), b) domain averaged 97 

LAI (m2 m-2), c) domain total NBP (Pg C m-2 y-1), and d) domain averaged NPP (g C m-2 y-1). 98 
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Figure 11. Comparison of the performance of the model at the 1° spatial resolution in this study 105 

with that at the 3.75° spatial resolution in the Melton and Arora (2016) study. The Melton and 106 

Arora (2016) global results were extracted for the North American domain. Spatial correlations 107 

and root mean square differences are used as metrics for the comparison between simulated and 108 

the observation-based estimate based on the modified WANG06 land cover product for 109 

fractional coverage of total vegetation, tree and grass. 110 
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 115 

Figure 12. Scatter plots of a) simulated LAI vs. simulated total vegetation  coverage, b) observed 116 

LAI vs. MODIS-derived total vegetation coverage, c) observed LAI vs. WANG06 total 117 

vegetation coverage. Plot d) shows a comparison of the fitted curves represented by solid lines, 118 

with an inset map of North America showing the sub-domain of interest bounded by a red 119 

rectangle.   120 
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