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Abstract  13 

 14 

The performance of the competition module of the CLASS-CTEM (Canadian Land Surface 15 

Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° 16 

spatial resolution over North America by comparing the simulated geographical distribution of 17 

plant functional types (PFTs) with two observation-based estimates. The model successfully 18 

reproduces the broad geographical distribution of trees, grasses and bare ground although 19 

limitations remain. In particular, compared to the two observation-based estimates, the simulated 20 

fractional vegetation coverage is lower in the arid south-west North American region and higher 21 

in the Arctic region. The lower than observed simulated vegetation coverage in the south-west 22 

region is attributed to lack of representation of shrubs in the model and plausible errors in the 23 

observation-based data sets. The observation-based data indicates vegetation fractional coverage 24 

of more than 60% in this arid region, despite only 200-300 mm of precipitation that the region 25 

receives annually and observation-based leaf area index (LAI) in the region are lower than one. 26 

The higher than observed vegetation fractional coverage in the Arctic is due to the lack of 27 

representation of moss and lichen PFTs and also likely because of inadequate representation of 28 

permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. 29 

The model generally reproduces the broad spatial distribution and the total area covered by the 30 

two primary tree PFTs (needleleaf evergreen and broadleaf cold deciduous trees) reasonably 31 
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well. The simulated fractional coverage of tree PFTs increases after 1960s in response to the CO2 32 

fertilization effect and climate warming. Differences between observed and simulated PFT 33 

coverages highlight limitations in the model and provide insight into physical and structural 34 

processes that need improvement.   35 

 36 

  37 
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1 Introduction 38 

 39 

The terrestrial ecosystem plays an important role in regulating climate and weather through land-40 

atmosphere exchange of water and energy (Cramer et al., 2001; Garnaud et al., 2015; Pielke et 41 

al., 1998; Ran et al., 2016) and in mitigating climate change by sequestering atmospheric CO2 42 

(Bonan, 2008; Timmons et al., 2016). The projected sink of atmospheric CO2 is uncertain due to 43 

disagreements among the Earth system models (ESMs) (Arora et al., 2013; Friedlingstein et al., 44 

2006) primarily due to differing responses of their terrestrial ecosystem modules to future 45 

changes in atmospheric CO2. This uncertainty arises primarily because of the differences in the 46 

strength of the CO2 fertilization effect on the land carbon cycle components (Arora et al., 2013; 47 

Cramer et al., 2001; Friend et al., 2013) but also because of differences in the response of  48 

vegetation. Models differ in how the spatial distribution of vegetation, and its composition, 49 

changes in response to changing climate and increasing CO2 (Cramer et al., 2001). These 50 

differences are also resolution dependent. For example, models with coarse grid resolutions 51 

cannot explicitly resolve climatic niches, which in turn potentially contributes to biases in 52 

simulated vegetation distribution (Melton and Arora, 2016; Shrestha et al., 2016).  53 

 54 

Vegetation responds to changes in climate and atmospheric CO2 concentration by changing its 55 

structural attributes including leaf area index (LAI), rooting depth, vegetation height, and canopy 56 

mass, as well as its areal extent. Structural vegetation changes generally occur over seasonal to 57 

decadal time scales (Kramer and Kozlowski, 1979), while the slower areal extent changes 58 

typically occur on decadal to centennial time scales (Ritchie and Macdonald, 1986). The 59 

dynamic behavior of vegetation affects weather and climate due to its strong control over 60 

biophysical processes. At hourly to daily timescales, vegetation affects the exchange of water 61 

and energy between the land surface and the atmosphere primarily through the control of leaf 62 

stomata. At longer timescales from seasonal, annual to decadal timescales, vegetation affects 63 

components of energy and water balance through its structure (LAI, rooting depth, etc.) and its 64 

areal extent and thereby land surface albedo. Conversely, dynamics of vegetation is directly 65 

influenced by climate and the competitive ability of the plants. In this way vegetation responds to 66 

climate by changing its structure and areal extent depending on the colonization ability of plants. 67 
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These climate-vegetation interactions have been well documented (e.g. Gobron et al., 2010; 68 

Wang et al., 2011). 69 

 70 

Natural vegetation is typically characterized in dynamic global vegetation models (DGVMs) 71 

based on a limited number of PFTs (Sitch et al., 2003) because it is impossible to represent 72 

thousands of species in a model. Species characterized by similar attributes, mainly based on 73 

their form and interactions with the environment (Box, 1996), are grouped together as a single 74 

PFT. For example, tree species with similar leaf form such as fir (Abies), spruce (Picea) and pine 75 

(Pinus) are classified as needleleaf evergreen trees. The geographical distribution of the PFTs in 76 

DGVMs is determined by their ability to grow and increase their areal extent given certain 77 

climate and soil conditions and their competitive ability.  78 

 79 

One way of representing competition between PFTs in DGVMs is through the use of the Lotka-80 

Volterra (LV) equations. While originally developed for predator-prey competition, the LV 81 

equations have been used in a number of DGVMs (Arora and Boer, 2006; Brentnall et al., 2005; 82 

Cox, 2001; Zhang et al., 2015). The use of the classical form of the LV equations for modelling 83 

competition between PFTs, however, leads to an amplified expression of dominance in that the 84 

dominant PFT ends up occupying a disproportionately large fraction of a grid cell leading to 85 

little co-existence between PFTs. Arora and Boer (2006) proposed changes to the classical 86 

implementation of the LV equations for modelling competition between PFTs to reduce this 87 

amplified expression of dominance. Their approach, which has been implemented in the CLASS-88 

CTEM modelling framework and which allows improved co-existence of PFTs compared to the 89 

classical LV equations, has been shown to simulate vegetation distribution reasonably well at the 90 

global  (Melton and Arora, 2016) as well as point (Shrestha et al., 2016) scales. Both these 91 

studies used climate averaged over ~3.75° spatial resolution. The CLASS-CTEM framework 92 

consists of the Canadian Land Surface Scheme (CLASS) coupled to the Canadian Terrestrial 93 

Ecosystem Model (CTEM) which is a dynamic vegetation model. 94 

 95 

In this paper, we evaluate the competition module of the CLASS-CTEM modelling framework at 96 

the regional scale over the North American domain at 1° spatial resolution. This  resolution is 97 

much finer than the 3.75° resolution used in the Melton and Arora (2016) study and therefore in 98 
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principle should allow a more realistic simulation of geographical distribution of PFTs as climate 99 

niches are resolved.  100 

 101 

The rest of this paper is organized as follows: Section 2 describes the CLASS-CTEM modelling 102 

framework, details of the observation-based data and the experimental setup. Results are 103 

presented in section 3 and a discussion follows in section 4.  Finally, a summary and conclusions 104 

are provided in section 5.  105 

  106 

2 Model, data  and methods  107 

 108 

2.1 CLASS-CTEM model 109 

 110 

The results presented here are obtained by coupling version 2.0 of CTEM (Melton and Arora, 111 

2016), which dynamically simulates fractional coverage of its PFTs, to version 3.6 of CLASS 112 

(Verseghy et al., 1993). CTEM simulates terrestrial processes for seven non-crop and two crop 113 

PFTs (Table 1) and prognostically tracks carbon in three living vegetation components (leaves, 114 

stems and roots) and two dead carbon pools (litter and soil). The terrestrial ecosystem processes 115 

simulated in this study include photosynthesis, autotrophic respiration, heterotrophic respiration, 116 

dynamic leaf phenology, allocation of carbon from leaves to stem and root components, fire, and 117 

competition between PFTs which dynamically determines the fractional coverage of each PFT. 118 

The amount of carbon in the leaf, stem and root components is used to estimate structural 119 

attributes of vegetation. LAI is calculated from leaf biomass using PFT-dependent specific leaf 120 

area (SLA) which determines area of leaves that can be constructed per kg C of leaf biomass 121 

(Arora and Boer, 2005); vegetation height is calculated based on stem biomass for tree PFTs and 122 

LAI for grass PFTs; and rooting depth is calculated based on root biomass (Arora and Boer, 123 

2003). CTEM operates at a time step of one day except for photosynthesis and leaf respiration 124 

which are calculated every 30 minutes for consistency with CLASS’ energy and water balance 125 

calculations which require stomatal resistance calculated by the photosynthesis module of 126 

CTEM.  127 

 128 
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CLASS simulates the energy and water balance components at the land surface and operates at a 129 

30 minutes time step. Liquid and frozen soil moisture and soil temperature are evaluated for 130 

three soil layers (with maximum thicknesses of 0.1, 0.25 and 3.75 m). The actual thicknesses of 131 

these permeable soil layers are determined by the depth to bedrock, which is specified on the 132 

basis of the global data set of Zobler (1986). CLASS distinguishes four PFTs (needleleaf trees, 133 

broadleaf trees, crops and grasses) which map directly to the nine PFTs represented in CTEM as 134 

shown in Table 1. Needleleaf trees in CTEM are divided into deciduous and evergreen types, 135 

broadleaf trees are divided into cold and drought deciduous and evergreen types, and crops and 136 

grasses are divided into C3 and C4 types based on their photosynthetic pathways.  In coupled 137 

mode, CLASS uses the dynamically simulated vegetation attributes (including LAI, vegetation 138 

height, canopy mass and rooting depth) and stomatal resistance calculated by CTEM, and CTEM 139 

uses the soil moisture, soil temperature and net shortwave radiation calculated by CLASS. The 140 

coupling frequency between CLASS and CTEM is one day. 141 

 142 

2.1.1 Competition parameterization 143 

 144 

Competition between PFTs in CTEM is parameterized following Arora and Boer (2006) who 145 

presented a modified version of the LV equations. The approach is described in detail by Melton 146 

and Arora (2016) and briefly summarized here. Consider, for simplicity, two PFTs that exist in a 147 

grid cell with fractional coverages ଵ݂ and ଶ݂. Let PFT 1 represent a tree PFT and PFT 2 represent 148 

a grass PFT. The bare fraction of grid cell not covered by any vegetation is represented by ஻݂. As 149 

a result, ଵ݂ ൅ ଶ݂ ൅ ஻݂ ൌ 1. The rate of change of fractional coverages of the two PFTs and bare 150 

fraction, for this example, are given by,  151 

 152 

ௗ௙భ
ௗ௧
	ൌ 	 ܿଵ ଵ݂

ఉሺ1 െ 	 ଵ݂ሻ െ	݉ଵ ଵ݂                                                                     ( 1 ) 153 

 154 

ௗ௙మ
ௗ௧
ൌ 	 ܿଶ ଶ݂

ఉሺ1 െ	 ଵ݂	 െ 	 ଶ݂ሻ െ	ܿଵ ଵ݂
ఉ

ଶ݂ െ	݉ଶ ଶ݂                                            ( 2 ) 155 

 156 

ௗ௙ಳ
ௗ௧

ൌ 	െ	ܿଵ ଵ݂
ఉ

஻݂ െ	ܿଶ ଶ݂
ఉ

஻݂ ൅	݉ଵ ଵ݂	 ൅ 	݉ଶ ଶ݂		                                             ( 3 ) 157 

 158 
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where c1, c2 and m1, m2 are the colonization and mortality rates for PFT 1 and PFT 2, 159 

respectively. Colonization and mortality rates cannot be negative. Equations (1) and (2) show 160 

that PFT 1 can invade the fraction covered by PFT 2 and the bare fraction; and that PFT 2 can 161 

only invade the bare fraction. PFT 2 is not allowed to invade the fraction covered by PFT 1 162 

because it is ranked lower than PFT 1. In CTEM, the superiority or ranking of the seven natural 163 

non-crop PFTs is based on the tree-grass distinction and their colonization rates. Trees are always 164 

considered to be superior than grasses because of their ability to shade them (Siemann and 165 

Rogers, 2003). Within the tree and grass PFTs the dominance is determined dynamically based 166 

on the colonization rate. The exponent β (0 ≤ β ≤ 1), an empirical parameter, controls the 167 

behaviour of the LV equations. For β = 1, the equations represent the classical form of the LV 168 

equations. The equilibrium fractional coverages for PFT 1 and 2 and bare fraction for this 169 

classical form of the LV equations, denoted by fሚଵ, fሚଶ	and  are given by, 170 

 171 

 ሚ݂ଵ ൌ 	max ቄቀ௖భି	௠భ

௖భ
ቁ , 0ቅ                                                         ( 4 )   172 

 173 

 ሚ݂ଶ ൌ 	max ቊቆ
ሺ௖మି	௠మሻି	ቀଵା	

೎మ
೎భ
ቁ	ሺ௖భି	௠భሻ	

௖మ
ቇ , 0ቋ                                       ( 5 ) 174 

 175 

ሚ݂
஻ ൌ 	

൫௠భ௙ሚభା	௠మ௙ሚమ൯

൫௖భ௙ሚభା	௖మ௙ሚమ൯
                                                               ( 6 ) 176 

 177 

In equations (1) and (2), if the fractional coverages of PFT 1 and PFT 2 are initially zero then the 178 

PFTs cannot expand for β = 1, implying that a minimum seeding fraction is always required.  179 

Furthermore, in equation (5) as long as (c1m1) is greater than (c2m2) then the equilibrium 180 

solution for f2 will always be zero and PFT 2 will not be able to coexist with PFT 1. These 181 

features of the classical form of the LV equations are avoided when β = 0, following Arora and 182 

Boer (2006). The equilibrium fractional coverages for PFT 1 and 2 and bare fraction for the case 183 

with β = 0 are given by, 184 

 185 

ሚ݂
ଵ ൌ 	 ቀ

௖భ
௖భା	௠భ

ቁ                                                              ( 7 )   186 

ሚ݂
ଶ ൌ 		

௖మ൫ଵି	௙ሚభ൯

ሺ௖భା	௖మା	௠మሻ
ൌ ቀ ௖మ௠భ

ሺ௖భ	ା	௠భሻ	ሺ௖భା	௖మା	௠మሻ
ቁ                                   ( 8 )  187 
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ሚ݂
஻ ൌ 	

൫௠భ௙ሚభା	௠మ௙ሚమ൯

ሺ௖భା	௖మሻ
                                                             ( 9 ) 188 

Unlike the classical version of the LV equations, the modified version of the equations with β = 0  189 

does not require a minimum seeding fraction, and PFTs are able to increase their areal extent as 190 

long as the climate is favorable and ci is positive. Also, as long as m1 > 0 and c2 > 0 then PFT 2 191 

is able to coexist at equilibrium with PFT 1. Other values of β between 0 and 1 give the dominant 192 

PFT varying levels of access to sub-dominant PFTs but coexistence is most possible in the case 193 

with β = 0.  194 

 195 

The calculations of colonization and mortality rates are described in detail in Melton and Arora 196 

(2016). Briefly, the colonization rate depends on the net primary productivity of a PFT. The 197 

better a PFT performs for given climatic and soil conditions; the higher is its colonization rate. 198 

The mortality rate represents the combined effect of four different processes: intrinsic or age-199 

related mortality, growth or stress mortality, mortality due to disturbance, and mortality due to 200 

adverse climate which ensures that tree PFTs do not venture outside their bioclimatic zones. 201 

 202 

2.2 Forcing data 203 

 204 

The Climate Research Unit – National Centre for Environmental Prediction (CRU-NCEP) 205 

reanalysis dataset (Viovy, 2012), is used to drive the model. The meteorological variables 206 

(surface temperature, pressure, precipitation, wind, specific humidity, and incident short-wave 207 

and long-wave radiation fluxes) are available at a spatial resolution of 0.5°  0.5° and at a six 208 

hourly time interval for the period 1901-2010. These data are interpolated to 1° resolution 209 

spatially, and disaggregated to half-hourly time resolution, a standard CLASS-CTEM model 210 

integration time step. Temperature, pressure, wind, specific humidity, and long-wave radiation 211 

are linearly interpolated in time while short-wave radiation is assumed to change with the solar 212 

zenith angle with maximum radiation occurring at solar noon. Following Arora (1997) , the six-213 

hourly precipitation amount (P, mm/6-hour) is used to estimate the number of wet half-hours 214 

(wh) in a given six-hour period for ܲ ൐ 0 as 215 

 216 

௛ݓ ൌ integerሺmaxሾ1,minሺ12, 2.6 logሺ6.93	ܲሻሻሿሻ.                                        (10) 217 
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 218 

The total precipitation amount is then distributed randomly but conservatively over these wet 219 

half-hours. For instance, if seven out of 12 half hours intervals are calculated to be wet using 220 

equation (10) then seven random numbers varying between 0 and 1 are generated and the six- 221 

hourly precipitation amount is divided into seven parts in proportion to their respective random 222 

numbers  223 

 224 

Figure 1 shows the spatial distribution of mean annual precipitation and surface temperature over 225 

the North American domain considered in this study. Mean annual precipitation values range 226 

from less than 200 mm in the arid south-west United States and the high Arctic to more than 227 

1500 mm on the Pacific coast. Mean annual temperature varies from around 24° C near the 228 

southern limit of the domain in Mexico to less than -20° C in the Arctic tundra. 229 

 230 

2.3 Observation-based data 231 

2.3.1 Fractional coverage of PFTs 232 

 233 

Observation-based estimates of fractional coverages of PFTs are based on a modified version of 234 

the Wang et al. (2006) data set (hereafter WANG06) and the Moderate Resolution Imaging 235 

Spectroradiometer land cover product (Friedl et al., 2013) (hereafter MODIS). These data are 236 

used to evaluate the model results.  237 

 238 

The WANG06 data set was developed for use by CTEM in simulations in which competition is 239 

turned off and prescribed fractional coverage of PFTs is used. It combines observation- and 240 

model-based data to estimate the annual change in fractional coverage of CTEM’s nine PFTs 241 

from 1850 to 2000. The Global Land Cover for the year 2000 (GLC2000), which is considered 242 

as a base year for environmental assessment, divides the global land cover in 22 types is 243 

available at 1 km resolution. WANG06 (their Table 2) mapped the GLC2000 data to CTEM’s 244 

nine PFTs aggregated to 0.5° resolution. The GLC2000 data were then extrapolated back to 1850 245 

by adjusting the changes in crop area based on the then available Ramankutty and Foley (1999) 246 

rop data set. Here, we use a modified version of the WANG06 data set which is based on the 247 
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HYDE v.3.1 crop data set (Hurtt et al., 2011) and generate an estimate of fractional coverage of 248 

CTEM PFTs for the period 1850-2012.  249 

 250 

The MODIS data set is based on the International Geosphere-Biosphere Programme (IGBP) 251 

global vegetation data and University of Maryland’s Science Data Set classification schemes at 252 

0.25° spatial resolution. The data are derived from NASA HDF-EOS MODIS/Terra land cover 253 

type. The data set is for the period 2001 to 2014 and contains 17 land cover types which we map 254 

to CTEM’s nine PFTs following the logic used in Wang et al. (2006) as shown in Table 2. The 255 

fractional coverage of each of the nine CTEM PFT is first obtained at 0.25 degree resolution for 256 

each year using the mapping scheme described in Table 2. These fractional coverages are then 257 

re-gridded to the 1° spatial resolution for individual years. Finally, the data are averaged over the 258 

period 2001-2014 to evaluate model results. MODIS data are known to exhibit substantial 259 

interannual variability. Broxton et al. (2014), for instance, report that globally 40% of land pixels 260 

show land cover change one or more times during 2001–2010 period. This does not necessarily 261 

indicate changes in land cover but rather these differences are due to low accuracy in 262 

categorizing the remotely sensed vegetation into one of the 17 MODIS land cover types, as 263 

Broxton et al. (2014) note. This low accuracy is itself attributed to the fact that many landscapes 264 

include mixtures of vegetation classes. Our re-gridding of fractional coverages to 1° spatial 265 

resolution and averaging over the 2001-2014 time period to obtain climatology of land cover 266 

alleviates some of the uncertainty since the effect of inaccurately classified land cover categories 267 

is reduced due to both spatial and temporal averaging.  268 

 269 

The separation of the broadleaf deciduous PFT into its drought and cold deciduous components 270 

is performed via the approach used by WANG06. They assumed that below 24 °N deciduousness 271 

is caused by soil moisture limitation and hence all broadleaf deciduous trees below this latitude 272 

are drought deciduous, and above 34 °N deciduousness is caused by low temperatures and so all 273 

broadleaf deciduous trees above this latitude are cold deciduous. Between 24 °N and 34 °N, 274 

following WANG06 we assume a linear transition from drought deciduous to cold deciduous 275 

trees. Finally, the separation of grasses into their C3 and C4 components is based on the 276 

geographical distributions of the C3 and C4 fractions in the WANG06 data set. 277 
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2.3.2 Gross primary productivity and LAI 278 

 279 

Observation-based estimates of gross primary productivity (GPP) are based on Beer et al. (2010). 280 

These data are based on the ecosystem level GPP obtained using eddy covariance measurements 281 

from more than 250 stations across the globe. Beer et al. (2010) extrapolated these eddy 282 

covariance flux data of  GPP to the global scale using diagnostic models for the period 1982 – 283 

2008, and the average over this time period is used to evaluate the model results. LAI data used 284 

for validation are the same as those used by Anav et al. (2013) and are based on Zhu et al. (2013) 285 

who use normalized difference vegetation index (NDVI) data from the Advanced Very High 286 

Resolution Radiometer (AVHRR) satellite to calculate average LAI for the period 1981 – 2010.  287 

 288 

2.4 Experimental setup 289 

 290 

2.4.1 Equilibrium pre-industrial simulation 291 

 292 

The equilibrium pre-industrial simulation was initialized from zero biomass and zero fractional 293 

coverage for all non-crop PFTs. The fractions of C3 and C4 crop PFTs in each grid cell are 294 

specified corresponding to year 1850 based on the HYDE 3.1 dataset. The model was then run 295 

for 600 years driven by 1901-1925 CRU-NCEP climate data cycled repeatedly. These data do 296 

not show any warming trend (Wen et al., 2011) as opposed to the later part of the 20th century. 297 

Atmospheric CO2 concentration was set to 285 ppm corresponding to the pre-industrial 1850 298 

level. This pre-industrial equilibrium simulation yields initial conditions including fractional 299 

coverages of PFTs and carbon in all the live and dead pools for the transient 1850-2010 300 

simulation. The 600 years simulation is sufficient for fractional vegetation cover and carbon 301 

pools to reach equilibrium. 302 

2.4.2 Transient historical simulation 303 

 304 

The transient historical simulation is performed for the period 1851-2010 and its carbon pools 305 

and fractional coverage of non-crop PFTs are initialized from the equilibrium pre-industrial 306 

simulation as mentioned above. The years 1851 to 1900 of this historical simulation are driven 307 

with CRU-NCEP climate data corresponding to the period 1901-1925, cycled twice. For the 308 
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period 1901-2010 the climate data corresponding to each year are used. Time varying 309 

concentrations of atmospheric CO2 are supplied for the period 1851-2010 based on the values 310 

used in the fifth Coupled Modelling Intercomparison Project (CMIP5, 311 

http://tntcat.iiasa.ac.at/RcpDb/) which are extended past 2005 to 2010 based on data from the 312 

National Oceanic and Atmospheric Administration 313 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_gl.txt). The annual time-varying 314 

fractional coverages of C3 and C4 crop PFTs in each grid cell are based on the HYDE 3.1 dataset.  315 

The crop fractions in a grid cell are not available for colonization and neither are they subject to 316 

disturbance by fire.  Competition between PFTs occurs over the remaining non-crop fraction of a 317 

grid cell. As total crop fraction in a grid cell changes over time (based on the HYDE 3.1 dataset) 318 

the fractional area available for competition also changes.  319 

 320 

The simulated results are evaluated against their observation-based counterparts using averaged 321 

values over the last 30 years of the simulation corresponding to the period 1981-2010. This is the 322 

same and/or very close to the time period for modified WANG06 land cover data set (1981-323 

2010), Beer et al. (2010) GPP (1982-2008), and Zhu et al. (2013) LAI (1981-2010). The only 324 

exception is the MODIS-based land cover data which are available for the 2001-2014 period.  325 

3 Results  326 

 327 

3.1 Continental scale values of PFT coverage  328 

 329 

Figures 2a compares the simulated vegetation areas summed over our North American domain 330 

with the WANG06 and MODIS observation-based estimates. In the absence of another measure 331 

of uncertainty, we use the range between these two observation-based estimates and assess if 332 

simulated areal coverage of a given land cover type lies within or outside this range. The 333 

simulated total vegetated area over North America (14.8  106 km2) is very similar to the 334 

modified WANG06 (14.4  106 km2) and MODIS derived (14.2  106 km2). At the most basic 335 

tree-grass-bare ground level, the simulated areas are closer to the MODIS-based estimates, than 336 

to the estimate based on the modified WANG06 data. The simulated area covered by tree PFTs 337 
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(7.8  106 km2) is 6% lower than the MODIS derived estimate (8.2  106 km2) and 21% lower 338 

than WANG06 (9.7  106 km2). The simulated grass coverage (4.7  106 km2) is 35% higher 339 

than the MODIS derived estimate (3.5  106 km2). Both simulated and MODIS-based estimates 340 

of area covered by grass PFTs are, however, substantially higher than the WANG06 (2.4  106 341 

km2) estimate. Averaged over the North American region, the simulated partitioning of land area 342 

(excluding cropland area) covered by trees, grasses and bare ground (45%, 27%, 28%) is much 343 

closer to the MODIS based data (48%, 20% and 32%) than to the modified WANG06 based data 344 

(56%, 14%, 30%).  345 

 346 

Figure 2b shows a comparison of simulated areas of individual PFTs with observation-based 347 

estimates. This is a more stringent test of the performance of the competition module of CTEM. 348 

The observation-based estimates of areas of all individual PFTs are available for the modified 349 

WANG06 dataset. The MODIS based estimates were derived based on the mapping of MODIS’ 350 

17 land cover types to CTEM PFTs as shown in Table 2, which itself is mostly based on 351 

WANG06. In Figure 2b, the observation-based estimates show that needleleaf evergreen (NDL 352 

EVG) and broadleaf cold deciduous (BDL DCD CLD) are the dominant tree PFTs across North 353 

America which is also shown by the model. The simulated total area of the NDL EVG tree PFT 354 

(3.9  106 km2) is 28% less than WANG06 (5.3  106 km2) and 15% less than the MODIS based 355 

estimate (4.7  106 km2). The simulated total area of BDL DCD CLD tree PFT (3  106 km2) is 356 

13% less than WANG06 (3.4  106 km2) and 3% greater than MODIS based (2.9  106 km2) 357 

estimate. Overall, the model is able to capture the areas covered by individual PFTs reasonably 358 

well. However, differences remain between observations-based and simulated estimates 359 

especially the larger simulated area for C3 grasses than both observation-based estimates. 360 

Reasons for these differences include limitations in the model but also the manner in which 361 

remotely-sensed vegetation is categorized into broad-scale vegetation types and then mapped 362 

onto CTEM’s nine PFTs, as discussed later.  363 

 364 

In both Figures 2a and 2b although simulated areal coverages at the basic tree-grass-bare ground 365 

level and for individual PFTs (except for C3 grasses) are comparable to observation-based 366 
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estimates they are outside the range defined by difference of the WANG06 and MODIS based 367 

estimates. 368 

 369 

Figure 2c shows the time series of simulated areas summed over the domain covered by tree and 370 

grass PFTs, the total vegetated area and the remaining bare ground. The specified area covered 371 

by crop PFTs, based on the HYDE 3.1 data set, is also shown and first increases over the 372 

historical period and then stabilizes and in fact somewhat decreases in association with cropland 373 

abandonment over the north-eastern United States. The increase in the crop area results in a 374 

decrease in the area covered by tree and grass PFTs up until the time when the crop area 375 

stabilizes around 1970. In the model, this causes land use change emissions associated with 376 

deforestation. After this time, as vegetation productivity responds to increasing atmospheric CO2 377 

concentration, the area covered by tree PFTs increases somewhat and colonizes available bare 378 

areas and those covered by grass PFTs. This leads to a small reduction in the area covered by 379 

grass PFTs as well as bare ground and the associated increase in the total vegetated area. 380 

 381 

3.2 Geographical distribution of PFTs 382 

 383 

3.2.1 Total vegetated and bare ground fractions  384 

 385 

Figures 3 and 4 compare the geographical distribution of simulated total vegetated and bare 386 

fractions across North America with the two observation-based estimates derived from the 387 

modified WANG06 and MODIS data sets. The two observation-based estimates are also 388 

compared amongst themselves. The metrics used are averaged root mean square difference 389 

(RMSD) and spatial correlations (R2).  390 

 391 

The observation-based geographical distribution of vegetated fraction in Figure 3 (middle 392 

column) shows densely vegetated land over the eastern part of the continent and less vegetation 393 

coverage over colder regions in the North and drier regions in the south-central and south-west 394 

United States. These broad scale patterns are consistent with the precipitation and temperature 395 

climatologies of the region (Figure 1). The model reasonably reproduces the observed vegetation 396 

distribution (left panel) with some obvious limitations. Simulated vegetation cover is 397 
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underestimated across the arid south-west United States, Great Plains and part of the Canadian 398 

Prairies (right panel) due to lower simulated fractional coverage of tree and grass PFTs over 399 

these regions (which are shown in the next section). The model overestimates vegetation 400 

coverage in Northern Canada because of higher simulated grass cover in the Arctic as discussed 401 

below in more detail. The spatial correlation and RMSD when comparing simulated vegetated 402 

fraction to both observation-based estimates are 0.79 and around 18%, respectively. The spatial 403 

correlation and RMSD between the two observation-based estimates themselves are 0.86 and 404 

around 14%, respectively.  405 

 406 

The simulated and observation-based bare ground fractions across North America are compared 407 

in Figure 4. The observation-based estimates show that bare ground fraction is higher in Arctic 408 

Canada and Alaska where, of course, cold temperatures limit vegetation growth and in the south-409 

west United States, Great Plains and the Prairies where low rainfall limits vegetation growth 410 

(Figure 1). The biases in simulated bare ground fraction mirror those in the simulated vegetated 411 

fraction but in an opposite manner. The model underestimates bare ground fraction across Arctic 412 

Canada due to higher simulated grass cover as discussed in the next section. The model 413 

overestimates the bare ground fraction generally across the arid and semi-arid south-west United 414 

States, Great Plains and the Prairies. The spatial correlation and RMSD when comparing 415 

simulated bare ground fraction to both observation-based estimates are around 0.46 and around 416 

18%, respectively. The spatial correlation and RMSD between the two observation-based 417 

estimates themselves are 0.68 and around 14%, respectively.  418 

 419 

3.2.2 Tree and grass cover  420 

 421 

Figure 5 compares the simulated tree cover with the two observation-based estimates. The model 422 

reasonably reproduces the broad scale patterns including the Canadian boreal forest and the 423 

temperate forests across the southeastern United States. However, the model simulates lower tree 424 

cover across the western part of the continent compared to both observation-based estimates 425 

particularly over the southwestern United States which is characterized by arid climate (Figure 426 

1). The observation-based estimates do not particularly well agree over this region either. The 427 

MODIS derived estimate suggests around 25% tree cover in the southwestern United States 428 
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while the WANG06 derived estimate suggests a tree cover of around 60% over a large area in 429 

the region. The spatial correlation and RMSD when comparing simulated tree cover to both 430 

observation-based estimates are around 0.68 and around 17%, respectively. The spatial 431 

correlation and RMSD between the two observation-based estimates themselves are 0.75 and 432 

around 15%, respectively. Possible reasons for differences between simulated and observation-433 

based estimates are discussed in detail in the discussion section and include the fact that the 434 

CLASS-CTEM framework does not currently represent shrubs and there are limitations in the 435 

observation-based data sets themselves. Shrubs are more prevalent in arid and semi-arid regions 436 

where they are better suited to grow compared to both trees and grasses.  437 

 438 

Figure 6 compares the geographical distribution of the simulated grass cover with the two 439 

observation-based estimates. The broad geographical distribution of simulated grass cover 440 

compares well with the two observation-based estimates with the notable exception of the Arctic 441 

region including Alaska and northern Canada, where the model overestimates grass cover. This 442 

overestimation of grass cover in the Arctic region is also the reason for the overestimation of 443 

total vegetation fraction and the underestimation of bare fraction that was seen earlier in Figures 444 

3 and 4 respectively.  445 

 446 

As shown in Figure 6, the spatial correlation and RMSD when comparing simulated grass cover 447 

to both observation-based estimates lie between 0.33 and 0.38 and between around 15-17%, 448 

respectively. The spatial correlation and RMSD between the two observation-based estimates 449 

themselves are 0.54 and around 9%, respectively. The two observation-based estimates disagree 450 

most markedly over the western half of the United States where the MODIS derived estimates of 451 

grass cover are higher.  452 

 453 

3.2.3 Needleleaf evergreen and broadleaf cold deciduous trees 454 

 455 

Figures 7a and 7b compare the geographical distribution of NDL EVG and BDL DCD CLD 456 

trees, respectively, with their observation-based estimates. These two are the primary tree PFTs 457 

which exist in the North American domain considered here.  458 

 459 
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In Figure 7a, the overall simulated coverage of NDL EVG trees is lower than both observation-460 

based estimates as was also seen in Figure 2b. The simulated values are primarily lower in 461 

western Canada and over a large area in the western United States according to estimates based 462 

on the modified WANG06 data set. This is also the case along the wide swath of the Canadian 463 

boreal forest. The model overestimates the coverage of NDL EVG trees in the eastern United 464 

States. The spatial correlation and RMSD when comparing simulated coverage of NDL EVG 465 

trees to both observation-based estimates lie between 0.36 and 0.40 and between around 16-17%, 466 

respectively. The spatial correlation and RMSD between the two observation-based estimates 467 

themselves are 0.52 and around 16%, respectively. 468 

 469 

The geographical distribution of BDL DCD CLD trees is compared with its observation-based 470 

estimates in Figure 7b. Although the simulated domain summed area of BDL DCD CLD trees (3 471 

 106 km2) is comparable to estimates based on the modified WANG06 (3.4  106 km2) and 472 

MODIS (2.9  106 km2) data sets, there are two primary limitations in its simulated geographical 473 

distribution. First, the simulated values are generally overestimated in Canadian boreal forests 474 

and underestimated in the eastern United States. Second, the model simulates near zero coverage 475 

in the arid south-western United States. The spatial correlation and RMSD when comparing 476 

simulated coverage of BDL DCD CLD trees to both observation-based estimates are around 0.3 477 

and around 12%, respectively. The spatial correlation and RMSD between the two observation-478 

based estimates themselves are 0.60 and around 8%, respectively. 479 

 480 

3.2.4 C3 and C4 grasses 481 

 482 

Figures 8a and 8b compare the simulated geographical distribution of C3 and C4 grasses with 483 

observation-based estimates.  484 

 485 

In Figure 8a, the most obvious limitation of the model is its excessive simulated grass coverage 486 

in Alaska and in Arctic Canada. Other than this, the model reproduces the broad geographical 487 

distribution of C3 grasses including the Great Plains of United States and the Canadian Prairies, 488 

where a large extent of grasslands is observed. The overestimated grass coverage at high 489 

latitudes leads to a total  simulated C3 grass area (4.4  106 km2) that is higher than estimates 490 
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based on the modified WANG06 (1.9  106 km2) and MODIS (2.8  106 km2) data sets. The 491 

spatial correlation and RMSD when comparing simulated coverage of C3 grasses to both 492 

observation-based estimates lie between 0.34-0.38 and between around 15-17%, respectively. 493 

The spatial correlation and RMSD between the two observation-based estimates themselves are 494 

0.54 and around 12%, respectively. 495 

 496 

Figure 8b shows the distribution of C4 grasses which mostly occur in the tropics and do not 497 

occupy large areas in North America (as was also seen in Figure 2b). The modelled geographical 498 

distribution of C4 grasses is larger than observation-based estimates but the absolute fractions 499 

remain small so that the simulated area covered over the whole domain (0.35  106 km2) is 500 

actually smaller than estimates based on the modified WANG06 (0.45  106 km2) and MODIS 501 

(0.7  106 km2) data sets. The spatial correlation and RMSD when comparing simulated 502 

coverage of C4 grasses to both observation-based estimates lie between 0.12-0.16 and between 503 

around 3-5%, respectively. The spatial correlation and RMSD between the two observation-504 

based estimates themselves are 0.62 and around 5%, respectively. 505 

 506 

3.2.5 Broadleaf evergreen and drought deciduous trees 507 

 508 

The least prevalent PFTs in the North American domain considered here are broadleaf evergreen 509 

(BDL EVG) and broadleaf drought deciduous (BDL DCD DRY) trees. As they are represented 510 

in the model these are primarily tropical PFTs and hence generally do not exist above around 30 511 

°N (see Figure 9), according to the bioclimatic limits used in the model for tree PFTs (Melton 512 

and Arora, 2016). In our simulations, these PFTs therefore exist near the southern edge of the 513 

United States. We do not evaluate spatial correlation and RMSD for these PFTs compared to the 514 

two observation-based estimates for three reasons: 1) the geographical distribution of these PFTs 515 

is limited to a small total area, 2) the geographical distribution of the BDL EVG tree PFT based 516 

on observations cannot be directly compared to simulated values because, when mapping land 517 

cover types to CTEM PFTs in WANG06, evergreen shrubs (which exist much farther north than 518 

30 °N) are assigned to the the BDL EVG tree PFT, and 3) the geographical distribution of the 519 

BDL DCD DRY tree PFT in the observation-based data sets is based on the arbitrary latitudinal 520 

thresholds of 24 °N and 34 °N as mentioned earlier.  521 
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 522 

3.3 LAI and GPP 523 

 524 

Figure 10 compares the geographical distribution of simulated LAI and GPP with observation-525 

based estimates for the present day.  In Figure 10a, the simulated geographical distribution of 526 

LAI compares well with the observation-based estimates. The spatial correlation and RMSD 527 

between simulated and observation-based estimates are 0.74 and 0.81 m2/m2, respectively. The 528 

domain averaged simulated LAI of 2.5 m2/m2 is higher than the observation-based estimate of 529 

2.1 m2/m2. The model captures the broad geographical patterns with higher LAI over the boreal 530 

forest region in Canada and also in the eastern United States similar to observations. However, 531 

some differences remain particularly over the drier southwest United States where the model 532 

simulates bare ground with negligible LAI but observations suggest a small LAI of around 1 533 

m2/m2. In contrast, the model slightly overestimates LAI over northern and Arctic Canada where 534 

it simulates a higher fractional coverage of C3 grasses, as seen earlier. 535 

 536 

Consistent with the geographical distribution of LAI, the simulated GPP is overestimated in the 537 

eastern United States and the Canadian boreal forest (Figure 10b). The broad geographical 538 

distribution of GPP, similar to LAI, is consistent with the observation-based estimates. The 539 

spatial correlation and RMSD between simulated and observation-based estimates are 0.78 and 540 

225 gC/m2.year, respectively. The domain averaged simulated GPP of 737 gC/m2.year is higher 541 

than the observation-based estimate of 628 gC/m2.year. As with LAI, the simulated GPP is lower 542 

than observations over the drier southwest region of the United States where the model simulates 543 

more bare ground than observation-based estimates, and the model overestimates GPP over the 544 

northern and Arctic Canada. 545 

 546 

Figure 11 shows the time series of annual domain averaged GPP, LAI, net primary productivity 547 

(NPP) and domain summed net biome productivity (NBP). The NBP term is essentially the net 548 

atmosphere-land CO2 flux which is the result of all terrestrial ecosystem processes including 549 

photosynthesis, autotrophic and heterotrophic respiration, fire and land use change. NBP values 550 

of zero indicate that the system is in equilibrium such that carbon gained by photosynthesis is 551 

equal to carbon lost by respiration and other processes. Simulated GPP, LAI and NPP all show 552 
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an increase over the 20th century due to the increase in atmospheric CO2 concentration and the 553 

associated change in climate. The increase in CO2 drives the increase in GPP and subsequently in 554 

NPP and LAI through the CO2 fertilization effect. The net result of this gradually increasing NPP 555 

is that the terrestrial ecosystems become a sink of carbon and this is seen in the resulting positive 556 

values of NBP. The simulated sink over the North American domain for the periods 1990-2000 557 

and 2000-2010 is around 0.4 and 0.5 Pg C/year, respectively. Crevoisier et al. (2010) compare 558 

the carbon sink over the North American region from five studies (their Table 1) for time periods 559 

in the 1990s and 2000s. These reported sinks vary from 0.81±0.72 to 1.26±0.23 Pg C/year for the 560 

period 1992-1996, 0.58 Pg C/yr for the period 2001-2006 and Crevoisier et al. (2010) themselves 561 

estimate a value of 0.51 ± 0.41 Pg C/yr for the period 2004-2006. The sinks simulated by 562 

CLASS-CTEM over the 1990s and 2000s are broadly consistent with these estimates. 563 

  564 

4 Discussion 565 

 566 

Allowing a terrestrial ecosystem model to simulate fractional coverages of its PFTs adds another 567 

degree of freedom to the model compared to the case where the fractional coverages of its PFTs 568 

are specified. This is a more stringent test of a model’s performance. Errors in the simulated 569 

geographical distribution of PFTs will, of course, lead to corresponding errors in the 570 

geographical distribution of primary terrestrial ecosystem carbon pools and fluxes. Yet, the 571 

CLASS-CTEM model is broadly able to reproduce the geographical distributions of GPP and 572 

LAI. Limitations, of course, remain. In particular, the simulated LAI and GPP are high in Alaska 573 

and in northern and Arctic Canada, and these variables are lower than their observation-based 574 

estimates in arid regions of the western United States. The simulated fractional vegetation 575 

coverage reflects these patterns.  576 

 577 

It is difficult to conclusively determine whether these model limitations are due to the limitations 578 

in the biogeochemistry parameterizations of the model for its existing PFTs or the simple 579 

structural limitation that the model does not represent shrub, moss and lichen PFTs. Shrubs are 580 

adapted to grow in arid and semi-arid regions, whether in cold or hot climates (where neither 581 

grasses nor trees are able to grow) and their representation in the model would likely help to 582 

increase the fractional vegetation cover in arid regions including those in the western United 583 
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States. At high latitudes grass growth is inhibited by mosses and lichens which flourish in cold 584 

and damp conditions. A representation of moss and lichen PFTs and improved representation of 585 

permafrost in the model would likely help to decrease simulated grass coverage in Arctic 586 

regions. In the current version of the CLASS-CTEM model bioclimatic limits are used only for 587 

tree PFTs to ensure that these PFTs do not venture outside their pre-determined bioclimatic 588 

zones. In the model, bioclimatic limits are not used for grasses and their geographical 589 

distribution is entirely the result of plant physiological processes and their competitive 590 

interactions with the tree PFTs and amongst themselves. Since, in the Arctic region, grasses do 591 

not face competition from tree PFTs, and moss and lichen PFTs are not represented in the model, 592 

they are free to increase their expanse – climate permitting, of course. Another possible reason 593 

for higher than observed grass coverage in the Arctic region is that in the current implementation 594 

of CLASS only three permeable soil layers with maximum thicknesses of 0.1, 0.25 and 3.75 m 595 

are represented and a boundary condition of zero heat flux is assumed across the bottommost 596 

layer. This simple representation does not allow to model permafrost realistically. Permafrost is 597 

more realistically modelled with multiple permeable and impermeable (extending into the bed 598 

rock) layers that go sufficiently deep (> 30 m at least) to capture the slow evolution of soil 599 

temperatures in response to climate warming (Teufel et al., 2017). The current set up of three 600 

layers that go only 4.1 m deep produces soil temperatures that are warmer than in the set up 601 

when permeable and impermeable layers are sufficiently deep and produces permafrost extent 602 

that is lower than observation-based estimates (Koven et al., 2013). It is likely that warmly 603 

biased soil temperatures in the current set up contribute to promote grass growth and allow it to 604 

cover a larger area in the Arctic region than would be the case when permafrost is more 605 

realistically modelled. 606 

 607 

The lower than observed fractional vegetation cover in the arid and semi-arid regions of the 608 

western United States, however, may not solely be due to model limitations alone. Here, we 609 

argue that the manner in which remotely sensed land cover types are mapped to CTEM PFTs, 610 

and the errors in calculating bare ground fraction in remotely sensed products also contribute to 611 

mismatch between modelled and observation-based values of fractional vegetation cover. We 612 

illustrate this by comparing the functional relationship between LAI and total vegetation cover. 613 

Figure 12a shows this relationship for model simulated values. As expected, as LAI increases so 614 
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does the total vegetation cover. The relationship between these two variables is fairly tight in the 615 

model and the green line is an exponential fit. The red dots in the figure correspond to grid cells 616 

that lie in the region identified in the inset in Figure 12d and broadly correspond to the western 617 

half of the United States. Figures 12b and 12c show the same relationship but between the 618 

observation-based estimate of LAI from Zhu et al. (2013) (as mentioned in Section 2.3.2) and the 619 

total vegetation cover based on the WANG06 and MODIS derived land cover data sets, 620 

respectively. The blue and magenta lines in Figures 12b and 12c are the corresponding 621 

exponential fits. When compared with Figure 12a, Figures 12b and 12c show much more scatter 622 

around the fitted curves, and the overall relationship appears to break down for the red dots 623 

corresponding to the grid cells in the western United States. A careful look at the red dots in 624 

Figures 12b and 12c shows that the observation-based vegetation cover in the Western United 625 

States for a large fraction of grid cells is around 60% regardless of the observation-based LAI 626 

which ranges between 0.1 and 1.5 m2/m2. Clearly, it is physically unrealistic to achieve fractional 627 

vegetation coverage of 60% below LAI values of 0.6 m2/m2 (the m2/m2 unit implies m2 of leaf 628 

area per m2 of ground area) and this indicates that the fractional vegetation cover in this region is 629 

likely overestimated in both observation-based data sets.  630 

 631 

There are at least two ways in which errors in total vegetation cover can occur. The first relates 632 

to the method by which the fractional vegetation cover is calculated for the land cover types in 633 

the original remotely sensed land cover products: that is, for the 22 land cover types in the 634 

GLC2000 data set upon which the WANG06 data are based and the 17 land cover types in the 635 

MODIS data set. An example of such an error for arid regions is illustrated by Lawley et al. 636 

(2014) who suggest that the MODIS soil fractional cover product, at least in its present form, is 637 

unsuited to monitoring sparsely vegetated arid landscapes and generally unable to separate soil 638 

from vegetation in situations where normalized difference vegetation index (NDVI) is low. The 639 

second way in which errors are introduced is through the mapping of the remotely sensed land 640 

cover types to the CTEM PFTs following Table 2 of WANG06 for the GLC2000 land cover 641 

types, and following Table 2 in this manuscript for the MODIS land cover types.  This mapping 642 

is based on available information in the literature but is also based on expert judgement which 643 

introduces subjectiveness. For instance, it is debatable what fraction of the “open shrublands” 644 

MODIS land cover type, which exists over much of the arid southwestern United States, is in 645 
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fact bare ground. In Table 2, we have allocated a value of 0.4 to this fraction following 646 

WANG06. Had WANG06 allocated a higher value than this to bare ground, our simulated values 647 

would have compared better with the observation-based values of bare ground fraction over arid 648 

regions. Nevertheless this would not have changed the relationship, or rather the lack thereof, 649 

between the observation-based estimates of LAI and the total vegetation cover in the western 650 

half of the United States seen in Figures 12b and 12c. 651 

 652 

The simulated areas covered by the primary two tree PFTs (NDL EVG and BDL DCD COLD) 653 

have their weaknesses but large differences also exist between the two observation-based 654 

estimates especially for the NDL EVG PFT. Modelling competition between two tree PFTs is 655 

much more difficult than between trees and grasses. In the latter case trees are always considered 656 

superior to grasses, but in the case of competition between two tree PFTs the superiority is based 657 

on parameterized colonization rates which depend on simulated NPP. Based on comparisons 658 

with observation-based estimates, the main limitation in model results here is that the model 659 

overestimates the coverage of NDL EVG trees, and underestimates the coverage of BDL DCD 660 

COLD trees in the eastern United States, while the opposite is true in western Canada. The 661 

model, of course, does not represent individual species, while in the real world competition 662 

occurs at the species level. One example of how additional PFTs in the CLASS-CTEM 663 

framework can lead to improved model performance is illustrated by Peng et al., (2014). This 664 

application of the model shows how sub-dividing the NDL EVG PFT into coastal and interior 665 

types for the province of British Columbia in Canada leads to improvement in simulated LAI and 666 

GPP. A recent attempt to explicitly represent physiological process in a model to simulate 667 

competition between needleleaf and broadleaf cold deciduous trees at a regional scale is 668 

illustrated in (Fisher et al., 2015) who incorporated the concepts from the Ecosystem 669 

Demographics (ED) model into the community land model – dynamic vegetation model (CLM-670 

DGVM). Their results provide some interesting insights; however, validation of this approach at 671 

the global scale over a wide range of PFTs remains challenging. 672 

 673 

Finally, one of the objectives of this study was to evaluate if resolving climate niches by 674 

performing CLASS-CTEM simulation at a finer resolution of 1° in this study allowed improved 675 

simulation of geographical distribution of PFTs than in the Melton and Arora (2016) study that 676 
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evaluated the competition module of the CLASS-CTEM model at 3.75° spatial resolution at the 677 

global scale. Figures 2 through 4 of Melton and Arora (2016) compare simulated geographical 678 

distributions of PFTs with WANG06 data. Comparing their results over North America with 679 

ones obtained here we note that the primary model limitations remain unchanged in the 680 

application of the model at both spatial resolutions. These include lower simulated fractional 681 

vegetation coverage in the arid south-west North American region and higher in the Arctic 682 

region (due to higher grass coverage). In addition, in both applications of the model the 683 

differences in simulated geographical distribution of NDL EVG and BDL DCD CLD PFTs, 684 

compared to the WANG06 land cover data, are also similar. Model differences, compared to the 685 

WANG06 data, therefore remain more or less similar in the application of the model at both 686 

spatial resolutions. 687 

 688 

The comparison between observation-based and simulated fractional coverages is the most 689 

robust at the basic tree-grass-bare ground level. The subjectiveness introduced in the process of 690 

mapping remotely sensed land cover types to the PFTs represented in a model, as mentioned 691 

above, makes the comparison of simulated and observation-based fractional coverages for 692 

individual PFTs less robust. Nevertheless, comparisons with observations allow useful insights 693 

into model limitations as we have seen here.  694 

 695 

 696 

5 Summary and conclusions 697 

 698 

This study evaluates the CLASS-CTEM simulated fractional coverages of PFTs, when driven 699 

with observed climate forcing, against the observation-based estimates from MODIS and the 700 

modified WANG06 data sets over the North American region. In the past, performance of the 701 

competition module of the CLASS-CTEM modelling framework has been assessed at global 702 

scale, at a coarse spatial resolution of 3.75° (Melton and Arora, 2016), as well as at point scale, 703 

for a range of locations across the globe (Shrestha et al., 2016). Our objective here was to assess 704 

the performance of the CLASS-CTEM competition module at a higher spatial resolution of 1° 705 

over North America. To achieve this objective we compared simulated present day geographical 706 
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distributions of fractional coverages of PFTs, but also LAI and GPP with their observation-based 707 

estimates. 708 

 709 

The CLASS-CTEM modelling framework is generally able to reproduce the dominant features 710 

of the geographic distribution of PFT coverage, and LAI and GPP over the North American 711 

region. After 1960, the model simulates increasing GPP and LAI in response to changing climate 712 

as well as increased atmospheric CO2 concentrations and the resulting sink for the 1990s and 713 

2000s is broadly consistent with other estimates.  714 

 715 

The simulated geographical distribution of PFTs, when compared to observation-based 716 

estimates, show two primary limitations which are excessive grass cover in the Arctic region and 717 

low vegetation cover in the arid western United States, although for the latter the observation-718 

based estimates themselves may have their own weaknesses. There are three main factors in the 719 

CLASS-CTEM modelling framework that may have contributed to these differences: 1) the 720 

absence of a shrub PFT, which we believe is the reason for low simulated vegetation coverage in 721 

the arid to semi-arid western United States, 2) the absence of moss and lichen PFTs that may 722 

inhibit the establishment of grasses, and 3) probably a lack of sensitivity of C3 grasses to high 723 

latitude climate and an inadequate representation of permafrost. Future model developments will 724 

focus on these aspects with a view to improving model performance.  725 
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 907 

 908 

Table 1: Plant functional types (PFTs) represented in CTEM and their relation to CLASS PFTs. 909 

 910 

  911 

CLASS PFTs CTEM PFTs CTEM PFT Symbol 

Needleleaf trees Needleleaf Evergreen trees NDL-EVG 

 Needleleaf Deciduous trees NDL-DCD 

Broadleaf trees Broadleaf Evergreen trees BDL-EVG 

 Broadleaf Cold Deciduous trees BDL-DCD-CLD 

 Broadleaf Drought/Dry Deciduous trees BDL-DCD-DRY 

Crops C3 Crops CROP-C3 

 C4 Crops CROP-C4 

Grasses C3 Grasses GRASS-C3 

  C4 Grasses GRASS-C4 
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Table 2: Reclassification of the 17 MODIS land cover classes into the nine CTEM PFTs  

SN Items 
Tree 

Crop Grass Bare  Reference  
NDL EVG NDL DCD BDL EVG BDL DCD 

1 Woody Savanna     0.1 0.4  0.25 0.25 Dai et al.  (2001) 

2 Water bodies        1  

3 Urban built up areas 0.05   0.05  0.1 0.8 Dai et al. (2001) 

4 Savanna   0.05 0.3  0.4 0.25 Wang et al. (2006) 

5 Permanent Wetlands      0.25 0.75 Dai et al. (2001) 

6 Permanent snow and ice       1 Wang et al. (2006) 

7 Open Shurblands 0.1   0.15  0.35 0.4 Wang et al. (2006) 

8 Needleleaf evergreen 1       Wang et al. (2006) 

9 Needleleaf deciduous  0.8    0.1 0.1 Wang et al. (2006) 

10 Mixed forest 0.45   0.45  0.1  Wang et al. (2006) 

11 Grasslands      0.65 0.35 Wang et al. (2006) 

12 Croplands     0.9  0.1 Wang et al. (2006) 

13 Cropland natural veg. mosaic   0.2  0.5 0.2 0.1 Wang et al. (2006) 

14 Closed shrublands 0.2 0.2  0.4  0.2  Wang et al. (2006) 

15 Broadleaf evergreen   1     Wang et al. (2006) 

16 Broadleaf deciduous    1    Wang et al. (2006) 

17 Bare ground          1 Wang et al. (2006) 
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 1 

 2 

 3 

 4 

Figure 1. Spatial distribution of mean annual a) precipitation (mm), and b) temperature (°C) 5 

across North America. Grid cells with permanent ice/glaciers have been masked out. 6 

   7 
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 8 

 9 

Figure 2. Comparison of observation-based and simulated vegetation areas summed over the 10 

North American domain a) grass, treed, crop, bare ground and total vegetated area, b) individual 11 

PFT areas, and c) evolution of simulated vegetation areas summed over the domain.  12 
   13 
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 14 

 15 

Figure 3. Spatial distribution of total vegetated coverage across North America. Simulated, 16 

observation-based, and differences are presented in the left, middle and right columns, 17 

respectively. The differences column includes model biases with respect to WANG06 (top panel) 18 

and MODIS (middle panel), and the difference between the two observation-based estimates 19 

(bottom panel). Root mean square difference (rmsd) and coefficient of determination (r2) are also 20 

shown in each case.  21 

   22 
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 23 

 24 

Figure 4. Spatial distribution of bare ground coverage across North America. Simulated, 25 

observation-based, and differences are presented in the left, middle and right columns, 26 

respectively. The differences column includes model biases with respect to WANG06 (top panel) 27 

and MODIS (middle panel), and the difference between the two observation-based estimates 28 

(bottom panel). Root mean square difference (rmsd) and coefficient of determination (r2) are also 29 

shown in each case.  30 

 31 

 32 

Biogeosciences Discuss., doi:10.5194/bg-2017-35, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 6 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



36 
 

 33 

Figure 5. Spatial distribution of tree coverage across North America. Simulated, observation-34 

based, and differences are presented in the left, middle and right columns, respectively. The 35 

differences column includes model biases with respect to WANG06 (top panel) and MODIS 36 

(middle panel), and the difference between the two observation-based estimates (bottom panel). 37 

Root mean square difference (rmsd) and coefficient of determination (r2) are also shown in each 38 

case.  39 

   40 
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 41 

 42 

Figure 6. Spatial distribution of grass coverage across North America. Simulated, observation-43 

based, and differences are presented in the left, middle and right columns, respectively. The 44 

differences column includes model biases with respect to WANG06 (top panel) and MODIS 45 

(middle panel), and the difference between the two observation-based estimates (bottom panel). 46 

Root mean square difference (rmsd) and coefficient of determination (r2) are also shown in each 47 

case.  48 

 49 

 50 

   51 
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 52 

Figure 7. Spatial distribution of a) needleleaf evergreen tree, and b) broadleaf cold deciduous tree 53 

across North America. Simulated, observation-based, and differences are presented in the left, 54 

middle and right columns, respectively. The differences column includes model biases with 55 

respect to WANG06 (top panel) and MODIS (middle panel), and the difference between the 56 

observation-based estimates (bottom panel). Root mean square difference (rmsd) and coefficient 57 

of determination (r2) are also shown in each case.  58 
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 59 

Figure 8. Spatial distribution of a) C3 grasses, and b) C4 grasses across North America. 60 

Simulated, observation-based, and differences are presented in the left, middle and right 61 

columns, respectively. The differences column includes model biases with respect to WANG06 62 

(top panel) and MODIS (middle panel), and the difference between the the observation-based 63 

estimates (bottom panel). Root mean square difference (rmsd) and coefficient of determination 64 

(r2) are also shown in each case. 65 

Biogeosciences Discuss., doi:10.5194/bg-2017-35, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 6 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



40 
 

 66 

 67 

 68 

 69 

 70 

 71 

Figure 9. Spatial distribution of a) broadleaf evergreen tree, and b) broadleaf dry deciduous tree 72 

across North America. Simulated, WANG06 and MODIS distribution are presented in the left, 73 

middle and right columns, respectively.  74 
 75 

 76 

 77 

 78 

   79 
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 81 

 82 

 83 

Figure 10. Spatial distribution of a) grid averaged maximum LAI (m2 m-2), and b) grid averaged 84 

GPP (g C m2 y-1) across North America. Simulated, observation-based, and differences between 85 

them are presented in the left, middle and right columns, respectively. Root mean square 86 

difference (rmsd) and coefficient of determination (r2) are also shown in each case. 87 

   88 
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 89 
 90 

 91 

Figure 11. Time series evolution of a) domain averaged GPP (g C m-2 y-1), b) domain averaged 92 

LAI (m2 m-2), c) domain total NBP (Pg C m-2 y-1), and d) domain averaged NPP (g C m-2 y-1). 93 

   94 
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 96 

 97 

 98 

Figure 12. Scatter plots of a) simulated LAI vs. simulated total vegetation  coverage, b) observed 99 

LAI vs. MODIS-derived total vegetation coverage, c) observed LAI vs. WANG06 total 100 

vegetation coverage. Plot d) shows a comparison of the fitted curves represented by solid lines, 101 

with an inset map of North America showing the sub-domain of interest bounded by a red 102 

rectangle.   103 
 104 
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