
Reply to the reviewers for the second review of Gregor et al: Interannual drivers of the 
seasonal cycle of CO2 in the Southern Ocean  
 
We would like to thank the reviewers for their thorough reviews of the paper and we 
appreciate the time taken to hone the manuscript towards publication. We have made 
relatively large changes to the manuscript with changes to both figures and text. In particular 
we have addressed the issue of uncertainty a lot more thoroughly. This means that the content 
of section 3.5 (winter) has changed a fair deal. In addition we have also made use of a 
professional editor, which has hopefully reduced the amount of editorial mistakes in the 
manuscript to an acceptable amount.  
 
Below we address the comments of the reviewers in blue. After that we show the track 
changes for the document.  
 
  



2nd review of Gregor et al:  Interannual drivers of the seasonal cycle of CO2 in the 
Southern Ocean 
 
Response to previous concerns: 
 
Previously, I have raised 3 main concerns. The first related to the very confusing presentation 
of variability and trends, the second related to the missing evaluation of uncertainties (of 
various sources) and the third related to the choice of time periods as they are compared in 
the text. 
 
In their revised manuscript, the authors have indeed taken into consideration the concerns 
raised by this reviewer, however, as I will outline below, they still miss to clearly 
communicate the uncertainty of their analysis and thereby still present results 
overconfidently. 
 
Firstly though, the authors have done a good job in their manuscript to clarify when they 
consider trends and variability and what is the time period considered. This makes the 
manuscript much easier to read. Exceptions however still exist, e.g. the abstract line 21 (here 
authors talk about “interannual trends”) and on page 21 line 70, where the authors state “… 
summer drivers may explain the inter-annual variability in the decadal trends”. These 
statements need clarification – see my previous review.  
We have changed the wording to avoid the confusing the decadal trends (with this short time-
series); however, in the first part of the paragraph on page 21, we refer to the decadal trends 
in the cited publications, which do consider longer time series from which decadal variability 
can be derived. 
 
Coming back to the uncertainty analysis: The authors now provide an error assessment which 
is a great leap forward, however, when discussing the results the new uncertainty estimates 
are often mentioned but likewise not properly taken into consideration. To give you a 
concrete example: Uncertainties are still only hand-wavy included in figure 4 which makes 
me doubt that these observed short temporal variabilities are real or just statistical noise given 
that these fluctuations are often in the order of 2-3 µatm (visually assessment based on figure 
4). Figure 2 likewise suggests errors beyond the displayed differences between methods. 
Another example is figures 5 and 6. Here the authors do add the uncertainty, but fail to 
properly discuss the limitation that basically the majority of the SO variability is 
insignificant, besides a few regions. Instead the authors assume the significant regional 
drivers are representative for the entire region. The authors further only mention uncertainty 
in a first sentence of the sections but then it is not clear if this is properly taken into 
consideration when discussing the drivers (see specific comments below).  
We have changed figure 4 to now show the uncertainty surrounding ensemble estimates for 
summer and winter. We feel that this is now far more explicit around the error. Moreover, we 
realise that the interannual variability is   
 
Regarding my third point, the authors still don’t make a strong enough case for their periods 
they consider. They refer in the text to figure 4 but visually it is not obvious why the periods 
have been chosen. I am aware that this is a new argument (as I have previously only 
criticized the length of the periods). This however can be easily solved by adding a sentence 
or 2 explaining why these periods were chosen (may this be due to some metric or subjective 
choice) 
We have changed the motivation for our time periods slightly. We also add a sentence at the 



end of the paragraph that makes it clear that we do not feel that our study is dependent on 
these specific period lengths or starting years: “In order to capture the decoupled 4–6 year 
short-term variability observed in summer, the estimates are divided into four objectively 
selected periods (P1 to P4). The periods are each four years long with the exception of P1, 
which is five years long due to the fact that the time-series is not divisible by four (with a 
length of 17 years in total). Given a longer time series, this analysis would benefit from 
testing different lengths for each period, as well as varying the starting and end years.” 
 
In summary, I think the manuscript has improved, but overall, issues remain regarding the 
uncertainty of the analysis. This really pains me because I do think that the paper is important 
and I do very much like the approach based on looking at anomalous periods (rather than 
linear trends). Also, an assessment based on 2 novel methods is a welcome addition to 
assessment papers such as the recently published Ritter et al. (GRL) Southern Ocean 
SOCOM trend comparison. I don’t think that (many of) the conclusions drawn would fall 
based on the error assessment, but in a data sparse region like the Southern Ocean, where all 
methods rely on heavy data extrapolation the uncertainty must be on the forefront of any 
variability, trend or process study.  
 
Recommendation: 
 
Based on the revision, I cannot recommend the manuscript for publication. Instead I would 
like to see a revised manuscript, where the authors really discuss their results in in a fair way 
in light of the uncertainty they are facing. Plus I suggest the authors check remaining editorial 
issues. I am convinced that after this step (plus some minor comments below) the paper can 
become acceptable for publication in BG. 
 
Specific comments: 
 
In general: Many editorial issues need to be fixed. E.g. in many instances commas are 
missing, the authors switch between present tense and past tense (e.g. in the abstract) and 
figure 7 is labelled figure 9. I will not list them all here, but rather suggest professional text 
editing.  
We have sent the document to a professional editor and we hope that the mistakes have now 
been reduced to an acceptable amount.  
 
Abstract line 9-10: (a) very minor but SOCAT includes fCO2 not pCO2 and (b) “… ship 
measurements of pCO2 (SOCAT) …” really is a clumsy way to introduce SOCAT. Firstly, 
the abbreviation SOCAT needs to be defined (Surface Ocean CO2 Atlas) and secondly, what 
about LDEO? This database equally includes pCO2 ship measurements. 
We leave the introduction of SOCAT to the methods section of the manuscript.  
 
 
Abstract line 13: “… nine regions defined by basin …” – at this time you have not mentioned 
the Southern Ocean so the reader gets the impression you talk about the actual basins. 
We have made this more clear; however, it should be clear from the title that we consider the 
Southern Ocean in this study.   
 
Abstract line 15: delta pCO2 is not defined (i.e that you mean the difference between ocean 
and atmosphere – it may as well be the seasonal difference). 
Changed to accommodate the seasonal differences 



 
Abstract line 21: “Interannual trends” - see my previous assessment 
This has been addressed: we refer now only to interannual variability.  
 
Abstract line 22: “… chlorophyll-a variability where the latter had high mean seasonal 
concentrations.” It is not clear what the authors try to say here 
We have tried to clarify this: where higher concentrations of chlorophyll-a correspond with 
lower pCO2 concentrations. 
 
Introduction line 32: “accurately measure” – I suggest “accurately quantify”. Measurements 
of any quantity have reached high accuracy. The interpretation through interpolation methods 
(such as this study – hence the necessity of an uncertainty estimate) suffer from lower 
accuracy. 
Changed as suggested 
 
Introduction lines 34 and 35: “Empirical models provide an interim solution to this challenge 
until prognostic ocean biogeochemical models are able to represent the Southern Ocean CO2 
seasonal 35 cycle accurately“ – it is not clear from the context of the text why the seasonality 
is suddenly important here 
Have made this a little more general for the first paragraph, we then later address the 
importance of the seasonal cycle later in the introduction. 
 
Introduction line 37: “source in the 1990’s” – I am not aware of any study that suggests the 
Southern Ocean was a source in the 1990’s. Studies of Le Quéré and Lovenduski only 
suggest a saturation of the sink. Do you refer to a specific region or a specific season or both? 
Changed to weakening sink / strengthening sink 
 
Introduction line 44: Not all proxies in the literature are satellite proxies. 
Have changed this: The proxies are often satellite observable, but may include climatologies 
or output from assimilative models.  
 
Introduction line 47: The Landschutzer et al 2015 paper focuses on 2002-2011 and not 2000-
2010 
Changed accordingly 
 
Introduction line 56-57: Additionally, the Xue et al 2015 paper suggests the same trends 
based on observations south of Tasmania and should be cited. 
Included the Xue et al. (2015) study: This is supported by observations from the Drake 
Passage and south of Australia showing that variability of upwelling has affected ∆ pCO2 
(Munro et al., 2015; Xue et al., 2015). We discuss the role of the SAM in driving this 
variability in the following paragraph, where Xue et al. (2015) is cited again.  
 
Page 3 line 92: It is “Self-Organizing Map” – i.e. singular not plural.  
Corrected  
 
Page 4 line 2: “v2.2” This is not the SOM-FFN version the authors refer to, but the version of 
the database where the data are stored. 
Changed this identifier to the run id: netG05 
 
Results: See also main comments above. 



 
Page 4 line 18: “comparing the different products is beyond the scope of this study” is a 
clumsy formulation. The authors do compare products here, but pCO2. The phrase should 
rather read that comparing proxies is beyond the scope of this study 
… comparing the different proxies used in each of the CO2 products is beyond the scope of 
this study. 
 
Page 6 line 73: The first sentence is not necessary – of course you discuss the results in the 
results section 
Sentence removed 
 
Figures 2 and 4: Add uncertainty alongside the lines. Not as numbers. It is difficult to 
compare lines with numbers. At the moment, it looks like the authors try and highlight a 
difference between methods in Figure 2 that is not statistically significant (given the Ew and 
Eb numbers) as well as amplitude anomalies (green and blue) in Figure 4 that are as well not 
significant based on the Eb. This is very confusing. So, my question to the authors is: Can 
you actually say – with absolute certainty – that (a) any of the 3 methods is at any given point 
in time statistically significantly different from any of the other methods? (b) That anomalies 
are – with absolute certainty - the result of environmental conditions and not simply the result 
of internal variability? Based on the evidence presented, I doubt you can.  
We are now far more cautious about our results. We also show the uncertainties in Figure 4. 
Figure 5 is dedicated to showing the regional errors (moved from the supplementary 
materials), and we also show uncertainty in the plots for the drivers (Figures 6 and 7). 
Addressing now the specific points: (a) we agree that the methods are likely not statistically 
significant at any given time; however we do feel that it is necessary to explain the observed 
differences as they contribute to the between method error. (b) We are a bit more cautious 
with ascribing the drivers to changes in ∆pCO2 and describe the changes only where the 
between method uncertainty is acceptable.  
 
Page 8 line 10: The authors missed my point in the first review round. I have noted that I 
have not seen any evidence that the CLUSTERING step is causing the difference. I am well 
aware that there is a difference and I do trust the authors with their assessment that the 
difference comes from the SOM method, but in neither of the papers I have seen any 
evidence that it is in fact the CLUSTERING step responsible for the mismatch. Many people 
are using the Landschutzer product, hence such an assessment of the cluster-based mismatch 
would be very valuable to the community. So, in summary: it is not enough to point at a 
difference plot and jumping to mechanistic conclusions. The authors should rather add a 
more in-depth analysis – also comparing the products to actual observations - if they want to 
add such a conclusive statement.  
We’ve removed the statement that clustering is the driver of this difference, but may look 
into this in a bit more detail in a later study.  
 
Page 9 line 21: Is the MIZ now in- or excluded? Later on, it is mentioned again. And if it is 
excluded, then why mention it at all? 
Have removed panel c from Figure 2 (MIZ) and masked in Figure 3. References to the MIZ 
in the remainder of the text have been removed.    
 
Page 9 line 34: Figure 3 a-d 
Corrected 
 



Page 10 line 54: Now the MIZ is discussed again – very confusing 
Removed this sentence 
 
Page 10 line 65: Only 6 are shown? Why? Is the MIZ in or out? It seems that it is ignored in 
the figures but added to the text. This is misleading the reader. 
We have removed the MIZ estimates from the main text – inconsistent coverage between 
methods, large errors (stemming from little data).  
 
Page 11 line 88: “however, our confidence in the changing trend is low due to lack of 
coherence between methods (Figure 2a,b) and only three years of data, with little data in 
2014.” – This statement is a bit of a surprise. Here the authors highlight that their trends are 
uncertain, but in the following they discuss the short term IAV as if it only little uncertainty 
is present. In contrast, Rodenbeck et al 2015, Landschutzer et al 2015 and Ritter et al 2017 
show that trends are more robust among methods than IAV. Please explain or expand. 
We have now addressed the variability of IAV between methods more explicitly. We hope 
that this addresses the reviewers concerns. Moreover, we have removed this statement as we 
agree that it is conceptually inconsistent.   
 
Page 13 line 35: “The 335 mean of the method anomalies for each transition is then taken. 
These anomalies are considered significant if the absolute estimate of the anomaly is larger 
than the standard deviation between the methods for each period” – all fine, but I am puzzled 
why one uncertainty estimate is in the methods section and the other is in the appendix? 
The section in the supplementary materials about the calculation of uncertainty in Figures 6 
and 7 has been moved to the main text.  
 
Page 13 line 47: The authors here mention that the uncertainty estimate masks out large 
regions. They equally and rightfully point out that there are other regions that are not masked 
and that those are considered. I do agree with the author’s driver assessment in the following 
but now my question: Based on the assessment of the fewer, significant regions, how much 
can one assume that the driver assessment is also driving the variability of the larger – 
insignificant SO. I don’t think one can with absolute certainty. 
Plotted the uncertainty mask on the driver anomalies too. We have adjusted the text 
accordingly – this has led to substation changes in Section 3.5.  
 
Page 15 line 99: “However, seasonal – regional analysis shows that the observed relationship 
between pCO2 and SST is counterintuitive (Figure 5a-c,g-i). On this basis we propose that 
SST is not a driver of pCO2 in winter.” – Hold on here: Firstly, this is not a new proposal but 
has been e.g. shown by Takahashi et al 2002. Secondly, despite temperature not being the 
driver, the solubility relation still exists, it is simply not dominating the variability (see e.g. 
Figure 3 of Landschutzer 2015). Thirdly, 2-3 lines earlier the authors mention that they 
propose changes in wind stress as an alternative hypothesis to Landschutzer 2015, but this is 
exactly the point of the Landschutzer paper, that changes in the wind pattern and thereby 
changes in wind stress and upwelling caused the reinvigoration of the SO sink (see again e.g. 
Figure 3 in Landschutzer et al). The main difference is that these authors have not done the 
analysis for winter separately. 
We have changed this paragraph accordingly to state that the finding is a refinement of the 
hypothesis put forward by Landschützer et al. (2015) in that we add a seasonal constraint.  
 



Page 16 lines 28 onward: The authors talk about correlations, but based on the visual 
comparison it is not easy to verify this assessment. It would help to add an actual correlation 
plot, or adjust the colour scheme.  
We have added the correlations for each driver anomaly with ∆pCO2 anomalies on the 
respective driver. This has been done for Figures 6 and 7 
 
Page 16 line 35: “Looking more specifically at the significant variability…” – Now I am 
completely lost. Do the authors now, as they state in the beginning, only consider significant 
regions or not? This statement suggests that they did not but start doing so now. 
This is has been removed to avoid this confusion.   



Suggestions for revision or reasons for rejection (will be published if the paper is 
accepted for final publication) 
Reference for Interannual driver of the seasonal cycle of CO2 fluxes in the Southern Ocean 
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro 
 
 
This paper is much improved and I thank the authors for considering each of the concerns 
and recommendations of the first-round reviewers. I think with some minor revisions, this 
paper will be ready for publication and an excellent contribution to the field. Below are a few 
comments and suggestions. Also, the included line numbers seem to not extend past 100 
before starting again from 00 so I include page and line numbers in order to help locate my 
references. 
 
I think that Figure 2 is very clear to help the reader visualize the products described here. 
Figure 2d is specifically interesting. However, it should be considered that the amount of area 
covered by the summer MIZ region is different from the winter MIZ region. When 
calculating the standard deviation you need to account for that. 
We have removed the references to the MIZ at the recommendation of Reviewer 1. We show 
the plots of the MIZ in the Supplementary materials. 
 
Figure 3: The ice mask varies by season in this figure but I don't understand what the source 
of the mask is. The SOM-FFN product specifically has the same coverage through all seasons 
I know. Is the mask just the regions where all 3 ensemble members have values for that 
season? I could see that the chosen MLD or Chl product input could limit this coverage 
during certain seasons, but just making it clear where that comes from would be helpful. 
Also, you could consider not showing the MIZ region all together since you state on Page 9, 
in line 21 that you are excluding it from the paper.  
We have adopted the recommendation, masking the MIZ for Figure 3. 
 
Throughout the manuscript, I strongly suggest you take care when using the word "data" to 
describe the output form these machine learning methods. Someone not as familiar with the 
topic could be led to believe we actually have observations everywhere that you show (for 
example on Page 11, line 84). 
We have changed data (referring to interpolated data) to estimates. 
 
Lastly, in the synthesis, it should be noted that this shorter timeframe could bias/limit the 
results presented here and only with increased timeseries of not only pCO2 but also these 
drivers (and the need for continued sustained satellite observations) will this work be 
validated and improved upon. 
We have added this statement to the summary.  
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Interannual drivers of the seasonal cycle of CO2 in the Southern 

Ocean  

Luke Gregor1,2, Schalk Kok3 and Pedro M. S. Monteiro1  
1 Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa 
2 University of Cape Town, Department of Oceanography, Cape Town, South Africa 5 
3 University of Pretoria, Department of Mechanical and Aeronautical Engineering, Pretoria, South Africa 

Correspondence to: Luke Gregor (luke.gregor@uct.ac.za) 

Abstract.  

Resolving and understanding the drivers of variability of CO2 in the Southern Ocean and its potential 

climate feedback is one of the major scientific challenges of the ocean-climate community. Here we use 10 

a regional approach on empirical estimates of pCO2 to understand the role that seasonal variability has on 

long term CO2 changes in the Southern Ocean. Machine learning has become a usefulthe preferred 

empirical modelling tool to interpolate time- and location-restricted ship measurements of pCO2 

(SOCAT) to a gridded map using satellite data.. In this study we use an ensemble of three machine -

learning methodsproducts: Support Vector Regression (SVR) and Random Forest Regression (RFR) from 15 

Gregor et al. (2017);), and the SOM-FFN method from Landschützer et al. (2016). The interpolated data 

wereestimates of ∆pCO2 are separated into nine regions in the Southern Ocean defined by basin (Indian, 

Pacific and Atlantic) and biomes (as defined by Fay and McKinley, 2014a). The regional approach 

showed a meridional gradient and zonal asymmetry in the magnitude of ∆pCO2 estimates. Importantly, 

there was ashows that, while there is good agreement in the overall trend of the products, there are periods 20 

and regions where the confidence in estimated ∆pCO2 is low due to disagreement between the products. 

The regional breakdown of the data highlighted the seasonal decoupling of the modes for summer and 

winter interannual variability. Winter interannual variability had a longer mode of variability compared 

to summer, which varied on a 4–6 year time scale. To understand this variability of ∆pCO2, we 

investigated changes in summer and winter ∆pCO2 and the drivers thereof. The dominant winter changes 25 

are driven by wind stress variability. This is consistent with the temporal and spatial characteristics of the 

Southern Annular Mode (SAM), which has a decadal mode of variability (Lovenduski et al., 2008; 

Landschützer et al., 2016). Interannual trends in summer variability of ∆pCO2 are consistent with 

chlorophyll-a variability where the latter had high mean seasonal concentrations.We separate the analysis 

of the ∆pCO2 and its drivers into summer and winter. We find that understanding the variability of ∆pCO2 30 

and its drivers on shorter time scales is critical to resolving the long-term variability of ∆pCO2. Results 

show that ∆pCO2 is rarely driven by thermodynamics during winter, but rather by mixing and 

stratification due to the stronger correlation of ∆pCO2 variability with mixed layer depth. Summer pCO2 



 

2 
 

variability is consistent with chlorophyll-a variability, where higher concentrations of chlorophyll-a 

correspond with lower pCO2 concentrations. In regions of low chlorophyll-a concentrations, wind stress 35 

and sea surface temperature emerged as stronger drivers of ∆pCO2. In summary we propose that sub-

decadal variability is explained by summer drivers, while winter variability contributes to the long -term 

changes associated with the SAM. This approach is a useful framework to assess the drivers of ∆pCO2 

but would greatly benefit from improved estimates of ∆pCO2 and a longer time series.  

1 Introduction 40 

The Southern Ocean plays a key role in the uptake of anthropogenic CO2 (Khatiwala et al., 2013; DeVries 

et al., 2017). Moreover, it has been shown that the Southern Ocean is sensitive to anthropogenically 

influenced climate variability, such as the intensification of the westerlies (Le Quéré et al., 2007; Lenton 

et al., 2009; Swart and Fyfe, 2012; DeVries et al., 2017). Until recently, the research community has not 

been able to accurately measurequantify the contemporary changes, let alone understand the drivers, of 45 

CO2 in the Southern Ocean accurately due to a paucity of observations, let alone understand the drivers 

(Bakker et al., 2016). Empirical models provide an interim solution to this challenge until prognostic 

ocean biogeochemical models are able to represent the Southern Ocean CO2 seasonal cycle 

accuratelyfluxes adequately (Lenton et al., 2013; Rödenbeck et al., 2015; Mongwe et al., 2016). The 

research community agrees on large changes in CO2 fluxes in the Southern Ocean from a source in the 50 

1990’s to a weakening sink in the 2000’s1990s to a strengthening sink in the 2000s; however, there is 

disagreement inover the drivers of the changes in CO2 uptake (Lovenduski et al., 2008; Landschützer et 

al., 2015; DeVries et al., 2017).; Ritter et al., 2017). This study aims to understand the drivers of the 

changing CO2 sink in the Southern Ocean, based on an ensemble of empirical estimates using a seasonal 

analysis framework.  55 

 

Empirical methods estimate CO2 by extrapolating the sparse ship -based CO2 measurements using proxy 

variables. The proxies are often satellite observable proxies. This approach has allowed for a betterbut 

may include climatologies or output from assimilative models. Empirical methods have improved our 

understanding of the drivers of CO2 trends in the Southern Ocean by providing improved spatial and 60 

temporal resolutionincreasing the data coverage. However, there is still disagreement between many of 

the variability.methods due to the paucity of data and the way in which each method interpolates sparse 

data (Rödenbeck et al., 2015; Ritter et al., 2017).  

 

In a key study, Landschützer et al. (2015) showed, using an artificial neural network (ANN), that there 65 

was significant strengthening of Southern Ocean CO2 uptake during the period 20002002-2010. While 

previous studies suggested that changes in wind strength have led to changes in meridional overturning 
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and thus CO2 uptake (Lenton and Matear, 2007; Lovenduski et al., 2007; Lenton et al., 2009; DeVries et 

al., 2017), Landschützer et al. (2015) suggested that atmospheric circulation has become more zonally 

asymmetric since the mid 2000's2000s, which has led to an oceanic dipole of cooling and warming. The 70 

net impact of cooling and warming, together with changes in the DIC/TA (Dissolved Inorganic 

Carbon/Total Alkalinity), led to an increase in the uptake of CO2 (Landschützer et al., 2015). During this 

period, southward advection in the Atlantic basin, southward advection reduced upwelled DIC in surface 

waters, overcoming the effect of the concomitant warming in the region. Conversely, in the Eastern 

Pacific sector of the Southern Ocean, strong cooling overwhelmed increased upwelling (Landschützer et 75 

al., 2015). Munro et al. (2015)This is supported this mechanism, with databy observations from the Drake 

Passage and south of Australia showing that ∆variability of upwelling has affected ∆ pCO2 decreased 

between 2002 and 2014.(Munro et al., 2015; Xue et al., 2015).  

 

In a subsequent study, Landschützer et al. (2016) proposed that interannual variability of CO2 in the 80 

Southern Ocean is tied to the decadal variability of the Southern Annular Mode (SAM) – the dominant 

mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). This concurs with previous 

studies, which suggested that the increase in the SAM during the 1990’s1990s resulted in the weakening 

of the Southern Ocean sink (Le Quéré et al., 2007; Lenton and Matear, 2007; Lovenduski et al., 2007; 

Lenton et al., 2009).; Xue et al., 2015). The work by Fogt et al. (2012) bridges the gap between the 85 

proposed asymmetric atmospheric circulation of Landschützer et al. (2015) and the observed correlation 

with the SAM of Landschützer et al. (2016). Fogt et al. (2012) show that changes in the SAM have been 

zonally asymmetric and that this variability is highly seasonal, thus amplifying or suppressing the 

amplitude of the seasonal mode.  

 90 

Assessing the changes through a seasonal framework may thus help shed light on the drivers of CO2 in 

the Southern Ocean. Southern Ocean seasonal dynamics suggest that the processes driving ∆pCO2 are 

complex, but with two clear contrasting extremes. In winter, the dominant deep mixing and entrainment 

processes are zonally uniform, driving an increase in ∆pCO2, with the region south of the Polar Front (PF) 

becoming a net source and weakening the net sink north of the PF (Lenton et al., 2013). In summer, the 95 

picture is more spatially heterogeneous, with net primary production being the primary driver of 

variability (Mahadevan et al., 2011; Thomalla et al., 2011; Lenton et al., 2013). The 

competitioncompeting influence between light and iron limitation results in heterogeneous distribution 

of chlorophyll-a (Chl-a) in both space and time, with similar implications for ∆pCO2 (Thomalla et al., 

2011; Carranza and Gille, 2015). The interaction between the large-scale drivers, such as wind stress, 100 

surface heating and mesoscale ocean dynamics, isare the primary cause of this complex picture 

(McGillicuddy, 2016; Mahadevan et al., 2012). Some regions of elevated mesoscale and submesoscale 

dynamics, mainly in the Sub-Antarctic Zone (SAZ)), are also characterized by strong intraseasonal modes 
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in summer primary production  and pCO2 (Thomalla et al., 2011; Monteiro et al., 2015). In general, the 

opposing effects of mixing and primary production result in the seasonal cycle being the dominant mode 105 

of variability in the Southern Ocean (Lenton et al., 2013). 

 

In this study we examine winter and summer interannual variability of ∆pCO2 from 1998 to 2014 in the 

Southern Ocean between 1998 – 2014 to understand the drivers of long -term changes in CO2 uptake.  

2 Empirical methods and data 110 

2 Methodology 

2.1 Empirical methods and data 

In this study we use three machine -learning methods: Random Forest Regression (RFR), Support Vector 

Regression (SVR) and Self-Organising-MapsMap Feed-Forward Neural Network (SOM-FFN). RFR and 

SVR are introduced in Gregor et al. (2017) and SOM-FFN is presented in Landschützer et al. (2014). In 115 

brief, the RFR approach is an ensemble of decision trees that provides non-linear regression by combining 

many high variance – low bias estimators (Gregor et al., 2017). SVRs are in principle similar to a single 

hidden layer FFN, with the differenceexcept that SVR statistically determines the complexity of the 

problem, which is analogous to the hidden layer structure that is typically determined heuristically. The 

SOM-FFN method is a two-step neural network approach that first clusters data (SOM) and then applies 120 

a regression model (FFN) to each cluster.  

 

The SVR and RFR implementations used in this study are trained with the monthly 1° by 1° gridded 

SOCAT (Surface Ocean CO2 Atlas) v3 dataset (Bakker et al., 2016). The SOM-FFN (v2.2run ID: 

netGO5) used in this study was trained with SOCAT v4 (Landschützer et al., 2017).    125 
Table 1: Three empirical methods used in the ensemble. RFR and SVR are described in Gregor et al. (2017). SOM-FFN is from 
Landschützer et al. (2016). SST = sea surface temperature, MLD = mixed layer depth, SSS = sea surface salinity, ADT = absolute 
dynamic topography, Chl-a = Chlorophyll-a, pCO2(atm) = fugacity of atmospheric CO2, xCO2(atm) = mole fraction of atmospheric 
CO2, F(Φ (lat, lon) = N-vector transformations of latitude and longitude, t(day of year) = trigonometric transformation of the day 
of the year. Note that SOM-FFN uses the de Boyer Montégut et al. (2004) climatology for MLD (dBM2004). The root mean squared 130 
errors (RMSE) listed in the last column are for the Southern Ocean from Gregor et al. (2017).  

Method Input variables 
RMSE 

(µatm) 

RFR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm) , Φ(lat, lon), t(day of year) 16.45  

SVR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), Φ(lat, lon), t(day of year) 24.04 

SOM-FFN SST, MLDdBM2004, SSS, Chl-a, xCO2(atm) 14.84  

 

Table 1 shows the proxy variables used for each of the methods. Sea surface salinity (SSS) and mixed 

layer depth (MLD) for SVR and RFR are from Estimating the Circulation and Climate of the Ocean, 
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Phase II (ECCO2) (Menemenlis et al., 2008). The use of these assimilative modelled products may in 135 

some cases produce results that are unrealistic. This may have influenced the use of the de Boyer 

Montégut et al. (2004) MLD climatology in the SOM-FFN, where ECCO2 was used in previous iterations 

of the product. The trade-off of using the climatology is that no interannual changes in MLD are taken 

into account. We acknowledge that using different proxy variables could result in different ∆pCO2 

estimates, but comparing the different proxies used in each of the CO2 products is beyond the scope of 140 

this study. Other data sources that are consistent between methods are: sea surface temperature (SST) and 

sea-ice fraction by Reynolds et al. (2007), Chlorophyll-a (Chl-a) by Maritorena and Siegel (2005), 

absolute dynamic topography (ADT) by  Duacs, and xCO2 (CDIAC, 2016) with pCO2(atm) calculated from 

interpolated xCO2 using NCEP2 sea level pressure (Kanamitsu et al., 2002). In the case of Chl-a for SVR 

and RFR, Gregor et al. (2017) filled the cloud gaps with climatological Chl-a. Note that ADT coverage 145 

is limited to regions of no to very low concentrations of sea-ice cover, thusso estimates for SVR and RFR 

methods do not extend into the ice -covered regions during winter. Our analyses are thus limited to the 

regions without region north of the maximum sea-ice coverextent.  

 

Seasonality of the data is preserved by transforming the day of the year (j) and is included in both SVR 150 

and RFR analyses: 

! = 	$		
cos () ∙

2,

365
0

sin () ∙
2,

365
0
		3	 (1) 

Transformed coordinate vectors are passed to SVR only using n-vector transformations of latitude (7) 

and longitude (8) (Gade, 2010; Sasse et al., 2013), with n containing: 

9 =	:		
sin(7)

sin(8) ∙ cos(7)
− cos(8) ∙ sin(7)

	<	 (2) 9 = 	Φ:		
sin(7)

sin(8) ∙ cos(7)
− cos(8) ∙ sin(7)

	<	 (2) 155 

 

Wind speed, while not used in the empirical methods, is used in the assessment of the drivers of CO2. We 

use CCMP v2, which is an observation-based product that combines remote sensing, ship and weather 

buoy data (Atlas et al., 2011). Swart et al. (2015a) compared a number of wind reanalysis products with 

CCMP v1 (where CCMP was the benchmark). The authors found that many of the reanalysis products 160 

had spurious trends, particularly in the Southern Hemisphere where data is sparse. Our choice of CCMP, 

which is based on observations, is thus one that aims to minimise the assumptions that are otherwise made 

by reanalysis products.  
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2.2 Uncertainties 

The machine -learning approaches used in this study are by no means able to estimate ∆pCO2 with 165 

absolute certainty. To account for the uncertainty, we use the same approach as Landschützer et al. (2014) 

to calculate total errors for each of the methods: 

>(?) = @ABCDEF + AHIJK
F +ABDLF 				 (3)	 

where em(t) is the total error associated with a method (m); emeas  is the error associated with SOCAT 

measurements, which is fixed at 5 µatm (Pfeil et al., 2013); egrid is the 5 µatm error associated with 170 

gridding the data into monthly by 1° bins (Sabine et al., 2013). Lastly emap is the root mean squared error 

(RMSE) calculated for each method, as shown in Table 1 taken from Gregor et al. (2017).  

These errors are used to calculate the average “within-method” error as defined by Gurney et al. (2004):   

EN = @
O

P
⋅ ∑ (AB(?))F

P
BSO 		 (4)    

where em(t) is the method -specific error as defined in Equation 13 and M is the number of methods (3 in 175 

this case). For a measure of the difference between methods we use the “between-method” approach used 

in Gurney et al. (2004): 

UV = @
O

P
∑ (WB − W̅)FP
BSO 	 (5)   

where WB is the method estimate of ∆pCO2 and W̅ is the mean of the methods. This is analogous to the 

standard deviation (for a known population size). We later use an adaptation of this metric as a threshold 180 

to determine the confidence around anomalies. 

2.3 Regional Coherence Framework 

Southern Ocean CO2 is spatially heterogeneous, both zonally and meridionally (Jones et al.., 2012). In 

order to understand this heterogeneity, we used the three southernmost biomes defined by Fay and 

McKinley (2014a)), as done in Rödenbeck et al. (2015). From north to south these are: the subtropical 185 

seasonally stratified (STSS), sub-polar seasonally stratified (SPSS),) and seasonally ice -covered region 

(ICE). These three biomes are comparable to the SAZ (Sub-Antarctic Zone), PFZ (Polar-Frontal Zone) 

and MIZ (Marginal Ice Zone) respectively and will be used throughout the rest of the study. The Southern 

Ocean is further split into basins where the boundaries are defined by lines of longitude (70°W : Atlantic 

: 20°E : Indian : 145°E : Pacific : 70°W). Figure 1 depicts these nine regions. 190 
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Figure 1: A map showing the regions used throughout this study. The three biomes, SAZ, PFZ and MIZ, used in this study are 
defined by Fay and McKinley (2014a). The regions are also split by basin.  

3 Results and discussion 195 

Here we present and discuss the results. The first section of the results examines the uncertainties of the 

ensemble and its members. We then considerlook at the seasonal cycle of the ensemble mean in time and 

space. This is done to lay the foundation for the interpretation of the results when assessed with the 

regional framework. In the regional interpretation the data isestimates are decomposed into the nine 

regions, as shown in Figure 1. Lastly, we implement a seasonal decomposition of the estimates to interpret 200 

the drivers of the changes observed in ∆pCO2.  

3.1 Ensemble member performance and variability 

Table 2: A regional summary of the errors for the different modelsmethods. Note that the propagated errors are calculated as shown 
in equation (3) where the measurement and gridding errors are assumed to be constant at 5 µatm each (Pfeil et al., 2013; Sabine et 
al., 2013). The within-modelmethod and between modelmethod errors are calculated using equations (4) and (5) respectively.  205 
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 Propagated errors (µatm) Within  
modelmet
hod error 

(µatm) 

Between  
modelme

thod 
error 

(µatm) 

Biome 
SVR RFR 

SOM-
FFN 

SAZ  17.48 14.50 12.30 14.91 4.88 
PFZ  15.94 12.71 13.09 13.99 4.78 
MIZ  36.38 24.53 22.46 28.46 10.81 

Southern Ocean  25.06 17.91 16.44 20.16 6.79 
 

We use the RMSE scores as presented in Gregor et al. (2017) with abbreviated results shown in Table 1. 

The SOM-FFN method has the best score (14.84 µatm). SVR scores the lowest (24.04 µatm), but wasis 

still included due to the method’s sensitivity to sparse data, which is favourable to the poorly sampled 

winter period (Gregor et al.., 2017). This compliments the RFR method, which scores well (16.45 µatm),) 210 

but is prone to being insensitive to sparse data (Gregor et al.., 2017). These RMSE scores are used to 

calculate the total errors for each method and region using equation (3)), where the measurement and 

mapping errors are both 5 µatm each (Pfeil et al., 2013; Sabine et al., 2013). These results are shown in 

Table 2.  

 215 

Total errors are used to calculate the within-method error, which is an estimate of the combined total 

errorserror of the three machine -learning methods (equation 4). The between-method errors are the mean 

of the standard deviation between the methods (equation 5). The within-method errors are much larger 

than the between-method errors (Table 2). However, the within-method errors are normally distributed 

and are mechanistically consistent (Gregor et al., 2017). This allows us to observe changes that are smaller 220 

than the within-method error. The between-method error (shown in Figure 2d) serves as a better measure 

of2c) is thus used to determine whether observed variability is more than statistical noise as it 

incorporatesconsistent between the three methodologically different approaches. methods.  
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 225 
Figure 2: Time series of the three ensemble membersmethods for each biome, as defined by Fay and McKinley (2014a): (a) SAZ, 
(b) PFZ, (c) MIZ. (d) shows the standard deviation between ensemble members for the three biomes, which is analogous to the 
between-modelmethod error (equation 5). The within-method (Ew) and between-method (Eb) errors are shown for each biome. For 
a more detailed breakdown of the errors see Table 2. 

Figure 2 shows the ∆pCO2 time series for each of the methods forthe SAZ and PFZ. Note that we exclude 230 

the three Southern Ocean biomes. The methodological and data driven differences MIZ from the 

remaining analyses due to large Eb and Ew (Table 2) and inconsistent coverage between each of the 

methods have been addressedproducts due to sea-ice cover (MIZ data is shown in Gregor et al. (2017).the 

supplementary materials S2, S3). In general, there is good agreement amongst the methods with a few 

notable exceptions.and the magnitude of these differences is within the average within-method error (Ew), 235 

but the differences are important to highlight as they contribute to the between-method error (Eb). In the 

SAZ (Figure 2a)), the SOM-FFN differs from the other methods for summer and autumn from 1998 to 

2008. Gregor et al. (2017) attributed this difference to the clustering step in the SOM-FFN that creates 

discrepancies in the Atlantic sector. The SVR method overestimates the seasonal amplitude ∆pCO2 

(where the seasonal amplitude is the difference between the winter maxima and summer minima of 240 

∆pCO2) relative to the other methods for 2012 to 2014. In the PFZ (Figure 2b), the SVR overestimates 

∆pCO2 relative to the other methods during winter from 1998 to 2004, likely due to the method’s 
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sensitivity to sparse winter data (Gregor et al., 2017). . These differences contribute to the between-

method error.  

 245 

The seasonal amplitude of ∆pCO2 in the MIZ is much larger than the two other regions. However, this 

amplitude is likely to be dampened by ice cover (Ishii et al., 1998; Bakker et al., 2008; Butterworth and 

Miller, 2016).  Note that in this study, we do not include regions with sea-ice cover to ensure consistency 

between methods. Calculated fluxes for this methodologically reduced region will thus under-represent 

the fluxes of the full extent of the MIZ. We thus exclude the MIZ for the remainder of the study.  250 

 

Figure 2d2(c) shows the time evolution of between-method errors for each biome. This panel highlights 

the seasonality of the dataestimates, specifically the increased heterogeneity of ∆pCO2 in summer and the 

impact that this has on ∆pCO2 estimates. This is due to the more complex competing processes affecting 

∆pCO2 during summer. To gain a better understanding of the seasonal processes, we look atconsider the 255 

mean state of each season to characterise the drivers of opposing fluxes. 
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3.2 Ensemble seasonal cycle  

 

 

Figure 3: The mean seasonal states of ∆pCO2 of the empirical ensemble mean. These are shown for (a) summer, (b) autumn, (c) 260 
winter and (d) spring. The black contour lines show the SAZ, PFZ and MIZ (masked) from north to south, as defined by Fay and 
McKinley (2014a).  

The seasonal cycle of the ∆pCO2 for each biome (Figure 2a-cb and Figure 3a-cd) is coherent with seasonal 

processes reported in the literature (Metzl et al., 2006; Thomalla et al., 2011; Lenton et al., 2012; Lenton 
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et al., 2013). In all biomes, uptake of CO2 is stronger during summer than in winter, giving rise to the 265 

strong seasonal cycle. This is due to the opposing influences of the dominant winter and summer drivers, 

partially damped by the seasonal cycle of temperature (Takahashi et al., 2002; Thomalla et al., 2011; 

Lenton et al., 2013). TheIn winter, the dominant processes of mixing and entrainment in winter 

resultresults in increased surface pCO2 and thus outgassing (Takahashi et al., 2009; Lenton et al., 2013; 

Rodgers et al., 2014). In summer, stratification also allows for increased biological production and the 270 

consequent uptake of CO2, thus reducing the entrained winter DIC and associated pCO2 (Bakker et al., 

2008; Thomalla et al., 2011). However, stratification typically limits entrainment, but does not exclude 

the occurrence of entrainment other than during periods of intense mixing driven by storms. This has an 

impact on primary productivity, DIC and pCO2 (Lévy et al., 2012; Monteiro et al., 2015; Nicholson et al., 

2016; Whitt et al., 2017). 275 

 

The SAZ (Figure 2a) is a continuous sink, where summer uptake (Figure 3a) is enhanced by biological 

production and winter (Figure 3c) mixing results in a weaker sink (Metzl et al., 2006; Lenton et al., 2012; 

Lenton et al., 2013). The same processes produce a similar seasonal amplitude in the PFZ (Figure 2b), 

but stronger upwelling and weaker biological uptake result in a positive shift of the mean. This results in 280 

an opposing net summer sink and winter source. However, this is according to the mean state in the PFZ 

and winter estimates of ∆pCO2 do in fact approach 0 µatm toward the end of the time series (Figure 2b). 

The MIZ has the strongest seasonal cycle due to upwelling of CO2 during winter and strong biological 

uptake in summer. However, much of this is dampened by sea ice cover during winter and weaker winds 

during summer (Ishii et al., 1998; Bakker et al., 2008).  285 

 

Apparent also from Figure 3 is that, over and above the latitudinal gradient, ∆pCO2 is zonally asymmetric 

within each biome during summer (Figure 3a), when biological uptake of CO2 increases. Zonal integration 

of ∆pCO2 could thus dampen magnitudes of regional ∆pCO2. A regional approach is therefore needed to 

examine the regional characteristics of seasonal and interannual variability of ∆pCO2 and to understand 290 

its drivers.  

3.3 Regional ∆pCO2 variability: zonal and basin contrasts 

HereIn Figure 4, ∆pCO2 is decomposed into nine domains by biome and basin, with the boundaries 

showndefined in Figure 1, but note only six are shown (showing the SAZ and PFZ; air-sea CO2 fluxes 

displayed in Figure 4.S3). The dataregional estimates are plotted as time series for pCO2 (Figure 4) 295 

showing: mean annual ∆pCO2 (black lines), the maximum). The blue and orange lines show the respective 

annual maxima (typically winter values (red line) and the projected summer minima (dashed red 

linetypically summer). The projected summer minima (dashed blue lines) are calculated by subtracting 

the mean seasonal amplitude from the winter maxima (Figure 4, with air-sea CO2 fluxes shown in Figure 
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S3).). The projected summer minima are the expected summer ∆pCO2 under the assumption that summer 300 

∆pCO2 is dependent on, but not restricted to, the baseline set by winter. Differences between the summer 

minima and projected minima are highlighted with green and blue patches, highlighting periods of 

decoupling between summer and winter interannual variability. The green areas indicate periods of strong 

uptake (relative to winter) that enhance the mean uptake of CO2 and amplify the seasonal cycle. 

Conversely, blue areas show periods where weak summer uptake (relative to winter) offsets winter 305 

outgassing, thus reducing the mean ∆pCO2 as well as supressing the amplitude of the seasonal cycle 

(Figure 4).  

 

 
Figure 4: Figures (a-f) show the ensemble mean of ∆pCO2 (dark greyblack) plotted by biome (rows) and basin (columns). Biomes 310 
are defined by Fay and McKinley (2014a). The solid redblue line shows the maximum for each year (winter outgassing) and the 
dashed blue line shows the same line less the average seasonal amplitude (YZ[[\\\\\\\) – this is the expected amplitude. The shaded blue 
(green) area shows when the annual minimum is less (greater) than the expected amplitudeThe orange line shows the minimum 
∆pCO2 for each summer season. The shaded regions around the seasonal maxima and minima show the standard deviation of the 
three products. Eb is the average between-method error and ∆^_`\\\\a is the average for the entire time series. Light grey shading in 315 
(a-f) shows the periods used in Figure 5 and Figure 6. 
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As found by Landschützer et al. (2015), the estimates of 

The data for ∆pCO2 (Figure 4) show that the Southern Ocean sink strengthenedstrengthens from 2002 to 

2011 in all domains, a period identifiedreferred to as the reinvigoration by Landschützer et al. (2015).. 

This wasis preceded by a period of a net weakening sink (Figures 4b,d,e)  in the 1990’s1990s, referred to 320 

as the saturation period afterby Le Quéré et al. (2007). In the period from 2012 to 2014, three domains 

(Figure 4a,c,f) go from growing uptake to reducing uptake; however, our confidence in other words, the 

changingensemble shows the same trend is low due to lack of coherencefound in past literature 

(Rödenbeck et al., 2015; Ritter et al., 2017), but as with these studies we also find that there is large 

uncertainty in the interannual variability of the ensemble estimate, as shown by the between-method error 325 

in Figure 4 (see Figure S3 for the spread of the product estimates, including the Jena – Mixed Layer 

Scheme by Rödenbeck et al., 2014). This disagreement between methods (Figure 2a,b)is likely driven by 

the sparse coverage of pCO2 measurements in the Southern Ocean, with empirical methods interpolating 

the sparse data differently (Rödenbeck et al., 2015; Ritter et al., 2017). We thus present our methods and 

only three years of data, with little data in 2014results as a framework to assess the drivers of interannual 330 

variability of ∆pCO2.  

 

A key feature of Figure 4 is that Key to understanding the mean interannual variability is that it is the net 

effect of the decoupled seasonal modes of variability for summer and winter. This is particularly evident 

in the PFZ (Figures 4d-f). Here, and in the other biomes, the net strengthening of the CO2 sink is mainly 335 

linked to a reduction of ∆pCO2 in winter for the majority of the time series. This corresponds with the 

findings of Landschützer et al. (2016), who linked the reinvigoration to the decadal variability of the 

Southern Annular Mode (SAM) – the dominant mode of atmospheric variability in the Southern 

Hemisphere (Marshall, 2003). In contrast, summer ∆pCO2 variability is shorter (roughly 4 – 6 years), thus 

providing inter-annualinterannual modulation of longer time-scale winter variability. This is 340 

demonstrated well in the Indian sector of the PFZ, where a decrease in winter ∆pCO2 from 2002 to 2011 

is offset by weakening of the summer sink from 2006 to 2010 (Figure 4d). Similarly, in the Atlantic and 

Pacific sectors of the PFZ, decoupling occurs from ~2011 to the end of 2014, with a rapid increase in the 

strength of the summer sink.  

 345 

The mean amplitude of the seasonal cycle of ∆pCO2, – the mean difference between the summer minima 

and the winter maxima, – is perhaps a better meansway of understanding the strength of the seasonal 

drivers than the mean ∆pCO2. For example, the Atlantic sectors of the SAZ and PFZ (Figures 4c,f) have 

the strongest seasonal variability (14.11 and 25.83 µatm respectively). This contrasts with the relatively 

weak seasonal amplitude in the Indian sector of the Southern Ocean, which has mean amplitudes of 7.06 350 

and 13.64 µatm for the SAZ and PFZ respectively (Figures 4b,e). This contrast can also be seen by 

comparing the mean seasonal maps of ∆pCO2 in Figures 3a and 3c. In summer, strong uptake in the 
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eastern Atlantic sector of the Southern Ocean is indicative of large biological drawdown of CO2 by 

phytoplankton (Thomalla et al., 2011). Conversely, relatively low primary production in the Indian 

sectors of the SAZ and PFZ resultsresult in a small seasonal amplitude (Thomalla et al., 2011). This large 355 

discrepancy in biological primary production is related to the availability of iron, a micronutrient required 

for photosynthesis. The lack of large land masses, which are a source of iron, in the Indian sector of the 

Southern Ocean could be a contributing factor to the lack of biomass (Boyd and Ellwood, 2010; Thomalla 

et al., 2011).  

3.4 Framework: Seasonal deconstruction of interannual variability  360 

Figure 4 gives us insight into the magnitude of interannual ∆pCO2 variability as well as the character of 

these changes; i.e. decoupling of interannual winter and summer modes of variability. This alludes to the 

point that ∆pCO2 is responding to different adjustments of seasonal large -scale atmospheric forcing 

and/or responses of internal ocean dynamics in the Southern Ocean (Landschützer et al., 2015, 2016; 

DeVries et al., 2017).  365 

 

In order to capture the decoupled 4–6 year short -term variability observed duringin summer, the 

dataestimates are divided into four interannualobjectively selected periods (P1 to P4), where P1 is five 

years and the remaining ). The periods (P2 to P4) are each four years as shown by the light grey fills in 

Figure 4. The small discrepancy in the lengthlong with the exception of the periodsP1, which is five years 370 

long due to the uneven lengthfact that the duration of the time series (is not divisible by four (with a total 

duration of 17 years). Given a longer time series, this analysis would benefit from testing different 

durations for each period, as well as varying the starting and end years.  

 

These four periods are too short for trend analyses (Fay and McKinley, 2014b), but the intention here is 375 

to identify periods that are short enough to resolve interannual changes of large-scale drivers of the 

winter and summer pCO2 that would otherwise be averaged out over longer periods. We then calculate 

the relative anomaly between each successive period rather than an anomaly of the mean state (e.g. P2 – 

P1). As a result, four periods give rise to three sub-decadal-scale transition anomalies for summer and 

winter: A (P2 – P1), B (P3 – P2) and C (P4 – P3). We do this separately for each method rather than 380 

using the ensemble mean (see S4 for calculations). The mean of the method anomalies for each 

transition is then taken. These anomalies are considered significant if the absolute estimate of the 

anomaly is larger than the standard deviation between the methods for each period. These calculations 

along with plots for the standard deviation between methods are shown in the supplementary materials 

in S4section 3.4.1.  385 
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Note that, although only summer and winter anomalies are discussed, it is recognised that autumn and 

spring could be equally mechanistically important. Winter anomalies of ∆pCO2, wind stress, SST and 

MLD are shown in Figure 5. Summer 6, while summer anomalies of ∆pCO2, wind stress, SST and Chl-

a are shown in Figure 6 where MLD, in winter, is replaced with7. Chl-a for summer as it is potentially a 390 

more important driver in summer than the generally shallow summer MLD (the omitted plots are shown 

in Figures S5S4 and S6S5).  

3.4.1 Uncertainty of transition anomalies 

The transition anomalies are not calculated from the mean of the three products. Rather, we calculate 

the anomalies for each individual product with: 395 

bcdLef = gch (L) − gch (LiO)		 (6)  

where s are the estimates for a particular product, n represents an individual product and p represents P1 

to P4. The result, bc(Lj) thus represents the anomaly for two periods for a particular product. We then 

calculate the average of the anomalies with: 

bLe 	=
O

k
⋅ ∑ bcdLef

k
cSO (7)  400 

where N is 3, the number of products. We then calculate the standard deviation of the three anomalies 

(ALj), which is analogous to the between-method error, with: 

ALe = @
O

k
⋅ ∑ (bc(Le) − bc(Le)\\\\\\\)Fk

cSO (8)   

where the terms are consistent with those above. We use ALj as an uncertainty threshold where 

anomalies are only considered significant if |bLj| > ALj. These regions are masked in Figures 6a-c and 405 

7a-c. Figure 5 shows the winter (a-c) and summer (d-f) ALj for each transition anomaly. 
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Figure 5: Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for ∆pCO2 
in Figures 6(a-c) and 7(a-c) for winter and summer respectively. When the standard deviation exceeds the absolute value average 
anomaly, the values are masked, as shown in Figures 6 and 7. 410 
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3.5 Drivers of winter ∆pCO2 variability 

Figure 6 shows the three transition anomalies for the four periods shown in Figure 4. It is clear that 

there is large uncertainty around the ∆pCO2 anomalies in the Southern Ocean owing to the differences 

between the three empirical methods, caused by a paucity of in-situ measurements of ∆pCO2. However, 415 

there are still small regions that show anomalies with confidence. Figures 6d-l also show the Pearson’s 

correlation coefficients for each of the driver variables with ∆pCO2 for the regions that are above the 

uncertainty threshold.  

 

The We will limit the interpretation of the changes to the regions where the anomaly is larger than the 420 

between-method error of anomalies (see S4 for calculations and maps). This masks out large regions, but 

three key points still arise from the significant anomalies. Firstly, ∆pCO2 is often spatially roughly 

coherent with wind stress and the inverse of SST. Secondly, there is a dipole in the wind anomalies in the 

Indian and Pacific between transitions A and B. This is confirmed by the u- and v-components of wind 

shown in the supplementary materials (Figure S5). Lastly, the Indian sector of the Southern Ocean 425 

dominates the reinvigoration of the CO2 sink. These points are now addressed in more detail.  

 

Transition A (P2 – P1) shows a relative increase of ∆pCO2 in the east Indian and Pacific sectors of the 

SAZ – suggesting a delay in the onset of the reinvigoration for these basins. This regional sustained 

saturation corresponds to a shift towards stronger winds and/or deeper MLDs in the west Pacific sector 430 

of the SAZ (Figure 5d,j). In contrast, CO2 uptake in the east Atlantic and west Indian sectors of the SAZ 

start to strengthen, which roughly corresponds with the weaker winds.  

 

Transition B (P3 – P2) is characterized by a further intensification of the invigoration of ∆pCO2 (negative 

shift) primarily in the Indian basin (Figure 5b). Once again the strengthening of the CO2 uptake 435 

corresponds with weaker wind stress, a warming trend in surface waters and shoaling MLDs in the eastern 

Atlantic and Indian Ocean sectors of the SAZ and PFZ (Figure 5b,e,h,k). The opposing effects of the 

dipole are observed east of New Zealand where stronger wind stress, deeper MLD, and cooler surface 

waters correspond with a positive shift in ∆pCO2.  

 440 

In transition C (P4 – P3), the ∆pCO2 sink strengthens further in the northern extremes of the east Indian 

and west Pacific basins. This negative shift corresponds well with strong shoaling of the MLD (Figure 
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5l). The west Pacific sector of the PFZ shows a positive shift in ∆pCO2, which is coherent with an increase 

in the wind stress and deepening MLD. 

 445 

 
Figure 5:correlations in Figure 6 show that MLD is a dominant predictor of pCO2 in winter (Figure 6j-l), 

with wind stress being a stronger predictor only in Transition B (6e). However, these correlations are all 

less than |0.3|, indicating that the relationship between ∆pCO2 and MLD is complex and non-linear. 

Moreover, spatial inconsistency in the relationship between pCO2 and the drivers reduce the 450 
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correlations, which are applied for the entire domain (above the threshold). This is likely due to MLD 

being a metric that measures the complex interaction of heat, stratification and mixing processes 

(Abernathy et al., 2011) – mechanisms relating to SST and wind stress. We now discuss the results by 

transition.  

 455 

In Transition A (first column of Figure 6), MLD is the strongest driver. Deeper mixed layers in the 

Pacific and eastern Indian sectors of the Southern Ocean correspond with increased deepening, 

correlating with increased ∆pCO2. The reduction of ∆pCO2 along the boundary of the Atlantic and 

Indian sectors of the SAZ corresponds with increased SST. This agrees with the hypothesis put forward 

by Landschützer et al. (2015) that warmer SST in the Atlantic led to increased uptake of CO2. However, 460 

the same is not true for the western Indian sector of the PFZ, where cooling and deepening MLD results 

in a reduction of ∆pCO2.  

 

Increased uptake of ∆pCO2 across the boundary of the Atlantic and Indian sectors of the SAZ continues 

into Transition B (second column of Figure 6). This is again accompanied by an increase in SST (Figure 465 

6h). The reduction of ∆pCO2 extends to the Eastern Indian sector of the SAZ and Tasman Sea. This 

corresponds with weak shoaling of the MLD, weak warming and a reduction of wind stress (Figures 

6e,h,k). Conversely, in the eastern Pacific, cooling surface temperatures, weaker winds and shallower 

MLDs correspond with a reduction of ∆pCO2, again in agreement with Landschützer et al. (2015). The 

large reduction of ∆pCO2 in the Indian sector of the PFZ corresponds with an increase in temperature; 470 

however, there is also an increase in the depth of the MLD – this interaction is mechanistically unlikely 

and may be an artefact of the sparse data in this region.  

 

In transition C, the reduction of ∆pCO2 in the Indian and western Pacific sector of the SAZ corresponds 

with warmer SST and shallower MLDs. Once again there is a region in the Indian sector of the PFZ that 475 
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experiences a potentially spurious reduction of ∆pCO2 corresponding with deeper MLDs. The 

anomalies in the rest of the domain are not significant.  

 

Figure 6: Transitions (relative anomalies) of winter ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed layer 
depth (j-l) for four periods. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and 480 
McKinley, 2014a) and basin boundaries. Regions with dots in (a-c) are where the∆pCO2 anomalies are not significant iei.e: standard 
deviation of the anomalies between models ismethods are greater than the absolute mean of method anomalies, as described in 
equations S16 to S38. 
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3.5.1 Wind dominatedMLD driven interannual variability of pCO2 in winter 

Our results indicate that there is not one dominant driver of ∆pCO2 interannual transition anomalies in 485 

winter. While MLD is on average the stronger driver, its dominance on ∆pCO2 is only marginal over SST 

and wind stress (Figure 6). This marginal dominance over the two other drivers is likely due to MLD 

being a metric that integrates the complex interaction between wind-driven mixing and winter heat loss 

to the atmosphere, of which SST is a response (De Boyer Montégut et al., 2004; Sallée et al., 2010). 

Mechanistically, deeper MLDs would result in greater entrainment of DIC-rich deep waters, while 490 

shallower MLDs entrain less DIC-rich waters, thus reducing the DIC pool in winter resulting in 

potentially stronger ∆pCO2 uptake in the surface ocean (Lenton et al., 2013).  

 

An important point to note is that SST is negatively correlated with ∆pCO2 in Figures 6g-i. This is contrary 

to what is expected for solubility-driven changes of pCO2 (Takahashi et al., 1993). Based on the 495 

observations outlined above, we propose that interannual variability of the regional (basin-scale) 

characteristics of winter wind stress may be the dominant driver of the saturation and reinvigoration 

periods.  

 

These findings suggest that increasing or decreasing interannual winter wind stress variability impacts 500 

∆pCO2 (and thus FCO2) by driving changes in turbulent mixing that set the magnitudes of winter 

entrainment. In the transition to and during winter, this mixing is associated with changes in rates of heat 

loss that drive loss of buoyancy or weaker stratification (Abernathey et al., 2011). Weaker buoyancy 

facilitates deepening of the MLD, thus entraining DIC-rich deep waters (Abernathey et al., 2011; Lenton 

et al., This indicates that SST – a response to underlying variability and trends in winter buoyancy and 505 

mixing – is not a driver of ∆pCO2 changes in most regions of the Southern Ocean. There are some small 

sub-regions, where SST could drive the ∆pCO2 trend, such as in the east Pacific sector of the PFZ during 

Transition B (Figure 6b,h) but they are spatially and temporally limited. Our results suggest that, in winter, 

a complex interaction of changing wind stress and buoyancy fluxes that influence MLD and entrainment 

may play a stronger role than thermodynamics in explaining the ∆pCO2 interannual transitions.  510 

 

Wind-stress anomalies (Figure 6d-f) do not correlate strongly with pCO2 anomalies, with the exception 

of Transition B, when it has the strongest correlation. We propose that this lack of coherence between the 

two variables may be a result of two compounding points. Firstly, wind stress is the only truly independent 

driver in the analysis, with SST and MLD both being used as proxies for ∆pCO2 in each of the products. 515 

Secondly, the wind stress shown in Figure 6d-f considers only wind strength, so it does not take into 

account potential meridional changes in atmospheric circulation. This is the primary hypothesis presented 

in Landschützer et al. (2015), suggesting that atmospheric circulation became more zonally asymmetric. 

This induced a southward shift of warmer waters over the Atlantic and Indian sectors, reducing the depth 
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of the MLD. Conversely, in the eastern Pacific cold winds induced colder SST and thus an increase in 520 

solubility.  
 

Past studies have related the variability of Southern Ocean 2013). Conversely, decreased wind stress and 

mixing during winter (on seasonal or interannual time scales) reduces the rate of heat loss (represented as 

warm anomalies in Figure 5). This results in stronger stratification and shallower winter MLD limits 525 

entrainment of DIC, which strengthens the CO2 winter disequilibrium and leads to a stronger CO2 sink 

anomaly (Figure 5). These are the mechanisms that we propose result in decreasing or increasing fluxes 

with interannual and basin–scale changes in wind stress.  

 

We propose the link between spatial changes in wind stress and uptake of CO2 as an alternative hypothesis 530 

to temperature being a driver as suggested by Landschützer et al. (2015). Typically an increase in ocean 

temperature, which reduces CO2 solubility, results in an increase in ∆pCO2 (Takahashi et al., 1993). 

However, seasonal – regional analysis shows that the observed relationship between pCO2 and SST is 

counterintuitive (Figure 5a-c,g-i). On this basis we propose that SST is not a driver of pCO2 in winter. 

We suggest that this relationship is a product of weaker mixing and Ekman transport that allows warmer 535 

waters to shift southward. This also has the impact of strengthening buoyancy that would otherwise bring 

CO2 to the surface. In summary, our results suggest that, like pCO2, the SST changes are also a response 

to the wind stress and not in themselves the drivers of pCO2 changes.  

 

Given the hypothesis that wind stress is the dominant driver of interannual – decadal ∆pCO2 in winter, it 540 

is of interest to understand its potential mechanisms. Past studies have used the to the SAM as a proxy 

for wind stress variability over the Southern Ocean, where the multi-decadal increasing trend has been 

cited as a reason for the saturation in the 1990’s1990s (Marshall, 2003; Le Quéré et al., 2007; Lenton and 

Matear, 2007; Lovenduski et al., 2008). While Landschützer et al. (2016) identified the SAM as being a 

driver of global CO2 variability, the index does not explain the reinvigoration of the Southern Ocean CO2 545 

sink in the 2000s. The SAM is often represented as a zonally integrating index (Marshall, 2003), but more 

recent studies have shown that the SAM, as the first empirical mode of atmospheric variability, is zonally 

asymmetric (Fogt et al., 2012). The zonal asymmetry of the SAM is thought to be linked with the El Niño 

– Southern Oscillation and is strongest in winter, particularly over the Pacific sector of the Southern 

Ocean during a positive phase, thus in accord with the dipole nature of the Pacific–Indian winter wind -550 

stress dipoletransition observed in Figures 5d6d,e (Barnes and Hartmann, 2010; Fogt et al., 2012). Fogt 

et al. (2012) noted that the SAM has become more zonally symmetric in summer since the 1980's1980s, 

matching the characteristics of the anomalies of wind -stress anomaliestransitions seen in Figure 6d-f.  

and the hypothesis of Landschützer et al. (2015). 

  555 
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In summary, we propose that interannual variability of wind stress and its regional expression in winter 

is the dominant interannual driver of ∆pCO2 variability in the Southern Ocean. The interannual variability 

of wind stress is linked to the SAM, but this relationship is nuanced by the zonally (regional) asymmetric 

variability of the SAM as observed by zonal asymmetry of wind stress in the Pacific and Indian sectors 

of the Southern Ocean. 560 

 

In summary, our analysis of the drivers of ∆pCO2 is consistent with the atmospheric asymmetry (dipole) 

conceptual model associated with the SAM proposed by Landschützer et al. (2015). However, our results 

suggest that interannual ∆pCO2 trends are explained by DIC dynamics rather than by the thermodynamic 

response of pCO2. A key part of this emphasis on DIC is that our results indicate that ∆pCO2 and SST are 565 

not correlated in a way that supports a thermodynamic control of ∆pCO2. The reasons for these differences 

are not clear at this stage, but they could include differences in the temporal resolution of the two studies: 

the resolution of the seasonal extremes in this study (seasonal modes) vs annual mean in Landschützer et 

al. (2015).   

3.6 Anomalies of ∆pCO2 and its summer drivers  570 

The most marked difference between the summer and winter anomalies, is that ∆pCO2 (Figures 6a-c) 

does not correlate with wind stress (Figures 6d-f), thus ruling out wind as a first order driver of summer 

CO2. Rather, ∆pCO2 has the strongest coherence with Chl-a (an inverse relationship), which suggests that 

primary production may be a first order driver of the observed ∆pCO2 variability. Another difference 

between summer and winter is that the magnitudes of the transition anomalies are much larger in summer, 575 

and thus there are larger regions of significant anomalies (Figure 6a-c).  

 

Looking more specifically at the significant variability of ∆pCO2, transition A Compared to the winter 

transitions, summer transitions (Figure 7) have larger areas where the anomalies between products are 

within the bounds of the uncertainty. This may be due to the larger magnitude of the anomalies in summer 580 

compared to winter (Figure 6). In summer we also see that Chl-a (Figures 7j-l) is likely the first-order 

driver with the highest correlation scores for transitions A and B.  

 

Transition A (P2 – P1 in Figure 6a7a) is marked by a decrease of CO2 in the SAZ (Tasman shelf region), 

mirrored by coinciding with an increase in Chl-a. The Atlantic and Indian sectors of the PFZ remain 585 

mostly neutral/weak sources marked by a The Drake Passage region experiences a strong reduction of 

∆pCO2 in phytoplankton biomass (Figure 6j). the PFZ, as found by Munro et al. (2015) and Landschützer 

et al. (2015). Unlike in the Tasman basin, this reduction of ∆pCO2 is not accompanied by a strong increase 

in Chl-a, but rather a reduction of wind stress and an increase in SST. This is contrary to the annually 

integrated analysis of Landschützer et al. (2015), who found that cooling drove a reduction of pCO2 in 590 
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the eastern Pacific sector of the PFZ. This difference likely arises from the integration of seasons and a 

longer period (2002–2011) compared to the framework used in this study. In the Indian sector of the PFZ 

the products agree on a weak increase in ∆pCO2 corresponding with a weak reduction of Chl-a.  

 

Transition B (P3 – P2 in Figure 6b),7b) shows invigoration of CO2 uptake in the Atlantic sector of the 595 

SAZ and PFZ; and in parts of the Pacific Ocean. Once again, the a large reduction of ∆pCO2 correlates 

well with Chl-a increases. In in the Atlantic sector of the PFZ and southern SAZ. The reduction coincides 

with an increase in Chl-a and SST in the same region, in agreement with Landschützer et al. (2015).  

 

In transition C (P4 – P3 in Figure 6c7c) the reduction of the ∆pCO2 is widespread in the Indian and Pacific 600 

Oceans in all threeboth biomes, as the increase in Chl-a is similarly widespread.; however, the increase 

in Chl-a in the Indian sector of the SAZ is not strong compared to other regions where ∆pCO2 and Chl-a 

variability correspond. Conversely, there is a reduction in Chl-a and concomitant increase in ∆pCO2 along 

the Polar front in the Atlantic sector, coinciding with the position of the Antarctic Circumpolar Current 

(ACC, which has) – a region with high eddy kinetic energy (EKE) (Meredith, 2016). These examples 605 

demonstrate 

 

Based on these cases we suggest that ∆pCO2 is driven primarily by Chl-a in summer. However, 

understandingregions with high Chl-a concentrations. Note that we will not try to explain Chl-a 

variability, which is more complex due to the multitude of factors influencing phytoplankton growth 610 

(Thomalla et al., 2011). as there is seemingly no set rule between Chl-a, We further suggest that in regions 

of low Chl-a, buoyancy forcing and mixing are higher-order drivers. As suggested for winter variability, 

these two mechanisms are a complex interaction of variables of which SST and wind stress (Thomallaare 

a part (Abernathy et al., 2011).  
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Figure 67: Relative anomalies of summer ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed -layer depth (j-l) 
for four periods (as shown above each column). The thin black lines show the boundaries for each of the nine regions described by 
the biomes (Fay and McKinley, 2014a) and basin boundaries. Regions with dots are where ∆pCO2 anomalies are not significant 
i.e: standard deviation of the anomalies between methods are greater than the absolute mean of method anomalies, as described in 620 
equations 6 to 7. 

There are regions in the Southern Ocean where summer Chl-a variability does not coincide with ∆pCO2 

variability, particularly in the Indian and Pacific sectors of the SAZ (Figures 6a-c and 6j-l). This may be 

due to low chlorophyll concentrations, and anomalies thereof, in these regions This then raises the 

importance of the magnitudes of the interannual variability of ∆pCO2 and its drivers.(Thomalla et al., 625 
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2011). As a result the other variables, SST and wind stress, may be higher order drivers in low chlorophyll 

regions, as found by Landschützer et al. (2015) and Munro et al. (2015).  

 

It is thus important to understand the variability of SST and wind stress in summer. Large SST anomalies 

between the western Atlantic and eastern Pacific sectors vary as a zonally asymmetric dipole. As in 630 

winter, there is a summer wind stress anomaly dipole, but rather than being zonally asymmetric (e.g. 

Pacific–Indian), the dipole has annular, north-south variability (Figures 5,6d-f). We suggest that these 

dipoles in the variability may indicate that the Southern Ocean, as a system, transitions between different 

states forced by atmospheric variability (Landschützer et al., 2015).  

 635 

An important note is that the magnitudes of ∆pCO2 and its drivers have different magnitudes seasonally. 

For example, the anomalies of ∆pCO2 and SST are larger in summer than in winter. Conversely, the wind 

-stress anomalies are larger for winter than in summer. This is an important consideration for analyses 

that aim to understand the driving mechanisms, where annual averaging would make it difficult to 

decompose the true drivers of change.weight seasonally asymmetric responses of ∆pCO2 and its drivers 640 

unequally.  

3.6.1 Chlorophyll dominated interannual anomalies of pCO2 in summer 

Our finding that Chl-a is the dominant driver of interannual ∆pCO2 variability should not be surprising 

given that models and observations support this notion (Hoppema et al., 1999; Bakker et al., 2008; 

Mahadevan et al., 2011; Wang et al., 2012; Hauck et al., 2013; 2015; Shetye et al., 2015). However, our 645 

data show that the dominance of interannual Chl-a variability over ∆pCO2 is largely limited to regions 

where Chl-a is high, such as the Atlantic, the Agulhas retroflection and south of Australia and New 

Zealand (Figure 78).  

 

The spatial variability of high Chl-a regions in the Southern Ocean is complex due to the dynamics of 650 

light and iron limitation (Arrigo et al., 2008; Boyd and Ellwood, 2010; Thomalla et al., 2011; Tagliabue 

et al., 2014; 2017). This complexity is highlighted in Thomalla et al. (2011), where the Chl-a is 

characterized into regions of concentration and seasonal cycle reproducibility (Figure 78). The seasonal 

cycle reproducibility (SCR) is calculated as the correlation between the mean annual seasonal cycle and 

the observed chlorophyll time series. Here we use the approach of Thomalla et al. (2011), in Figure 78, 655 

as a conceptual framework to understand the interannual variability of ∆pCO2.  

3.6.2 High chlorophyll regions 

While regions of high SCR (dark green in Figure 78) do not correspond with the interannual variability 

of Chl-a (Figure 6j7j-l), the framework by Thomalla et al. (2011) does present a hypothesis by which the 
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variability of Chl-a and its drivers can be interpreted. This is, that the variability of Chl-a in a region is a 660 

complex interaction of the response of the underlying physics (mixing vs. buoyancy forcing),, which 

modulate light (via the MLD) and iron supply,) to the interannual variability in the drivers (SST and wind 

stress). This complexity is exemplified by strong warming in the Atlantic during transition B, which 

results in both an increase and decrease in Chl-a, with inverse consequences for ∆pCO2. The effect is an 

even stronger in transition C, where strong cooling in the Atlantic results in both a decrease and increase 665 

of Chl-a (Figure 6i7i,l). In both transition A and B, the respective increase and decrease of Chl-a occur 

roughly over the ACC, while the opposing effects during transitions A and B occur roughly to the north 

and south of the ACC region. These temperature changes may impact the stratification of the region, but 

complex interaction with the underlying physics results in variable changes in Chl-a. 

 670 

  

Figure 98: Chl-a seasonal cycle reproducibility and iron -supply mechanisms in the Southern Ocean (a). Regions of chlorophyll 
biomass and seasonal cycle reproducibility from Thomalla et al. (2011) (using SeaWIFS data). Seasonality is calculated as the 
correlation between the mean annual seasonal cycle compared to the observed chlorophyll time series. A correlation threshold of 
0.4 wasis applied to each time series to distinguish between regions of high and low seasonality; similarly, a threshold of 0.25 mg m-675 
3 wasis used to distinguish between low or high chlorophyll waters. Black lines showshowing the Southern Ocean fronts are 
calculated by sea surface height (using altimetry thresholds from Swart et al., . (2010). 

It is clear that, while there is a relationship between Chl-a and pCO2 as well as a relationship between 

wind stress and SST in summer, the relationship between wind forcing, Chl-a and pCO2 is not as strong 

as in the winter anomalies (Figure 56). It may be that enhanced summer buoyancy forcing resulting from 680 

summer warming and mixed layer eddies drives a more complex response to wind stress in the form of 

vertical velocities and mixing, which influence the iron supply and the depth of mixing depth 

(McGillicuddy, 2016; Mahadevan et al., 2012).  

 

Mesoscale and sub-mesoscalesubmesoscale processes may have a part to play in these dynamic responses 685 

of Chl-a to changes in SST and wind stress (amongst other drivers). For example, eddy-driven slumping 
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could act to rapidly shoal the mixed layer rapidly (Mahadevan et al., 2012; Swart et al., 2015b; du Plessis 

et al., 2017). This allows phytoplankton to remain within the euphotic zone and thus grow (whileensuring 

growth as long as iron is not limiting).. Similarly, Nicholson et al. (2016) and Whitt et al. (2017) 

demonstrated that submesoscale processes could supply iron to the mixed layer by submesoscale mixing. 690 

Importantly, these mechanisms rely on a mixing transition layer that has sufficient iron that is able to 

sustain growth. Weak – weak dissolved iron gradients in the Pacific and east Indian sectors of the 

Southern Ocean could explain the lack of phytoplankton in these regions (Tagliabue et al., 2014; 

Nicholson et al., 2016). Much of the spatial character of the transition anomalies occurs at mesoscale, 

which strengthens the view that these mesoscale and sub-mesoscalesubmesoscale processes may be key 695 

to explainexplaining changes in Chl-a (Figure 6j7j-l).  

3.6.3 Low chlorophyll regions 

Entrainment and stratification can explain much of the variability in the eastern Pacific and Indian sector 

of the PFZ (with the exception of the wake of the Kerguelen Plateau). For example, in the eastern Pacific 

in transition A (Figure 6a7a,d,g), strong warming and weaker winds have little impact on Chl-a, but a 700 

decrease in ∆pCO2 is observed. Conversely, cooling in the west Indian sector of the PFZ results in a weak 

increase in ∆pCO2 during the same transition. In both these cases, the effect of cooling or warming on 

∆pCO2 is negligible relative to the impact of entrainment or stratification respectively. The effect is 

reversed in the eastern Pacific during transition B, where strong cooling results in a weak reduction of 

∆pCO2 rather than the increase that would be expected from entrainment. This is the mechanism that 705 

Landschützer et al. (2015) ascribed to the reduction of ∆pCO2 in the Pacific, but the effect observed in 

Figure 6b is weak. 

 

In summary, regions with high -biomass Chl-a integratesintegrate the complex interactions between SST, 

wind stress, MLD and sub-mesoscalesubmesoscale variability, resulting in large interannual pCO2 710 

variability compared to low -biomass regions. In low Chl-a regions,, where wind -driven entrainment/ 

and stratification are more likely drivers of ∆pCO2.  

4 Synthesis 

In this study, an ensemble mean of empirically estimated ∆pCO2 is used to investigate the trends and the 

drivers of these trends in the Southern Ocean. The estimated ∆pCO2 shows that the seasonal cycle is the 715 

dominant mode of variability imposed upon weaker interannual variability. The dataensemble estimates 

are separated into domains defined by functional biomes and oceanic basins to account for the roughly 

basin -scale zonal asymmetry observed in preliminary analyses of ∆pCO2 (Fay and McKinley, 2014a).  A 

seasonal decompositionframework is applied to the domains, revealing that winter and summer variability 

is decoupled for each region. The increase and subsequent decrease of pCO2 (and air-sea CO2 fluxes) is 720 
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in accordance with recent studies showing a saturation of the Southern Ocean CO2 sink in the 

1990’s1990s, followed by the reinvigoration in the 2000’s2000s (Le Quéré et al., 2007; Landschützer et 

al., 2015).  

 

While there is agreement around the mean of the ensemble, there is a large amount of uncertainty around 725 

the estimates due to a lack of agreement between products on a regional level. This uncertainty likely 

stems from the way that each method interpolates sparse winter data (Rödenbeck et al., 2015; Gregor et 

al., 2017). We thus interpret only regions where the three empirical products are in agreement.  

 

We suggest that changes in the characteristics of the seasonal cycle of the drivers of pCO2 define the 730 

interannual variability of pCO2. In other words, the mechanisms that drive interannual modes of 

variability are embedded in the seasonal cycle.   

 

WeUsing this approach, we propose a refinement on the hypothesis put forward by Landschützer et al. 

(2015) by adding a seasonal constraint. The authors posit that ∆pCO2 variability is driven by changes in 735 

atmospheric circulation that in turn affect advection of water masses, thus impacting stratification. Our 

results also show that winter ∆pCO2 variability is driven primarily by changes in winter wind stressbest 

correlated with MLD, which influences the resulting convectiveindicates that entrainment of deep DIC-

rich water masses is an important mechanism of ∆pCO2 variability (Lenton et al., 2009; 2013). This 

winter; Landschützer et al., 2015). The inverse relationship between SST and ∆pCO2 also suggests that 740 

in most cases ∆pCO2 is not thermodynamically controlled. Winter ∆pCO2 variability has a longer mode 

than summer inter-annual variability. We, which we attribute this longer winter mode of variability to the 

decadal-mode variability of the Southern Annular Mode, which has a decadal mode (Lovenduski et al., 

2008; Fogt et al., 2012; Landschützer et al., 2016). This mechanism is likely dominant in winter due to 

its role in large seasonal net heat losses that drive convective overturning of the water column. 745 

 

We suggest that interannual summer variability of ∆pCO2 occurs from a baseline set by an interannual 

winter trend. Moreover, the shorter time-scale summer interannual variability of ∆pCO2 (roughly 4 – 6 

years) is driven primarily by Chl-a. Wind stressBuoyancy forcing and sea surface temperaturemixing still 

influence ∆pCO2 in summer, but are lower -order drivers. We propose that the interannual variability of 750 

the summer seasonal peak is linked to the complex interaction of mid-latitude storms with the strong 

mesoscale and sub-mesoscalesubmesoscale gradients in the Southern Ocean.    

 

Overall, we propose that although themechanisms linked to winter wind stress linked mechanisms explain 

the decadal trends in the strengthening and weakening of CO2 uptake by the Southern Ocean, summer 755 
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drivers may explain the inter-annualshorter term interannual variability in the decadal trends (Lovenduski 

et al., 2008; Landschützer et al., 2015).     

 

Lastly, it is important to note that this study can be improved by two factors. Firstly, increasing the 

ensemblelength of the time series would allow for the identification of regular seasonal modes of 760 

variability. Moreover, the length of the anomaly periods could also then be adjusted to understand 

variability of the drivers better. Secondly, improving machine -learning methods showsestimates of pCO2 

so that there is still considerable disagreementbetter regional agreement between the different approaches. 

This is likely driven by the lack of pCO2 measurementsproducts would decrease the area of insignificant 

variability. Rödenbeck et al. (2015) and Ritter et al. (2017) attribute the uncertainty to the individual 765 

methods’ interpolation of sparse data in the Southern Ocean as found. This issue is being addressed by 

Rödenbeck et al. (2015). Autonomousthe community with autonomous sampling platforms will likely 

play a role in closing thisthe “observation gap”, but”. However, strategic deployment and sampling 

strategies will be critical to constrain and improve our understanding of CO2 in the non-stationary context 

(McNeil and Matear, 2013; Monteiro et al., 2015).  770 
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S Supplementary Materials  

S1 Wind speed and regional surface area 

The regional magnitude of integrated air-sea CO2 fluxes isare in part determined by the wind speed and 775 

surface area of the specific region. Figure S1a shows the average wind speeds for summer and winter for 

each of the regions as defined in Figure 1. The wind product used is CCMP v2 (Atlas et al.., 2011). Figure 

S1b shows the surface area of each of the regions. Note that the Indian sector of the PFZ has both the 

highest average wind speed and has the largest surface area. This explains the dominance of the region in 

the determination of interannual variability of FCO2 (Figure S2S3), even though ∆pCO2 (Figure 4) 780 

variability is relatively weak.   

 
    (a)      (b) 

 
Figure S1: (a) Average wind speeds for each of the biomes for summer (dark) and winter (light). The ocean basins are shown by the 785 
colours as showndepicted in the key for (b). (b)), which shows the size of each region separated by biome and basin. 

 

  



 

35 
 

S2 Seasonal time series 

 790 



 

36 
 

 

Figure S2: The regional breakdown of the seasonal averages for ∆pCO2. The seasonal mean for summer (solid) and 
winter (dashed) for each method is represented by the different coloured lines as shown in the key, where MLS is the 
Mixed Layer Scheme. The other methods are as in the main text. The grey fill is the ensemble mean ∆pCO2 ± Eb, where 
Eb is the between-method error calculated as in Eq (Equation 5)..  795 
 

Figure S2 shows the seasonal time series for each region, maintaining separate seasonal averages for each 

method. We also include the Marginal Ice Zone plots, with all plots showing the average between-method 

error.  

The Mixed Layer Scheme (MLS) method by Rödenbeck et al. (2013) is also included. Note that the MLS 800 

is not a machine -learning method as it incorporates prior knowledge of the system. The method results 

in divergent estimates of ∆pCO2, particularly in the SAZ. The MLS fails to produce a seasonal cycle, 

with winter and summer ∆pCO2 having the same magnitude. Further work will have to be done to 

understand the cause for this difference. We do not include MLS in the main ensemble as we cannot 

explain this difference. The methods are in much better agreement in the PFZ and MIZ. . 805 
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S3 Air-Sea CO2 Fluxes 

Air -sea CO2 fluxes are calculated with: 

pCOF = sN ⋅ tu ⋅ (vCOF
wxy	–	vCOF

y{|)	 (S1) 810 

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the 

coefficients of (Wanninkhof et al., 2009).. Coefficients from Weiss (1974) are used to calculate K0 and 

∆pCO2 is estimated by the empirical models. Wind speed is calculated from the u and v vectors 

(√�F + ÄF) of the Cross-Calibrated Multiplatform Product (CCMP) v2 (Atlas et al., 2011; Wentz et al., 

2015). Wind speed is one of the largest contributors to the uncertainty in flux estimates, thusso the choice 815 

of the wind product could have a large impact on flux estimates as well as interpretation of the drivers of 

CO2 (Takahashi et al., 2009). We use the ensemble mean ∆pCO2 from Figure 4 to calculate fluxes -– note 

that thisthe ensemble mean does not include the MLS shown in Figure S2.  
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 820 
Figure S3: FCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are defined by Fay and McKinley (2014a). The 
solid red line shows the maximum for each year (winter outgassing) and the dashed line shows the same line less the average 
difference between the minimum and maximum – this is the expected amplitude. Lighter grey shading in (a-i) shows periods used 
in Figure 5 and 6. Note that fluxes in the MIZ are calculated from a reduced surface area to maintain consistency between methods. 

Mean FCO2 is shown in Figure S3. Note that the apparent weak fluxes in the MIZ are due to the reduction 825 

of the surface area and thushence flux to maintain equal weighting between machine -learning methods. 

The SAZ clearly dominates the annual uptake of CO2 in the Southern Ocean, but the interannual 

variability is dominated by the PFZ. An interesting point of the SAZ is that the seasonal cycle of wind 

speed (strong in winter, weak in summer) opposes that of ∆pCO2 sink (weak in winter, strong in summer). 

The net result is that, compared to ∆pCO2, the seasonal amplitude of FCO2 is reduced. The same effect 830 

shifts the mean flux in the PFZ, but does not affect the amplitude, where outgassing is amplified in winter 

and the sink is weaker than if wind speed waswere constant. Lastly, Figures S3a,d show that the Indian 

sector of the Southern Ocean dominate both uptake (SAZ) and the interannual variability (PFZ).  

S4 Uncertainty of the transition anomalies 

The transition anomalies are not calculated from the mean of the three methods. Rather we calculate the 835 

anomalies for each individual method with: 

bcdLef = gch (L) − gch (LiO)		 (S2)  

where s are the estimates for a particular model, n represents an individual model and p represents P1 to 

P4. The result, bc(Lj) thus represents the anomaly for two periods for a particular model. We then 

calculate the average of the anomalies with: 840 

bLe 	=
O

k
⋅ ∑ bcdLef

k
cSO (S3)  
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where N is 3, the number of models. We then calculate the standard deviation of the three anomalies 

(ALj), which is analogous to the between-model error, with: 

ALe = @
O

k
⋅ ∑ (bc(Le) − bc(Le)\\\\\\\)Fk

cSO (S4)   

where the terms are consistent with those above. We use ALj as an uncertainty threshold where 845 

anomalies are only considered significant if |bLj| > ALj. These regions are masked in Figures 5a-c and 

6a-c. Figure S4 shows the winter (a-c) and summer (d-f) ALj for each transition anomaly. 

 

 
Figure S4: Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for ∆pCO2 in 850 
Figures 5(a-c) and 6(a-c) for winter and summer respectively. When the standard deviation exceeds the absolute value average 
anomaly, the values are masked as shown in Figures 5 and 6.  
 

 

  855 
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S5 Additional driver variables 

Here we show additional variables that accompany Figures 56 and 67. Figure S5S4 shows winter Chl-a, 

u- and v-components of wind and, while Figure S6S5 shows summer  MLD, u- and v-components of 

wind. These variables wereare not included in the main analyses as they diddo not contribute significant 

information to the proxy variables already present (wind stress, SST and MLD/Chl-a). It is interesting 860 
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to note that the u- and v- components of wind speed highlight the zonally asymmetric dipole during 

winter (Figures S5dS4d,e,g,h) and the annular dipole during summer (Figures S6dS5d,e).  
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Figure S5S4: Relative anomalies of winter chlorophyllChl-a (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as shown 865 
above each column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and 
McKinley, 2014a) and basin boundaries. 
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Figure S6S5: Relative anomalies of summer mixed layer depth (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as 870 
shown above each column)..). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay 
and McKinley, 2014a) and basin boundaries.  
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