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The Southern Ocean forms an important component of the global carbon cycle as a sink of CO, and heat.

Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth System

\ V2 Changes 2018/3/6 6:53 PM
[ Deleted: .
" | Formatted

R\
(FCO,) and poorly compare with available pbservations estimates jn the Southern Ocean. Because the

Models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO, flux

\ [Goaliiciin)
[l V2 Changes 2018/3/6 6:53 PM
seasonal cycle is the dominant mode of CO, variability in the Southern Ocean, its proper simulation is \ Formatted e
i .
necessary to model long-term oceanic CO, changes and their related climate jmpacts. Here we examine the V2 Changes 2018/3/6 6:53 PM
competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of \ ‘» V2 Changes 2018/3/6 6:53 PM
pCO; in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models, ormatted i)
- V2 Changes 2018/3/6 6:53 PM
comparing them with observational products. We find that despite significant differences in the spatial | Deleted: ESM)
characteristics of the mean annual fluxes, models show greater zonal homogeneity in the seasonal cycle of || | | INCESAESCEPINEIRIHCEE N
Formatted [

FCO, than observational products. The CMIP5 models can be grouped into one or the other of two main ; V2 Changes 2018/3/6 6:53 PM

categories (group-SST and group-DIC) while observational products show a modest influence of both, witha | Deleted: representation

V2 Changes 2018/3/6 6:53 PM
dominance of DIC changes as the main driver of seasonal FCO, variability. Group-SST models show an Formatted
exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during V2 Changes 2018/3/6 6:53 PM
) ) ) ) | Deleted: poorly to
the cooling and warming peaks. The higher-than-observed rates of SST change tip the control of the ™\/2 Changes 2018/3/6 6:53 PM
seasonal cycle of pCO, and FCO, towards SST and result in a divergence between the observed and Formatted [l )
V2 Changes 2018/3/6 6:53 PM
Deleted: This
10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively V2 Changes 2018/3/6 6:53 PM
Formatted [
V2 Changes 2018/3/6 6:53 PM

production, such that biologically.driven DIC changes mainly regulate the seasonal cycle of FCO,. Group- " | Deleted: -observations bias has imp@ZoI

V2 Changes 2018/3/6 6:53 PM
Formatted

modelled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analysed models (9 out of

the group-DIC models) compensate the solubility bias because of their overly-exaggerated primary

DIC models reproduce the observed phasing of FCO, as a result of an incorrect scaling of the 1 |

biogeochemical fluxes. In the Antarctic zone, CMIP5 models compare better with observations relative to | V2 Changes 2018/3/6 6:53 PM
Deleted: feedbacks. In this study,
| V2 Changes 2018/3/6 6:53 PM
21 | Deleted: used a specialized diagnost@[231™
I V2 Changes 2018/3/6 6:53 PM
| Formatted
V2 Changes 2018/3/6 6:53 PM
Formatted

V2 Changes 2018/3/6 6:53 PM

V2 Changes 2018/3/6 6:53 PM

Formatted

V2 Changes 8/3/6 6:53 PM

V2 Changes 8/3/6 6:53 PM

| Formatted el

V2 Changes 2018/3/6 6:53 PM

V2 Changes 2018/3/6 6:53 PM
. | Formatted [
V2 Changes 2018/3/6 6:53 PM
V2 Changes 2018/3/6 6:53 PM
| Formatted 128

V2 Changes 2018/3/6 6:53 PM




101
102
103
104
105
106
107

108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

V2 Changes 2018/3/6 6:53 PM

the Sub-Antarctic Zone. This is mostly because both the CMIP5 models and the observational product show Deleted: influence of these two extremes,
observations show a modest influence of

a spatial and temporal uniformity in the characteristics of FCO, in the Antarctic zone. It is unfortunately not both, with a dominance of DIC regulation. We
found that CMIP5 models overestimate

possible to assess if CMIP5 models effectively perform better in this region or if the observational products cooling and warming rates during autumn and

spring with respect to observations. Because
of this, the role of solubility is overestimated,
particularly during these seasons (autumn and
spring) in group B models, to the extent of
useful tool to diagnose the dominant drivers. contradicting the biological CO; uptake during
spring. Group A does not show this solubility
driven bias due to the overestimation of DIC

\ draw down. This finding strongly implies that
1. Introduction the inability of the CMIP5 ESMs to resolve CO,
biological uptake during spring might be
crucially related to the sensitivity of the pCO,
to temperature in addition to underestimated

The Southern Ocean (south of 30°S) takes up about a third of the total oceanic CO, uptake, slowing down biological CO, uptake.
V2 Changes 2018/3/6 6:53 PM

Deleted: .

are limited by the lack of in situ data. The suggested mechanisms should be investigated further with CMIP6

models and new available data from autonomous platforms, and our analysis framework is proposed as a

the accumulation of CO, in the atmosphere (Fung et al., 2005; Le Quere et al., 2016; Takahashi et al., 2012).

The combination of upwelling deep ocean circumpolar waters (which are rich in carbon and nutrients) and V2 Changes 2018/3/6 6:53 PM
' | Formatted: Font:11 pt, Not Bold

V2 Changes 2018/3/6 6:53 PM

the subduction of fresh-colder mid-latitude waters makes it a key region in the role of sea-air gas exchange

|

and heat (Barbero et al., 2011; Gruber et al., 2009; Sallée et al., 2013). The Southern Ocean supplies about Deleted: The Southern Ocean takes up
about a third of the total oceanic CO, uptake,
a third of the total nutrients responsible for biological production north of 30°S (Sarmiento et al., 2004), slowing down the accumulation of CO, in the
. . atmosphere (Fung et al., 2005; Le Quere et al.,
and accounts for about 75% of total ocean heat uptake (Frélicher et al., 2015). Recent studies suggests that 2016; Takahashi et al., 2012). The

combination of upwelling deep ocean
circumpolar waters, rich in carbon and
nutrients, and the subduction of fresh and
colder mid-latitude waters makes it a key

the Southern Ocean CO, sink is expected to change as result of anthropogenic warming, however, the sign

and magnitude of the change is still disputed (Leung et al., 2015; Roy et al., 2011; Sarmiento et al., 1998;

Segschneider and Bendtsen, 2013). While some studies suggest that the Southern Ocean CO, sink is region in the role of sea-air exchange (Barbero
N etal., 2011; Gruber et al., 2009; Sallée et al.,
weakening and will continue to do so (e.g. Le Quéré et al., 2007; Son and Gerber, 2010; Thompson et al., 2013). The Southern Ocean supplies about a
third of the total nutrients responsible for
2011), other recent studies infer an increasing CO, sink (Landschutzer et al., 2015; Takahashi et al., 2012; biological production north of 30°S
(Sarmiento et al., 2004), and accounts for
Zickfeld et al., 2008). about 75% of total oceanic heat uptake

(Frélicher et al., 2015). The century scale

evolution of the Southern Ocean CO, @27 [32]D

Although the Southern Ocean plays a crucial role as a CO, reservoir and regulator of nutrients and heat, it < V2 Changes 2018/3/6 6:53 PM
Formatted: normal

remains under-sampled, especially during the winter season (JJA, Australian annual cycle) (Bakker et al., B \/2 Changes 2018/3/6 6:53 PM

2014; Monteiro et al., 2010). Consequently we largely rely on Earth System Models (ESM), inversions and Deleted: Thus,

V2 Changes 2018/3/6 6:53 PM

Deleted: although

Ocean. The Coupled Model Intercomparison Project (CMIP) provides an example of such a globally V2 Changes 2018/3/6 6:53 PM

organized platform (Taylor et al., 2012). Recent studies based on CMIP5 ESMs, forward and inversions /
@y \/2 Changes 2018/3/6 6:53 PM

models show that CMIP5 models agree on the CO, annual mean sink, they disagree with available " | Deleted: and they are out of phase with
' observations

observations on the phasing of the seasonal cycle of sea-air CO, flux (FCO,) in the Southern Ocean (e.g. / B V2 Changes 2018/3/6 6:53 PM
Anav et al., 2013; Lenton et al,, 2013), ,m

V2 Changes 2018/3/6 6:53 PM
Formatted o

P/ V2 Changes 2018/3/6 6:53 PM
~ | Formatted: Default Paragraph Font

ocean models for both process understanding and future simulation of CO, processes in the Southern




210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

The seasonal cycle is a major mode of variability for chlorophyll (Thomalla et al., 2011) and CO; in the

Southern Ocean (Monteiro et al., 2010; Lenton et al., 2013). The large-scale seasonal states of sea-air CO,

fluxes (FCO,) in the Southern Ocean comprise of extremes of strong summer jngassing with a weaker

Jngassing or even outgassing jn winter (Metzl et al., 2006). These extremes are linked by the autumn and

spring transitions. In autumn CO, ingassing weakens linked to the increasing entrainment of sub-surface

waters, which are rich in dissolved inorganic carbon (DIC), (Lenton et al., 2013; Metzl et al., 2006;

Sarmiento and Gruber, 2006). During spring, the jncrease of primary production consumes DIC at the

surface and increases the ocean capacity to take up atmospheric CO, (Gruber et al., 2009; Le Quéré and
Saltzman, 2013; Pasquer et al., 2015; Gregor et al., 2017). The increase of sea surface temperature (SST) jn

summer educes surface CO; solubility, which counteracts the biological uptake and reduces the CO, flux

from the atmosphere (Takahashi et al., 2002; Lenton et al., 2013).

v

FCO, is also spatially variable in the Southern Ocean at the seasonal scale. North of 50°S is generally the
main CO, uptake zone (Hauck et al., 2015; Sabine et al., 2004). This region forms a major part of the sub-

Antarctic zone and is characterized by the confluence of upwelled, colder and nutrient-rich deep

circumpolar water and mid-latitudes warm water (McNeil et al., 2007; Sallée et al., 2006) . It is

characterized by enhanced biological uptake during spring and solubility driven CO, uptake due to cool

surface waters (Marinov et al., 2006; Metzl, 2009; Takahashi et al., 2012). South of 60°S towards the

marginal ice zone, CO, fluxes are largely dominated by outgassing, driven by the upwelling of circumpolar

waters, which are rich in DIC (Matear and Lenton, 2008; McNeil et al., 2007).

The inability of CMIP5 ESM to simulate a comparable FCO, seasonal cycle with available observations <
estimates in the Southern Ocean has been the subject of recent literature (e.g. Anav et al., 2013; Kessler
and Tjiputra, 2016) and the mechanisms associated with these biases are still not well understood. This

model-observations disagreement highlights that the current ESMs might not adequately capture the

dominant seasonal processes driving the FCO, in the Southern Ocean. It also questions the sensitivity of

models to adequately predict the Southern Ocean century scale CO, sink and its sensitivity to climate
change feedbacks (Lenton et al., 2013). Efforts to improve simulations of CO, properties with respect to
observations in the Southern Ocean are ongoing using forced ocean models (e.g. Pasquer et al., 2015;

Rodgers et al., 2014; Visinelli et al., 2016, Rosso et al., 2017). However it remains a challenge for fully

coupled simulations. In a previous study, we developed a diagnostic framework to evaluate the seasonal
characteristics of the drivers of FCO, in ocean biogeochemical models (Mongwe et al., 2016). \We here

apply this approach to 10 CMIP5 models against observation product estimates in the Southern Ocean. The

subsequent analysis is divided as follows; the methods section (section 2) explains our methodological

e
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approach, followed by results (section 3), which comprise four subjections. Section 3.1 explores the spatial

variability of the annual mean representation of FCO, in the 10 CMIP5 models against observation product

estimates; section 3.2 quantitatively the biases in the FCO, seasonal cycles in the 10 models. Section 3.3

investigates surface ocean drivers of FCO, changes (temperature driven solubility and primary production),

and finally section 3.4 examines the source terms in the DIC surface budget (primary production,
entrainment rates and vertical gradients) and their role in surface pCO, changes. The discussion (section 4)
is an examination of the mechanisms behind the pCO, and FCO, biases in the models. We conclude with a

synthesis of the main findings and implications.

A

2. Methods
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The Southern Ocean is here defined as the ocean south of the Sub-Tropical Front (STF, defined according to <.

Orsi et al., (1995), 11.3°C isotherm at 100m). It is divided into two main domains, the Sub-Antarctic Zone;

between the STF and the Polar Front (PF: 2°C isotherm at 200m) and the Antarctic Zone, south of the PF.

Within the Sub-Antarctic Zone and Antarctic Zone, we further partition the domain into the three main
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basins of the Southern Ocean i.e. Pacific, Atlantic and the Indian Ocean.

2.1 Observations datasets

B V2 Changes 2018/3/6 6:53 PM

§ /2 Changes 2018/3/6 6:53 PM

We used the Landschitzer et al (2014) data product (FCO, and partial pressure of CO, (pCO,) as the main

suite of observations-based estimates against to which compare the models throughout the analysis.
Landschutzer et al (2014) dataset is synthesized from Surface Ocean CO, Atlas version 2 (SOCAT2)

observations and high resolution winds using a Self Organizing Map (SOM) through a Feed Forward Neural

Network (FNN) approach (Landschiitzer et al., 2013). While Landschiitzer et al (2014) dataset is based on

more in situ observations (SOCAT2, 15 million source measurements Bakker et al., 2014) in comparison to

Takahashi et al., 2009 (3 million surface measurements), used in Mongwe et a., (2016). We are nevertheless

mindful that due to paucity of observations in Southern Ocean, this data product is still subject to

significant uncertainties discussed in Ritter et al., (2018). To evaluate the uncertainty between data
products we compare the Landschitzer et al (2014) data with Gregor et al (2017) data product, which is
based on two independent empirical models:Support Vector Regression (SVR) and Random Forest

Regression (RFR) as well as against Takahashi et al (2009) for pCO, in the Southern Ocean. We compare

pCO; instead of FCO; firstly, because Gregor et al., (2017) only provided fugacity and pCO,, and being

mindful that the choice of wind product and transfer velocity constant in computing FCO, would increase

LA
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the level of uncertainty (Swart et al., 2014). Secondly, while the focus of the paper is on the examination

biases in the air-sea flux of CO,, the major part of our diagnostic analysis is based on pCO,, which primarily

determines the direction and part of the magnitude of the fluxes. We find that the three data products

agree on the seasonal phasing of pCO, in the Sub-Antarctic zone, but they show differences in the

magnitudes (Fig. S1). In the Antarctic zone, all three datasets agree in both phasing and amplitude (Fig. S1).
At this stage it is not clear whether this agreement is due to all the methods converging even with the
sparse data or the reason for agreement is the lack of observations is reason for the agreement.

Nevertheless more independent in situ observations will be helpful to resolve this issue In this regard float

observations from the SOCCOM program (Johnson et al., 2017) and glider observations (Monteiro et al.,

2015) for example are likely to become helpful in resolving these data uncertainties in addition to ongoing

ship based measurements.

We also used the Takahashi et al. (2009) in situ FCO, dataset as a complementary source for comparison of

spatial FCO, properties in the Southern Ocean. Takahashi et al., (2009) data estimates are comprised of a

compilation of about 3 million surface measurements globally, obtained from 1970 — 2000 and corrected

for reference year 2000. This dataset is used, as provided, on a 4° (latitude) x 5° (longitude) resolution.

Using monthly mean sea surface temperature (SST) and salinity from the World Ocean Atlas 2013 (WOA13)

dataset (Locarnini et al., 2013), we reconstructed total alkalinity (TAIk) using the Lee et al. (2006)
formulation. We also use this dataset as the main observations platform in section 2.3. To calculate the

uncertainty of the computed TAlk, we compared the calculated total alkalinity (TAlkeps) based on ship

measurements of SST and surface salinity dataset with actual observed TAlkqs of the same measurements

for a set of winter (August) data collected in the Southern Ocean. We found that TAlkc. compares well with

TAlKobs (R* = 0.79) (Fig. S2, Supplementary). We then used this computed monthly TAlk and pCO, from
Landschitzer et al (2014) to compute DIC using CO2SYS (Pierrot et al., 2006,

http://cdiac.ornl.gov/ftp/co2sys/CO2SYS_calc_XLS v2.1), using K1, K2 from Mehrbach et al., 1973 refited
by Dickson and Millero, 1987. For interior ocean DIC, we used the Global Ocean Data Analysis Project
version 2 (GLODAP2) annual means dataset (Lauvset et al., 2016). The Mixed Layer Depth (MLD) data was

taken from de Boyer Montégut et al. (2004), on a 1° x 1° grid, the data is provided as monthly means

climatology and was used as provided. We also use satellite chlorophyll dataset from Johnson et al., (2013).

2.2 CMIP5 Model data <
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401 | 2.3 Sea-Air CO; Flux Drivers; The Seasonal Cycle Diagnostic Framework
402
403
404 | The seasonal cycle diagnostic framework was developed as a way of scaling the rates of change of SST and
405 the total DIC driven changes to the seasonal cycle of pCO, on a common DIC scale (Mongwe et al., 2016).
406 We use the framework to explore how understanding differences emerging from the temperature and DIC
407 driven CO, variability could be helpful as a diagnostic of the apparent observations -model seasonal cycle %
408 | biasesin the Southern Ocean. %!
409 i
410 The total rate of change of DICin the surface layer consists of the contribution of air-sea exchanges, i
411 biological, vertical and horizontal transport-driven changes (Eq. 1). ‘
412 \
apIC apIC apIC apIC apIC
413 ’(T)Tot - (?)air—sea * (T)Bio * (?)Vert * (?)Hur ()
414 Because we used zonal means from medium resolution models, we assume that the horizontal terms are
415 negligible, which leaves air-sea exchange, vertical fluxes (advection and diffusion) and biological processes
416 as the dominant drivers of DIC. In order to constrain the contribution of temperature on the seasonal |
417 | variability of pCO, and FCO, we derived a new “DIC equivalent term” (DIC;) defined as the magnitude of DIC :‘
418 change that would correspond to a change in pCO, driven by a particular temperature change. In this way :
419 the ApCO,, driven solely by modelled or observed temperature change, is converted into equivalent DIC |
420 units, which allows its contribution to be scaled against the observed or modelled total surface DIC change
421 | (Eq.1).
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This calculation of DIC; is done in two steps: firstly, the temperature impact on pCO, is calculated using the

Takahashi et al., (1993) empirical expression that linearizes the temperature dependence of the equilibrium

constants.
9pCOo, _ apCo,
(2 )SST = 0.0423 x pCO, x (L2) 2)

Though this relationship between dSST and dpCO; is based on a linear assumption (Takahashi et al., 1993),

this formulation has been shown to hold and has been widely used in literature (e.g. Bakker et al., 2014;

Feely et al., 2004; Marinov and Gnanadesikan, 2011; Takahashi et al., 2002; Wanninkhof et al., 2010;

Landschiitzer et al., 2018). We show in the supplementary material that the extension of this expression

into polar temperature ranges (SST < 2°C) only introduces a manor additional uncertainty of 4 -5% (SM Fig.

S4)

Secondly, the temperature driven change in pCO, is converted to an equivalent DIC; using the Revelle

factor.

(BDICT) B pIC (31}502) (3)
ot Jsst  ¥YpicxpCOz \ dt Jgsr

Here we also used a fixed value for the Revelle Factor (ypic=14), typical of polar waters the Southern Ocean

but in order to assess the error linked to this assumption. We recomputed the Revelle factor in the Sub-
Antarctic and Antarctic zones using annual mean climatologies of TAIk, salinity, sea surface surface

temperature and nutrients. Firstly we examined DIC changes for the nominal range of pCO, change (340 —

399 patm:1 patm intervals) and then used this dataset to derive the Revelle factor. The range of calculated

Revelle factors in the Southern Ocean was between ypc ~ 12 — 15.5 with an average of ypic= 13.9+1.3. This

justifies our use of ypc = 14 for the conversion of the solubility driven pCO, change to an equivalent DIC
(DICT) throughout the analysis. We have provided the uncertainty that this conversion makes into the
temperature constraint DICy, by using the upper and lower limits of the Revelle factor (ypic =12 — 15.5) in

the model framework. In the Supplementary Material (Fig. S5) we show an examples for observations in

the Sub-Antarctic and Antarctic zones, which show that the extremes of the Revelle factor values (ypic = 12

—15.5) do not alter the phasing or magnitude of the relative controls of temperature or DIC on the seasonal

cycle of pCO,.

The rate of change of DIC was discretized on a monthly mean as follows:

V2 Changes 2018/3/6 6:53 PM
Formatted: normal, Right, Tabs: 7,62 cm,
Centered + 15,24 cm, Right,
Position:Horizontal: Left, Relative to:
Column, Vertical: In line, Relative to:
Margin, Wrap Around

P/ V2 Changes 2018/3/6 6:53 PM
| Formatted: Default Paragraph Font




469

470

471
472
473

474
475
476
477
478

479

480
481
482
483
484
485

486
487
488
489

490

491

492

493

494
495
496
497

(BDICT) (ADIC) DICp41,—DICy (a)
= |— = “
at /gsT At Iy 1month

Where n is time in month, | is vertical level (in this case the surface, I=1). We here take the forward

derivative such that November rate is the difference between December the 15" and November the 15",

thus being centered at the interval between the months.

Finally, to characterize periods of temperature or DIC dominance as main drivers of the instantaneous

(monthly) pCO, change we subtract Eq. 4 from Eq. 1, which yields a residual indicator Mr.pic Eq. 5. Mrpc is

then used as indicator of the dominant driver of instantaneous pCO, changes, in this scale monthly time

scale.

(5)

M B |(BDICT) | |(6D1C)
repie = ot Jssr ot Jrot

Mrpic >0 indicates that the pCO, variability is dominated by the temperature driven solubility and when

Mr.pic <0, it indicates that pCO, changes are mainly modulated by DIC processes (i.e. Biological CO, changes

and vertical scale physical DIC mechanisms). We also the following DIC processes; i.) Biological DIC changes

using chlorophyll, NPP, export carbon, surface oxygen, and ii.) . Physical DIC mechanisms using estimated

entrainment rates at the base of the mixed layer: details of this calculation are in section 2.4.

In the Southern Ocean, salinity and TAlk are considered lower order drivers of the seasonal cycle of pCO,

(Takahashi et al., 1993). In the supplementary material (Fig. S6), we show that salinity and TAlk do not play

a major role as drivers of the local seasonal cycle of pCO,. We do so by computing the equivalent rate of

change of DIC resulting from seasonal variability of salinity and TAlk as done for temperature (Eq. 2), i.e.

still assuming empirical linear relationships from Takahashi et al (1993): (112((7;—2(;;)) = —9.4) and(% =

0.94). By applying these relationships to the model data, we confirmed that indeed salinity and TAlk are

secondary drivers of pCO, changes i.e. [(%) ]
Tot

at =5 umol kg™ month™, while [(M)Tot]

at

averagl average

aDIC

= 0.6 umol kg™ month™ and [(—) ] = 0.4 pmol kg™ month™.
TAlk

ot maximum

The seasonal cycle of the ocean-atmosphere pCO, gradient (ApCO,) is the main driver of the variability of
FCO, over comparable periods (Sarmiento and Gruber, 2006; Wanninkhof et al., 2009; Mongwe et al.,
2016). Wind speed plays a dual role as a driver of FCO,: it drives the seasonal evolution of buoyancy-

mixing dynamics, which influences the biogeochemistry and upper water column physics but these
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processes are incorporated into the variability of the DIC. Wind speed also drives the rate of gas exchange

across the air - seas interface (Wanninkof et al., 2013) however, because winds in the Southern Ocean do

not have large seasonal variation (Young, 1999), for this analysis we neglect the role of wind as secondary

driver of the seasonal cycle of FCO,. Consequently, the seasonal cycle of FCO, is directly linked to surface

pCO, are driven by changes in temperature, salinity, TAlk and DIC (Sarmiento and Gruber, 2006;
Wanninkhof et al., 2009). In this analysis we use this assumption as a basis to explore how the seasonal
variability of temperature and DIC regulate the seasonal cycle of pCO, in CMIP5 models relative to

observational product estimates.

2.4 Entrainment mixing .

CO, uptake by the Southern Ocean has been shown to weaken during winter in the Southern Ocean linked

to the entrainment of sub-surface DIC as the MLD deepens (e.g. Lenton et al., 2013; Metzl et al., 2006;

Takahashi et al., 2009). Here we estimate this rate of entrainment (RE) using Eq. 6, which estimate the

advection of preformed DIC at the base of the mixed layer:

RE = U, (ag’f)mw (6)
REx = (*2) (555 o )
(85),,, = P ®

In which U, is an equivalent entrainment velocity based on the rate of change of the MLD. This

approximation of vertical entrainment is necessary as it is not possible to compute this term from the

CMIP5 data because the vertical DIC distribution is only available as annual means. We use the entrainment

rates to estimates the influence of subsurface/bottom DIC changes on surface DIC changes driven and

subsequently pCO, and FCO,. Because we are mainly interested in the period autumn — winter, where the
MLD > 60 m in the Sub-Antarctic zone and > 40 m in the Antarctic zone, at this depth seasonal variations in

DIC are anticipated to be minimal thus these estimates can be used. The monthly and annual mean DIC

from a NEMO PISCES 0.5 x 0.50 model output was used to estimate the uncertainty by comparing RE

computed from both(Dufour et al., 2013). We found that the annual and monthly estimates to be indeed

comparable with minimal differences (not shown). It is noted as a caveat that this rate of entrainment is

only a coarse estimate because we were using annual means, and is intended only for the autumn-winter

period when MLDs are deepen.
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3. Results «

3.1 Annual climatological sea-air CO, fluxes

The annual mean climatological distribution of FCO, in the Southern Ocean obtained from observational

products is spatially variable but mainly characterized by two key features: (i) CO, in-gassing north of 50°-

55° (Polar Frontal zone, PFZ) within and north of the Sub-Antarctic Zone, and (ii), CO, out-gassing between

the PF (~ 58°S) and the Marginal Ice Zone (MIZ, ~ 60° - 68°S) (Fig. 1a-b). Most CMIP5 models broadly

capture these features, however, they also show significant differences in space and magnitude between
the basins of the Southern Ocean (Fig. 1). With the exception of CMCC-CESM, which shows a northerly-
extended CO, outgassing band between about 40°S and 50°S, CMIP5 models generally show the CO,

outgassing zone between 50°S — 70°Svin agreement with observational estimates (Fig. 1).

The analyzed 10 CMIP5 models show a large spatial dispersion in the spatial representation of the

magnitudes of FCO, with respect to observations (Fig. 1, Table 2). They generally overestimate the

upwelling-driven CO, outgassing (55°S -70°S) in some basins relative to observations. IPSL-CM5A, CanESM?2,

MPI-ESM, GFDL-ESM2M and MRI-ESM, for example, show CO, outgassing fluxes reaching up to 25 g m2yr™,
while observations only show a maximum of 8 g m™ yr™ (Fig. 1). Between 40°S - 56°S (Sub-Antarctic zone),

observations and CMIP5 models largely agree, showing a CO, in-gassing feature, which is mainly

attributable to biological processes (McNeil et al., 2007; Takahashi et al., 2012). South of 65°S, in the MIZ,

models generally show an excessive CO, ingassing with respect to observations (with the exception of

CanESM2, IPSL-CM5A-MR and CNRM-CM5). Note that as much as this bias south of the MIZ might be a true

divergence of CMIP5 models from the observed ocean, it is also possibly due to the lack of observations in

this region, especially during the winter season (Bakker et al., 2014; Monteiro, 2010).

here used to quantify the model spatial and magnitude performances, against Landschitzer et al (2014)

Table 2 shows the Pattern Correlation Coefficient (PCC) and the Root Mean Square Error (RMSE), which are <

data product. Out of the 10 models, 6 show a moderate spatial correlation with Landschitzer et al (2014)

(PCC=0.40-0.60), i.e. CNRM-CMS5, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-MR, CESM1-BGC, NorESME-

ME and CanESM2. While MPI-ESM-MR (PCC = 0.37), MRI-ESM (PCC = 0.36) and CMCC-CESM (PCC =-0.09)

show a weak to null spatial correlation with observations, the latter mainly due to the overestimated

‘ outgassing region. Spatially, GFDL-ESM2M and NorESM1-ME are the most comparable to Landschitzer et al

| La

11«

P /2 Changes 2018/3/6 6:53 PM
x " | Moved up [2]:) -

V2 Changes 2018/3/6 6:53 PM

Deleted: Tis time in months and DICyy, is
the subsurface DIC concentration at the base
of the MLD. Annual mean DIC were used here
mainly because vertical DIC fields are only
available in annual means at the CMIP5 portal
and observations (GLODAP). However
because we are mainly interested in the
period autumn — winter, where the MLD 2 60
m in the Sub-Antarctic zone and 2 40 m in the
Antarctic zone (Fig 6a-f), DIC seasonality is
anticipated to be minimal at this depth. To
evaluate the uncertainty of using annual
means, we assessed DIC entrainment fluxes
using a model simulation at 0.5 degrees
resolution (Dufour et al., 2013) with annual
and monthly mean outputs. It was found that
the estimates are indeed comparable with
minimal differences (not shown). It is @27 [97]D

V2 Changes 2018/3/6 6:53 PM
Formatted

V2 Changes 2018/3/6 6:53 PM
V2 Changes 2018/3/6 6:53 PM
Formatted: normal

V2 Changes 2018/3/6 6:53 PM
Deleted: The Southern Ocean is her
V2 Changes 2018/3/6 6:53 PM
Moved up [1]: Within the Sub-Ant{7 991D
V2 Changes 2018/3/6 6:53 PM
Deleted: PFz

V2 Changes 2018/3/6 6:53 PM
Deleted: The

V2 Changes 2018/3/6 6:53 PM
Deleted: , agreeing

V2 Changes 2018/3/6 6:53 PM
Deleted: The analyzed CMIP5 mod N[00
V2 Changes 2018/3/6 6:53 PM
Formatted: normal

V2 Changes 2018/3/6 6:53 PM

Deleted: ) presented in Table 2 have been
V2 Changes 2018/3/6 6:53 PM
Deleted: .

V2 Changes 2018/3/6 6:53 PM
Deleted: observations

V2 Changes 2018/3/6 6:53 PM
Deleted: ~

V2 Changes 2018/3/6 6:53 PM
Deleted: NorESM2

V2 Changes 2018/3/6 6:53 PM
Formatted

V2 Changes 2018/3/6 6:53 PM

|

~ | Formatted: Default Paragraph Font




683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

(2014), (RMSE < 9), while CCMC-CESM, CanESM2, MRI-ESM and CNRM-CM5 shows the most differences

(REMSE > 15). The rest of the models show a modest comparison (RSME 9 — 11).

NorESM1-ME and CESM1-BGC are the only 2 of the 10 models showing a consistent spatial (REMSE < 10)

and magnitude (PCC = 0.50) performance. From Table 2, it is evident that an appropriate representation of

the spatial properties of FCO, with respect to observations does not always correspond fo comparable

' V2 Changes 2018/3/6 6:53 PM

magnitudes. CanESM2 for example shows a good spatial comparison (PCC = 0.54), yet a poor estimation of

the magnitudes (RMSE =19.5). |n this case caused by an overestimation of CO, uptake north of 55°S (= - 28

g m?yr) and CO, outgassing (> 25 g m™ yr'!) in the Antarctic zone, resulting in a net total Southern Ocean

annual weak sink (-0.05 Pg C m2yr). These inconsistencies in the spatial and magnitude performances

highlights some of the limitations of using annual mean indicators to evaluate model performance and thus
a process-based diagnostic approach could be useful in understanding the departure of models from

observed estimates.

3.2 Sea-Air CO; Flux Seasonal Cycle Variability and Biases

The seasonal cycle of FCO, is shown in Fig. 2. The seasonality of FCO, in the 10 CMIP5 models shows a large

dispersion in both phasing and amplitude, but mostly disagree with observations in the phase of the

seasonal cycle as well as with each other. More quantitatively, CMIP5 models show weak to negative

correlations with the Landschiitzer et al (2014) data product in the Sub-Antarctic Zone and have slightly

higher correlations in the Antarctic Zone (see supplementary Fig. S7). This discrepancy is consistent with

Anav et al., (2013) findings, who however used fixed latitude criteria. Based on the phasing, the seasonality
of FCO, in CMIP5 models can be a priori divided in two main groups: group-DIC models, comprising of MPI-
ESM, HadGEM-ES and NorESM1-ME, and group-SST models, the remainder i.e. GFDL-ESM2M, CMCC-CESM,
CNRM-CERFACS, IPSL-CM5A-MR, CESM1-BGC, MRI-ESM and CanESM2. The naming convention is

suggestive of the mechanism driving the seasonal cycle, as it will be clarified further on. A similar grouping

was also identified by Kessler and Tjiputra (2016) using a different criterion. Fig. 3 shows the seasonal cycle

of FCO, of an equally-weighted ensemble of the two groups compared to observations, the shaded area

shows the decadal standard deviation for the models and the Landschiitzer et al (2014) data product for

1998 -2014 standard deviation for in the various regions.

In the Sub-Antarctic zone, the observational products show a weakening of CO, uptake during winter (less <

negative values in June-August) with values close to the zero at the onset of spring (September) in all three

basins. Similarly, during the spring season, all three basins are seen to maintain a steady increase of CO,

La
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uptake until mid-summer (December), while they differ during autumn (March-May). The Pacific Ocean

shows an increase in CO, uptake during autumn that is not observed in the other basins (only marginally in
the Indian Ocean). In the Antarctic zone, the observed FCO, seasonal cycle is mostly similar in all three

basins (Fig. 3d-f). While this seasonal cycle consistency may suggest a spatial uniformity of the mechanisms

of FCO, at the Antarctic, we are also mindful that this may be due to a result of the paucity of observations,

in this area. In the Antarctic zone, all three basins show a weakening of CO, uptake from the onset of

autumn (March) until mid-winter (June—July) when it outgasses. The winter CO, outgassing is followed by a

strengthening of the CO, uptake throughout spring to summer, when it reaches a CO, jngassing peak.

Thegifferences in the seasonal cycle of FCO, across the three basins of the Sub-Antarctic zone found in the

observational product (Fig. 2), likely resemble the differences in the spatial behavior seen in Fig. 1. To verify

this, we correlate the seasonal cycles from the Landschiitzer et al (2014) observational product in the three

basins (Fig. 4). The FCO, seasonal cycle in the Sub-Antarctic Atlantic and Indian basins is the only one that is
similar (R = 0.8) , while the other basins are quite different to each other (R =-0.1 for Pacific — Atlantic and
R ~ 0.4 for Pacific — Indian). Contrary to the observational product, CMIP5 models show the same seasonal

cycle phasing across all three basins in the Sub-Antarctic zone (basin — basin correlation coefficients are

always larger than 0.50 in Fig. 4), with the exception of three models (i.e. CMCC-CESM, CESM-BGC1 and

GFDL-ESM2M). In the Antarctic zone, CMIP5 models agree with observations in the spatial uniformity of the

seasonal cycle of FCO, among the three basins.

GroupDIC models are characterized by an exaggerated CO, uptake during spring-summer (Fig. 3) with <

respect to observations estimates and CO, outgassing during winter. These models generally agree with

observations in the phasing of CO, uptake during spring, but overestimate the magnitudes. Jt is worth

noting that the seasonal characteristics of group-DIC models are mostly in agreement with the observations

in the Atlantic and Jndian basin in Sub-Antarctic zone (R > 0.5 in Fig. 4). The large standard deviation (~ 0.01

g Cm” day") during the winter and spring-summer seasons in the Atlantic Ocean shows that though group-

DIC models agree in the phase, magnitudes vary considerably (Fig. 3b). For example MPI-ESM reach up to

0.06 g C m” day ' outgassing during winter, while HadESM2-ES and NorESM2 peak only at ~0.03 g C m?

day™. Group-SST models on the other hand are characterized by a CO, outgassing peak in summer (Dec-

Feb) and a CO; in-gassing peak at the end of autumn (Mlay) and their phase js opposite to the observational

estimates in the Atlantic and Indian basins (Fig. 3b,c). Group-SST models only show a strengthening of CO,

uptake during spring in the Indian Ocean. Interestingly, group.SST models compare relatively well with the

observed FCO, seasonal cycle in the Pacific Ocean, whereas group;DIC models disagree the most with the

observed estimates (Fig. 3a). This phasing differences within models and against observed estimates
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864 CMIP5 models agree with observations in this timing (Fig. 5). However, while they agree in phasing, the

866 | exception of NorESM1-ME. Subsequently these differences in the magnitude of dSST/dt have important

867 implications for the solubility of CO, in seawater; larger magnitudes of |dSST/dt| are likely to enhance the

868 response of the pCO, to temperature through CO, solubility changes. For example, because the

869 | observations in the Indian Ocean shows a warming rate of about 0.5°C month™ lower compared to the

870 other two basins, we expect a relatively weaker role of surface temperature in this basin.

871

875 seasonal mean of M1.pcEq. 3. As articulated in sec. 2.3, Mrpc(Fig. 6) is the difference between the total

876 surface DIC rate of change of DIC (Eqg. 1) and the estimated equivalent temperature driven solubility DIC
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instantaneous pCO, changes, and conversely when | (dDICr/dt)sst | < [(dDIC/dt)ro: |,DIC processes is the

dominant mode in the instantaneous pCO, variability, The models showing the former feature are SST-

driven and belong to group-SST, while the models showing the latter are DIC-driven and belong to group-

SST.

According to the Mrpig/magnitudes in Fig. 6, the seasonal cycle of pCO, in the observational estimates is

predominantly DIC-driven most of the year in both the Sub-Antarctic and Antarctic zone, Note that,

however, during periods of high |dSST/dt|, i.e. autumn and spring, observations show a moderate to weak

DIC control (M1.pic= 0). The Antarctic zone is mostly characterized by a stronger DIC control (mean Annual

Mr.pic > 3) except for the spring season (Fig. 6). Consistent with the similarity analysis presented in Fig. 4,

the Antarctic zone shows coherence in the sign of the temperature —DIC indicator (Mr.pc> 0) withinthe

three basins.

3.4 Source terms in the DIC surface budget <

A

Jo further constrain the surface DIC budget in Eq. 1, we examine the role of the biological source term

using chlorophyll and Net Primary Production (NPP) as proxies. Fig. 8 shows the seasonal cycle of
chlorophyll, NPP and the rate of surface DIC changes (dDIC/dt). The observed seasonal cycle of chlorophyll

(Johnson et al., 2013) shows a similar seasonal cycle within the three basins during the spring — summer

seasons (autumn-winter data are removed due to the satellite limitation) in both Sub-Antarctic and

Antarctic zone. Magnitudes are however different in the Sub-Antarctic zone; the Atlantic basin shows larger

chlorophyll magnitudes (Chlorophyll reach up to 1.0 mg m™>) compared to the Pacific and Indian basins (Chl
<1lmg m?).

CMIP5 models here show a clear partition between group-DIC and group-SST models. While they mostly
maintain the same phase, group-DIC shows larger amplitudes of chlorophyll relative to group-SST and

observed estimates in the Sub-Antarctic zone. This difference is even clearer in NPP magnitudes, where

group-DIC modelsshow a maximum of NPP > 1 mmol m™s™ in summer, while group-SST magnitudes shows

about half of it. Except for CESM1-BGC and CMCC-CESM (and NorESM1-ME for NPP), each CMIP5 model

generally maintains a similar chlorophyll seasonal cycle (phase and magnitude) in all three basins of the

Southern Ocean. This is contrary to the observations, which show differences in the magnitude.
Consistently with the observational product, CESM1-BGC simulates larger amplitude in the Atlantic basin.

While CMCC-CESM also has this feature, it also shows an overestimated chlorophyll peak in the Indian
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Ocean. In the Antarctic zone both observations and CMIP5 models generally agree in both phase and

magnitude (except for CanESM2) of the seasonal cycle of chlorophyll in all three basins.

We now examine the influence of the vertical DIC rate in Eq. 1, using estimated entrainment rates (RE, Eq.

5) based on MLD and vertical DIC gradients (see sec. 2.3). Fig. 7 shows the seasonal changes of MLD
compared with the rate from the observational product. CMIP5 models largely agree on the timing of the
onset of MLD deepening (February in the Pacific Ocean, and March for the Atlantic and Indian Ocean) and

shoaling (September) in the Sub-Antarctic zone (with the exception of NorESM1-ME and IPSL-CM5A in the

Pacific Ocean). The Indian Ocean generally shows deeper winter MLD in both observations and CMIP5

models in the Sub-Antarctic zone. Note that while CMIP5 models generally show the observed deeper

MLDs in the Indian Ocean, they show a large variation; for example, the winter maximum depth range from

100 m (CMCC-CESM, pacific Ocean) to 350 m (CanESM?2, Indian Ocean) in the Sub-Antarctic zone. In the
Antarctic zone CMIP5 models are largely in agreement on the timing of the onset of MLD deepening
(February), but also variable in their winter maximum depth. It is worth noting that the observed MLD

seasonal cycle might be biased due to limited in situ observations particularly in the Antarctic zone (de

Boyer Montégut et al., 2004).

The estimated RE values in Fig. 10 show that almost all CMIP5 (with the exception of NorESM1-ME) entrain

subsurface DIC into the mixed layer during autumn—winter in agreement with the observational estimates,

In the Sub-Antarctic zone, the estimates using the observational products show the strongest entrainment

in the Atlantic Ocean in May (RE reaches up to 10 pmol kg™ month™), while it is lower in the other basins. In

the Antarctic zone, observed RE conversely shows stronger entrainment rates in the Pacific and Indian

Ocean (RE > 15 umol kg™ month’l)Jn comparison to the Atlantic basin (RE = 11 pmol kg™ month™). CMIP5

models entrainment rates are variable but not showing any particular deficiency when compared with the

observational estimates. Also, the group-DIC and group-SST models show no clear distinction, the major

striking features being the relatively stronger entrainment in MPI-ESM and CanESM2 across the three
basins in the Sub-Antarctic zone in mid to late winter (RE = 15 umol kg™ month™) and the large winter
entrainment in IPSL-CM5A-MR in the Antarctic Pacific Ocean The supply of DIC to the surface due to vertical

entrainment is therefore generally comparable between model simulations and the available estimate.

However, our RE estimates are estimated at the base of the mixed layer, which is not necessarily a <

complete measure of the vertical flux of DIC at the surface. We therefore investigate the annual mean

vertical DIC gradients in Fig. 10 as an indicator of where the surface uptake processes occur. The simulated

CMIP5 profiles are similar to GLODAP2, but some differences arise. In the Sub-Antarctic zone, GLODAP2
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shows a shallower surface maximum in the Atlantic basin consistent with higher biomass in this basin (Fig.

8) ((dDIC/dz)smax = 0.55 pmol kg™ m™, at 50 m) compared to the Pacific ((dDIC/dz)qmax = 0.60 umol kg™ m™, at

80 m) and Indian basin ((dDIC/dz)smax = 0.40 umol kg’ m™, at 80 m). CMIP5 models generally do not show

this feature in the Sub-Antarctic zone, except for CESM1-BGC1 ((dDIC/dz)emay = 0.50 pmol kg™ m™, at 50 m).

Instead, they show the surface maxima at the same depth in all three basins. In the Antarctic zone both
CMIP5 models and observations shows larger (dDIC/dz).max magnitudes and nearer surface maxima (with
the exception of CanESM2 and CESM1-BGC). This difference in the position and magnitude of the DIC

maxima between the Sub-Antarctic and Antarctic zone has important implications for surface DIC changes

and subsequently pCO, seasonal variability. Because of the nearer surface DIC maxima in the Antarctic

zone, surface DIC changes are mostly influenced by these strong near surface vertical gradients than MLD

changes. This implies that even if the entrainment rates at the base of the MLD are comparable between

the Sub-Antarctic and the Antarctic, the surface supply of DIC may be larger in the Antarctic zone.

A

4. Discussion

A

“" | Formatted: Font:11 pt
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Recent studies have highlighted that important differences exist between the seasonal cycle of pCO2 in

models and observations in the Southern Ocean (Lenton et al., 2013; Anav et al., 2015; Mongwe, 2016).

Paradoxically, although the models may be in relative agreement for the mean annual flux, they diverge in

the phasing and magnitude of the seasonal cycle (Lenton et al., 2013; Anav et al., 2015; Mongwe, 2016).

These differences in the seasonal cycle raise questions about the climate sensitivity of the carbon cycle in

these models because they may reflect differences in the process sensitivities to drivers that are

themselves climate sensitive.

In this study we expand on the framework proposed by Mongwe et al. (2016), which examined the

competing roles of temperature and DIC as drivers of pCO, variability and the seasonal cycle of pCO, in the

Southern Ocean, to explain the mechanistic basis for seasonal biases of pCO, and FCO, between

observational products and CMIP5 models. This analysis of 10 CMIP5 models and one observational

product (Landschutzer et al., 2014) highlighted that although the models showed different seasonal modes

(Fig. 2), they could be grouped into two categories (SST- and DIC-driven) according to their mean seasonal

bias of temperature or DIC control (Fig. 3 & 6).

A few general insights emerge from this analysis. Firstly, despite significant differences in the spatial

characteristics of the mean annual fluxes (Fig. 1), models show unexpectedly greater inter-basin coherence
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in the phasing seasonal cycle of FCO, and SST-DIC control than observational products (Fig. 3 & 6). Clear

inter-basin differences have been highlighted in studies on the climatology and interannual variability that

examined pCO, and CO; fluxes based on data products (Landschutzer et al., 2015; Gregor et al., 2017) as

well as phytoplankton chlorophyll based on remote sensing (Thomalla et al., 2011; Carranza et al., 2016).

Briefly, the Atlantic Ocean shows the highest mean primary production in contrast to the Pacific Ocean,
which has the lowest (Thomalla et al., 2011). Similarly, strong inter-basin differences for pCO, and FCO,
have been highlighted and ascribed to SST control (Landschiitzer et al., 2016) and wind stress - mixed layer

depth (Gregor et al., 2017). The combined effect of these regional differences in forcing of pCO, and FCO,

would be expected to be reflected in the CMIP5 models as well. A quantitative analysis of the correlation

of the phasing of the seasonal cycle of FCO, between basins for different models hows that all the models

except 3 (CMCC-CESM, GFDL-ESM2M CESM1-CESM) are characterized by strong inter-basin correlation in

both the SAZ and the AZ (Fig. 4). This suggests that the carbon cycle in these CMIP5 models is not sensitive

to inter-basin differences in the drivers as is the case for observations.

Secondly, an important part of this analysis is based on the assumption that the observational products

that are used to constrain the spatial and temporal variability of pCO, and FCO; reflect the correct seasonal

modes of the Southern Ocean. This assumption requires significant caution not only due to the limitations

in the sparseness of the in situ observations but also due to limitations of the empirical techniques in

overcoming these data gaps (Landschutzer et al., 2014; Rédenbeck et al., 2015; Gregor et al., 2017a,b;

Ritter et al., 2018). The uncertainty analysis from these studies suggests that, while the seasonal bias in

observations may be less in the SAZ and PFZ, it is the highest in the AZ where access is limited mostly to

summer, and winter ice cover result in uncertainties that may limit the significance of the data - model

comparisons. It is important to note that though the observation product we use here (Landschiitzer et al.,

(2014) is based on more surface measurement (10 millions, SOCAT v3) compared to previous datasets (e.g.

Tahakahashi et al., 2009, 3 millions), the data are still sparse in time and space in the Southern Ocean. Thus

using this data product as our main observational estimates for this analysis we are mindful of the

limitations in its discussion below.

Thirdly, the seasonal cycle of ApCO, is the dominant mode of variability in FCO, (Mongwe et al., 2016;

Wanninkhof et al., 2009). Though winds provide the kinematic forcing for air-sea fluxes of CO, and

indirectly affect FCO, through mixed layer dynamics and associated biogeochemical responses (Mahadevan

etal., 2012; du Plessis et al., 2017), ApCO; sets the direction of the flux. Surface pCO, changes are mainly
driven by DIC and SST (Hauck et al., 2015; Takahashi et al., 1993). Subsequently the sensitivity of CMIP5

models to how changes in DIC and SST regulates seasonal cycle of FCO, is fundamental to the model’s
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ability to resolve observed FCO, seasonal cycle. Thus here we examined the influence of DIC and SST on

FCO, at seasonal scale for 10 CMIP5 models with respect to observed estimates. But because temperature

does not directly affects DIC changes, we first scaled up the impact of SST changes on pCO, through surface

CO; solubility to equivalent DIC units using the Revelle factor (section 2.3). In this way we can distinguish

the influence of surface solubility and DIC changes (i.e. biological and physical) on pCO, and hence then

FCO,.

Fourthly, using this analysis framework (sec 2.3, summarized in Fig. 6) we found that CMIP5 models FCO,

biases cluster in two groups, namely group-DIC (Mr.pic <0) and group-SST (Mr.pic > 0). Group-DIC models are

characterized by an overestimation of the influence of DIC on pCO, with respect to observations estimates,

which instead indicate that physical and biogeochemical changes in the DIC concentration mostly regulate

the seasonal cycle of FCO, (in short, DIC control). Group-SST models show an excessive temperature
influence on pCO,; here surface CO, solubility biases are mainly responsible for the departure of modeled
FCO, from the observational products. While CMIP5 models mostly show a singular dominant influence of

these extremes, observations show a modest influence of both, with a dominance of DIC changes as the

main driver of seasonal FCO, variability. Below we discuss the seasonal cycle characteristics and possible

mechanisms for these two groups of CMIP5 models in the Sub-Antarctic and Antarctic Zones of the

Southern Ocean.

4.1 Sub-Antarctic Zone (SAZ)

Our diagnostic analysis indicates that the seasonal cycle of pCO, in the observational product (Landschitzer
et al., 2014) is mostly DIC controlled across all three basins of the SAZ (Mr.pc< 0 in Fig. 6). The Atlantic
Ocean shows a stronger DIC control (Annual mean Mr.pic 2 2) compared to the Pacific and Indian Ocean

(Annual mean Mr.pc = 1). This stronger influence of DIC on pCO, in the Atlantic Ocean is consistent with

higher primary production in this basin (Graham et al., 2015; Thomalla et al., 2011), here shown by the

larger mean seasonal chlorophyll from remote sensing in the Atlantic basin with respect to the Pacific and

Indian basin (Fig. 8). This significant basin difference is most likely linked to a number of factors: the

Atlantic basin has longer periods of shallow MLD compared to the Pacific and Indian basins (Fig. 7a-c, Nov —

Mar & Nov - Feb respectively) and has been shown to have higher supplies of continental shelves and land
based iron (Boyd and Ellwood, 2010; Tagliabue et al., 2012; 2014). These conditions are more likely to

enhance primary production that translates into a higher rate of change of surface DIC (Fig. 8), which

becomes the major driver of FCO, variability. In contrast, shorter periods of shallow MLD and lower iron

inputs in the Pacific Ocean (Tagliabue et al., 2012), likely account for lower chlorophyll biomass and hence
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the weaker DIC control evidenced in our analysis (Mr.pic = 0 in Fig. 6). In the Indian Ocean, the winter mixed

layer is deeper than in the Atlantic and deepens earlier in the season (Fig. 7c). These conditions limit

chlorophyll concentration (Fig. 8) and possibly contribute to the lower rates of surface temperature change

because of the enhanced mixing (cf Fig. 5a-c). As a consequence the resulting net driver in the Indian and

Pacific basins is a weaker DIC control, because both biological DIC and solubility changes are relatively
weaker and they oppose each other. Because of this, when the magnitudes of the rate of change of SST are
larger during cooling and warming seasonal peaks (autumn and spring respectively), DIC control is weaker

(Mr.pic = 0) during these seasons.

CMIP5 models do not capture these basin-specific features as demonstrated with the correlation analysis in

Fig. 4, with the exception of three group-SST models (i.e. CESM1-BGC, GFDL-ESM2M and CMCC-CESM).

These, in contrast, mostly show comparable FCO, phasing in the three basins. This spatial uniformity of
CMIP5 models is both zonal and meridional for most models in the Southern Ocean (Fig. 3, 4), which is in
contrast to observation products (Fig. 3). This suggests that CMIP5 models show equal sensitivity to basin

scale FCO, drivers, suggesting that pCO, and FCO, driving mechanisms are less local than for observations.

The major feature of group-SST models in the SAZ is the outgassing during summer and ingassing in winter

(Fig. 3a-c, Dec-Feb), which our diagnostics in Fig. 6 attribute to temperature (solubility) control. The

summer period coincides with the highest warming rates (dSST/dt, Fig 5a-c), and associated reduction in

solubility of CO,. Similarly, exaggerated cooling rates at the onset of autumn (Fig. 5a-c) enhance CO,

solubility causing a change in the direction of FCO, into strengthening CO, ingassing (Fig 3a-c). Thus, while

group-SST models have seasonal amplitude of FCO, comparable to observations, they are out of phase (Fig.

3) as was the case in a previous analysis of a forced ocean model (Mongwe et al., 2016).

In addition to increasing CO, solubility, the rapid cooling at the onset of autumn also deepens the MLD

(March-June, Fig. 7), which induces entrainment of DIC, increasing surface CO, concentration and
weakening the ocean-atmosphere gradient and, in some instances, reversing the air-sea flux to outgassing
(Lenton et al., 2013a; Mahadevan et al., 2011; Metzl et al., 2006). While these processes (cooling and DIC

entrainment) are likely to co-occur in the Southern Ocean, in CMIP5 models they are characterized by their

extremes: temperature impact of solubility exceeds the rate of entrainment (Fig. 6 & 10). Because of the

dominance of the solubility effect in group-SST models, the impact of DIC entrainment on surface pCO,

changes, the weakening of CO, ingassing / outgassing only happens in mid-late winter (June-July -August)

when entrainment fluxes peak (Fig. 10) and the SST rate approaches zero (Fig. 5).
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In the spring-summer transition, primary production is anticipated to enhance the net CO, uptake

(Thomalla et al., 2011; Le Quéré and Saltzman, 2013). However, the elevated surface warming rates during

spring reduces CO, solubility in group-SST models and overwhelms the role of primary production in the

seasonal cycle of pCO, and FCO, (atmospheric CO, uptake). As a consequence, these group-SST models
mostly show a constant or weakening net CO, uptake flux during spring in the Pacific and Atlantic Ocean
even though primary production is occurring and is relatively elevated (Fig. 3 & 8). Though some models

show chlorophyll concentrations comparable to observations (e.g. GFDL-ESM2M, CNRM-CM5, CanESM?2),

and sometimes greater (e.g. MRI-ESM), the impact of temperature driven solubility dominates due the

phasing of the rates of the two drivers (Fig. 2a-c). The Indian Ocean however shows the only exception to

this phenomenon. Here, the amplitude of the seasonal surface warming is relatively smaller (~ 0.5 °C ™

month™ lower than the Pacific and Atlantic basins), and the biologically driven CO, uptake becomes notable

and show a net strengthening of the sink of CO, during spring (Fig. 3c).

Though almost all analysed CMIP5 models (with the exception of NorESM1-ME) exaggerate the warming

and cooling rates in autumn and spring, group-DIC models do not manifest the expected temperature-

driven solubility impact on pCO, and FCO, (Fig. 2) Instead, the seasonal cycle of pCO, and FCO, are

controlled by DIC changes. However, this is driven by an overestimated seasonal primary production and

the associated carbon export fluxes (Fig. 8). It is striking how in these models the seasonal cycle of

chlorophyll and FCO, are in phase (Fig 3a-c, 8a-c, with linear correlation coefficients always larger than 0.9,

not shown) but, as we discuss below, this is not because the temperature rates of change are correctly

scaled but because the biogeochemical process rates are exaggerated (Fig. 8).

Because of the particularly enhanced production in group-DIC models, the CO, sink is stronger (Fig. 8) with

respect to observation estimates during spring. This is visible in the reduction of surface DIC (negative

dDIC/dt in Fig. 8a, g-i), which can only be explained by drawdown due to the formation and export of
organic matter (Le Quéré and Saltzman, 2013). However, note that in the same way, after the December
production peak, both CMIP5 models and observations show an increase of surface DIC concentrations

(positive dDIC/dt) until March (Fig. 8, g-i). These DIC growth rates are particularly enhanced in group-DIC

models compared to some group-SST and observations (Fig. S9). The onset of these DIC increases also

coincides with the depletion of surface oxygen (Fig. S9), which we makes us speculate that this is due to the

remineralisation of organic matter to DIC through respiration. Unfortunately, only a few models have

stored the respiration rates, therefore the ultimate reason for this DIC rebound remains to be examined at

a later stage. We would however tend to exclude other processes, because the onset of CO, outgassing

21+
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1352 seen in March in group-DIC models occurs prior to significant MLD deepening (Fig. 7) and entrainment

1353 fluxes, therefore remineralization is likely be a key process here (Fig. 8).

1354

1355 | 4.2 Antarctic Zone (AZ)

1356

1357 | The seasonal cycle framework summarized in Fig. 6 shows that the variability of FCO, and pCO, in the
1358 | Landschiitzer et al. (2014) product is characterized by a stronger DIC control (annual mean Mypc< -2)

1359 | relative to the Sub-Antarctic (Mr.pic = -1), except in the spring season (Mz.pic > -1). This DIC control is

1360 | spatially uniform in the Antarctic zone across all three basins (Fig. 4). The available datasets indicate that

1361 the combination of weaker SST rates due to lower solar heating fluxes (Fig. 5), and stronger shallower

1362 vertical DIC maxima (Fig. 10) favour a stronger DIC control through larger surface DIC rates. The spatial

1363 | uniformity in the seasonality of FCO, is also evident in the satellite chlorophyll and calculated dDIC/dt from
1364 | GLODAP2 in Fig. 9. Contrary to the Sub-Antarctic this might be suggesting that FCO, mechanisms are here

1365 less local. It could be hypothesized that the seasonal extent of sea-ice, deeper mixing and heat balance

1366 | differences affect this region more uniformly compared to the Sub-Antarctic zone, and hence the

1367 mechanisms of FCO, are spatially homogeneous. However, we cannot forget that sparseness of

1368 | observations in this region is a known key limitation to data products (Bakker et al., 2014; Gregor et al.,

1369 | 2017; Monteiro et al., 2010; Rédenbeck et al., 2013) that might hamper the emergence of basin specific

1370 features. Consequently, this highlights the importance and need to prioritize independent observations in

1371 the Southern Ocean south of the polar front and in the Marginal Ice Zone. Increased observational efforts
1372 should also include a variety of platforms such as autonomous vehicles like gliders (Monteiro et al., 2015)
1373 | and biogeochemical floats (Johnson et al., 2017) in addition to ongoing ship-based measurements.

1374

1375 In general terms, CMIP5 models are mostly in agreement (with an exception of MRI-ESM) with the

1376 | observational product on the dominant role of DIC to regulating the seasonal cycle of FCO, (Fig. 6d-f),

1377 though not all models agree in the phase of the seasonal cycle of FCO, (e.g. CanESM2, Fig. 2). Though
1378 | CMIP5 models still mostly show the SST rates biases in autumn and spring with respect to observed

1379 | estimates, the stronger and near surface vertical DIC maxima (Fig. 10), likely favor DIC as a dominant driver

1380 | of FCO, changes., Differences between group-SST and group-DIC models are only evident in mid-summer

1381 | when SST rates heighten and primary production peaks (Fig. 3 & 9). Probably because of sea ice presence, V2 Changes 2018/3/6 6:53 PM
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the two model groups here agree in the FCO, ingassing during spring with group-SST models being the

closest to the observational product. The MRI-ESM is the only model showing anomalous solubility

dominance during autumn and spring as in the Sub-Antarctic zone.

This coherence of CMIP5 models and observations in the Antarctic zone, may suggest that CMIP5 models
compare better to observations in this region (Fig. 4). However, because CMIP5 models also show this
spatial homogeneity in the Sub-Antarctic Zone (contrary to observational estimates), it not clear whether

this indicates an improved skill in CMIP5 model to the mechanisms of FCO, in this region, or both CMIP5

models and observational product lacks spatial sensitivity to the drivers of FCO,. The sparseness of

observations in the AZ points to the latter.

5. Synthesis

We used a seasonal cycle framework to highlight and examine two major biases in respect of pCO, and

FCO, in 10 CMIP5 models in the Southern Ocean.

Firstly, the general exaggeration of the seasonal rates of change of SST in autumn and spring seasons during

peak cooling and warming respectively with respect to available observations. These elevated rates of SST

change tip the control of the seasonal cycle of pCO, and FCO, towards SST from DIC and result in a

divergence between the observed and modelled seasonal cycles, particularly in the Sub-Antarctic Zone.
While almost all analysed models (9 of 10) show these SST-driven biases, 3 of the 10 (namely NorESM1-ME,
HadGEM-ES and MPI-ESM) don’t show these solubility biases because of their overly exaggerated primary

production (and remineralization) rates such that biologically driven DIC changes mainly regulate the

seasonal cycle of FCO,. These models reproduce the observed phasing of FCO, as a result of an incorrect

scaling of the biogeochemical fluxes. In the Antarctic zone, CMIP5 models compare better with

observations relative to the Sub-Antarctic Zone. This is mostly because both CMIP5 models and
observational product estimates show a spatial and temporal uniformity in the characteristics of FCO, in
the Antarctic zone. However, it is not certain if this is because model process dynamics perform better in

this high latitude zone or that the observational products variability is itself limited by the lack of in situ

data. This remains an open question that needs to be explored further and highlights the need for

increased scale sensitive and independent observations south of the Polar Front and into the sea ice zone.

The second major bias is that contrary to observational products estimates, CMIP5 models generally show

an equal sensitivity to basin scale FCO, drivers (except for CMCC-ESM, GFDL-ESM2M and CESM1-BGC) and

23«

V2 Changes 2018/3/6 6:53 PM
Formatted: normal, Right, Tabs: 7,62 cm,
Centered + 15,24 cm, Right,
Position:Horizontal: Left, Relative to:
Column, Vertical: In line, Relative to:
Margin, Wrap Around

P/ V2 Changes 2018/3/6 6:53 PM
| Formatted: Default Paragraph Font




1420 | hence the seasonal cycle of FCO, has similar phasing in all three basins of the Sub-Antarctic zone. This is in

1421 contrast to observational and remote sensing products that highlight strong seasonal and interannually

1422 varying basin contrasts in both pCO, and phytoplankton biomass. It is not clear if this is due to inadequate

1423 carbon process parameterization or gaps in the dynamics of the physics. This should be investigated

1424 further with CMIP6 models and our analysis framework is proposed as a useful tool to diagnose the
1425 dominant drivers. Contrary to observed estimates, CMIP5 models simulate FCO, seasonal dynamics that
1426 | are zonally homogeneous and for this reason it is suggested that any investigation of local (basin scale)

1427 | mechanisms, dynamics and long term trends of FCO, using CMIP5 models should be cautious. This

1428 | highlights a key area of development for CMIP6.
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Table 2: Sea-Air CO, fluxes (Pg C yr') annual mean uptake in the Southern Ocean (first column), here

defined as south of the Sub-tropical front, Sub-Antarctic zone (second column) and Antarctic zone (third

column). The third and forth column shows the Pattern Correlation Coefficient (PCC) and Root Mean

Square Error (RMSE) for the whole Southern Ocean for each model.
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