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Abstract. Machine learning has become a useful tool to interpolate ship measurements of pCO2 

(SOCAT) to a gridded map using satellite data. In this study we use an ensemble of three machine 10 

learning methods: Support Vector Regression (SVR) and Random Forest Regression (RFR) from 

Gregor et al. (2017); and the SOM-FFN method from Landschützer et al. (2016). The interpolated data 

were separated into nine regions defined by basin (Indian, Pacific and Atlantic) and biomes (as defined 

by Fay and McKinley, 2014a). The regional approach showed a meridional gradient and zonal 

asymmetry in the magnitude of ∆pCO2 estimates. Importantly, there was a seasonal decoupling of the 15 

modes for summer and winter interannual variability. Winter interannual variability had a longer mode 

of variability compared to summer, which varied on a 4–6 year time scale. To understand this 

variability of ∆pCO2, we investigated changes in summer and winter ∆pCO2 and the drivers thereof. 

The dominant winter changes are driven by wind stress variability. This is consistent with the temporal 

and spatial characteristics of the Southern Annular Mode (SAM), which has a decadal mode of 20 

variability (Lovenduski et al., 2008; Landschützer et al., 2016). Interannual trends in summer variability 

of ∆pCO2 are consistent with chlorophyll-a variability where the latter had high mean seasonal 

concentrations. In regions of low chlorophyll-a concentrations, wind stress and sea surface temperature 

emerged as stronger drivers of ∆pCO2. In summary we propose that sub-decadal variability is explained 

by summer drivers, while winter variability contributes to the long term changes associated with the 25 

SAM.  

1 Introduction 

The Southern Ocean plays a key role in the uptake of anthropogenic CO2 (Khatiwala et al., 2013; 

DeVries et al., 2017). Moreover, it has been shown that the Southern Ocean is sensitive to 

anthropogenically influenced climate variability, such as the intensification of the westerlies (Le Quéré 30 

et al., 2007; Lenton et al., 2009; Swart and Fyfe, 2012; DeVries et al., 2017). Until recently, the 

research community has not been able to accurately measure the contemporary changes, let alone 
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understand the drivers, of CO2 in the Southern Ocean due to a paucity of observations (Bakker et al., 

2016). Empirical models provide an interim solution to this challenge until prognostic ocean 

biogeochemical models are able to represent the Southern Ocean CO2 seasonal cycle accurately (Lenton 35 

et al., 2013; Rödenbeck et al., 2015; Mongwe et al., 2016). The research community agrees on large 

changes in CO2 fluxes in the Southern Ocean from a source in the 1990’s to a sink in the 2000’s; 

however, there is disagreement in the drivers of the changes in CO2 uptake (Lovenduski et al., 2008; 

Landschützer et al., 2015; DeVries et al., 2017). This study aims to understand the drivers of the 

changing CO2 sink in the Southern Ocean based on an ensemble of empirical estimates using a seasonal 40 

analysis framework.  

 

Empirical methods estimate CO2 by extrapolating the sparse ship based CO2 measurements using 

satellite observable proxies. This approach has allowed for a better understanding of the drivers of CO2 

by providing improved spatial and temporal resolution of the variability. Landschützer et al. (2015) 45 

showed, using an artificial neural network (ANN), that there was significant strengthening of Southern 

Ocean CO2 uptake during the period 2000-2010. While previous studies suggested that changes in wind 

strength have led to changes in meridional overturning and thus CO2 uptake (Lenton and Matear, 2007; 

Lovenduski et al., 2007; Lenton et al., 2009; DeVries et al., 2017), Landschützer et al. (2015) suggested 

that atmospheric circulation has become more zonally asymmetric since the mid 2000's, which has led 50 

to an oceanic dipole of cooling and warming. The net impact of cooling and warming, together with 

changes in the DIC/TA (Dissolved Inorganic Carbon/Total Alkalinity), led to an increase in the uptake 

of CO2 (Landschützer et al., 2015). During this period, in the Atlantic basin, southward advection 

reduced upwelled DIC in surface waters overcoming the effect of the concomitant warming in the 

region. Conversely, in the Eastern Pacific sector of the Southern Ocean, strong cooling overwhelmed 55 

increased upwelling (Landschützer et al., 2015). Munro et al. (2015) supported this mechanism, with 

data from the Drake Passage showing that ∆pCO2 decreased between 2002 and 2014.  

 

In a subsequent study Landschützer et al. (2016) proposed that interannual variability of CO2 in the 

Southern Ocean is tied to the decadal variability of the Southern Annular Mode (SAM) – the dominant 60 

mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). This concurs with 

previous studies, which suggested that the increase in the SAM during the 1990’s resulted in the 

weakening of the Southern Ocean sink (Le Quéré et al., 2007; Lenton and Matear, 2007; Lovenduski et 

al., 2007; Lenton et al., 2009). The work by Fogt et al. (2012) bridges the gap between the proposed 

asymmetric atmospheric circulation of Landschützer et al. (2015) and the observed correlation with the 65 

SAM of Landschützer et al. (2016). Fogt et al. (2012) show that changes in the SAM have been zonally 

asymmetric and that this variability is highly seasonal, thus amplifying or suppressing the amplitude of 

the seasonal mode.  
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Assessing the changes through a seasonal framework may thus help shed light on the drivers of CO2 in 70 

the Southern Ocean. Southern Ocean seasonal dynamics suggest that the processes driving ∆pCO2 are 

complex but with two clear contrasting extremes. In winter, the dominant deep mixing and entrainment 

processes are zonally uniform driving an increase in ∆pCO2 with the region south of the Polar Front 

(PF) becoming a net source and weakening the net sink north of the PF (Lenton et al., 2013). In 

summer, the picture is more spatially heterogeneous, with net primary production being the primary 75 

driver of variability (Mahadevan et al., 2011; Thomalla et al., 2011; Lenton et al., 2013). The 

competition between light and iron limitation results in heterogeneous distribution of Chl-a in both 

space and time, with similar implications for ∆pCO2 (Thomalla et al., 2011; Carranza and Gille, 2015). 

The interaction between the large-scale drivers, such as wind stress, surface heating and mesoscale 

ocean dynamics, is the primary cause of this complex picture (McGillicuddy, 2016; Mahadevan et al., 80 

2012). Some regions of elevated mesoscale and submesoscale dynamics, mainly in the Sub-Antarctic 

Zone (SAZ) are also characterized by strong intraseasonal modes in summer primary production  and 

pCO2 (Thomalla et al., 2011; Monteiro et al., 2015). In general, the opposing effects of mixing and 

primary production result in the seasonal cycle being the dominant mode of variability in the Southern 

Ocean (Lenton et al., 2013). 85 

 

In this study we examine winter and summer interannual variability of ∆pCO2 from 1998 to 2014 in the 

Southern Ocean to understand the drivers of long term changes in CO2 uptake.  

2 Empirical methods and data 

2.1 Empirical methods and data 90 

In this study we use three machine learning methods: Random Forest Regression (RFR), Support 

Vector Regression (SVR) and Self-Organising-Maps Feed-Forward Neural Network (SOM-FFN). RFR 

and SVR are introduced in Gregor et al. (2017) and SOM-FFN is presented in Landschützer et al. 

(2014). In brief, the RFR approach is an ensemble of decision trees that provides non-linear regression 

by combining many high variance – low bias estimators (Gregor et al., 2017). SVRs are in principle 95 

similar to a single hidden layer FFN, with the difference that SVR statistically determines the 

complexity of the problem, which is analogous to the hidden layer structure that is typically determined 

heuristically. The SOM-FFN method is a two-step neural network approach that first clusters data 

(SOM) and then applies a regression model (FFN) to each cluster.  

 100 
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The SVR and RFR implementations used in this study are trained with the monthly by 1° gridded 

SOCAT v3 dataset (Bakker et al., 2016). The SOM-FFN (v2.2) used in this study was trained with 

SOCAT v4 (Landschützer et al., 2017).    
Table 1: Three empirical methods used in the ensemble. RFR and SVR are described in Gregor et al. (2017). SOM-FFN is from 
Landschützer et al. (2016). SST = sea surface temperature, MLD = mixed layer depth, SSS = sea surface salinity, ADT = absolute 105 
dynamic topography, Chl-a = Chlorophyll-a, pCO2(atm) = fugacity of atmospheric CO2, xCO2(atm) = mole fraction of atmospheric 
CO2, F(lat, lon) = N-vector transformations of latitude and longitude, t(day of year) = trigonometric transformation of the day of 
the year. Note that SOM-FFN uses the de Boyer Montégut et al. (2004) climatology for MLD (dBM2004). The root mean squared 
errors (RMSE) listed in the last column are for the Southern Ocean from Gregor et al. (2017).  

Method Input variables 
RMSE 

(µatm) 

RFR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm) , Φ(lat, lon), t(day of year) 16.45  

SVR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), Φ(lat, lon), t(day of year) 24.04 

SOM-FFN SST, MLDdBM2004, SSS, Chl-a, xCO2(atm) 14.84  

 110 

Table 1 shows the proxy variables used for each of the methods. Sea surface salinity (SSS) and mixed 

layer depth (MLD) for SVR and RFR are from Estimating the Circulation and Climate of the Ocean, 

Phase II (ECCO2) (Menemenlis et al., 2008). The use of these assimilative modelled products may in 

some cases produce results that are unrealistic. This may have influenced the use of the de Boyer 

Montégut et al. (2004) MLD climatology in the SOM-FFN, where ECCO2 was used in previous 115 

iterations of the product. The trade-off of using the climatology is that no changes in MLD are taken 

into account. We acknowledge that using different proxy variables could result in different ∆pCO2 

estimates, but comparing the different products is beyond the scope of this study. Other data sources 

that are consistent between methods are: sea surface temperature (SST) and sea-ice fraction by 

Reynolds et al. (2007), Chlorophyll-a (Chl-a) by Maritorena and Siegel (2005), absolute dynamic 120 

topography (ADT) by  Duacs, xCO2 (CDIAC, 2016) with pCO2(atm) calculated from interpolated xCO2 

using NCEP2 sea level pressure (Kanamitsu et al., 2002). In the case of Chl-a for SVR and RFR, 

Gregor et al. (2017) filled the cloud gaps with climatological Chl-a. Note that ADT coverage is limited 

to regions of no to very low concentrations of sea-ice cover, thus estimates for SVR and RFR methods 

do not extend into the ice covered regions during winter. Our analyses are thus limited to the regions 125 

without ice cover.  

 

Seasonality of the data is preserved by transforming the day of the year (j) and is included in both SVR 

and RFR analyses: 

𝑡 = 	 		
cos 𝑗 ∙

2𝜋
365

sin 𝑗 ∙
2𝜋
365

		 	 1  130 

Transformed coordinate vectors are passed to SVR only using n-vector transformations of latitude (𝜆) 

and longitude (𝜇) (Gade, 2010; Sasse et al., 2013), with n containing: 
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𝑁 =	 		
sin(𝜆)

sin 𝜇 ∙ cos 𝜆
− cos 𝜇 ∙ sin 𝜆

	 	 2  

 

Wind speed, while not used in the empirical methods, is used in the assessment of the drivers of CO2. 135 

We use CCMP v2, which is an observation-based product that combines remote sensing, ship and 

weather buoy data (Atlas et al., 2011). Swart et al. (2015a) compared a number of wind reanalysis 

products with CCMP v1 (where CCMP was the benchmark). The authors found that many of the 

reanalysis products had spurious trends, particularly in the Southern Hemisphere where data is sparse. 

Our choice of CCMP, which is based on observations, is thus one that aims to minimise the 140 

assumptions that are otherwise made by reanalysis products.  

2.2 Uncertainties 

The machine learning approaches used in this study are by no means able to estimate ∆pCO2 with 

absolute certainty. To account for the uncertainty we use the same approach as Landschützer et al. 

(2014) to calculate total errors for each of the methods: 145 

𝒆 8 = 𝑒:;<=> + 𝑒@ABC> +𝑒:<D> 				 (3)	 

where em(t) is the total error associated with a method (m); emeas  is the error associated with SOCAT 

measurements, which is fixed at 5 µatm (Pfeil et al., 2013); egrid is the 5 µatm error associated with 

gridding the data into monthly by 1° bins (Sabine et al., 2013). Lastly emap is the root mean squared 

error (RMSE) calculated for each method as shown in Table 1 taken from Gregor et al. (2017).  150 

These errors are used to calculate the average “within-method” error as defined by Gurney et al. (2004):   

EF =
G
H
⋅ (𝑒: 8 )>H

:JG 		 4     

where em(t) is the method specific error as defined in Equation 1 and M is the number of methods (3 in 

this case). For a measure of the difference between methods we use the “between-method” approach 

used in Gurney et al. (2004): 155 

𝐸M =
G
H

(𝑆: − 𝑆)>H
:JG 	 5    

where 𝑆: is the method estimate of ∆pCO2 and 𝑆 is the mean of the methods. This is analogous to the 

standard deviation (for a known population size). We later use an adaptation of this metric as a 

threshold to determine the confidence around anomalies. 

2.3 Regional Coherence Framework 160 

Southern Ocean CO2 is spatially heterogeneous both zonally and meridionally (Jones et al. 2012). In 

order to understand this heterogeneity we used the three southernmost biomes defined by Fay and 
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McKinley (2014a) as done in Rödenbeck et al. (2015). From north to south these are: subtropical 

seasonally stratified (STSS), sub-polar seasonally stratified (SPSS), seasonally ice covered region 

(ICE). These three biomes are comparable to the SAZ (Sub-Antarctic Zone), PFZ (Polar-Frontal Zone) 165 

and MIZ (Marginal Ice Zone) respectively and will be used throughout the rest of the study. The 

Southern Ocean is further split into basins where the boundaries are defined by lines of longitude (70°W 

: Atlantic : 20°E : Indian : 145°E : Pacific : 70°W). Figure 1 depicts these nine regions. 

 
Figure 1: A map showing the regions used throughout this study. The three biomes, SAZ, PFZ and MIZ used in this study are 170 
defined by Fay and McKinley (2014a). The regions are also split by basin.  

3 Results and discussion 

Here we present and discuss the results. The first section examines the uncertainties of the ensemble 

and its members. We then consider the seasonal cycle of the ensemble mean in time and space. This is 

done to lay the foundation for the interpretation of the results when assessed with the regional 175 

framework. In the regional interpretation the data is decomposed into the nine regions shown in Figure 

1. Lastly we implement a seasonal decomposition of the estimates to interpret the drivers of the changes 

observed in ∆pCO2.  

3.1 Ensemble member performance and variability 

Table 2: A regional summary of the errors for the different models. Note that the propagated errors are calculated as shown in 180 
equation (3) where the measurement and gridding errors are assumed to be constant at 5 µatm each (Pfeil et al., 2013; Sabine et 
al., 2013). The within-model and between model errors are calculated using equations (4) and (5) respectively.  

 Propagated errors (µatm) Within  
model 
(µatm) 

Between  
model 
(µatm) Biome 

SVR RFR 
SOM-
FFN 

SAZ  17.48 14.50 12.30 14.91 4.88 
PFZ  15.94 12.71 13.09 13.99 4.78 
MIZ  36.38 24.53 22.46 28.46 10.81 

Southern Ocean  25.06 17.91 16.44 20.16 6.79 
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We use the RMSE scores as presented in Gregor et al. (2017) with abbreviated results shown in Table 1. 

The SOM-FFN method has the best score (14.84 µatm). SVR scores the lowest (24.04 µatm), but was 185 

still included due to the method’s sensitivity to sparse data, which is favourable to the poorly sampled 

winter period (Gregor et al. 2017). This compliments the RFR method, which scores well (16.45 µatm), 

but is prone to being insensitive to sparse data (Gregor et al. 2017). These RMSE scores are used to 

calculate the total errors for each method and region using equation (3) where the measurement and 

mapping errors are both 5 µatm each (Pfeil et al., 2013; Sabine et al., 2013). These results are shown in 190 

Table 2.  

 

Total errors are used to calculate the within-method error, which is an estimate of the combined total 

errors of the three machine learning methods (equation 4). The between-method errors are the mean of 

the standard deviation between the methods (equation 5). The within-method errors are much larger 195 

than the between-method errors (Table 2). However, the within-method errors are normally distributed 

and are mechanistically consistent (Gregor et al., 2017). This allows us to observe changes that are 

smaller than the within-method error. The between-method error (shown in Figure 2d) serves as a better 

measure of whether observed variability is more than statistical noise as it incorporates the three 

methodologically different approaches.   200 
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Figure 2: Time series of the three ensemble members for each biome as defined by Fay and McKinley (2014a): (a) SAZ, (b) PFZ, 
(c) MIZ. (d) shows the standard deviation between ensemble members for the three biomes which is analogous to the between-
model error (equation 5). The within-method (Ew) and between-method (Eb) errors are shown for each biome. For a more detailed 
breakdown of the errors see Table 2. 205 

Figure 2 shows the ∆pCO2 time series for each of the methods for the three Southern Ocean biomes. 

The methodological and data driven differences between each of the methods have been addressed in 

Gregor et al. (2017). In general, there is good agreement amongst the methods with a few notable 

exceptions. In the SAZ (Figure 2a) the SOM-FFN differs from the other methods for summer and 

autumn from 1998 to 2008. Gregor et al. (2017) attributed this difference to the clustering step in the 210 

SOM-FFN that creates discrepancies in the Atlantic sector. The SVR method overestimates the seasonal 

amplitude ∆pCO2 (where the seasonal amplitude is the difference between the winter maxima and 

summer minima of ∆pCO2) relative to the other methods for 2012 to 2014. In the PFZ (Figure 2b), the 
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SVR overestimates ∆pCO2 relative to the other methods during winter from 1998 to 2004, likely due to 

the sensitivity to sparse winter data. These differences contribute to the between-method error. 215 

 

The seasonal amplitude of ∆pCO2 in the MIZ is much larger than the two other regions. However, this 

amplitude is likely to be dampened by ice cover (Ishii et al., 1998; Bakker et al., 2008; Butterworth and 

Miller, 2016).  Note that in this study, we do not include regions with sea-ice cover to ensure 

consistency between methods. Calculated fluxes for this methodologically reduced region will thus 220 

under-represent the fluxes of the full extent of the MIZ. We thus exclude the MIZ for the remainder of 

the study.  

 

Figure 2d shows the time evolution of between-method errors for each biome. This panel highlights the 

seasonality of the data, specifically the increased heterogeneity of ∆pCO2 in summer and the impact that 225 

this has on ∆pCO2 estimates. This is due to the more complex competing processes affecting ∆pCO2 

during summer. To gain a better understanding of the seasonal processes we look at the mean state of 

each season to characterise the drivers of opposing fluxes. 

3.2 Ensemble seasonal cycle  

 230 
Figure 3: The mean seasonal states of ∆pCO2 of the empirical ensemble mean. These are shown for (a) summer, (b) autumn, (c) 
winter and (d) spring. The black contour lines show the SAZ, PFZ and MIZ from north to south as defined by Fay and McKinley 
(2014a).  

The seasonal cycle of the ∆pCO2 for each biome (Figure 2a-c and Figure 3a-c) is coherent with seasonal 

processes reported in the literature (Metzl et al., 2006; Thomalla et al., 2011; Lenton et al., 2012; 235 
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Lenton et al., 2013). In all biomes, uptake of CO2 is stronger during summer than in winter giving rise 

to the strong seasonal cycle. This is due to the opposing influences of the dominant winter and summer 

drivers, partially damped by the seasonal cycle of temperature (Takahashi et al., 2002; Thomalla et al., 

2011; Lenton et al., 2013). The dominant processes of mixing and entrainment in winter result in 

increased surface pCO2 and thus outgassing (Takahashi et al., 2009; Lenton et al., 2013; Rodgers et al., 240 

2014). In summer, stratification also allows for increased biological production and the consequent 

uptake of CO2, thus reducing the entrained winter DIC and associated pCO2 (Bakker et al., 2008; 

Thomalla et al., 2011). However, stratification typically limits entrainment, but does not exclude the 

occurrence of entrainment during periods of intense mixing driven by storms. This has an impact on 

primary productivity, DIC and pCO2 (Lévy et al., 2012; Monteiro et al., 2015; Nicholson et al., 2016; 245 

Whitt et al., 2017). 

 

The SAZ (Figure 2a) is a continuous sink where summer uptake (Figure 3a) is enhanced by biological 

production and winter (Figure 3c) mixing results in a weaker sink (Metzl et al., 2006; Lenton et al., 

2012; Lenton et al., 2013). The same processes produce a similar seasonal amplitude in the PFZ (Figure 250 

2b), but stronger upwelling and weaker biological uptake result in a positive shift of the mean. This 

results in an opposing net summer sink and winter source. However, this is according to the mean state 

in the PFZ and winter estimates of ∆pCO2 do in fact approach 0 µatm toward the end of the time series 

(Figure 2b). The MIZ has the strongest seasonal cycle due to upwelling of CO2 during winter and strong 

biological uptake in summer. However, much of this is dampened by sea ice cover during winter and 255 

weaker winds during summer (Ishii et al., 1998; Bakker et al., 2008).  

 

Apparent also from Figure 3 is that, over and above the latitudinal gradient, ∆pCO2 is zonally 

asymmetric within each biome during summer (Figure 3a), when biological uptake of CO2 increases. 

Zonal integration of ∆pCO2 could thus dampen magnitudes of regional ∆pCO2. A regional approach is 260 

therefore needed to examine the regional characteristics of seasonal and interannual variability of 

∆pCO2 and to understand its drivers.  

3.3 Regional ∆pCO2 variability: zonal and basin contrasts 

Here ∆pCO2 is decomposed into nine domains by biome and basin with the boundaries shown in Figure 

1, but note only six are shown in Figure 4. The data are plotted as time series for pCO2 (Figure 4) 265 

showing: mean annual pCO2 (black lines), the maximum winter values (red line) and the projected 

summer minima (dashed red line). The projected summer minima (dashed lines) are calculated by 

subtracting the mean seasonal amplitude from the winter maxima (Figure 4, with air-sea CO2 fluxes 

shown in Figure S3). The projected summer minima are the expected summer ∆pCO2 under the 

assumption that summer ∆pCO2 is dependent on, but not restricted to, the baseline set by winter. 270 
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Differences between the summer minima and projected minima are highlighted with green and blue 

patches, highlighting periods of decoupling between summer and winter interannual variability. The 

green areas indicate periods of strong uptake (relative to winter) that enhance the mean uptake of CO2 

and amplify the seasonal cycle. Conversely, blue areas show periods where weak summer uptake 

(relative to winter) offsets winter outgassing, thus reducing the mean ∆pCO2 as well as supressing the 275 

amplitude of the seasonal cycle (Figure 4). 

 
Figure 4: Figures (a-f) show the ensemble mean of ∆pCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are 
defined by Fay and McKinley (2014a). The solid red line shows the maximum for each year (winter outgassing) and the dashed 
line shows the same line less the average seasonal amplitude – this is the expected amplitude. The shaded blue (green) area shows 280 
when the annual minimum is less (greater) than the expected amplitude. Eb is the average between-method error and ∆𝒑𝐂𝐎𝟐 is the 
average for the entire time series. Light grey shading in (a-f) shows the periods used in Figure 5 and Figure 6. 

 

The data for ∆pCO2 (Figure 4) show that the Southern Ocean sink strengthened from 2002 to 2011 in all 

domains, a period identified as the reinvigoration by Landschützer et al. (2015). This was preceded by a 285 

period of a net weakening sink in the 1990’s referred to as the saturation period after Le Quéré et al. 

(2007). In the period from 2012 to 2014, three domains (Figure 4a,c,f) go from growing uptake to 

reducing uptake; however, our confidence in the changing trend is low due to lack of coherence 

between methods (Figure 2a,b) and only three years of data, with little data in 2014.  

 290 

A key feature of Figure 4 is that the mean interannual variability is the net effect of decoupled seasonal 

modes of variability for summer and winter. This is particularly evident in the PFZ (Figures 4d-f). Here, 

and in the other biomes, the net strengthening of the CO2 sink is mainly linked to a reduction of ∆pCO2 

in winter for the majority of the time series. This corresponds with the findings of Landschützer et al. 

(2016), who linked the reinvigoration to the decadal variability of the Southern Annular Mode (SAM) – 295 

the dominant mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). In contrast, 

summer ∆pCO2 variability is shorter (roughly 4 – 6 years), thus providing inter-annual modulation of 

longer time-scale winter variability. This is demonstrated well in the Indian sector of the PFZ where a 
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decrease in winter ∆pCO2 from 2002 to 2011 is offset by weakening of the summer sink from 2006 to 

2010 (Figure 4d). Similarly in the Atlantic and Pacific sectors of the PFZ decoupling occurs from ~2011 300 

to the end of 2014 with a rapid increase in the strength of the summer sink.  

 

The mean amplitude of the seasonal cycle of ∆pCO2, the mean difference between the summer minima 

and the winter maxima, is a better means of understanding the strength of the seasonal drivers than the 

mean ∆pCO2. For example the Atlantic sectors of the SAZ and PFZ (Figures 4c,f) have the strongest 305 

seasonal variability (14.11 and 25.83 µatm respectively). This contrasts the relatively weak seasonal 

amplitude in the Indian sector of the Southern Ocean which has mean amplitudes of 7.06 and 13.64 

µatm for the SAZ and PFZ respectively (Figures 4b,e). This contrast can also be seen by comparing the 

mean seasonal maps of ∆pCO2 in Figures 3a and 3c. In summer, strong uptake in the eastern Atlantic 

sector of the Southern Ocean is indicative of large biological drawdown of CO2 by phytoplankton 310 

(Thomalla et al., 2011). Conversely, relatively low primary production in the Indian sectors of the SAZ 

and PFZ results in a small seasonal amplitude (Thomalla et al., 2011). This large discrepancy in 

biological primary production is related to the availability of iron, a micronutrient required for 

photosynthesis. The lack of large land masses, a source of iron, in the Indian sector of the Southern 

Ocean could be a contributing factor to the lack of biomass (Boyd and Ellwood, 2010; Thomalla et al., 315 

2011).  

3.4 Seasonal deconstruction of interannual variability  

Figure 4 gives us insight into the magnitude of interannual ∆pCO2 variability as well as the character of 

these changes; i.e. decoupling of interannual winter and summer modes of variability. This alludes to 

the point that ∆pCO2 is responding to different adjustments of seasonal large scale atmospheric forcing 320 

and/or responses of internal ocean dynamics in the Southern Ocean (Landschützer et al., 2015, 2016; 

DeVries et al., 2017).  

 

In order to capture the decoupled short term variability observed during summer, the data are divided 

into four interannual periods (P1 to P4), where P1 is five years and the remaining periods (P2 to P4) are 325 

four years as shown by the light grey fills in Figure 4. The small discrepancy in the length of the periods 

is due to the uneven length of the time series (17 years).   

 

These four periods are too short for trend analyses (Fay and McKinley, 2014b), but the intention here is 

to identify periods that are short enough to resolve interannual changes of large-scale drivers of the 330 

winter and summer pCO2 that would otherwise be averaged out over longer periods. We then calculate 

the relative anomaly between each successive period rather than an anomaly of the mean state (e.g. P2 – 

P1). As a result four periods give rise to three sub-decadal-scale transition anomalies for summer and 



13 
 

winter: A (P2 – P1), B (P3 – P2) and C (P4 – P3). We do this separately for each method rather than 

using the ensemble mean (see S4 for calculations). The mean of the method anomalies for each 335 

transition is then taken. These anomalies are considered significant if the absolute estimate of the 

anomaly is larger than the standard deviation between the methods for each period. These calculations 

along with plots for the standard deviation between methods are shown in the supplementary materials 

in S4.  

 340 

Note that, although only summer and winter anomalies are discussed, it is recognised that autumn and 

spring could be equally mechanistically important. Winter anomalies of ∆pCO2, wind stress, SST and 

MLD are shown in Figure 5. Summer anomalies of ∆pCO2, wind stress, SST and Chl-a are shown in 

Figure 6 where MLD, in winter, is replaced with Chl-a for summer as it is potentially a more important 

driver than the generally shallow summer MLD (the omitted plots are shown in Figures S5 and S6).  345 

3.5 Drivers of winter ∆pCO2 variability 

We will limit the interpretation of the changes to the regions where the anomaly is larger than the 

between-method error of anomalies (see S4 for calculations and maps). This masks out large regions, 

but three key points still arise from the significant anomalies. Firstly, ∆pCO2 is often spatially roughly 

coherent with wind stress and the inverse of SST. Secondly, there is a dipole in the wind anomalies in 350 

the Indian and Pacific between transitions A and B. This is confirmed by the u- and v-components of 

wind shown in the supplementary materials (Figure S5). Lastly, the Indian sector of the Southern Ocean 

dominates the reinvigoration of the CO2 sink. These points are now addressed in more detail.  

 

Transition A (P2 – P1) shows a relative increase of ∆pCO2 in the east Indian and Pacific sectors of the 355 

SAZ – suggesting a delay in the onset of the reinvigoration for these basins. This regional sustained 

saturation corresponds to a shift towards stronger winds and/or deeper MLDs in the west Pacific sector 

of the SAZ (Figure 5d,j). In contrast, CO2 uptake in the east Atlantic and west Indian sectors of the SAZ 

start to strengthen, which roughly corresponds with the weaker winds.  

 360 

Transition B (P3 – P2) is characterized by a further intensification of the invigoration of ∆pCO2 

(negative shift) primarily in the Indian basin (Figure 5b). Once again the strengthening of the CO2 

uptake corresponds with weaker wind stress, a warming trend in surface waters and shoaling MLDs in 

the eastern Atlantic and Indian Ocean sectors of the SAZ and PFZ (Figure 5b,e,h,k). The opposing 

effects of the dipole are observed east of New Zealand where stronger wind stress, deeper MLD, and 365 

cooler surface waters correspond with a positive shift in ∆pCO2.  
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In transition C (P4 – P3), the ∆pCO2 sink strengthens further in the northern extremes of the east Indian 

and west Pacific basins. This negative shift corresponds well with strong shoaling of the MLD (Figure 

5l). The west Pacific sector of the PFZ shows a positive shift in ∆pCO2, which is coherent with an 370 

increase in the wind stress and deepening MLD. 

 

 
Figure 5:Transitions (relative anomalies) of winter ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed layer 
depth (j-l) for four periods. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and 375 
McKinley, 2014a) and basin boundaries. Regions with dots in (a-c) are where the anomalies are not significant ie: standard 
deviation of the anomalies between models is greater than the absolute mean of method anomalies as described in equations S1 to 
S3. 
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3.5.1 Wind dominated interannual variability of pCO2 in winter 

Based on the observations outlined above, we propose that interannual variability of the regional (basin-380 

scale) characteristics of winter wind stress may be the dominant driver of the saturation and 

reinvigoration periods.  

 

These findings suggest that increasing or decreasing interannual winter wind stress variability impacts 

∆pCO2 (and thus FCO2) by driving changes in turbulent mixing that set the magnitudes of winter 385 

entrainment. In the transition to and during winter, this mixing is associated with changes in rates of 

heat loss that drive loss of buoyancy or weaker stratification (Abernathey et al., 2011). Weaker 

buoyancy facilitates deepening of the MLD, thus entraining DIC-rich deep waters (Abernathey et al., 

2011; Lenton et al., 2013). Conversely, decreased wind stress and mixing during winter (on seasonal or 

interannual time scales) reduces the rate of heat loss (represented as warm anomalies in Figure 5). This 390 

results in stronger stratification and shallower winter MLD limits entrainment of DIC, which 

strengthens the CO2 winter disequilibrium and leads to a stronger CO2 sink anomaly (Figure 5). These 

are the mechanisms that we propose result in decreasing or increasing fluxes with interannual and 

basin–scale changes in wind stress.  

 395 

We propose the link between spatial changes in wind stress and uptake of CO2 as an alternative 

hypothesis to temperature being a driver as suggested by Landschützer et al. (2015). Typically an 

increase in ocean temperature, which reduces CO2 solubility, results in an increase in ∆pCO2 

(Takahashi et al., 1993). However, seasonal – regional analysis shows that the observed relationship 

between pCO2 and SST is counterintuitive (Figure 5a-c,g-i). On this basis we propose that SST is not a 400 

driver of pCO2 in winter. We suggest that this relationship is a product of weaker mixing and Ekman 

transport that allows warmer waters to shift southward. This also has the impact of strengthening 

buoyancy that would otherwise bring CO2 to the surface. In summary, our results suggest that, like 

pCO2, the SST changes are also a response to the wind stress and not in themselves the drivers of pCO2 

changes.  405 

 

Given the hypothesis that wind stress is the dominant driver of interannual – decadal ∆pCO2 in winter, 

it is of interest to understand its potential mechanisms. Past studies have used the SAM as a proxy for 

wind stress variability over the Southern Ocean, where the multi-decadal increasing trend has been cited 

as a reason for the saturation in the 1990’s (Marshall, 2003; Le Quéré et al., 2007; Lenton and Matear, 410 

2007; Lovenduski et al., 2008). While Landschützer et al. (2016) identified the SAM as being a driver 

of global CO2 variability, the index does not explain the reinvigoration of the Southern Ocean CO2 sink 

in the 2000s. The SAM is often represented as a zonally integrating index (Marshall, 2003), but more 

recent studies have shown that the SAM, as the first empirical mode of atmospheric variability, is 
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zonally asymmetric (Fogt et al., 2012). The zonal asymmetry of the SAM is linked with the El Niño – 415 

Southern Oscillation and is strongest in winter, particularly over the Pacific sector of the Southern 

Ocean during a positive phase, thus in accord with the Pacific–Indian winter wind stress dipole 

observed in Figures 5d,e (Barnes and Hartmann, 2010; Fogt et al., 2012). Fogt et al. (2012) noted that 

the SAM has become more zonally symmetric in summer since the 1980's, matching the wind stress 

anomalies seen in Figure 6d-f.  420 

  

In summary, we propose that interannual variability of wind stress and its regional expression in winter 

is the dominant interannual driver of ∆pCO2 variability in the Southern Ocean. The interannual 

variability of wind stress is linked to the SAM, but this relationship is nuanced by the zonally (regional) 

asymmetric variability of the SAM as observed by zonal asymmetry of wind stress in the Pacific and 425 

Indian sectors of the Southern Ocean. 

3.6 Anomalies of ∆pCO2 and its summer drivers  

The most marked difference between the summer and winter anomalies, is that ∆pCO2 (Figures 6a-c) 

does not correlate with wind stress (Figures 6d-f), thus ruling out wind as a first order driver of summer 

CO2. Rather, ∆pCO2 has the strongest coherence with Chl-a (an inverse relationship), which suggests 430 

that primary production may be a first order driver of the observed ∆pCO2 variability. Another 

difference between summer and winter is that the magnitudes of the transition anomalies are much 

larger in summer, and thus there are larger regions of significant anomalies (Figure 6a-c).  

 

Looking more specifically at the significant variability of ∆pCO2, transition A (P2 – P1 in Figure 6a) is 435 

marked by a decrease of CO2 in the SAZ (Tasman shelf region), mirrored by an increase in Chl-a. The 

Atlantic and Indian sectors of the PFZ remain mostly neutral/weak sources marked by a reduction in 

phytoplankton biomass (Figure 6j). Transition B (P3 – P2 in Figure 6b), shows invigoration of CO2 

uptake in the Atlantic sector of the SAZ and PFZ; and in parts of the Pacific Ocean. Once again, the 

reduction of ∆pCO2 correlates well with Chl-a increases. In transition C (P4 – P3 in Figure 6c) the 440 

reduction of the ∆pCO2 is widespread in the Indian and Pacific Oceans in all three biomes, as the 

increase in Chl-a is similarly widespread. Conversely, there is a reduction in Chl-a and concomitant 

increase in ∆pCO2 along Polar front in the Atlantic sector, coinciding with position of the ACC, which 

has high EKE (Meredith, 2016). These examples demonstrate that ∆pCO2 is driven primarily by Chl-a 

in summer. However, understanding Chl-a variability is more complex as there is seemingly no set rule 445 

between Chl-a, SST and wind stress (Thomalla et al., 2011).  
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Figure 6: Relative anomalies of summer ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed layer depth (j-l) 
for four periods (as shown above each column). The thin black lines show the boundaries for each of the nine regions described by 
the biomes (Fay and McKinley, 2014a) and basin boundaries. 450 

There are regions in the Southern Ocean where summer Chl-a variability does not coincide with ∆pCO2 

variability, particularly in the Indian and Pacific sectors of the SAZ (Figures 6a-c and 6j-l). This may be 

due to low chlorophyll concentrations, and anomalies thereof, in these regions (Thomalla et al., 2011). 

As a result the other variables, SST and wind stress, may be higher order drivers in low chlorophyll 

regions, as found by Landschützer et al. (2015) and Munro et al. (2015).  455 
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It is thus important to understand the variability of SST and wind stress in summer. Large SST 

anomalies between the western Atlantic and eastern Pacific sectors vary as a zonally asymmetric dipole. 

As in winter, there is a summer wind stress anomaly dipole, but rather than being zonally asymmetric 

(e.g. Pacific–Indian), the dipole has annular, north-south variability (Figures 5,6d-f). We suggest that 460 

these dipoles in the variability may indicate that the Southern Ocean, as a system, transitions between 

different states forced by atmospheric variability (Landschützer et al., 2015).  

 

An important note is that the magnitudes of ∆pCO2 and its drivers have different magnitudes seasonally. 

For example, the anomalies of ∆pCO2 and SST are larger in summer than in winter. Conversely, the 465 

wind stress anomalies are larger for winter than in summer. This is an important consideration for 

analyses that aim to understand the driving mechanisms, where annual averaging would make it 

difficult to decompose the true drivers of change.  

3.6.1 Chlorophyll dominated interannual anomalies of pCO2 in summer 

Our finding that Chl-a is the dominant driver of interannual ∆pCO2 variability should not be surprising 470 

given that models and observations support this notion (Hoppema et al., 1999; Bakker et al., 2008; 

Mahadevan et al., 2011; Wang et al., 2012; Hauck et al., 2013; 2015; Shetye et al., 2015). However, our 

data show that the dominance of interannual Chl-a variability over ∆pCO2 is largely limited to regions 

where Chl-a is high, such as the Atlantic, the Agulhas retroflection and south of Australia and New 

Zealand (Figure 7).  475 

 

The spatial variability of high Chl-a regions in the Southern Ocean is complex due to the dynamics of 

light and iron limitation (Arrigo et al., 2008; Boyd and Ellwood, 2010; Thomalla et al., 2011; Tagliabue 

et al., 2014; 2017). This complexity is highlighted in Thomalla et al. (2011), where the Chl-a is 

characterized into regions of concentration and seasonal cycle reproducibility (Figure 7). The seasonal 480 

cycle reproducibility (SCR) is calculated as the correlation between the mean annual seasonal cycle and 

the observed chlorophyll time series. Here we use the approach of Thomalla et al. (2011), in Figure 7, 

as a conceptual framework to understand the interannual variability of ∆pCO2.  

3.6.2 High chlorophyll regions 

While regions of high SCR (dark green in Figure 7) do not correspond with the interannual variability 485 

of Chl-a (Figure 6j-l), the framework by Thomalla et al. (2011) does present a hypothesis by which the 

variability of Chl-a and its drivers can be interpreted. This is, that the variability of Chl-a in a region is 

a complex interaction of the response of the underlying physics (mixing vs. buoyancy forcing), which 

modulate light (via the MLD) and iron supply, to the interannual variability in the drivers (SST and 
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wind stress). This complexity is exemplified by strong warming in the Atlantic during transition B, 490 

which results in both an increase and decrease in Chl-a, with inverse consequences for ∆pCO2. The 

effect is an even stronger transition C, where strong cooling in the Atlantic results in both a decrease 

and increase of Chl-a (Figure 6i,l). In both transition A and B the respective increase and decrease of 

Chl-a occur roughly over the ACC, while the opposing effects during transitions A and B occur roughly 

to the north and south of the ACC region. These temperature changes may impact the stratification of 495 

the region, but complex interaction with the underlying physics results in variable changes in Chl-a. 

 

  
Figure 9: Chl-a seasonal cycle reproducibility and iron supply mechanisms in the Southern Ocean (a) Regions of chlorophyll 
biomass and seasonal cycle reproducibility from Thomalla et al. (2011) (using SeaWIFS data). Seasonality is calculated as the 500 
correlation between the mean annual seasonal cycle compared to the observed chlorophyll time series. A correlation threshold of 
0.4 was applied to each time series to distinguish between regions of high and low seasonality; similarly, a threshold of 0.25 mg m-3 
was used to distinguish between low or high chlorophyll waters. Black lines show the Southern Ocean fronts calculated by sea 
surface height (Swart et al., 2010). 

It is clear that, while there is a relationship between Chl-a and pCO2 as well as a relationship between 505 

wind stress and SST in summer, the relationship between wind forcing, Chl-a and pCO2 is not as strong 

as in the winter anomalies (Figure 5). It may be that enhanced summer buoyancy forcing resulting from 

summer warming and mixed layer eddies drives a more complex response to wind stress in the form of 

vertical velocities and mixing, which influence the iron supply and the mixing depth (McGillicuddy, 

2016; Mahadevan et al., 2012).  510 

 

Mesoscale and sub-mesoscale processes may have a part to play in these dynamic responses of Chl-a to 

changes in SST and wind stress (amongst other drivers). For example, eddy-driven slumping could act 

to rapidly shoal the mixed layer (Mahadevan et al., 2012; Swart et al., 2015b; du Plessis et al., 2017). 

This allows phytoplankton to remain within the euphotic zone and thus grow (while iron is not 515 

limiting). Similarly, Nicholson et al. (2016) and Whitt et al. (2017) demonstrated that submesoscale 
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processes could supply iron to the mixed layer by submesoscale mixing. Importantly, these mechanisms 

rely on a mixing transition layer that has sufficient iron that is able to sustain growth. Weak dissolved 

iron gradients in the Pacific and east Indian sectors of the Southern Ocean could explain the lack of 

phytoplankton in these regions (Tagliabue et al., 2014; Nicholson et al., 2016). Much of the spatial 520 

character of the transition anomalies occurs at mesoscale, which strengthens the view that these 

mesoscale and sub-mesoscale processes may be key to explain changes in Chl-a (Figure 6j-l).  

3.6.3 Low chlorophyll regions 

Entrainment and stratification can explain much of the variability in the eastern Pacific and Indian 

sector of the PFZ (with the exception of the wake of the Kerguelen Plateau). For example, in the eastern 525 

Pacific in transition A (Figure 6a,d,g), strong warming and weaker winds have little impact on Chl-a, 

but a decrease in ∆pCO2 is observed. Conversely, cooling in the west Indian sector of the PFZ results in 

a weak increase in ∆pCO2 during the same transition. In both these cases, the effect of cooling or 

warming on ∆pCO2 is negligible relative to the impact of entrainment or stratification respectively. The 

effect is reversed in the eastern Pacific during transition B where strong cooling results in a weak 530 

reduction of ∆pCO2 rather than the increase that would be expected from entrainment. This is the 

mechanism that Landschützer et al. (2015) ascribed to the reduction of ∆pCO2 in the Pacific, but the 

effect observed in Figure 6b is weak. 

 

In summary, regions with high biomass Chl-a integrates the complex interactions between SST, wind 535 

stress, MLD and sub-mesoscale variability resulting in large interannual pCO2 variability compared to 

low biomass regions. In low Chl-a regions, wind driven entrainment/stratification are more likely 

drivers of ∆pCO2.  

4 Synthesis 

In this study, an ensemble mean of empirically estimated ∆pCO2 is used to investigate the trends and 540 

the drivers of these trends in the Southern Ocean. The estimated ∆pCO2 shows that the seasonal cycle is 

the dominant mode of variability imposed upon weaker interannual variability. The data are separated 

into domains defined by functional biomes and oceanic basins to account for the roughly basin scale 

zonal asymmetry observed in preliminary analyses of ∆pCO2 (Fay and McKinley, 2014a).  A seasonal 

decomposition is applied to the domains, revealing that winter and summer variability is decoupled for 545 

each region. The increase and subsequent decrease of pCO2 (and air-sea CO2 fluxes) is in accordance 

with recent studies showing a saturation of the Southern Ocean CO2 sink in the 1990’s followed by the 

reinvigoration in the 2000’s (Le Quéré et al., 2007; Landschützer et al., 2015).  
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We suggest that changes in the characteristics of the seasonal cycle of the drivers of pCO2 define the 550 

interannual variability pCO2. In other words, the mechanisms that drive interannual modes of variability 

are embedded in the seasonal cycle.   

 

We propose that winter ∆pCO2 variability is driven primarily by changes in winter wind stress, which 

influences the resulting convective entrainment of deep DIC-rich water masses (Lenton et al., 2009; 555 

2013). This winter variability has a longer mode than summer inter-annual variability. We attribute this 

longer winter mode of variability to the Southern Annular Mode, which has a decadal mode 

(Lovenduski et al., 2008; Fogt et al., 2012; Landschützer et al., 2016). This mechanism is likely 

dominant in winter due to its role in large seasonal net heat losses that drive convective overturning of 

the water column. 560 

 

We suggest that interannual summer variability of ∆pCO2 occurs from a baseline set by an interannual 

winter trend. Moreover, the shorter time-scale summer interannual variability of ∆pCO2 (roughly 4 – 6 

years) is driven primarily by Chl-a. Wind stress and sea surface temperature still influence ∆pCO2 in 

summer, but are lower order drivers. We propose that the interannual variability of the summer seasonal 565 

peak is linked to the complex interaction of mid-latitude storms with the strong mesoscale and sub-

mesoscale gradients in the Southern Ocean.    

 

Overall, we propose that although the winter wind stress linked mechanisms explain the decadal trends 

in the strengthening and weakening of CO2 uptake by the Southern Ocean, summer drivers may explain 570 

the inter-annual variability in the decadal trends (Lovenduski et al., 2008; Landschützer et al., 2015).     

 

Lastly the ensemble of machine learning methods shows that there is still considerable disagreement 

between the different approaches. This is likely driven by the lack of pCO2 measurements in the 

Southern Ocean as found by Rödenbeck et al. (2015). Autonomous sampling platforms will likely play 575 

a role in closing this “observation gap”, but strategic deployment and sampling strategies will be critical 

to constrain and improve our understanding of CO2 in the non-stationary context (McNeil and Matear, 

2013; Monteiro et al., 2015).  

 

  580 
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S Supplementary Materials  

S1 Wind speed and regional surface area 

The regional magnitude of integrated air-sea CO2 fluxes is in part determined by the wind speed and 

surface area of the specific region. Figure S1a shows the average wind speeds for summer and winter 

for each of the regions as defined in Figure 1. The wind product used is CCMP v2 (Atlas et al. 2011). 585 

Figure S1b shows the surface area of each of the regions. Note that the Indian sector of the PFZ has 

both the highest average wind speed and has the largest surface area. This explains the dominance of the 

region in the determination of interannual variability of FCO2 (Figure S2), even though ∆pCO2 (Figure 

4) variability is relatively weak.   

 590 
    (a)      (b) 

Figure S1: (a) Average wind speeds for each of the biomes for summer (dark) and winter (light). The ocean basins are shown by 
the colours as shown in the key for (b). (b) shows the size of each region separated by biome and basin. 

 

  595 
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S2 Seasonal time series 

 
Figure S2: The regional breakdown of the seasonal averages for ∆pCO2. The seasonal mean for summer (solid) and 
winter (dashed) for each method is represented by the different coloured lines as shown in the key, where MLS is the 
Mixed Layer Scheme. The other methods are as in the main text. The grey fill is the ensemble mean ∆pCO2 ± Eb 600 
where Eb is the between-method error calculated as in Eq (5).  
 

Figure S2 shows the seasonal time series for each region maintaining separate seasonal averages for 

each method. We also include the Marginal Ice Zone plots with all plots showing the average between-

method error.  605 

The Mixed Layer Scheme (MLS) method by Rödenbeck et al. (2013) is also included. Note that the 

MLS is not a machine learning method as it incorporates prior knowledge of the system. The method 

results in divergent estimates of ∆pCO2, particularly in the SAZ. The MLS fails to produce a seasonal 

cycle with winter and summer ∆pCO2 having the same magnitude. Further work will have to be done to 

understand the cause for this difference. We do not include MLS in the main ensemble as we cannot 610 

explain this difference. The methods are in much better agreement in the PFZ and MIZ.  

 

  



24 
 

S3 Air-Sea CO2 Fluxes 

Air sea CO2 fluxes are calculated with: 615 

𝐹CO> = 𝑘F ⋅ 𝐾Y ⋅ 𝑝CO>[\]	–	𝑝CO>]_` 	 S1  

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the 

coefficients of (Wanninkhof et al., 2009). Coefficients from Weiss (1974) are used to calculate K0 and 

∆pCO2 is estimated by the empirical models. Wind speed is calculated from the u and v vectors 

( 𝑢> + 𝑣>) of the Cross-Calibrated Multiplatform Product (CCMP) v2 (Atlas et al., 2011; Wentz et al., 620 

2015). Wind speed is one of the largest contributors to the uncertainty in flux estimates, thus the choice 

of the wind product could have a large impact on flux estimates as well as interpretation of the drivers 

of CO2 (Takahashi et al., 2009). We use the ensemble mean ∆pCO2 from Figure 4 to calculate fluxes - 

note that this does not include the MLS shown in Figure S2.  

 625 
Figure S3: FCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are defined by Fay and McKinley (2014a). The 
solid red line shows the maximum for each year (winter outgassing) and the dashed line shows the same line less the average 
difference between the minimum and maximum – this is the expected amplitude. Lighter grey shading in (a-i) shows periods used 
in Figure 5 and 6. Note that fluxes in the MIZ are calculated from a reduced surface area to maintain consistency between 
methods. 630 

Mean FCO2 is shown in Figure S3. Note that the apparent weak fluxes in the MIZ are due to the 

reduction of the surface area and thus flux to maintain equal weighting between machine learning 

methods. The SAZ clearly dominates the annual uptake of CO2 in the Southern Ocean, but the 

interannual variability is dominated by the PFZ. An interesting point of the SAZ is that the seasonal 

cycle of wind speed (strong in winter, weak in summer) opposes that of ∆pCO2 sink (weak in winter, 635 

strong in summer). The net result is that, compared to ∆pCO2, the seasonal amplitude of FCO2 is 

reduced. The same effect shifts the mean flux in the PFZ, but does not affect the amplitude, where 
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outgassing is amplified in winter and the sink is weaker than if wind speed was constant. Lastly, Figures 

S3a,d show that the Indian sector of the Southern Ocean dominate both uptake (SAZ) and the 

interannual variability (PFZ).  640 

S4 Uncertainty of the transition anomalies 

The transition anomalies are not calculated from the mean of the three methods. Rather we calculate the 

anomalies for each individual method with: 

𝑎e Df = 𝑠e D − 𝑠e DhG 		 S2   

where s are the estimates for a particular model, n represents an individual model and p represents P1 to 645 

P4. The result, 𝑎e(Di) thus represents the anomaly for two periods for a particular model. We then 

calculate the average of the anomalies with: 

𝑎Df 	=
G
j
⋅ 𝑎e Df

j
eJG S3   

where N is 3, the number of models. We then calculate the standard deviation of the three anomalies 

(𝑒Di), which is analogous to the between-model error, with: 650 

𝑒Df =
G
j
⋅ (𝑎e Df − 𝑎e Df )>j

eJG S4    

where the terms are consistent with those above. We use 𝑒Di as an uncertainty threshold where 

anomalies are only considered significant if |𝑎Di| > 𝑒Di. These regions are masked in Figures 5a-c and 

6a-c. Figure S4 shows the winter (a-c) and summer (d-f) 𝑒Di for each transition anomaly. 

 655 
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Figure S4: Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for ∆pCO2 
in Figures 5(a-c) and 6(a-c) for winter and summer respectively. When the standard deviation exceeds the absolute value average 
anomaly, the values are masked as shown in Figures 5 and 6.  
 660 
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S5 Additional driver variables 

Here we show additional variables that accompany Figures 5 and 6. Figure S5 shows winter Chl-a, u- 

and v-components of wind and Figure S6 shows summer  MLD, u- and v-components of wind. These 665 

variables were not included in the main analyses as they did not contribute significant information to the 

proxy variables already present (wind stress, SST and MLD/Chl-a). It is interesting to note that the u- 

and v- components of wind speed highlight the zonally asymmetric dipole during winter (Figures 

S5d,e,g,h) and the annular dipole during summer (Figures S6d,e).  

 670 

Figure S5: Relative anomalies of winter chlorophyll-a (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as shown 
above each column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and 
McKinley, 2014a) and basin boundaries. 
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Figure S6: Relative anomalies of summer mixed layer depth (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as 675 
shown above each column).. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay 
and McKinley, 2014a) and basin boundaries.  
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