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Overview of changes 
The authors would like to thank the reviewers for their recommendations to improve the 
manuscript. The changes are relatively substantial with the manuscript now being more succinct. 
The major scientific changes are: 1) removal of the two high resolution methods; 2) inclusion of 
uncertainty estimates. We also apologise for the multitude of typos and figure reference errors 
throughout the document. We hope that the reviewers now find the manuscript in a more 
presentable state.  
 
In the document below we show the initial response of the reviewers in blue and the responses to 
each point in black. Track changes for the manuscript are shown below the response to the 
reviewer.  
  



Reviewer 1 
Overview 
Gregor and co-authors investigate the variability of the Southern Ocean CO2 uptake strength 
from 1998-2014 analysed for 9 regions (SO divided in basins and Fay and McKinley biomes). 
The authors combine 5 realizations to form a multi-model mean which is used to investigate 
seasonality and year-to-year variability of the delta pCO2 and the CO2 flux. 3 of the realizations 
are independent whereas 2 are simply higher resolution versions of 2 other methods. The authors 
find that the seasonal variability is the strongest mode of variability in the SO. Additionally, the 
authors confirm results from past studies that the SO was losing some of its uptake capacity in 
the early years of their analysis period, then the uptake increased in the subsequent period, 
whereas in the final years of their analysis period the reinvigoration of the sink stopped again. 
The authors investigate the cause of this variability in the sink strength by analysing anomaly 
periods for winter and summer season separately. From this analysis the authors conclude that 
the drivers are seasonally decoupled with wind being the dominant driver for winter variability 
and biology being the dominant driver for summer variability.  

I found this study to be interesting, comprehensive and in general suitable for the journal. The 
authors do not only present results from new methods to confirm previous results, they also 
deepen the analysis by looking at anomalies rather than trends (as previously done) and 
investigate different seasons.  

Major Issues 
• The study confuses trends and variability. When do the authors talk about trends and 

when about variability? At the moment, these two terms are mixed up. E.g. take figure 5 
all panels. There is clearly some year-to-year variability causing in some years more and 
in some less uptake but overarching in all panels of figure 5 and 6 one can clearly see an 
increasing CO2 sink from 1998 onwards, i.e. an increasing trend throughout the entire 
time period. Furthermore, wording used like “decadal trends” and “interannual trends” 
contribute to the confusion. What is a decadal trend? Is it the slope of a regression line 
when considering at least 10 years of data? What are interannual trends? The same only 
considering 3 years? In the latter case one cannot speak of a trend at all.  
We have removed most of the references to trends. We have also removed the reference 
to the decadal mode of variability. We do, however, make the connection between the 
longer modes of variability in winter and that this is likely linked to the decadal 
variability mentioned by Landschützer et al. (2016) linked to the SAM.  

• Despite being able to do so, the authors do not add uncertainties. There are many sources 
of uncertainty ignored by the authors, e.g. the measurement uncertainty (which is 
however neglectably small), the extrapolation error of the method, the building of the 



multi-model mean creates an error and finally the calculation of the air-sea flux adds 
another source of uncertainty (through wind and transfer velocity choice). At the 
moment, the results are presented overconfidently. It is not clear how much of the 
explored variability is significant and how much is simply statistical gibberish. I am 
aware that there is no “perfect” way to represent all uncertainties, but in a data sparse 
region like the Southern Ocean a study like this needs to add the best possible uncertainty 
estimate, otherwise, many of the conclusions drawn cannot simply be accepted.  
Regarding the propagation of errors, we used the same approach used by Landschützer et 
al. (2014). However, we do note that this error is Gaussian and mechanistically 
consistent, thus we can make deductions about the changes in the trends we observe. We 
also incorporate the between-method error from transCom (as in Gurney et al., 2004) at 
the recommendation of Christian Rödenbeck (pers comm.). We treat this, and a variation 
thereof as the primary threshold of significance as in Figures 5 and 6 (new numbering). 

• On page 11 line 312 I found that the authors claim statistical significance between the 
mean uptakes, reporting a p-value. It is not clear to the reader what test was used and how 
significance has been determined. Also, when adding uncertainty, the authors will notice 
that an uptake of -0.17 PgC/yr is unlikely to be identified as statistically significantly 
different from -0.19 PgC/yr in the data sparse Southern Ocean.  
We have removed the trends from the FCO2 time-series, so this is no longer an issue. 
Note that this figure has also moved to the supplementary materials.  

• Despite the uncertainty of the CO2 itself there are other sources of concern related to 
uncertainty. Chlorophyll is e.g. also presented without discussing uncertainty. How is 
cloud coverage and missing chlorophyll data effecting the results? Also, wind products 
have been shown to have different trends locally in the Southern Ocean. This has not 
been mentioned. I am also wondering to what extend the use of different products 
hampers the conclusions of the manuscript. SST from Reynolds is based – to the extent 
of my knowledge – from satellite and in-situ data, whereas ECCO MLD is from an 
assimilation model. I would expect some disagreement between these products that have 
nothing to do with "real world" disagreement. This is not a massive concern, but certainly 
needs to be mentioned as well.  
This is a valid point and we agree with the reviewers concern. However, it may be 
beyond the scope of this study to address the uncertainties driven by the input proxies. 
This may be a good topic for a collaborative effort of the SOCOM intercomparison. I 
have to some extent addressed the reviewers points: 
Chlorophyll: we include the methodology used by Gregor et al. (2017) for the missing 
chlorophyll, where cloud patches are filled with the climatology for that point, and 
missing winter values are filled with a low level Gaussian noise.  
ECCO2 MLD: This is indeed assimilation model output. Our motivation here is that 



using observations (most likely the de Boyer Montégut (2004) MLD climatology) would 
mean that MLD could not treated as a potential driver of pCO2. However, there may be 
regions (such as the MIZ) where the MLD estimates are spurious for ECCO2. Choosing 
between these two products is thus a choice of trade-offs.  
Wind: We include our justification for using CCMP v2 only. Much of this is based on 
the study by Swart et al. (2015a) and personal communication with Neil Swart.  

• Another source of concern is the length choice of periods P1-P4. Periods P1-P3 are all of 
the same length, whereas P4 is substantially shorter. The authors claim that substantial 
year-to-year variability occurs on various timescales (4-6 year and 10 year modes 
respectively), hence the variation of periods aliases this analysis.  
We have changed the lengths of the periods to be more or less the same length (5, 4, 4, 4 
years respectively). We hope that this approach addresses the reviewers concerns.  

All the above points raised are of major concern and must be addressed before the manuscript 
can be considered for publication.  

Minor comments:  
• Title: the title only mentions CO2 fluxes whereas in the manuscript largely discusses 

delta pCO2  
We have made the title more generic: CO2 

• Line 29: “paucity of observations (Landschützer et al 2015)” – This is not a good 
reference. Bakker et al 2016 (the SOCATv2 reference) would be a better reference for 
such a paucity.  
We have changed this reference to Bakker et al. (2016) 

• Line 62: remove 2nd that  
removed 

• Line 95: wrong reference (Bakker et al 2016)  
This reference is in fact correct for SOCAT v3. SOCAT v2 is Bakker et al. (2014) 

• Table 1: How has the RMSE for the 0.25x0.25 degree product been calculated? SO- CAT 
offers a gridded product but on 1x1 degrees. Did the authors grid the 0.25 product 
themselves? If yes, has this been done the “SOCAT” way, i.e per cruise weighted or 
differently? Same with the 16-day time step. More information is needed here.  
We have removed the high resolution implementations of RFR and SVR at the request of 
Reviewer 2 (who felt they resulted in an ensemble biased towards these methods).   

• Line 130: How different would the results be if a different transfer velocity was chosen? 
This may have significant effects on the uncertainty.  
The fluxes are now only included in the supplementary materials.  

• Line 134: where are [ice] data from? I am missing a reference here.  



“…sea surface temperature (SST) and sea-ice fraction by Reynolds et al. (2007),…” 
• Line 175-176: “attributed this difference to the clustering step used by the SOM-FFN that 

created large discrepancies in the Atlantic sector.” I have not found any convincing 
evidence for this in any of the cited papers. 
The published version of Gregor et al. (2017) now contains a figure (A3) that the 
reviewer may find convincing.   

• Line 236: Either the authors used the wrong wording or there is a misunderstanding, but I 
do not see where the authors find that the delta pCO2 is zonally asymmetric within each 
biome. It looks like the other way around: Figure 4 looks like there is a strong zonal 
symmetry (besides indeed in panel a).  
Included an additional clause that the gradient is during summer: “Apparent also from 
Figure 3 is that, over and above the latitudinal gradient, ∆pCO2 is zonally asymmetric 
within each biome during summer (Figure 3a), when biological uptake of CO2 
increases.” 

• Lines 249-254: This paragraph is not clear. Please rephrase  
We have tried to make this more clear: “The projected summer minima (dashed lines) 
are calculated by subtracting the mean seasonal amplitude from the winter maxima 
(Figure 4, with air-sea CO2 fluxes shown in Figure S3). The projected summer minima is 
the expected summer ∆pCO2 under the assumption that summer ∆pCO2 is dependent on, 
but not restricted to, the baseline set by winter. Differences between the summer minima 
and projected minima are highlighted with green and blue patches, highlighting periods 
of decoupling between summer and winter interannual variability. The green areas 
indicate periods of strong uptake (relative to winter) that enhance the mean uptake of 
CO2 and amplify the seasonal cycle. Conversely, blue areas show periods where weak 
summer uptake (relative to winter) offsets winter outgassing, thus reducing the mean 
∆pCO2 as well as supressing the amplitude of the seasonal cycle (Figure 4).” 

• Line 273: interannual trend – what is that? Interannual variability. A 3-year trend? A 
trend that changes sign every year?  
We have rephrase this to: “A key feature of Figure 4 is that the mean interannual 
variability is the net effect of decoupled seasonal modes of variability for summer and 
winter.” 

• Lines 275: decadal mode: How are you able to say this. You have 1998-2014 data , i.e. 
17 years of data. How can you detect a decadal mode from such a short time series? 
We have removed this statement and other references to the decadal mode, unless it is 
associated with previous studies (Lovenduski et al., 2008; Landschützer et al., 2016). 

• Line 305: “decadal trend” – what is this? A trend of at least 1 decade?  
Removed decadal trend and see above comment 

• Lines 311-312: “-0.19 and -0.17 PgC yr-1 for the Atlantic and Pacific sectors respectively 



(where the latter are significantly different with p = 0.01).” how was this calculated, and 
given the many, many uncertainties that go into such a flux number one cannot possibly 
believe that this these numbers are indeed statistically significant.  
We have moved the fluxes to supplementary materials. We have also removed the trends 
reported on the figure as this may detract and confuse given that the rest of the study 
deals with anomalies rather than trends.  

• Line 340: What about acidification induced changes linked to changes in the buffer 
capacity (see e.g. Hauck et al 2015)? A contribution within 17 years is plausible.  
This is an interesting point, but would lengthen the study too much, and is thus better left 
for another study.  

• Line 439: I suppose ENSE is ENSO – but please either way spell out abbreviations when 
first using them  
ENS(E)O is only used once and thus written out in full 

• Line 505: “The fact that Chl-a is the dominant driver of interannual ∆pCO2 variability 
should not be surprising” – the authors have not proven that chlorophyll is the dominant 
driver. From a pool of selected variables, it showed the largest correlation – this can 
barely be called a “fact” in science.  
Rephrased: “Our finding that Chl-a is the dominant driver of interannual ∆pCO2 
variability should not be surprising given that models and observations support this 
notion (Hoppema et al., 1999; Bakker et al., 2008; Mahadevan et al., 2011; Wang et al., 
2012; Hauck et al., 2013; 2015; Shetye et al., 2015)” 

• Figures 5 and 6: Uncertainties need to be added. Without uncertainty I do not trust that 
the observed variability is significant.  
We have added uncertainty estimates of uncertainty as previously mentioned. We keep 
these relatively simple in Figure 4 (old 5) by using time averages of the between-method 
errors. We do however include uncertainty thresholds in the final anomaly analysis. We 
feel that this is perhaps a more pertinent place to show the uncertainties.  

• Figures 7 and 8: Wind stress anomalies are interesting, but direction would be equally 
interesting and provide more evidence.  
We include the wind direction for each of the anomaly transitions in the supplementary 
materials. We find that the wind anomalies do not increase the understanding of the 
changes in ∆pCO2 significantly to justify the addition in Figures 5, 6 (old 7 and 8).  

 

 
  



Reviewer 2 
Overview 
The authors present here a lengthy paper in which they aim to provide evidence that the included 
machine learning products for pCO2 are an appropriate proxy for investigating interannual 
variability in pCO2 and carbon fluxes in the Southern Ocean. They use these products to analyse 
transitions between regimes and also investigate the drivers of the changes. However, the paper 
needs to be proofread prior to submitting as it has errors throughout which distracts from the 
science. The job of a review is not to be a technical reviewer but to analyse the science. 
Unfortunately it is difficult to follow the science with the errors included throughout the paper.  
 
Major revision 
The authors utilize an ensemble of five products for this study, however 2 of the products are just 
a repetition of two other products produced at a higher resolution. There is no evidence given 
that this results in 5 independent products for this ensemble. At the very least, more discussion is 
required for it to be accepted that the high and low resolution versions of the same product can 
be seen as individual ensemble members.  
We acknowledge that these two high resolution implementations may not have contributed 
results that were mechanistically different to the low resolution implementations. We have thus 
removed the high resolution data from the study. This means that the now reduced ensemble 
includes only three machine learning methods: SOM-FFN, SVR, RFR.  
 
Additionally, the analysis should be revised to include the SOM-FFN created with SOCATv3 so 
that all members are produced using the same dataset. The SOM-FFN product is available based 
on SOCATv4 now and the authors should at least update it to the version based on SOCATv3 
(see https://www.nodc.noaa.gov/ocads/oceans/SPCO2_1982_2015_ETH_SOM_FFN.html ).  
We now use v2.2 of the SOM-FFN implementation which used SOCAT v4. The results have 
been updated accordingly.  
 
This paper is wrought with inconsistencies, incomplete definitions, and missed words which 
distracts the reader throughout. Some examples include the use of MIZ in text but AZ in figures, 
along with a consistent use of acronyms without first defining them (PFZ, AZ, MIZ, etc). 
Additionally, using the Fay & McKinley biome boundaries but then referring to the regions as 
SAZ, PFZ, AZ/MIZ is confusing and inaccurate. The biomes and frontal regions are not 
interchangeable and the authors need to be consistent throughout the study as to which they are 
using.  
These abbreviations based on the Fay and McKinley (2014) paper where the authors state: 
“…Southern Ocean regions that we define as STSS, SPSS and ICE biomes. Respectively, these 
three Southern Ocean biomes are comparable to the Sub-Antarctic Zone (SAZ), the Polar 
Frontal Zone (PFZ) and Antarctic Zone (AZ)”. We chose to use MIZ instead of AZ. These 
biomes are now defined before they are used. If the reviewer still feels that these should be 
changed, we would be happy to make these changes.  
 
In Figure 2, the different extents into the ice covered regions of each product will affect the 
comparison shown in 2c. Ensure that equal regions are being compared. Also, showing how the 
products compare to the available data in Figure 2 would be helpful.  
We have changed the comparison area to be consistent for all models. This means that a large 



portion of the MIZ/ICE is omitted. We have thus decided to exclude the MIZ from the rest of the 
analysis. We do show the MIZ data for both ∆pCO2 and FCO2 in the Supplementary materials.  
The available data is unfortunately just too sparse to plot alongside the empirical estimates on a 
monthly scale as shown in the figure below.  

 
R1: Figure is the same as Figure 2 in the manuscript with the addition of the SOCAT v5 data.  
 
Figure 3b is not discussed in the text at all. The definition of the “signal” as the largest difference 
in trend for a particular grid cell should be referenced as typically it is the mean trend/value that 
is the “signal” and the noise is the spread around that signal (either standard deviation, standard 
error, etc).  
Figure 3 has been removed from the manuscript. We now take a different approach in addressing 
the uncertainties at the request of Reviewer 1.  
 



Figures 5 and 6 need to be improved dramatically. The difference between the dark and light 
curves in Figure 5 is not defined. Additionally, there is no indication of which product (or 
average of the ensemble) is being plotted here. The captions are wrong (referenced subplots j-r 
which do not exist). The background grey shading to designate the difference regimes/timescales 
is difficult to distinguish. Perhaps another method to highlight those would be helpful. 
Additionally, trends included on these figures should have confidence intervals or uncertainty 
values included.  
We have changed this figure substantially. The MIZ has been dropped as the small remaining 
area (after masking for model inconsistency) is not representative of the biome. This has thus 
simplified the image a lot. We have darkened the shading as we too noticed that these are very 
light when the manuscript is printed. We have also included the dates of these periods on the 
figure. Note that the dates of the periods have changed at the request of Reviewer 1. The captions 
have been corrected.  
We have also moved the figure showing the fluxes to the supplementary materials. We feel that 
this distracts slightly from the story that we are trying to tell. Moreover, we have removed the 
trends from the Flux figure as it is confusing to work with anomalies and then present trends 
(Reviewer 1).  
 
Figures 7-8 continue with captions that do not correspond to the figure (“wind stress (d-e), SST 
(f-h)” when wind stress is in (d-f) and SST in (g-i), etc.  
We have corrected these captions. 
 
Technical Corrections 
Below are some obvious technical corrections which I have not already addressed above. I 
reiterate though that the entire paper needs to be revised and improved, as it is difficult to follow 
the science with incorrect references to figures and missing words in sentences.  
 

• Line 43: “not due to changes in overturning”  
I wasn’t completely sure what the reviewer found at fault in this sentence other than 
being clumsy. It has been rephrased: ”While previous studies suggested that changes in 
wind strength have led to changes in meridional overturning and thus CO2 uptake 
(Lenton and Matear, 2007; Lovenduski et al., 2007; Lenton et al., 2009; DeVries et al., 
2017), Landschützer et al. (2015) suggested that atmospheric circulation has become 
more zonally asymmetric since the mid 2000's, which has led to an oceanic dipole of 
cooling and warming.” 

• Line 46: “The led to an oceanic dipole. . .”  
“…which has led to an oceanic dipole…” 

• Line 62: repeated word  
Removed 

• Line 141: PFZ and MIZ not defined. MIZ and AZ used inter- changeably throughout 
paper  
We now define these when first introduced on L165.  

• Line 149: missing a word in “the variability of between the ensemble members. . .”  
This has been rephrased to: “The first section examines the uncertainties of the ensemble 
and its members.” 



• Line 157: how are “scores” calculated?  
We now define the scores explicitly as the root mean squared error (RMSE).  

• Line 199: Should reference Figure 3c I believe  
Figure has been removed 

• Line 213: Figures 2a-c and 4a-c are not the correct reference figures for the points being 
addressed.  
The references to figures have (hopefully) been corrected  

• Line 221: “CO2”  
We have corrected all occurrences of CO2 to be subscripted 

• Line 255-260: Figure 5 caption is inaccurate to what is shown in Figure 5 
Corrected and figure numbers have changed 

• Line 289: Should reference Figure 5a,d rather than Figure 5 b,e.  
Corrected and figure numbers have changed 

• Line 291: remain consistent with capitalizing Southern Ocean  
All occurrences of Southern Ocean have now been capitalised 

• Line 307: Do you mean the seasonal cycle amplitude?  
We define this at the first occurrence of the phrase on L211 

• Line 342: “it was advanced that the explanation. . .” is awkward  
This section has changed a great deal – this paragraph has been removed 

• Line 350: “These studies have in linked the wind stress variability. . .” is awkward and 
needs to be rewritten.  
This has been removed 

• Lines 373-376: caption for Figure 7 and Figure 8 need to be corrected to accurately 
reference the figures.  
The captions have been corrected  

• Line 387-388: “. . .and surrounds (Figure 7d,j)” is awkward. Consider revising sentence  
Rephrased to: This regional sustained saturation corresponds to a shift towards stronger 
winds and/or deeper MLDs in the west Pacific sector of the SAZ (Figure 5d,j). 

• Line 397: “(-ve shift)”. Is this supposed to be negative shift? If so, simply spell out to 
improve clarity. 
All occurrences of +ve and –ve have been written out as positive and negative 
respectively.  

• Line 439: “ENSE” perhaps should be ENSO?  
Changed to ENSO 

 
Overall, the science presented in the paper is interesting and could provide a interested look at 
using various machine learning methods to gain an understanding of the Southern Ocean carbon 
drivers. However, the lack of proofreading prior to submitting is clear and must be improved 
before a complete review of the manuscript can be undertaken.  
 

 



 

2 
1 

 

Interannual drivers of the seasonal cycle of CO2 fluxes in the Southern 

Ocean  

Luke Gregor1,2, Schalk Kok3 and Pedro M. S. Monteiro1  
1 Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa 
2 University of Cape Town, Department of Oceanography, Cape Town, South Africa 5 
3 University of Pretoria, Department of Mechanical and Aeronautical Engineering, Pretoria, South Africa 

Correspondence to: Luke Gregor (luke.gregor@uct.ac.za)(luke.gregor@uct.ac.za) 

Abstract. Machine learning methods (support vector regression and random forest regression) were 

usedhas become a useful tool to map gridded estimatesinterpolate ship measurements of ∆pCO2 in the 

Southern Ocean from (SOCAT v3) to a gridded map using satellite data. A low (1° ⨉	monthly) and high 10 

(0.25° ⨉ 16-day) resolution implementation of each of these methods as well as In this study we use an 

ensemble of three machine learning methods: Support Vector Regression (SVR) and Random Forest 

Regression (RFR) from Gregor et al. (2017); and the SOM-FFN method offrom Landschützer et al. (2014) 

were added to a five member ensemble.(2016). The ensemble mean ∆pCO2 was used to calculate FCO2 

(air-sea CO2 flux). Data was interpolated data were separated into nine domainsregions defined by basin 15 

(Indian, Pacific and Atlantic) and biomes (as defined by Fay and McKinley (2014, 2014a). The regional 

approach showed large a meridional gradient and zonal asymmetry in the magnitude of ∆pCO2 and FCO2 

estimates. Importantly, there was a seasonal decoupling of the modes for summer and winter interannual 

variability. Winter trends interannual variability had a larger 10 yearlonger mode of variability compared 

to summer trends, which hadvaried on a shorter 4–6 year modetime scale. To understand this variability 20 

of FCO2∆pCO2, we separately assessedinvestigated changes in summer and winter ∆pCO2 and the drivers 

thereof. The dominant winter changes wereare driven by wind stress variability. Summer variability 

correlated wellThis is consistent with the temporal and spatial characteristics of the Southern Annular 

Mode (SAM), which has a decadal mode of variability (Lovenduski et al., 2008; Landschützer et al., 

2016). Interannual trends in summer variability of ∆pCO2 are consistent with chlorophyll-a variability 25 

where the latter had high mean seasonal concentrations. In regions of low chlorophyll-a concentrations, 

wind stress and sea surface temperature were lower orderemerged as stronger drivers of ∆pCO2. In 

summary we propose that sub-decadal variability is explained by summer drivers, while winter variability 

contributes to the long term changes associated with the SAM.  
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1 Introduction 30 

The Southern Ocean plays a key role in the uptake of anthropogenic CO2 (Khatiwala et al.., 2013; DeVries 

et al.., 2017). Moreover, it has been shown that the Southern Ocean is sensitive to anthropogenically 

influenced climate variability, such as the intensification of the westerlies (Le Quéré et al.., 2007; Lenton 

et al.., 2009; Swart and Fyfe, 2012; DeVries et al.., 2017). Until recently, the research community has not 

been able to accurately measure the contemporary changes, let alone understand the drivers, of CO2 in 35 

the contemporary Southern Ocean due to a paucity of observations (LandschützerBakker et al. 2015., 

2016). Empirical models provide an interim solution to this challenge until prognostic ocean 

biogeochemical models are able to represent the Southern Ocean CO2 seasonal cycle accurately (Lenton 

et al., 2013; Rödenbeck et al., 2015; Mongwe et al., 2016). . 2013; Rödenbeck et al. 2015; Mongwe et al. 

2016).The research community agrees on large changes in CO2 fluxes in the Southern Ocean from a 40 

source in the 1990’s to a sink in the 2000’s; however, there is disagreement in the drivers of the changes 

in CO2 uptake (Lovenduski et al., 2008; Landschützer et al., 2015; DeVries et al., 2017). This study aims 

to understand the drivers of the changing CO2 sink in the Southern Ocean based on an ensemble of 

empirical estimates using a seasonal analysis framework.  

 45 

Empirical methods estimate CO2 by extrapolating the sparse ship based CO2 measurements using satellite 

observable proxies. This approach has allowed for a better understanding of the drivers of CO2 by 

providing improved spatial and temporal resolution of the variability. Landschützer et al. (2015) 

usedshowed, using an artificial neural network (ANN) to show), that thethere was significant 

strengthening of the Southern Ocean CO2 uptake during the period 2000-2010 is part of a decadal internal 50 

variability in the natural CO2 flux dynamics. The authors found . While previous studies suggested that 

the strengthening sink was not due to changes in wind stress as suggested by previous studies strength 

have led to changes in meridional overturning and thus CO2 uptake (Lenton and Matear, 2007; 

Lovenduski et al.., 2007; Lenton et al.., 2009). Rather, they; DeVries et al., 2017), Landschützer et al. 

(2015) suggested that atmospheric circulation has become more zonally asymmetric since the mid 2000's. 55 

This, which has led to an oceanic dipole of cooling and warming whose. The net impact of cooling and 

warming, together with changes in the DIC/TA was to(Dissolved Inorganic Carbon/Total Alkalinity), led 

to an increase in the uptake of CO2 (Landschützer et al.., 2015). During this period, in the Atlantic basin, 

southward advection reduced upwelled DIC in surface waters overcoming the effect of the concomitant 

warming in the region. Conversely, in the Eastern Pacific sector of the Southern Ocean, strongerstrong 60 

cooling overwhelmed increased upwelling (Landschützer et al., 2015). Munro et al. (2015) supported this 

mechanism, with data from the Drake Passage showing that ∆pCO2 decreased between 2002 and 2014.  
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In a subsequent study Landschützer et al. (2016) proposed that interannual variability of CO2 in the 

Southern Ocean is tied to the decadal variability of the Southern Annular Mode (SAM) – the dominant 65 

mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). This concurs with previous 

studies, which suggested that the increase in the SAM during the 1990’s resulted in the weakening of the 

Southern Ocean sink (Le Quéré et al.., 2007; Lenton and Matear, 2007; Lovenduski et al.., 2007; Lenton 

et al.., 2009; DeVries et al. 2017). The work by Fogt et al. (2012) bridges the gap between the proposed 

asymmetric atmospheric circulation of Landschützer et al. (2015) and the observed correlation with the 70 

SAM of Landschützer et al. (2016). Their study showsFogt et al. (2012) show that changes in the SAM 

have been zonally asymmetric and that that this variability is highly seasonal, thus amplifying or 

suppressing the amplitude of the seasonal mode.  

 

Assessing the changes through a seasonal framework may thus help shed light on the drivers of CO2 in 75 

the Southern Ocean. Southern Ocean seasonal dynamics suggest that the processes driving ∆pCO2 are 

complex but with two clear contrasting extremes. In winter, the dominant deep mixing and entrainment 

processes are zonally uniform driving an increase in ∆pCO2 with the region south of the Polar Front (PF) 

becoming a net source and weakening the net sink north of the PFZPF (Lenton et al.., 2013). In summer, 

the picture is much more spatially heterogeneous, with NPPnet primary production being the primary 80 

driver of variability (Mahadevan et al., 2011; Thomalla et al., 2011; Lenton et al., 2013). The competition 

between light and iron limitation results in heterogeneous distribution of Chl-a in both space and time, 

with similar implications for ∆pCO2 (Thomalla et al., 2011; Carranza and Gille, 2015). The interaction 

between the large-scale drivers, such as wind stress, surface heating and mesoscale ocean dynamics, areis 

the primary cause of this complex picture (McGillicuddy, 2016; Mahadevan et al., 2012). Some regions 85 

of elevated mesoscale and submesoscale dynamics, mainly in the Sub-Antarctic Zone (SAZ) are also 

characterized by strong intraseasonal modes in summer primary production  and pCO2 (Thomalla et al., 

2011) and pCO2 (; Monteiro et al., 2015). The magnitudes of these In general, the opposing seasonal 

processes are large, resultingeffects of mixing and primary production result in the seasonal cycle being 

the dominant mode of variability in the Southern Ocean. (Lenton et al., 2013). 90 

 

In this study we examine winter and summer interannual variability in the air-sea fluxes of CO2 

between∆pCO2 from 1998 –to 2014 through interannual changes in the characteristics of the seasonal 

mode of both pCO2 and FCO2 in the Southern Ocean. We use an ensemble of empirical estimates of CO2 

that combine in situ observations with remotely sensed proxies to perform this analysis to understand the 95 

drivers of long term changes in CO2 uptake.  
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2 Empirical methods and data 

2.1 Empirical methods and data 

In this study we made use of three empirical methods combined to an ensemble – thesemachine learning 

methods are : Random Forest Regression (RFR), Support Vector Regression (SVR) and Self-Organising-100 

Maps Feed-Forward Neural Network (SOM-FFN). RFR and SVR are introduced in Gregor et al. (2017) 

and SOM-FFN is presented in Landschützer et al. (2014). In brief, the RFR approach is an ensemble of 

decision trees that provides non-linear regression by combining many high variance – low bias estimators 

(Gregor et al., 2017). Gregor et al. (2017). The advantage of an ensemble over SVRs are in principle 

similar to a single hidden layer FFN, with the difference that SVR statistically determines the complexity 105 

of the problem, which is analogous to the hidden layer structure that is typically determined heuristically. 

The SOM-FFN method approach is that a degree of robustness is added to the estimate, assuming that 

ensembles have unique biases in time and space. The other important assumption we make here is that 

the majority methods will be correct, while the minority will be biased. The ensemble mean contains five 

different ∆pCO2 estimate approaches, shown in Table 1, with low- and high-resolution (1°, monthly and 110 

0.25°, 16-day respectively). The SOM-FFN method is defined by Landschützer et al. (2014) and is a two-

step neural network approach (trained with SOCAT v2) that first clusters data (SOM) and then applies a 

regression model (FFN) to each cluster (Bakker et al., 2014). The low resolution.  

 

The SVR and RFR implementations of Support Vector Regression (SVR) and Random Forest Regression 115 

(RFR) methods are introduced in Gregor et al. (2017). Note that these areused in this study are trained 

with the monthly by 1° gridded SOCAT v3 dataset (Bakker et al., 2016). The SOM-FFN (v2.2) used in 

this study was trained with SOCAT v3 data (Bakker et al., 2016). The high-resolution implementations 

of SVR and RFR used in this study are implemented in the same way as described in Gregor et al. (v4 

(Landschützer et al., 2017). The high-resolution estimates of ∆pCO2 are resampled to match the low 120 

resolution data in the ensemble.   

 

Table 1: FiveThree empirical methods used in the ensemble. RFR-LR and SVR-LR are described in GregorGregor et al. (2017). 
SOM-FFN is from Landschützer et al. (Landschützer et al. 2014(2016). SST = sea surface temperature, MLD = mixed layer 
depth, SSS = sea surface salinity, ADT = absolute dynamic topography, Chl-a = Chlorophyll-a, pCO2(atm) = fugacity of atmospheric 125 
CO2, xCO2(atm) = mole fraction of atmospheric CO2, F(lat, lon) = N-vectorN-vector transformations of latitude and longitude, 

l(t(day of year) = trigonometric transformation of the day of the year. Note that SOM-FFN uses the de Boyer Montégut et al. (2004) 
climatology for MLD (dBM2004). The root mean squared errors (RMSE) listed in the last column are for the Southern Ocean from 
Gregor et al. (2017).  
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RFR-

LR 

1.0

0° 

M

o

n

t

h 

SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm) , 

F(Φ(lat, lon), t(day of year) 
17.2116.45  

SVR-

LR 

1.0

0° 

M

o

n

t

h 

SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), 

F(Φ(lat, lon), t(day of year) 

21.73 

24.04 

SOM-

FFN 

1.0

0° 

M

o

n

t

h 

SST, MLDMLDdBM2004, SSS, Chl-a, xCO2(atm) 15.4514.84  

RFR-HR	 0.25°	 16-day	 SST,	MLD,	SSS,	ADT,	Chl-a(clim),	pCO2(atm)		 12.58		
SVR-HR	 0.25°	 16-day	 SST,	MLD,	SSS,	ADT,	Chl-a(clim),	pCO2(atm),	F(lat,	lon),	t(day	of	year)	 19.18	

 130 

Table 1 also shows the proxy variables used for each of the methods. The sources for the proxy variables 

are consistent for all methods ensuring a fair comparison. This is particularly important for the assimilated 

model variables, mixed-layer depth (MLD) and seaSea surface salinity (SSS) and mixed layer depth 

(MLD) for SVR and RFR are from Estimating the Circulation and Climate of the Ocean, Phase II 

(ECCO2) (Menemenlis et al.., 2008). Choosing toThe use different of these assimilative modelled 135 

products may in some cases produce results that are unrealistic. This may have influenced the use of the 

de Boyer Montégut et al. (2004) MLD climatology in the SOM-FFN, where ECCO2 was used in previous 

iterations of the product. The trade-off of using the climatology is that no changes in MLD are taken into 

account. We acknowledge that using different proxy variables could result in data driven differences 

(from the same variable).different ∆pCO2 estimates, but comparing the different products is beyond the 140 

scope of this study. Other data sources that are consistent between methods are: sea surface temperature 

(SST) (and sea-ice fraction by Reynolds et al. (2007), Chlorophyll-a (Chl-a) (by Maritorena and Siegel 

(2005), absolute dynamic topography (ADT) (by  Duacs),, xCO2 (CDIAC, 2016) with pCO2(atm) calculated 

from interpolated xCO2 using NCEP2 sea level pressure (Kanamitsu et al. 2002).., 2002). In the case of 

Chl-a for SVR and RFR, Gregor et al. (2017) filled the cloud gaps with climatological Chl-a. Note that 145 

ADT coverage is limited to regions of no to very low concentrations of sea-ice cover, thus estimates for 

SVR and RFR methods do not extend into the ice covered regions during winter. Our analyses are thus 

limited to the regions without ice cover.  
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Seasonality of the data is preserved by transforming the day of the year (j) and is included in both SVR 150 

and RFR analyses: 

! = 	 		
cos ' ∙

2*
365

sin ' ∙
2*
365

		 	 1  

Transformed coordinate vectors wereare passed to SVR only SVR using n-vector transformations of 

latitude (1) and longitude (2) (Gade, 2010; Sasse et al.., 2013), with n containing: 

3 =	 		
sin(1)

sin 2 ∙ cos 1
− cos 2 ∙ sin 1

	 	 2  155 

 

Wind speed, while not used in the empirical methods, is used in the assessment of the drivers of CO2. We 

use CCMP v2, which is an observation-based product that combines remote sensing, ship and weather 

buoy data (Atlas et al., 2011). Swart et al. (2015a) compared a number of wind reanalysis products with 

CCMP v1 (where CCMP was the benchmark). The authors found that many of the reanalysis products 160 

had spurious trends, particularly in the Southern Hemisphere where data is sparse. Our choice of CCMP, 

which is based on observations, is thus one that aims to minimise the assumptions that are otherwise made 

by reanalysis products.  

2.2 Uncertainties 

The machine learning approaches used in this study are by no means able to estimate ∆pCO2 with absolute 165 

certainty. To account for the uncertainty we use the same approach as Landschützer et al. (2014) to 

calculate total errors for each of the methods: 

7 8 = 9:;<=> + 9@ABC> +9:<D> 				 (3)	 

where em(t) is the total error associated with a method (m); emeas  is the error associated with SOCAT 

measurements, which is fixed at 5 µatm (Pfeil et al., 2013); egrid is the 5 µatm error associated with 170 

gridding the data into monthly by 1° bins (Sabine et al., 2013). 

3 = 	Φ 		
sin(1)

sin 2 ∙ cos 1
− cos 2 ∙ sin 1

	 	 2  

Air-sea CO2 fluxes 

Lastly emap is the root mean squared error (RMSE) calculated for each method as shown in Table 1 taken 

from Gregor et al. (2017).  175 
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These errors are used to calculate the average “within-method” error as defined by Gurney et al. (2004):   

EG =
H
I
⋅ (9: 8 )>I

:KH 		 4     

where em(t) is the method specific error as defined in Equation 1 and M is the number of methods (3 in 

this case). For a measure of the difference between methods we use the “between-method” approach used 

in Gurney et al. (2004): 180 

MN =
H
I

(O: − O)>I
:KH 	 5    

where O: is the method estimate of ∆pCO2 and O is the mean of the methods. This is analogous to the 

standard deviation (for a known population size). We later use an adaptation of this metric as a threshold 

to determine the confidence around anomalies. 

2.3 Air sea CO2 fluxes are calculated with: 185 

 

PCO> = SG ⋅ TU ⋅ VCO>=;<	–	VCO><8: ⋅ 1	–	 XY9 	 3  

 

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the 

coefficients of (Wanninkhof et al. 2009). Wind speed is calculated from the u and v vectors Z> + [>  190 

of the Cross-Calibrated Multiplatform Product v2 (Atlas et al. 2011). Coefficients from Weiss (1974) are 

used to calculate K0 and ∆pCO2 is estimated by the empirical models. The effect of sea-ice cover on CO2 

flux is treated linearly (Butterworth and Miller 2016): the fraction of sea ice cover ([ice]) is converted to 

fraction of open water by subtracting one as shown in Equation (3). 

Regional Coherence Framework 195 

Southern Ocean CO2 is spatially heterogeneous both zonally and meridionally (Jones et al. 2012). In order 

to understand this heterogeneity we used the three southernmost biomes defined by Fay and McKinley 

(20172014a) as done in Rödenbeck et al. (2015). From north to south these are: sub-tropicalsubtropical 

seasonally stratified (STSS), sub-polar seasonally stratified (SPSS), seasonally ice covered region (ICE). 

These three biomes are comparable to the SAZ, (Sub-Antarctic Zone), PFZ (Polar-Frontal Zone) and MIZ 200 

(Marginal Ice Zone) respectively and will be used throughout the rest of the study. The Southern Ocean 

is further split into basins where the boundaries are defined by lines of longitude (70°W : Atlantic : 20°E 

: Indian : 145°E : Pacific : 70°W). Figure 1 depicts these nine regions. 
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 205 

 

Figure 1: A map showing the regions used throughout this study. The three biomes, SAZ, PFZ and MIZ used in this study are 
defined by Fay and McKinley (20142014a). The regions are also split by basin with boundaries shown above the map.  

3 Results and discussion 

In this sectionHere we present and discuss the dataresults. The first section examines the 210 

variabilityuncertainties of between the ensemble and its members to understand the potential limitations 

of the dataset.. We then look atconsider the seasonal cycle of the ensemble mean in time and space. This 

is done to lay the foundation knowledge for the interpretation of the results when assessed with the 

regional framework, which is the following section.. In the regional interpretation the data is decomposed 

into the nine regions as shown in Figure 1. The section that follows sets out to make senseLastly we 215 

implement a seasonal decomposition of the estimates to interpret the drivers of the trendschanges 

observed in the regional decomposition. ∆pCO2.  

3.21 Ensemble member performance and variability 

In this section we discuss the performance and variability of the ensemble members. The individual 
ensemble member Table 2: A regional summary of the errors for the different models. Note that the propagated errors are 220 
calculated as shown in equation (3) where the measurement and gridding errors are assumed to be constant at 5 µatm each (Pfeil et 
al., 2013; Sabine et al., 2013). The within-model and between model errors are calculated using equations (4) and (5) respectively.  

 Propagated errors (µatm) Within  
model 
(µatm) 

Between  
model 
(µatm) Biome SVR RFR SOM-
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FFN 
SAZ  17.48 14.50 12.30 14.91 4.88 
PFZ  15.94 12.71 13.09 13.99 4.78 
MIZ  36.38 24.53 22.46 28.46 10.81 

Southern Ocean  25.06 17.91 16.44 20.16 6.79 
 

We use the RMSE scores are shown in Table 1. The RFR-HR is the best performing member,as presented 

in Gregor et al. (2017) with abbreviated results shown in Table 1. The SOM-FFN method has the best 225 

score (14.84 µatm). SVR scores the lowest RMSE (12.58 µatm). The SVR members score the lowest 

(21.73 and 19.18 µatm for LR and HR respectively(24.04 µatm), but werewas still included due to the 

method’s sensitivity to sparse data, which is favourable to the poorly sampled winter period (Gregor et 

al.,. 2017). This compliments the RFR methodsmethod, which scorescores well (12.58 and 17.21 µatm 

for HR and LR respectively16.45 µatm), but areis prone to being insensitive to sparse data (Gregor et al. 230 

2017). These RMSE scores are used to calculate the total errors for each method and region using equation 

(3) where the measurement and mapping errors are both 5 µatm each (Pfeil et al., 2013; Sabine et al., 

2013). These results are shown in Table 2.  

 

Total errors are used to calculate the within-method error, which is an estimate ., 2017). The SOM-FFN 235 

member has the best of the low-resolution scores (15.45 µatm). However, this is because the SOM-FFN 

is tested with SOCAT v2 data rather than SOCAT v3, where the latter has a larger combined total errors 

of the three machine learning methods (equation 4). The between-method errors are the mean of the 

standard deviation (32.85 and 36.27 µatm respectively). When RFR-LR and SVR-LR are tested with the 

SOCAT v2 dataset, the RMSE scores are 15.15 and 19.82 µatm respectively.between the methods 240 

(equation 5). The within-method errors are much larger than the between-method errors (Table 2). 

However, the within-method errors are normally distributed and are mechanistically consistent (Gregor 

et al., 2017). This allows us to observe changes that are smaller than the within-method error. The 

between-method error (shown in Figure 2d) serves as a better measure of whether observed variability is 

more than statistical noise as it incorporates the three methodologically different approaches.   245 



 

2 
10 

 

 



 

2 
11 

 

 

Figure 2: Time series of the fivethree ensemble members for each biome as defined by Fay and McKinley (20142014a): (a) SAZ, 
(b) PFZ, (c) AZMIZ. (d) shows the standard deviation between ensemble members for the three biomes. which is analogous to the 
between-model error (equation 5). The SOM-FFN data ends at the end of 2011. This is indicated in (d) by the 250 
dashed line. within-method (Ew) and between-method (Eb) errors are shown for each biome. For a more detailed breakdown of 
the errors see Table 2. 

Figure 2 shows the ∆pCO2 time series of thefor each of the methods for the three Southern Ocean biomes 

as defined by Fay and McKinley (2014).. The methodological and data driven differences between each 

of the approachesmethods have been addressed in Gregor et al. (2017). In general, there is good agreement 255 

amongst the methods with a few notable exceptions. In the SAZ (Figure 2a) Thethe SOM-FFN differs 

from allthe other methods for summer and autumn from 1998 to 2008. Gregor et al. (2017) attributed this 

difference to the clustering step used byin the SOM-FFN that created largecreates discrepancies in the 
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Atlantic sector. The SVR-LR method overestimates the seasonal amplitude ∆pCO2 (where the seasonal 

amplitude is the difference between the winter maxima and summer minima of ∆pCO2) relative to the 260 

other methods for winter 2012 to 2014. In the PFZ (Figure 2b), the SVR methods (LR and HR) 

overestimateoverestimates ∆pCO2 relative to the other methods during winter from 1998 to 2004, likely 

due to the sensitivity to sparse winter data. The spread of data in the AZ is much larger than the two other 

regions, but the impact on the fluxes is reduced dueThese differences contribute to ice cover during winter 

(Ishii et al. 1998; Bakker et al. 2008; Butterworth and Millerthe between-method error. 2016).  265 

 
Figure 3: The mean spatial standard deviation (a) of the ensemble members (SVR-LR, SVR-HR, RFR-LR, RFR-HR and SOM-FFN) is shown 
to represent the “noise” of the ensemble mean. The “signal” (b) is calculated as the mean difference between the minimum and maximum 
values of the annually averaged ∆pCO2. This shows the signal that needs to be detected by the ensemble. The signal to noise ratio (c) shows 
regions where the confidence in the ensemble estimate is large, where darker shows higher confidence.   270 

The results from Figure 2 are summarised with the standard deviation of the ensemble members over time 

(Figure 2d) and space (Figure 3). As noted, the AZ (Figure 2c) has the largest disagreement amongst 

methods shown by map (Figure 3a) and the differences between the solid and dashed lines in Figure 2d, 

particularly during summer and autumn. This is likely due to the inability of the methods to accurately 

capture the larger intra-seasonal variability and patchiness in the AZ where the rapid reduction of pCO2, 275 

due to melting sea ice leads to patchy pCO2 distributions (Bakker et al. 2008; Chierici et al. 2012). The 

ensemble members are more coherent in the SAZ and PFZ.  
 

In order to ascertain a degree of coherence and confidence in the ensemble we show the signal to noise 

ratio in Figure 3c. We define the signal as the largest difference in the trend for a particular point. This is 280 

calculated from the largest difference of annual averages of ∆pCO2. The noise is the mean standard 

deviation of ensemble member estimates. A large signal to noise ratio (Figure 4c) is indicative of a large  

trend signal compared to the variability of the ensemble. While signal to noise ratio is > 1 for the entire 

domain, there are regions where the ratio is < 2: parts of the Atlantic sector of the SAZ and the Indian 

sector of the PFZ.  285 
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With the established baseline of confidence in the ensemble, the ensemble mean of ∆pCO2 can be 

assessed. The seasonal cycle is the strongest mode of ∆pCO2 variability in the Southern Ocean (Lenton 

et al., 2013). It is therefore important that the ensemble mean is understood in the context of our current 

understanding of the seasonal cycle. 290 

 

The seasonal amplitude of ∆pCO2 in the MIZ is much larger than the two other regions. However, this 

amplitude is likely to be dampened by ice cover (Ishii et al., 1998; Bakker et al., 2008; Butterworth and 

Miller, 2016).  Note that in this study, we do not include regions with sea-ice cover to ensure consistency 

between methods. Calculated fluxes for this methodologically reduced region will thus under-represent 295 

the fluxes of the full extent of the MIZ. We thus exclude the MIZ for the remainder of the study.  

 

Figure 2d shows the time evolution of between-method errors for each biome. This panel highlights the 

seasonality of the data, specifically the increased heterogeneity of ∆pCO2 in summer and the impact that 

this has on ∆pCO2 estimates. This is due to the more complex competing processes affecting ∆pCO2 300 

during summer. To gain a better understanding of the seasonal processes we look at the mean state of 

each season to characterise the drivers of opposing fluxes. 
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3.2 Ensemble seasonal cycle  

 

 305 

Figure 43: The mean seasonal states of ∆pCO2 of the empirical ensemble mean]{Seasonal averages of pCO2 for the 
ensemble of ∆pCO2. These are shown for (a) summer, (b) autumn, (c) winter and (d) spring. The black contour lines show the 
SAZ, PFZ and AZMIZ from north to south as defined by Fay and McKinley (20142014a).  
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The seasonal cycle of the ∆pCO2 for each biome (Figure 2a-c and Figure 4a3a-c) is coherent with expected 

seasonal processes based onreported in the literature (Metzl et al., 2006; Thomalla et al., 2011; Lenton et 310 

al., 2012; Lenton et al., 2013). In all biomes, uptake of CO2 is stronger during summer than in winter 

giving rise to the strong seasonal cycle. This is due to the opposing influences of the dominant winter and 

summer drivers, partially damped by the seasonal cycle of temperature (Takahashi et al.., 2002; Thomalla 

et al.., 2011; Lenton et al.., 2013). The dominant processes of mixing and entrainment in winter 

resultsresult in increased surface pCO2 and thus outgassing (Takahashi et al.., 2009; Lenton et al.., 2013; 315 

Rodgers et al.., 2014). In summer, stratification also allows for increased biological production and the 

consequent uptake of CO2, thus reducing the entrained winter DIC and associated pCO2 (Bakker et al.., 

2008; Thomalla et al.., 2011). However, stratification typically limits entrainment, but does not exclude 

the occurrence of entrainment during periods of intense mixing driven by storms, which. This has an 

impact on both primary productivity, DIC and pCO2 (Lévy et al., 2012; Monteiro et al., 2015; Nicholson 320 

et al., 2016; Whitt et al., 2017). 

 

The SAZ (Figure 2a) is a continuous sink where summer uptake (Figure 4a3a) is enhanced by biological 

production and winter (Figure 4c3c) mixing results in a weaker sink (Metzl et al., 2006; Lenton et al., 

2012; Lenton et al., 2013). TheseThe same processes produce a similar seasonal amplitude in the PFZ 325 

(Figure 2b), but the seasonal fluxes arestronger upwelling and weaker biological uptake result in a positive 

shift of the mean. This results in an opposing: a sink in net summer (< 0 µatm)sink and a source in winter 

(> 0 µatm).source. However, this is according to the mean state in the PFZ and winter estimates of ∆pCO2 

do in fact approach 0 µatm toward the end of the time series (Figure 2b). The AZMIZ has the strongest 

seasonal cycle due to upwelling of CO2 during winter and strong biological uptake in summer. However, 330 

much of this is dampened by sea ice cover during winter and weaker winds during summer (Ishii et al., 

1998; Bakker et al., 2008).  

 

ItApparent also from Figure 3 is important to note that, over and above the latitudinal gradient, ∆pCO2 is 

zonally asymmetric within each biome, particularly during summer (Figure 4a)3a), when biological 335 

uptake of CO2 increases. Zonal integration of ∆pCO2 and FCO2 could thus dampen magnitudes of 

regional signals∆pCO2. A regional approach is therefore needed to examine the regional characteristics 

of seasonal and interannual variability of ∆pCO2 and FCO2 and to understand theirits drivers.  

3.3 Regional ∆pCO2 and FCO2 Variability: Zonalvariability: zonal and basin contrasts 

Here ∆pCO2 and FCO2 areis decomposed into nine domains by biome and basin with the boundaries 340 

shown in Figure 1., but note only six are shown in Figure 4. The data are plotted as time series for pCO2 

(Figure 5) and FCO2 (Figure 64) showing: the mean annual trends of pCO2 and FCO2 (black lines), the 
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maximum winter values (red line) and the projected summer minima (dashed red line) based on adjusting 

the winter maxima each year by the mean of the difference between the winter maxima and the summer 

minima (Figures 5, 6).). The projected summer minima implies that there is an expectation(dashed lines) 345 

are calculated by subtracting the mean seasonal amplitude from the winter maxima (Figure 4, with air-

sea CO2 fluxes shown in Figure S3). The projected summer minima are the expected summer ∆pCO2 

under the assumption that summer ∆pCO2 is dependent on, but not restricted to, the baseline set by the 

winter maxima. Differences between the ensemble summer minima and projected minima are highlighted 

with green and blue patches, highlighting periods of decoupling between summer and winter interannual 350 

variability. The green areas indicate periods of strong uptake (relative to winter) that enhance the mean 

uptake of CO2. and amplify the seasonal cycle. Conversely, blue areas show periods where weak summer 

uptake (relative to winter) offsets winter trendoutgassing, thus reducing the mean trend.  ∆pCO2 as well 

as supressing the amplitude of the seasonal cycle (Figure 4). 

 355 
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Figure 54: Figures (a-if) show the ensemble mean of ∆pCO2 (dark grey) and (j-r) show FCO2 (dark grey) plotted by biome 
(rows) and basin (columns). Biomes are defined by Fay and McKinley (20142014a). The solid red line shows the maximum for each 
year (winter outgassing) and the dashed line shows the same line less the average difference between the minimum and 
maximumseasonal amplitude – this is the expected amplitude. The shaded blue (green) area shows when the annual minimum is 360 
less (greater) than the expected amplitude. ∆pCO2Eb is the average between-method error and ∆]^_` is the average for plots 
(g–i) was normalised to sea ice cover, but under ice ∆pCO2 estimates were still used to find the expected 
amplitude.the entire time series. Light grey shading in (a-if) shows the proposed periods used in Figure 9 andFigure 10 
Light grey shading in (j-r) shows the “saturation” period (1998 to 2001) and the “reinvigoration” period 
(2002 to 2011).5 and Figure 6. 365 

 

The data for ∆pCO2 and FCO2 (Figures 5 and 6),(Figure 4) show that the Southern Ocean sink 

strengthened from 2002 to 2011 in all domains, a period identified as the reinvigoration by Landschützer 

et al. (2015). This was preceded by a period of a net weakening sink in the 1990’s referred to as the 

saturation period after Le Quéré et al. (2007). These two periods are highlighted by the grey fill in Figure 370 

6. The saturation of the Southern Ocean CO2 sink is not as strong in the ensemble, occurring in only five 

of the nine domains (see the positive trend slopes between 1998 and 2002 in Figure 6). In the last period 

(from 2012 to 2014) of the ensemble, three domains (Figure 4a,c,f) go from growing uptake to reducing 

uptake; however, our confidence in the increasing trends from 2012 to 2014 changing trend is low due to 

lack of coherence between methods (Figure 2a,b) and only three years of data, with very sparselittle data 375 

in 2014.  

 

Importantly, theseA key feature of Figure 4 is that the mean interannual trends arevariability is the 

integratednet effect of decoupled seasonal modes of variability. for summer and winter. This is 

particularly evident in the PFZ (Figures 5d4d-f). Here, and in the other biomes, there is athe net 380 

strengthening of the CO2 sink due is mainly linked to a reduction of ∆pCO2 in winter on roughly a decadal 

mode.for the majority of the time series. This corresponds with the findings of Landschützer et al.,. 
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(2016), who linked the decadal variabilityreinvigoration to the decadal variability of the Southern Annular 

Mode (SAM) – the dominant mode of atmospheric variability in the Southern Hemisphere (Marshall, 

2003). In comparisoncontrast, summer ∆pCO2 variability is sub-decadal or shorter (roughly 4 – 6 years,), 385 

thus impacting the short termproviding inter-annual modulation of longer time-scale winter variability of 

the annually integrated trend. This is demonstrated well in the Indian sector of the PFZ where a decrease 

in winter ∆pCO2 from 2002 to 2011 is offset by weakening of the summer sink from 2006 to 2010 (Figure 

5d, 6d4d). Similarly in the Atlantic and Pacific sectors of the SAZ and PFZ strong decoupling occurs 

from ~2011 to the end of 2014 with a rapid increase in the strength of the summer sink.  390 

 

The mean amplitude of the seasonal cycle of ∆pCO2, the mean difference between the summer minima 

and the winter maxima, is perhaps a better means of understanding the magnitudestrength of the seasonal 

drivers for each domain than the mean ∆pCO2 (Table A1).. For example the Atlantic sectors of the SAZ 

and PFZ (Figures 5c4c,f) have the strongest seasonal variability (20.5714.11 and 27.6725.83 µatm 395 

respectively). This contrasts the relatively weak seasonal amplitude in the Indian sector of the Southern 

Ocean which has mean amplitudes of 8.857.06 and 13.3164 µatm for the SAZ and PFZ respectively 

(Figures 5b4b,e). This contrast can also be seen by comparing the mean seasonal maps of ∆pCO2 in 

Figures 4a3a and 4c3c. In summer, strong uptake in the eastern Atlantic sector of the southern 

oceanSouthern Ocean is indicative of large biological drawdown of CO2 by phytoplankton (Thomalla et 400 

al., 2011). Conversely, relatively low primary production in the Indian sectors of the SAZ and PFZ 

resultresults in a small seasonal amplitude (Thomalla et al., 2011). This large discrepancy in biological 

primary production is related to the availability of iron, a micronutrient required for photosynthesis. The 

lack of large land masses, a source of iron, in the Indian sector of the Southern Ocean could be a 

contributing factor to the lack of biomass (Boyd and Ellwood, 2010; Thomalla et al., 2011).  405 

 

The seasonal amplitude in the AZ is much larger due to strong contrast of the upwelling of CO2 rich deep 

water contained beneath winter sea ice and the strong biological drawdown in the beginning of summer 

(Ishii et al., 1998, Bakker et al., 2008). Rapid stratification and iron supply by melting sea ice provide the 

environment for phytoplankton to proliferate in the AZ. This results in large seasonal amplitudes of 46.72, 410 

75.46 and 64.29 µatm for the Indian, Pacific and Atlantic.  
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Figure 6: Figures (a-i) show ∆pCO2 (dark grey) and (j-r) show FCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are 
defined by Fay and McKinley (2014). The solid red line shows the maximum for each year (winter outgassing) and the dashed line shows 
the same line less the average difference between the minimum and maximum – this is the expected amplitude. The shaded blue (green) area 415 
shows when the annual minimum is less (greater) than the expected amplitude. ∆pCO2 for plots (g–i) was normalised to sea ice cover, but 
under ice ∆pCO2 estimates were still used to find the expected amplitude. Light grey shading in (a-i) shows the proposed periods used in 
Figure 9 and Figure 10 Light grey shading in (j-r) shows the “saturation” period (1998 to 2001) and the “reinvigoration” period (2002 to 
2011). 

The air – sea fluxes of CO2 (FCO2) have decadal trends that are coherent with the pCO2 (Figure 6), but 420 

there are notable differences that emerge from the impact of wind on the rate of exchange as well as the 

surface area of each domain (Figure A1). Most prominent are the changes in the seasonal cycle and the 

mean seasonal sink of FCO2 relative to pCO2 with amplification in the Indian sector (Figures 5a,d and 

6a,d) and weakening in the Atlantic Ocean (Figures 5c,f and 6c,f) of the Southern Ocean. The Indian 

sector of the SAZ (Figure 6a) dominates the uptake of CO2 with an annual mean flux of -0.25PgC yr-1 425 

compared to -0.19 and -0.17 PgC yr-1 for the Atlantic and Pacific sectors respectively (where the latter 

are significantly different with p = 0.01). The seasonality of wind stress (see Figure A1) results in a 

damped seasonal cycle of FCO2 in the SAZ and increasing intra-seasonal variability (compared to 

∆pCO2), with stronger winter winds compensating for a weaker ∆pCO2 gradient (Monteiro et al., 2015).  

 430 

This contrasts the PFZ, where opposition of summer uptake and winter outgassing of CO2 is amplified 

by stronger wind stress (Figure 6d-f). Interannual variability is also enhanced, particularly during winter 

in the Indian sector of the PFZ, where a reduction in outgassing of 0.18 PgC yr-1 is observed. The 

decoupling between summer and winter FCO2 also becomes more pronounced in this region (Figure 6d), 

resulting in a lag in the decreasing trend. In other words, the trend of FCO2 for the reinvigoration (2002 435 

through 2011: -10.85 PgC yr-1) would have been stronger if the decoupling had not occurred. Similarly, 
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the seasonal decoupling in the Pacific sector of the SAZ and PFZ results in a stronger growing sink from 

2012 to 2014. In the Atlantic sector of the SAZ and PFZ the earlier onset of the seasonal decoupling 

(Figure 5c,f) also means that re-coupling occurs sooner, resulting in a positive flux trend (Figure 6c,f). 

Lastly, FCO2 in the MIZ is damped during winter due to ice cover and weaker winds during summer 440 

when ∆pCO2 is low due to the short-lived intense biological uptake of CO2 (Ishii et al. 1998; Bakker et 

al. 2008). 

3.4 Seasonal deconstruction of interannual variability  

Figures 5 and 6 giveFigure 4 gives us insight into the magnitude of FCO2 and ∆pCO2 interannual ∆pCO2 

variability as well as the character of these changes; i.e. decoupling of decadalinterannual winter and sub-445 

decadal summer interannual modes of variability. This alludes to the factpoint that ∆pCO2 and FCO2 areis 

responding to different adjustments of seasonal large scale atmospheric forcing and/or responses of 

internal ocean dynamics in the Southern Ocean (Landschützer et al., 2015, 2016; DeVries et al., 2017). 

In the study by Landschützer et al., (2015) it was advanced that the explanation for the reinvigoration of 

∆pCO2 uptake in the 2000s decade was linked to the net thermal control driven by a response of DIC and 450 

temperature to asymmetric atmospheric forcing over the Southern Ocean. More recently, a study by 

DeVries et al., (2017) proposed that the Southern Ocean uptake was due to the global deceleration of the 

Meridional Overturning Circulation (MOC). They suggested that the MOC was increasing the oceanic 

storage and reducing the losses of CO2 to the atmosphere, particularly in the Southern Ocean. The 

mechanism proposed by DeVries et al. (2017) is the same as that put forward by Le Quéré et al. (2007) 455 

and Lovenduski et al. (2008) amongst others, where the changes in outgassing are related to the strength 

of the westerly winds over the Southern Ocean. These studies have in linked the wind stress variability 

to SAM.  

 

In order to capture the decoupled short term variability observed during summer, the data are 460 

brokendivided into four interannual periods (P1 to P4)), where P1 is five years and the remaining periods 

(P2 to P4) are four years as shown by the light grey fills in Figure 5. The first period is the saturation 

period (P1: 1998 – 2002) by Le Quéré et al. (2007). The second and third periods are informed by the 

reinvigoration period (2002 through 2011) split around the start of 2007 an early, weaker reinvigoration 

(P2: 2002 – 2006) and a late, stronger reinvigoration (P3: 2007 – 2011). The last period incorporates the 465 

three years of new data (P4: 2012 to 2014).4. The small discrepancy in the length of the periods is due to 

the uneven length of the time series (17 years).   

 

These four periods are too short for trend analyses (Fay and McKinley, 20142014b), but the intention 

here is to identify periods that are short enough to resolve interannual changes in theof large -scale 470 
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drivers of the winter and summer mean values for pCO2 and FCO2 that would otherwise be averaged 

out over longer periods. We perform anthen calculate the relative anomaly analysis between each 

successive period rather than a trend analysis (for which inflections of ∆pCO2 would be more suitable 

delimiters). The relative anomalies in an anomaly of the drivers are their differences between two 

adjacent periodsmean state (e.g. P2 – P1). As a result four periods give rise to three sub-decadal-scale 475 

transition anomalies for summer and winter: A (P2 – P1), B (P3 – P2) and C (P4 – P3). We do this 

separately for each method rather than using the ensemble mean (see S4 for calculations). The mean of 

the method anomalies for each transition is then taken. These anomalies are considered significant if the 

absolute estimate of the anomaly is larger than the standard deviation between the methods for each 

period. These calculations along with plots for the standard deviation between methods are shown in the 480 

supplementary materials in S4.  

 

Note that, although only summer and winter anomalies are discussed, it is recognised that autumn and 

spring could be equally mechanistically important. Winter anomalies of ∆pCO2, wind stress, SST and 

MLD are shown in Figure 75. Summer anomalies of ∆pCO2, wind stress, SST and Chl-a are shown in 485 

Figure 86 where MLD, in winter, is replaced with Chl-a for summer as it is potentially a more 

important driver than the generally shallow MLD in summer MLD (the omitted plots are shown in 

Figures A2S5 and A3S6).  
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Figure 7: Transitions of winter ∆pCO2, wind stress, SST and MLD]{Transitions (relative anomalies) of winter ∆pCO2 (a-c), wind stress (d-490 
e), sea surface temperature (f-h) and mixed layer depth (i-k) for four periods (as shown above each column). The thin black lines show the 
boundaries for each of the nine regions described by the biomes (Fay and McKinley 2014) and basin boundaries.  

3.5 Drivers of the decadal winter trends in ∆pCO2 and FCO2 

There are two features of interest in the anomalies of winter ∆pCO2 and its drivers (Figure 7). First, there 

is a zonally asymmetric dipole for wind stress between the Pacific and Indian sectors of the Southern 495 

Ocean that dominates transitions A and B. Second, ∆pCO2, SST and MLD cohere roughly to the spatial 
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variability of wind stress anomalies, mirroring the wind dipole. These features will be expounded on in 

the paragraphs that follow.  

 

3.5 Drivers of winter ∆pCO2 variability 500 

We will limit the interpretation of the changes to the regions where the anomaly is larger than the between-

method error of anomalies (see S4 for calculations and maps). This masks out large regions, but three key 

points still arise from the significant anomalies. Firstly, ∆pCO2 is often spatially roughly coherent with 

wind stress and the inverse of SST. Secondly, there is a dipole in the wind anomalies in the Indian and 

Pacific between transitions A and B. This is confirmed by the u- and v-components of wind shown in the 505 

supplementary materials (Figure S5). Lastly, the Indian sector of the Southern Ocean dominates the 

reinvigoration of the CO2 sink. These points are now addressed in more detail.  

 

Transition A (the transition from P1, the saturation period, to P2, the start of the reinvigoration – P1) 

shows a relative increase of ∆pCO2 in the east Indian and Pacific sectors of the SAZ – suggesting a delay 510 

in the onset of the reinvigoration for these basins. This regional sustained saturation corresponds to a shift 

towards stronger winds and/or deeper MLDs in the west of the Tasman Sea (Pacific sector of the SAZ) 

and surrounds (Figure 7d5d,j). In contrast, CO2 uptake in the east Atlantic and west Indian sectors of the 

SAZ, and the south-eastern Indian sector of the PFZ show a reinvigoration of CO2 uptake. In the central 

Pacific, weaker wind stress (green in Figure 7d) start to strengthen, which roughly corresponds with 515 

relative warming and shoaling or stagnation of MLD. This is consistent with an invigoration of the 

Southern Ocean CO2 sink (P1 – P2: 1998 – 2007) initiated by a weakening of the mean westerly wind 

stress in the Pacific and W Indian Oceans, which we are suggesting, reduced winter entrainment and 

possibly upwelling of CO2-rich deep waters (Marshall, 2003; DeVries et al., 2017).the weaker winds.  

 520 

Transition B, which corresponds to anomalies between (P3 – P2 to P3 (the two reinvigoration periods),) 

is characterized by an a further intensification of the invigoration of ∆pCO2 (-ve(negative shift) in all 

basins, but particularlyprimarily in the Indian basin (Figure 7b). This5b). Once again the strengthening 

of the CO2 uptake corresponds with weaker wind stress, a warming trend in surface waters and shoaling 

MLDs in the SEeastern Atlantic and Indian Ocean sectors inof the winterSAZ and PFZ (Figure 525 

7b5b,e,h,k). In the Pacific, theThe opposing effects of the dipole are: observed east of New Zealand where 

stronger wind stress, deeper MLD, and cooler surface waters. These changes are associated correspond 

with the persistence of a neutral to weak reduction of positive shift in ∆pCO2 compared to the Indian 

sector. All the changes in transitions A and B are coherent to changes in the Pacific–Indian wind stress 

dipole..  530 
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In transition C (P4 – P3: 2012 - 2015), when we propose), the invigoration trend starts to weaken, ∆pCO2 

sink strengthens further in the northern and southern extremes of the east Indian and west Pacific basins, 

albeit in a more spatially heterogeneous way. In . This negative shift corresponds well with strong 

shoaling of the AtlanticMLD (Figure 5l). The west Pacific sector of the previous invigoration trend 535 
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reverses completely and the CO2 sink PFZ shows a positive shift in ∆pCO2, which is coherent with an 

increase in the wind stress and deepening MLD. 

 

 

Figure 5:Transitions (relative anomalies) of winter is shown to weaken (Figure 7b,c). The previously well 540 
characterized Pacific–Indian dipole is not apparent, suggesting that transition A∆pCO2 (a-c), wind stress (d-f), 
sea surface temperature (g-i) and mixed layer depth (j-l) for four periods. The thin black lines show the boundaries for each of the 
nine regions described by the biomes (Fay and B capture well established phasesMcKinley, 2014a) and basin boundaries. 
Regions with dots in the decadal variability, while transition C may be capturing a transition into the following 
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phase which could take(a-c) are where the system back toanomalies are not significant ie: standard deviation of the same 545 
configuration as P1. The notion that this period is a snapshotanomalies between two distinct phases is 
supported by the relatively heterogeneous spatial structure of wind stress in both the Atlantic and Indian 
Oceans. models is greater than the absolute mean of method anomalies as described in equations S1 to S3. 

3.5.1 Wind dominated interannual variability of pCO2 in winter 

WeBased on the observations outlined above, we propose that the interannual variability of seasonal the 550 

regional (basin-scale) characteristics of winter wind stress in winter may be the dominant driver of the 

saturation and reinvigoration periods. Moreover, the suggested Pacific–Indian wind dipole may be linked 

to the decadal variability of ∆pCO2 observed in the Southern Ocean (Landschützer et al., 2016).  

 

IncreasingThese findings suggest that increasing or decreasing interannual winter wind stress variability 555 

impacts ∆pCO2 (and thus FCO2) by driving strongerchanges in turbulent mixing. that set the magnitudes 

of winter entrainment. In the transition to and during winter, this mixing is associated with changes in 

rates of heat loss resulting in athat drive loss of buoyancy or weaker stratification (Abernathey et al.., 

2011). Weaker buoyancy facilitates deepening of the MLD, thus entraining DIC-rich deep waters 

(Abernathey et al.., 2011; Lenton et al.., 2013). Conversely, decreased wind stress and mixing during 560 

winter (on seasonal or interannual time scales) reduces the rate of heat loss (represented as warm 

anomalies in Figure 75). This results in stronger stratification and shallower winter MLD limits 

entrainment of DIC, which strengthens the CO2 winter disequilibrium and leads to a stronger CO2 sink 

anomaly (Figure 7). This is5). These are the mechanismmechanisms that resultswe propose result in 

decreasing or increasing fluxes with interannual and basin–scale changes in wind. However, the direct 565 

link between this wind stress mechanism and the reinvigoration was not made by Landschützer et al. 

(2015). This may be, in part, due to the seasonal decoupling that may lead to biased interpretation of wind 

stress and SST.  

 

We propose the link between spatial changes in wind stress and uptake of CO2 as an alternative hypothesis 570 

to temperature being a driver as suggested by Landschützer et al. (2015). Typically an increase in ocean 

temperature, which reduces CO2 solubility, results in an increase in ∆pCO2 (Takahashi et al., 1993). 

However, seasonal – regional analysis shows that the observed relationship between pCO2 and SST is 

counterintuitive (Figure 5a-c,g-i). On this basis we propose that SST is not a driver of pCO2 in winter. 

We suggest that this relationship is a product of weaker mixing and Ekman transport that allows warmer 575 

waters to shift southward. This also has the impact of strengthening buoyancy that would otherwise bring 

CO2 to the surface. In summary, our results suggest that, like pCO2, the SST changes are also a response 

to the wind stress and not in themselves the drivers of pCO2 changes.  
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Given the hypothesis that wind stress is the dominant driver of interannual – decadal ∆pCO2 in winter, it 580 

is of interest to understand its potential mechanisms. Past studies have used the SAM as a proxy for wind 

stress variability over the Southern Ocean, where the multi-decadal increasing trend has been cited as a 

reason for the saturation in the 1990’s (Marshall, 2003; Le Quéré et al., 2007; Lenton and Matear, 2007; 

Lovenduski et al., 2008). While Landschützer et al. (2016) identified the SAM as being a driver of global 

CO2 variability, the index does not explain the reinvigoration of the Southern Ocean. CO2 sink in the 585 

2000s. The SAM is often represented as a zonally integrating index (Marshall, 2003), but more recent 

studies have shown that the SAM, as the first empirical mode of atmospheric variability, is zonally 

asymmetric (Fogt et al.., 2012.). The zonal asymmetry of the SAM is linked with the El Niño – Southern 

Oscillation and is strongest in winter, particularly over the Pacific sector of the Southern Ocean during a 

positive phase, thus in accord with the Pacific–Indian winter wind stress dipole observed in Figures 5d,e 590 

(Barnes and Hartmann, 2010; Fogt et al.., 2012). Fogt et al. (2012) noted that the SAM has become more 

zonally symmetric in summer since the 1980's, matching the wind stress anomalies seen in Figure 76d-f.  

 

DeVries et al. (2017) proposed that slowing down of Meridional Overturning Circulation (MOC) as an 

alternate mechanism for the reinvigoration of the Southern Ocean CO2 sink in the 2000’s. The authors 595 

explain that weaker overturning reduces the natural CO2 brought from the deep to the surface ocean. 

Moreover, they suggest that this mechanism may continue to drive intensification of the global CO2 sink. 

The longer modes of MOC variability makes it difficult to attribute the change in flux to changes in 

overturning.  

 600 

This poses an interesting question for the Southern Ocean carbon sink when we consider that weakening 

MOC may counteract the intensification of winds over the Southern Ocean (encapsulated by the 

increasing SAM). Meredith et al. (2012) found that this question is made more complex by the 

compensatory effect of increased eddy activity (measured by eddy kinetic energy – EKE) to enhanced 

northward Ekman transport driven by intensified winds (Meredith and Hogg, 2006; Abernathey et al., 605 

2011; Marshall and Speer, 2012). Moreover, the inclusion of these eddies in a high resolution model 

reduced CO2 outgassing driven by increased Ekman transport by one third by entraining alkalinity to the 

surface water (Dufour et al., 2013). As it stands, this is an unresolved question and more work will have 

to be undertaken to understand the effect of these two counteracting mechanisms of CO2 transport.  

  610 

In summary, we propose that interannual variability of wind stress and its regional expression in winter 

is the dominant interannual driver of FCO2 ∆pCO2 variability in the Southern Ocean. The interannual 

variability of wind stress is linked to the SAM, but this relationship is nuanced by the zonally (regional) 
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asymmetric variability of the SAM.  as observed by zonal asymmetry of wind stress in the Pacific and 

Indian sectors of the Southern Ocean. 615 

 
Figure 8: Transitions of summer ∆pCO2, wind stress, SST and Chl-a]{Relative anomalies of summer ∆pCO2 (a-c), wind stress (d-e), sea 
surface temperature (f-h) and mixed layer depth (i-k) for four periods (as shown above each column). The thin black lines show the 
boundaries for each of the nine regions described by the biomes (Fay and McKinley 2014) and basin boundaries. 

3.6 Trends in the anomaliesAnomalies of ∆pCO2 and its summer drivers in summer 620 

The most importantmarked difference between the summer and winter anomalies, is that wind 

stress∆pCO2 (Figures 8d-f6a-c) does not correlate to ∆pCO2with wind stress (Figures 8a-c6d-f), thus 

ruling out wind as a first order driver of summer CO2. Rather, ∆pCO2 has the strongest coherence with 



 

2 
29 

 

Chl-a (an inverse relationship), which suggests that primary production may be a first order driver of the 

observed ∆pCO2 variability. Another difference between summer and winter is that the magnitudes of the 625 

transition anomalies are much larger in summer, and thus there are larger regions of significant anomalies 

(Figure 6a-c).  

 

Looking more specifically at the significant variability of ∆pCO2, Transitiontransition A (P2 – P1 in 

Figure 8a6a) is marked by patchy decreases a decrease of CO2 in regions of high EKE (Agulhas 630 

retroflection and the SAZ (Tasman shelf) in the SAZ and AZ, region), mirrored by an increase in Chl-a. 

The Atlantic and Indian sectors of the PFZ remain mostly neutral/weak sources marked by a reduction in 

phytoplankton biomass (Figure 8j6j). Transition B (P3 – P2 in Figure 8b6b), shows invigoration of CO2 

uptake in: the Atlantic sector of the SAZ and PFZ; the Indian sectorand in parts of the AZ; and patchy 

strengthening in the Pacific Ocean. Once again, the reduction of ∆pCO2 from P2 to P3 in the 635 

aforementioned regions correlatecorrelates well with Chl-a increases. In transition C (P4 – P3 in Figure 

8c6c) the reduction of the ∆pCO2 is widespread in the Indian and Pacific Oceans in all three biomes, 

though this does not necessarily correspond with as the increase in Chl-a. There is a strong 

decreasesimilarly widespread. Conversely, there is a reduction in Chl-a and concomitant increase in 

∆pCO2 along Polar front in the Atlantic sector, coinciding with position of the ACC, which has high EKE 640 

(Meredith, 2016). These examples demonstrate that ∆pCO2 is driven primarily by Chl-a in summer. 

However, understanding Chl-a variability is perhaps more complex as there is seemingly no set rule 

between Chl-a, SST and wind stress (Thomalla et al., 2011).  
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 645 
Figure 6: Relative anomalies of summer ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed layer depth (j-l) for 
four periods (as shown above each column). The thin black lines show the boundaries for each of the nine regions described by the 
biomes (Fay and McKinley, 2014a) and basin boundaries. 

There are regions in the Southern Ocean where summer Chl-a variability does not coincide with ∆pCO2 

variability, particularly in the Indian and Pacific sectors of the SAZ (Figures 8a6a-c and 8j6j-l). This may 650 

be due to the fact thatlow chlorophyll concentrations, and anomalies thereof, are low in these regions 

(Thomalla et al., 2011). This mayAs a result in the other variables, SST and wind stress, becomingmay 
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be higher order drivers in low chlorophyll regions, as found by Landschützer et al. (2015) and Munro et 

al. (2015).  

 655 

It is thus important to understand the variability of SST and wind stress in summer. Large SST anomalies 

between the western Atlantic and eastern Pacific sectors vary as ana zonally asymmetric dipole. As in 

winter, there is a summer wind stress anomaly dipole, but rather than being zonally asymmetric (e.g. 

Pacific–Indian), the dipole has annular, north-south variability (Figures 7,8d5,6d-f). We suggest that these 

dipoles in the variability may indicate that the Southern Ocean, as a system, transitions between different 660 

states forced by atmospheric variability (Landschützer et al., 2015).  

 

Lastly, thereAn important note is seasonal variability inthat the magnitudes of ∆pCO2 and theits drivers. 

The  have different magnitudes seasonally. For example, the anomalies of ∆pCO2 and SST have aare 

larger magnitudein summer than thein winter anomalies. Conversely, the wind stress anomalies are larger 665 

for winter than in summer. This is an important consideration for analyses that aim to understand the 

driving mechanisms, where annual averaging would make it difficult to decompose the true drivers of 

change.  

3.6.1 Chlorophyll dominated interannual anomalies of pCO2 in summer 

The factOur finding that Chl-a is the dominant driver of interannual ∆pCO2 variability should not be 670 

surprising given that models and observations support this notion (Hoppema et al.., 1999; Bakker et al.., 

2008; Mahadevan et al., 2011; Wang et al.., 2012; Hauck et al.., 2013; 2015; Shetye et al.., 2015). 

However, our data show that the dominance of interannual Chl-a variability over ∆pCO2 is largely limited 

to regions where Chl-a is high, such as the Atlantic, the Agulhas retroflection and south of Australia and 

New Zealand (Figure 97).  675 

 

However, theThe spatial variability of high Chl-a regions in the Southern Ocean is complex due to the 

dynamics of light and iron limitation (Arrigo et al.., 2008; Boyd and Ellwood, 2010; Thomalla et al.., 

2011; Tagliabue et al.., 2014; 2017). This complexity is highlighted in Thomalla et al. (2011), where the 

Chl-a is characterized into regions of concentration and seasonal cycle reproducibility (Figure 97). The 680 

seasonal cycle reproducibility (SCR) is calculated as the correlation between the mean annual seasonal 

cycle and the observed chlorophyll time series. Here we use the approach of Thomalla et al. (2011), in 

Figure 97, as a conceptual framework to understand the interannual variability of ∆pCO2.  
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  685 
Figure 9: Chl-a seasonal cycle reproducibility and iron supply mechanisms in the Southern Ocean]{(a) Regions of chlorophyll biomass and 
seasonal cycle reproducibility from Thomalla et al. (2011) (using SeaWIFS data). Seasonality is calculated as the correlation between 
the mean annual seasonal cycle compared to the observed chlorophyll time series. A correlation threshold of 0.4 was applied to each 
time series to distinguish between regions of high and low seasonality; similarly, a threshold of 0.25 mg m-3 was used to distinguish 
between low or high chlorophyll waters. Black lines showing the fronts are the same as described in figure. 690 

3.6.2 High chlorophyll regions 

While regions of high SCR (dark green in Figure 97) do not correspond with the interannual variability 

of Chl-a (Figure 8j6j-l), the framework by Thomalla et al. (2011) does present a hypothesis by which the 

variability of Chl-a and its drivers can be interpreted. This is, that the variability of Chl-a in a region is a 

complex interaction of the response of the underlying physics (mixing vs. buoyancy forcing,), which 695 

modulate light (via the MLD) and iron supply, to the interannual variability in the drivers (SST and wind 

stress). This complexity is exemplified by strong warming in the Atlantic during transition B, which 

results in both an increase and decrease in Chl-a, with inverse consequences for ∆pCO2. The effect is an 

even stronger transition C, where strong cooling in the Atlantic results in both a decrease and increase of 

Chl-a (Figure 8i6i,l). In both transition A and B the respective increase and decrease of Chl-a occur 700 

roughly over the ACC, while the opposing effects during transitions A and B occur roughly to the north 

and south of the ACC region. These temperature changes may impact the stratification of the region, but 

complex interaction with the underlying physics results in variable changes in Chl-a. 
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  705 
Figure 9: Chl-a seasonal cycle reproducibility and iron supply mechanisms in the Southern Ocean (a) Regions of chlorophyll biomass 
and seasonal cycle reproducibility from Thomalla et al. (2011) (using SeaWIFS data). Seasonality is calculated as the correlation 
between the mean annual seasonal cycle compared to the observed chlorophyll time series. A correlation threshold of 0.4 was applied 
to each time series to distinguish between regions of high and low seasonality; similarly, a threshold of 0.25 mg m-3 was used to 
distinguish between low or high chlorophyll waters. Black lines show the Southern Ocean fronts calculated by sea surface height 710 
(Swart et al., 2010). 

It is clear that, while there is a relationship between Chl-a and pCO2 as well as a relationship between 

wind stress and SST in summer, the relationship between wind forcing and, Chl-a and pCO2 is not as 

strong as in the winter anomalies (Figure 7). The reason for this is likely to5). It may be that enhanced 

summer buoyancy forcing resulting from summer warming and mixed layer eddies drives a more complex 715 

response to wind stress in the form of vertical velocities (w) and mixing (Kz),, which influence the iron 

supply and the depth of mixing depth (McGillicuddy, 2016; Mahadevan et al., 2012).  

 

Mesoscale and sub-mesoscale processes may have a part to play in these dynamic responses of Chl-a to 

changes in SST and wind stress (amongst other drivers). For example, eddy-driven slumping is a sub-720 

mesoscale process that actscould act to rapidly shoal the mixed layer (Mahadevan et al.., 2012; Swart et 

al., 2015b; du Plessis et al., 2017). This allows phytoplankton to remain within the euphotic zone and thus 

grow (while iron is not limiting). Similarly, Nicholson et al. (2016) and Whitt et al. (2017) demonstrated 

that a combination of high and low frequency oscillation of down-front winds are able to enhance nutrient 

entrainment (includingsubmesoscale processes could supply iron) into to the mixed layer on the less dense 725 

side of a front. This has important implications for Southern Ocean fronts, where Chl-a may benefit from 

this entrainment mechanism combined with eddy-driven slumping that could subsequently rapidly shoal 

the mixed layer (Du Plessis et al., by submesoscale2017).  
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Storm driven, intra-seasonal mixing is another sub-mesoscale process that could alleviate iron limitation 730 

through shear-driven mixing along the base of the mixed layer (Nicholson et al., 2016).. Importantly, both 

storm driven entrainment and the oscillatory enhancement of entrainment,these mechanisms rely on a 

mixing transition layer that has sufficient iron that is able to sustain growth – weak. Weak dissolved iron 

gradients in the Pacific and east Indian sectors of the Southern Ocean wouldcould explain the lack of 

phytoplankton in these regions (Tagliabue et al.., 2014; Nicholson et al., 2016). Much of the spatial 735 

character of the transition anomalies occurs at mesoscale, which strengthens the view that these mesoscale 

and sub-mesoscale processes may be key to explain changes in Chl-a (Figure 8j-l). This level of 

mechanistic detail was not part of this study.6j-l).  

3.6.3 Low chlorophyll regions 

Entrainment and stratification can explain much of the variability in the eastern Pacific and Indian sector 740 

of the PFZ (with the exception of the wake of the Kerguelen Plateau). For example, in the eastern Pacific 

in transition A (Figure 8a6a,d,g), strong warming and weaker winds have little impact on Chl-a, but a 

decrease in ∆pCO2 is observed. Conversely, cooling in the west Indian sector of the PFZ results in a weak 

increase in ∆pCO2 during the same transition. In both these cases, the effect of cooling or warming on 

∆pCO2 is negligible relative to the impact of entrainment or stratification respectively. The effect is 745 

reversed in the eastern Pacific during transition B where strong cooling results in a weak reduction of 

∆pCO2 rather than the increase that would be expected from entrainment. This is the mechanism that 

Landschützer et al. (2015) describe in the Pacific, where enhanced entrainment of DIC and TA is 

compensated for by cooling. This emphasises that the balance between SST (as a driver of stratification) 

and wind stress is far more important than in winter(2015) ascribed to the reduction of ∆pCO2 in the 750 

Pacific, but the effect observed in Figure 6b is weak. 

 

In summary, regions with high biomass, Chl-a integrates the complex interactions between SST, wind 

stress, MLD and sub-mesoscale variability resulting in large interannual pCO2 variability compared to 

low biomass regions. In low Chl-a regions, wind driven entrainment/stratification are in general dominant 755 

over thermally driven changesmore likely drivers of ∆pCO2.  

4 Synthesis 

In this study, an ensemble meansmean of empirically estimated ∆pCO2 and FCO2 wereis used to 

investigate the trends and the drivers of these trends in the Southern Ocean. The ensemble mean 

ofestimated ∆pCO2 showedshows that the seasonal cycle is the dominant mode of variability imposed 760 

upon a weaker interannual trend. The interannual variability was in accordance with past studies with the 
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saturation of the Southern Ocean CO2 sink in the 1990’s followed by the reinvigoration in the 2000’s (Le 

Quéré et al., 2007; Landschützer et al., 2015).  

 

Data was. The data are separated into nine domains defined by functional biomes and oceanic basins to 765 

account for the roughly basin scale zonal asymmetry observed in preliminary analyses of ∆pCO2 (Fay 

and McKinley, 2014).2014a).  A seasonal decomposition wasis applied to the nine domains, revealing 

that winter and summer interannual trends arevariability is decoupled for each region. It was shown that 

winter interannual variability has a decadal periodThe increase and summer interannual variability has a 

shorter four to six year period.subsequent decrease of pCO2 (and air-sea CO2 fluxes) is in accordance 770 

with recent studies showing a saturation of the Southern Ocean CO2 sink in the 1990’s followed by the 

reinvigoration in the 2000’s (Le Quéré et al., 2007; Landschützer et al., 2015).  

 

The ∆We suggest that changes in the characteristics of the seasonal cycle of the drivers of pCO2 define 

the interannual variability pCO2. In other words, the mechanisms that drive interannual modes of 775 

variability are embedded in the seasonal cycle.   

 

We propose that winter trends, agreed with ∆pCO2 variability is driven primarily by changes in winter 

wind stress variability, where the latter corresponds with the decadal variability associated with the , 

which influences the resulting convective entrainment of deep DIC-rich water masses (Lenton et al., 2009; 780 

2013). This winter variability has a longer mode than summer inter-annual variability. We attribute this 

longer winter mode of variability to the Southern Annular Mode, which has a decadal mode (Lovenduski 

et al., 2008; Fogt et al., 2012; Landschützer et al.., 2016). We propose that ∆pCO2 variability is driven by 

increased (decreased) wind stress which drives deeper (shallower) mixing, thus bringing CO2 rich waters 

to the surface (Lenton et al. 2009; 2013). This mechanism is strongestlikely dominant in winter due to 785 

weaker buoyancy gradients. its role in large seasonal net heat losses that drive convective overturning of 

the water column. 

 

Our findings showWe suggest that interannual summer variability of ∆pCO2 occurs from a baseline set 

by an interannual winter trend. TheMoreover, the shorter time-scale summer interannual variability of 790 

∆pCO2 (roughly 4 – 6 years) wasis driven primarily by Chl-a. Wind stress and sea surface temperature 

still influencedinfluence ∆pCO2 in summer, but wereare lower order drivers. We propose that changes in 

atmospheric circulation influence primary production throughthe interannual variability of the summer 

seasonal peak is linked to the complex interactionsinteraction of mid-latitude storms with surface 

temperaturethe strong mesoscale and mixing at small scales (sub-mesoscale). gradients in the Southern 795 

Ocean.    
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A Additional Materials  

A1 Mean ∆pCO2 for Southern Ocean domains 

The SAZ (Figures 5a-c) accounts for the majority of uptake in the Southern Ocean with a mean ∆pCO2 

of -25.31 µatm. However, there is a relatively large difference between the three sectors of the SAZ, with 800 

mean ∆pCO2 values of -24.39, -22.24 and -30.48 µatm for the Indian, Pacific and Atlantic respectively. 

In the PFZ (Figures 5d-f) the sink is far weaker due to the opposing summer uptake and winter outgassing, 

with ∆pCO2 values of 0.23, -2.06 and -6.57 again in the respective order Indian, Pacific and Atlantic. 

Similarly, in the AZ (Figures 5g-i) mean estimates of ∆pCO2 are muted by opposing seasonal signals with 

mean estimates of 4.83, -3.01 and -0.76 µatm.  805 

 
Table 2: Mean ∆pCO2 for each of the Southern Ocean domains shown in Figure 5, where the domains are defined according to Figure 1. 

BIOME	 Indian	 Pacific	 Atlantic	

SAZ	 -24.39	 -22.25	 -30.48	
PFZ	 0.23	 -2.06	 -6.57	
AZ	 4.83	 -3.01	 -0.76	

  

A2 

Overall, we propose that although the winter wind stress linked mechanisms explain the decadal trends 810 

in the strengthening and weakening of CO2 uptake by the Southern Ocean, summer drivers may explain 

the inter-annual variability in the decadal trends (Lovenduski et al., 2008; Landschützer et al., 2015).     

 

Lastly the ensemble of machine learning methods shows that there is still considerable disagreement 

between the different approaches. This is likely driven by the lack of pCO2 measurements in the Southern 815 

Ocean as found by Rödenbeck et al. (2015). Autonomous sampling platforms will likely play a role in 

closing this “observation gap”, but strategic deployment and sampling strategies will be critical to 

constrain and improve our understanding of CO2 in the non-stationary context (McNeil and Matear, 2013; 

Monteiro et al., 2015).  

 820 
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S Supplementary Materials  

S1 Wind speed and regional surface area 

The regional magnitude of integrated air-sea CO2 fluxes areis in part determined by the wind speed and 

surface area of the specific region. Figure 11aS1a shows the average wind speeds for summer and winter 825 

for each of the regions as defined in Figure 1. The wind product used is CCMP v2 (Atlas et al. 2011). 

Figure 11bS1b shows the surface area of each of the regions. Note that the Indian sector of the PFZ has 

both the highest average wind speed and has the largest surface area. This explains the dominance of the 

region in the determination of interannual trendsvariability of FCO2, (Figure S2), even though ∆pCO2 

trends are(Figure 4) variability is relatively weak.   830 

 

 
    (a)      (b) 

Figure A1S1: (a) Average wind speeds for each of the bimoesbiomes for summer (dark) and winter (light). The ocean basins are 
shown by the colorscolours as shown in the key for (b). (b) shows the size of each region seperatedseparated by biome and basin. 835 

A3 Additional transition anomaly figures 

Figure A2 and A3 augment Figures 7 and 8 respectively. These were omitted from the main text figures 

as we found that these variables (Chl-a in winter and MLD in summer) do little to aid our understanding 

of changes in ∆pCO2. These are included for the sake of completeness.  
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 840 
Figure A2: Winter Chl-a transitions for each of the three anomaly periods (relating to Figure 7).  

 

Figure A3: Summer MLD transitions 
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S2 Seasonal time series 845 

 

Figure S2: The regional breakdown of the seasonal averages for ∆pCO2. The seasonal mean for summer (solid) and 
winter (dashed) for each method is represented by the different coloured lines as shown in the key, where MLS is the 
Mixed Layer Scheme. The other methods are as in the main text. The grey fill is the ensemble mean ∆pCO2 ± Eb where 
Eb is the between-method error calculated as in Eq (5).  850 
 

Figure S2 shows the seasonal time series for each of the three anomaly periods (relating to Figure 

8).region maintaining separate seasonal averages for each method. We also include the Marginal Ice Zone 

plots with all plots showing the average between-method error.  

The Mixed Layer Scheme (MLS) method by Rödenbeck et al. (2013) is also included. Note that the scale 855 

of MLDMLS is not a machine learning method as it incorporates prior knowledge of the system. The 

method results in divergent estimates of ∆pCO2, particularly in the SAZ. The MLS fails to produce a 

seasonal cycle with winter and summer ∆pCO2 having the same magnitude. Further work will have to be 

done to understand the cause for this difference. We do not include MLS in the main ensemble as we 

cannot explain this difference. The methods are in much better agreement in the PFZ and MIZ.  860 
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S3 Air-Sea CO2 Fluxes 

Air sea CO2 fluxes are calculated with: 

PCO> = SG ⋅ TU ⋅ VCO>abc	–	VCO>cde 	 S1  865 

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the 

coefficients of (Wanninkhof et al., 2009). Coefficients from Weiss (1974) are used to calculate K0 and 

∆pCO2 is estimated by the empirical models. figureWind speed is calculated from the u and v vectors 

( Z> + [>) of the Cross-Calibrated Multiplatform Product (CCMP) v2 (Atlas et al., 2011; Wentz et al., 

2015). Wind speed is one of the largest contributors to the uncertainty in flux estimates, thus the choice 870 

of the wind product could have a large impact on flux estimates as well as interpretation of the drivers of 

CO2 (Takahashi et al., 2009). We use the ensemble mean ∆pCO2 from Figure 4 to calculate fluxes - note 

that this does not matchinclude the scale of MLDMLS shown in Figure S2.  

 
Figure S3: FCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are defined by Fay and McKinley (2014a). The 875 
solid red line shows the maximum for each year (winter outgassing) and the dashed line shows the same line less the average 
difference between the minimum and maximum – this is the expected amplitude. Lighter grey shading in (a-i) shows periods used 
in Figure 7. 5 and 6. Note that fluxes in the MIZ are calculated from a reduced surface area to maintain consistency between 
methods. 

Mean FCO2 is shown in Figure S3. Note that the apparent weak fluxes in the MIZ are due to the reduction 880 

of the surface area and thus flux to maintain equal weighting between machine learning methods. The 

SAZ clearly dominates the annual uptake of CO2 in the Southern Ocean, but the interannual variability is 

dominated by the PFZ. An interesting point of the SAZ is that the seasonal cycle of wind speed (strong 

in winter, weak in summer) opposes that of ∆pCO2 sink (weak in winter, strong in summer). The net 

result is that, compared to ∆pCO2, the seasonal amplitude of FCO2 is reduced. The same effect shifts the 885 
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mean flux in the PFZ, but does not affect the amplitude, where outgassing is amplified in winter and the 

sink is weaker than if wind speed was constant. Lastly, Figures S3a,d show that the Indian sector of the 

Southern Ocean dominate both uptake (SAZ) and the interannual variability (PFZ).  

S4 Uncertainty of the transition anomalies 

The transition anomalies are not calculated from the mean of the three methods. Rather we calculate the 890 

anomalies for each individual method with: 

gh Di = jh D − jh DkH 		 S2   

where s are the estimates for a particular model, n represents an individual model and p represents P1 to 

P4. The result, gh(Dl) thus represents the anomaly for two periods for a particular model. We then 

calculate the average of the anomalies with: 895 

gDi 	=
H
m
⋅ gh Di

m
hKH S3   

where N is 3, the number of models. We then calculate the standard deviation of the three anomalies 

(9Dl), which is analogous to the between-model error, with: 

9Di =
H
m
⋅ (gh Di − gh Di )>m

hKH S4    

where the terms are consistent with those above. We use 9Dl as an uncertainty threshold where 900 

anomalies are only considered significant if |gDl| > 9Dl. These regions are masked in Figures 5a-c and 

6a-c. Figure S4 shows the winter (a-c) and summer (d-f) 9Dl for each transition anomaly. 

 



 

2 
42 

 

 
Figure S4: Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for ∆pCO2 in 905 
Figures 5(a-c) and 6(a-c) for winter and summer respectively. When the standard deviation exceeds the absolute value average 
anomaly, the values are masked as shown in Figures 5 and 6.  
 

 

  910 
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S5 Additional driver variables 

Here we show additional variables that accompany Figures 5 and 6. Figure S5 shows winter Chl-a, u- 

and v-components of wind and Figure S6 shows summer  MLD, u- and v-components of wind. These 

variables were not included in the main analyses as they did not contribute significant information to the 

proxy variables already present (wind stress, SST and MLD/Chl-a). It is interesting to note that the u- 915 

and v- components of wind speed highlight the zonally asymmetric dipole during winter (Figures 

S5d,e,g,h) and the annular dipole during summer (Figures S6d,e).  

 

Figure S5: Relative anomalies of winter chlorophyll-a (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as shown above 
each column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and McKinley, 920 
2014a) and basin boundaries. 
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Figure S6: Relative anomalies of summer mixed layer depth (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as 
shown above each column).. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay 
and McKinley, 2014a) and basin boundaries.  925 
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