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Abstract.  

Resolving and understanding the drivers of variability of CO2 in the Southern Ocean and its potential 

climate feedback is one of the major scientific challenges of the ocean-climate community. Here we use 10 

a regional approach on empirical estimates of pCO2 to understand the role that seasonal variability has on 

long term CO2 changes in the Southern Ocean. Machine learning has become the preferred empirical 

modelling tool to interpolate time- and location-restricted ship measurements of pCO2. In this study we 

use an ensemble of three machine-learning products: Support Vector Regression (SVR) and Random 

Forest Regression (RFR) from Gregor et al. (2017), and the SOM-FFN method from Landschützer et al. 15 

(2016). The interpolated estimates of ∆pCO2 are separated into nine regions in the Southern Ocean defined 

by basin (Indian, Pacific and Atlantic) and biomes (as defined by Fay and McKinley, 2014a). The regional 

approach shows that, while there is good agreement in the overall trend of the products, there are periods 

and regions where the confidence in estimated ∆pCO2 is low due to disagreement between the products. 

The regional breakdown of the data highlighted the seasonal decoupling of the modes for summer and 20 

winter interannual variability. Winter interannual variability had a longer mode of variability compared 

to summer, which varied on a 4–6 year time scale. We separate the analysis of the ∆pCO2 and its drivers 

into summer and winter. We find that understanding the variability of ∆pCO2 and its drivers on shorter 

time scales is critical to resolving the long-term variability of ∆pCO2. Results show that ∆pCO2 is rarely 

driven by thermodynamics during winter, but rather by mixing and stratification due to the stronger 25 

correlation of ∆pCO2 variability with mixed layer depth. Summer pCO2 variability is consistent with 

chlorophyll-a variability, where higher concentrations of chlorophyll-a correspond with lower pCO2 

concentrations. In regions of low chlorophyll-a concentrations, wind stress and sea surface temperature 

emerged as stronger drivers of ∆pCO2. In summary we propose that sub-decadal variability is explained 

by summer drivers, while winter variability contributes to the long-term changes associated with the 30 

SAM. This approach is a useful framework to assess the drivers of ∆pCO2 but would greatly benefit from 

improved estimates of ∆pCO2 and a longer time series.  
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1 Introduction 

The Southern Ocean plays a key role in the uptake of anthropogenic CO2 (Khatiwala et al., 2013; DeVries 

et al., 2017). Moreover, it has been shown that the Southern Ocean is sensitive to anthropogenically 35 

influenced climate variability, such as the intensification of the westerlies (Le Quéré et al., 2007; Lenton 

et al., 2009; Swart and Fyfe, 2012; DeVries et al., 2017). Until recently, the research community has not 

been able to quantify the contemporary changes of CO2 in the Southern Ocean accurately due to a paucity 

of observations, let alone understand the drivers (Bakker et al., 2016). Empirical models provide an 

interim solution to this challenge until prognostic ocean biogeochemical models are able to represent 40 

Southern Ocean CO2 fluxes adequately (Lenton et al., 2013; Rödenbeck et al., 2015; Mongwe et al., 

2016). The research community agrees on large changes in CO2 fluxes in the Southern Ocean from a 

weakening sink in the 1990s to a strengthening sink in the 2000s; however, there is disagreement over 

the drivers of the changes in CO2 uptake (Lovenduski et al., 2008; Landschützer et al., 2015; DeVries et 

al., 2017; Ritter et al., 2017). This study aims to understand the drivers of the changing CO2 sink in the 45 

Southern Ocean, based on an ensemble of empirical estimates using a seasonal analysis framework.  

 

Empirical methods estimate CO2 by extrapolating sparse ship-based CO2 measurements using proxy 

variables. The proxies are often satellite observable but may include climatologies or output from 

assimilative models. Empirical methods have improved our understanding of CO2 trends in the Southern 50 

Ocean by increasing the data coverage. However, there is still disagreement between many of the methods 

due to the paucity of data and the way in which each method interpolates sparse data (Rödenbeck et al., 

2015; Ritter et al., 2017).  

 

In a key study, Landschützer et al. (2015) showed, using an artificial neural network (ANN), that there 55 

was significant strengthening of Southern Ocean CO2 uptake during the period 2002-2010. While 

previous studies suggested that changes in wind strength have led to changes in meridional overturning 

and thus CO2 uptake (Lenton and Matear, 2007; Lovenduski et al., 2007; Lenton et al., 2009; DeVries et 

al., 2017), Landschützer et al. (2015) suggested that atmospheric circulation has become more zonally 

asymmetric since the mid 2000s, which has led to an oceanic dipole of cooling and warming. The net 60 

impact of cooling and warming, together with changes in the DIC/TA (Dissolved Inorganic Carbon/Total 

Alkalinity), led to an increase in the uptake of CO2 (Landschützer et al., 2015). During this period, 

southward advection in the Atlantic basin reduced upwelled DIC in surface waters, overcoming the effect 

of the concomitant warming in the region. Conversely, in the Eastern Pacific sector of the Southern 

Ocean, strong cooling overwhelmed increased upwelling (Landschützer et al., 2015). This is supported 65 

by observations from the Drake Passage and south of Australia showing that variability of upwelling has 

affected ∆ pCO2 (Munro et al., 2015; Xue et al., 2015).  
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In a subsequent study, Landschützer et al. (2016) proposed that interannual variability of CO2 in the 

Southern Ocean is tied to the decadal variability of the Southern Annular Mode (SAM) – the dominant 70 

mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). This concurs with previous 

studies, which suggested that the increase in the SAM during the 1990s resulted in the weakening of the 

Southern Ocean sink (Le Quéré et al., 2007; Lenton and Matear, 2007; Lovenduski et al., 2007; Lenton 

et al., 2009; Xue et al., 2015). The work by Fogt et al. (2012) bridges the gap between the proposed 

asymmetric atmospheric circulation of Landschützer et al. (2015) and the observed correlation with the 75 

SAM of Landschützer et al. (2016). Fogt et al. (2012) show that changes in the SAM have been zonally 

asymmetric and that this variability is highly seasonal, thus amplifying or suppressing the amplitude of 

the seasonal mode.  

 

Assessing the changes through a seasonal framework may thus help shed light on the drivers of CO2 in 80 

the Southern Ocean. Southern Ocean seasonal dynamics suggest that the processes driving pCO2 are 

complex, but with two clear contrasting extremes. In winter, the dominant deep mixing and entrainment 

processes are zonally uniform, driving an increase in pCO2, with the region south of the Polar Front (PF) 

becoming a net source and weakening the net sink north of the PF (Lenton et al., 2013). In summer, the 

picture is more spatially heterogeneous, with net primary production being the primary driver of 85 

variability (Mahadevan et al., 2011; Thomalla et al., 2011; Lenton et al., 2013). The competing influence 

between light and iron limitation results in heterogeneous distribution of chlorophyll-a (Chl-a) in both 

space and time, with similar implications for pCO2 (Thomalla et al., 2011; Carranza and Gille, 2015). The 

interaction between the large-scale drivers, such as wind stress, surface heating and mesoscale ocean 

dynamics, are the primary cause of this complex picture (McGillicuddy, 2016; Mahadevan et al., 2012). 90 

Some regions of elevated mesoscale and submesoscale dynamics, mainly in the Sub-Antarctic Zone 

(SAZ), are also characterized by strong intraseasonal modes in summer primary production and pCO2 

(Thomalla et al., 2011; Monteiro et al., 2015). In general, the opposing effects of mixing and primary 

production result in the seasonal cycle being the dominant mode of variability in the Southern Ocean 

(Lenton et al., 2013). 95 

 

In this study we examine winter and summer interannual variability of ∆pCO2 in the Southern Ocean 

between 1998 – 2014 to understand the drivers of long-term changes in CO2 uptake.  

2 Methodology 

2.1 Empirical methods and data 100 

In this study we use three machine-learning methods: Random Forest Regression (RFR), Support Vector 

Regression (SVR) and Self-Organising-Map Feed-Forward Neural Network (SOM-FFN). RFR and SVR 
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are introduced in Gregor et al. (2017) and SOM-FFN is presented in Landschützer et al. (2014). In brief, 

the RFR approach is an ensemble of decision trees that provides non-linear regression by combining many 

high variance – low bias estimators (Gregor et al., 2017). SVRs are in principle similar to a single hidden 105 

layer FFN, except that SVR statistically determines the complexity of the problem, which is analogous to 

the hidden layer structure that is typically determined heuristically. The SOM-FFN method is a two-step 

neural network approach that first clusters data (SOM) and then applies a regression model (FFN) to each 

cluster.  

 110 

The SVR and RFR implementations used in this study are trained with the monthly 1° by 1° gridded 

SOCAT (Surface Ocean CO2 Atlas) v3 dataset (Bakker et al., 2016). The SOM-FFN (run ID: netGO5) 

used in this study was trained with SOCAT v4 (Landschützer et al., 2017).    
Table 1: Three empirical methods used in the ensemble. RFR and SVR are described in Gregor et al. (2017). SOM-FFN is from 
Landschützer et al. (2016). SST = sea surface temperature, MLD = mixed layer depth, SSS = sea surface salinity, ADT = absolute 115 
dynamic topography, Chl-a = Chlorophyll-a, pCO2(atm) = fugacity of atmospheric CO2, xCO2(atm) = mole fraction of atmospheric 
CO2, Φ (lat, lon) = N-vector transformations of latitude and longitude, t(day of year) = trigonometric transformation of the day of 
the year. Note that SOM-FFN uses the de Boyer Montégut et al. (2004) climatology for MLD (dBM2004). The root mean squared 
errors (RMSE) listed in the last column are for the Southern Ocean from Gregor et al. (2017).  

Method Input variables 
RMSE 

(µatm) 

RFR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm) , Φ(lat, lon), t(day of year) 16.45  

SVR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), Φ(lat, lon), t(day of year) 24.04 

SOM-FFN SST, MLDdBM2004, SSS, Chl-a, xCO2(atm) 14.84  

 120 

Table 1 shows the proxy variables used for each of the methods. Sea surface salinity (SSS) and mixed 

layer depth (MLD) for SVR and RFR are from Estimating the Circulation and Climate of the Ocean, 

Phase II (ECCO2) (Menemenlis et al., 2008). The use of these assimilative modelled products may in 

some cases produce results that are unrealistic. This may have influenced the use of the de Boyer 

Montégut et al. (2004) MLD climatology in the SOM-FFN, where ECCO2 was used in previous iterations 125 

of the product. The trade-off of using the climatology is that no interannual changes in MLD are taken 

into account. We acknowledge that using different proxy variables could result in different ∆pCO2 

estimates, but comparing the different proxies used in each of the CO2 products is beyond the scope of 

this study. Other data sources that are consistent between methods are: sea surface temperature (SST) and 

sea-ice fraction by Reynolds et al. (2007), Chl-a by Maritorena and Siegel (2005), absolute dynamic 130 

topography (ADT) by Duacs, and xCO2 (CDIAC, 2016) with pCO2(atm) calculated from interpolated xCO2 

using NCEP2 sea level pressure (Kanamitsu et al., 2002). In the case of Chl-a for SVR and RFR, Gregor 

et al. (2017) filled the cloud gaps with climatological Chl-a. Note that ADT coverage is limited to regions 

of no to very low concentrations of sea-ice cover, so estimates for SVR and RFR do not extend into the 

ice-covered regions during winter. Our analyses are thus limited to the region north of the maximum sea-135 

ice extent.  
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Seasonality of the data is preserved by transforming the day of the year (j) and is included in both SVR 

and RFR analyses: 

𝑡 = 	$		
cos (𝑗 ∙

2𝜋
3650

sin (𝑗 ∙
2𝜋
3650

		3	 (1) 140 

Transformed coordinate vectors are passed to SVR only using n-vector transformations of latitude (𝜆) 

and longitude (𝜇) (Gade, 2010; Sasse et al., 2013), with n containing: 

𝑁 = 	Φ;		
sin(𝜆)

sin(𝜇) ∙ cos(𝜆)
− cos(𝜇) ∙ sin(𝜆)

	=	 (2) 

 

Wind speed, while not used in the empirical methods, is used in the assessment of the drivers of CO2. We 145 

use CCMP v2, which is an observation-based product that combines remote sensing, ship and weather 

buoy data (Atlas et al., 2011). Swart et al. (2015a) compared a number of wind reanalysis products with 

CCMP v1 (where CCMP was the benchmark). The authors found that many of the reanalysis products 

had spurious trends, particularly in the Southern Hemisphere where data is sparse. Our choice of CCMP, 

which is based on observations, aims to minimise the assumptions that are otherwise made by reanalysis 150 

products.  

2.2 Uncertainties 

The machine-learning approaches used in this study are by no means able to estimate ∆pCO2 with absolute 

certainty. To account for the uncertainty, we use the same approach as Landschützer et al. (2014) to 

calculate total errors for each of the methods: 155 

𝒆(?) = @𝑒BCDEF + 𝑒HIJKF +𝑒BDLF 				 (3)	 

where em(t) is the total error associated with a method (m); emeas is the error associated with SOCAT 

measurements, which is fixed at 5 µatm (Pfeil et al., 2013); egrid is the 5 µatm error associated with 

gridding the data into monthly by 1° bins (Sabine et al., 2013). Lastly emap is the root mean squared error 

(RMSE) calculated for each method, as shown in Table 1 taken from Gregor et al. (2017).  160 

These errors are used to calculate the average “within-method” error as defined by Gurney et al. (2004):   

EN = @O
P
⋅ ∑ (𝑒B(?))FP

BSO 		 (4)    

where em(t) is the method-specific error as defined in Equation 3 and M is the number of methods (3 in 

this case). For a measure of the difference between methods we use the “between-method” approach used 

in Gurney et al. (2004): 165 



6 
 

𝐸V = @O
P
∑ (𝑆B − 𝑆̅)FP
BSO 	 (5)   

where 𝑆B is the method estimate of ∆pCO2 and 𝑆̅ is the mean of the methods. This is analogous to the 

standard deviation (for a known population size). We later use an adaptation of this metric as a threshold 

to determine the confidence around anomalies. 

2.3 Regional Coherence Framework 170 

Southern Ocean CO2 is spatially heterogeneous, both zonally and meridionally (Jones et al., 2012). In 

order to understand this heterogeneity, we used the three southernmost biomes defined by Fay and 

McKinley (2014a), as done in Rödenbeck et al. (2015). From north to south these are the subtropical 

seasonally stratified (STSS), sub-polar seasonally stratified (SPSS) and seasonally ice-covered region 

(ICE). These three biomes are comparable to the SAZ (Sub-Antarctic Zone), PFZ (Polar-Frontal Zone) 175 

and MIZ (Marginal Ice Zone) respectively and will be used throughout the rest of the study. The Southern 

Ocean is further split into basins where the boundaries are defined by lines of longitude (70°W : Atlantic 

: 20°E : Indian : 145°E : Pacific : 70°W).  

 
Figure 1: A map showing the regions used throughout this study. The three biomes, SAZ, PFZ and MIZ, used in this study are 180 
defined by Fay and McKinley (2014a). The regions are also split by basin.  

3 Results and discussion 

The first section of the results examines the uncertainties of the ensemble and its members. We then look 

at the seasonal cycle of the ensemble mean in time and space. This is done to lay the foundation for the 

interpretation of the results when assessed with the regional framework. In the regional interpretation the 185 

estimates are decomposed into nine regions, as shown in Figure 1. Lastly, we implement a seasonal 

decomposition of the estimates to interpret the drivers of the changes observed in ∆pCO2.  
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3.1 Ensemble member performance and variability 

Table 2: A regional summary of the errors for the different methods. Note that the propagated errors are calculated as shown in 
equation (3) where the measurement and gridding errors are assumed to be constant at 5 µatm each (Pfeil et al., 2013; Sabine et al., 190 
2013). The within-method and between method errors are calculated using equations (4) and (5) respectively.  

 Propagated errors (µatm) Within  
method 

error 
(µatm) 

Between  
method 

error 
(µatm) 

Biome 
SVR RFR 

SOM-
FFN 

SAZ  17.48 14.50 12.30 14.91 4.88 
PFZ  15.94 12.71 13.09 13.99 4.78 
MIZ  36.38 24.53 22.46 28.46 10.81 

Southern Ocean  25.06 17.91 16.44 20.16 6.79 
 

We use the RMSE scores as presented in Gregor et al. (2017) with abbreviated results shown in Table 1. 

The SOM-FFN method has the best score (14.84 µatm). SVR scores the lowest (24.04 µatm), but is still 

included due to the method’s sensitivity to sparse data, which is favourable to the poorly sampled winter 195 

period (Gregor et al., 2017). This compliments the RFR method, which scores well (16.45 µatm) but is 

prone to being insensitive to sparse data (Gregor et al., 2017). These RMSE scores are used to calculate 

the total errors for each method and region using equation (3), where the measurement and mapping errors 

are both 5 µatm each (Pfeil et al., 2013; Sabine et al., 2013). These results are shown in Table 2.  

 200 

Total errors are used to calculate the within-method error, which is an estimate of the combined total error 

of the three machine-learning methods (equation 4). The between-method errors are the mean of the 

standard deviation between the methods (equation 5). The within-method errors are much larger than the 

between-method errors (Table 2). However, the within-method errors are normally distributed and are 

mechanistically consistent (Gregor et al., 2017). The between-method error (shown in Figure 2c) is thus 205 

used to determine whether observed variability is consistent between the three methods.  
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Figure 2: Time series of the three ensemble methods for each biome, as defined by Fay and McKinley (2014a): (a) SAZ, (b) PFZ, 
(c) the standard deviation between ensemble members for the three biomes, which is analogous to the between-method error 
(equation 5). The within-method (Ew) and between-method (Eb) errors are shown for each biome. For a more detailed breakdown 210 
of the errors see Table 2. 

Figure 2 shows the ∆pCO2 time series for the SAZ and PFZ. Note that we exclude the MIZ from the 

remaining analyses due to large Eb and Ew (Table 2) and inconsistent coverage between products due to 

sea-ice cover (MIZ data is shown in the supplementary materials S2, S3). In general, there is good 

agreement amongst the methods and the magnitude of these differences is within the average within-215 

method error (Ew), but the differences are important to highlight as they contribute to the between-method 

error (Eb). In the SAZ (Figure 2a), the SOM-FFN differs from the other methods for summer and autumn 

from 1998 to 2008. The SVR method overestimates the seasonal amplitude ∆pCO2 (where the seasonal 

amplitude is the difference between the winter maxima and summer minima of ∆pCO2) relative to the 

other methods for 2012 to 2014. In the PFZ (Figure 2b), the SVR overestimates ∆pCO2 relative to the 220 

other methods during winter from 1998 to 2004, likely due to the method’s sensitivity to sparse winter 

data (Gregor et al., 2017).   
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Figure 2(c) shows the time evolution of between-method errors for each biome. This panel highlights the 

seasonality of the estimates, specifically the increased heterogeneity of ∆pCO2 in summer and the impact 225 

this has on ∆pCO2 estimates. This is due to the more complex competing processes affecting pCO2 during 

summer. To gain a better understanding of the seasonal processes, we consider the mean state of each 

season to characterise the drivers of opposing fluxes. 

3.2 Ensemble seasonal cycle  

 230 
Figure 3: The mean seasonal states of ∆pCO2 of the empirical ensemble mean. These are shown for (a) summer, (b) autumn, (c) 
winter and (d) spring. The black contour lines show the SAZ, PFZ and MIZ (masked) from north to south, as defined by Fay and 
McKinley (2014a).  

The seasonal cycle of the ∆pCO2 for each biome (Figure 2a-b and Figure 3a-d) is coherent with seasonal 

processes reported in the literature (Metzl et al., 2006; Thomalla et al., 2011; Lenton et al., 2012; Lenton 235 

et al., 2013). In all biomes, uptake of CO2 is stronger during summer than in winter, giving rise to the 

strong seasonal cycle. This is due to the opposing influences of the dominant winter and summer drivers, 

partially damped by the seasonal cycle of temperature (Takahashi et al., 2002; Thomalla et al., 2011; 

Lenton et al., 2013). In winter, the dominant processes of mixing and entrainment results in increased 

surface pCO2 and thus outgassing (Takahashi et al., 2009; Lenton et al., 2013; Rodgers et al., 2014). In 240 

summer, stratification allows for increased biological production and the consequent uptake of CO2, thus 

reducing the entrained winter DIC and associated pCO2 (Bakker et al., 2008; Thomalla et al., 2011). 

However, stratification typically limits entrainment other than during periods of intense mixing driven by 

storms. This has an impact on primary productivity, DIC and pCO2 (Lévy et al., 2012; Monteiro et al., 

2015; Nicholson et al., 2016; Whitt et al., 2017). 245 
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The SAZ (Figure 2a) is a continuous sink, where summer uptake (Figure 3a) is enhanced by biological 

production and winter (Figure 3c) mixing results in a weaker sink (Metzl et al., 2006; Lenton et al., 2012; 

Lenton et al., 2013). The same processes produce a similar seasonal amplitude in the PFZ (Figure 2b), 

but stronger upwelling and weaker biological uptake result in a positive shift of the mean. This results in 250 

an opposing net summer sink and winter source. However, this is according to the mean state in the PFZ 

and winter estimates of ∆pCO2 do in fact approach 0 µatm toward the end of the time series (Figure 2b).  

 

Apparent also from Figure 3 is that, over and above the latitudinal gradient, ∆pCO2 is zonally asymmetric 

within each biome during summer (Figure 3a), when biological uptake of CO2 increases. Zonal integration 255 

of ∆pCO2 could thus dampen magnitudes of regional ∆pCO2. A regional approach is therefore needed to 

examine the regional characteristics of seasonal and interannual variability of ∆pCO2 and to understand 

its drivers.  

3.3 Regional ∆pCO2 variability: zonal and basin contrasts 

In Figure 4, ∆pCO2 is decomposed into nine domains by biome and basin, with the boundaries defined in 260 

Figure 1 (showing the SAZ and PFZ; air-sea CO2 fluxes displayed in Figure S3). The regional estimates 

are plotted as time series for ∆pCO2 (black lines). The blue and orange lines show the respective annual 

maxima (typically winter) and minima (typically summer). The projected summer minima (dashed blue 

lines) are calculated by subtracting the mean seasonal amplitude from the winter maxima (Figure 4). The 

projected summer minima are the expected summer ∆pCO2 under the assumption that summer ∆pCO2 is 265 

dependent on, but not restricted to, the baseline set by winter.   

 
Figure 4: Figures (a-f) show the ensemble mean of ∆pCO2 (black) plotted by biome (rows) and basin (columns). Biomes are defined 
by Fay and McKinley (2014a). The blue line shows the maximum for each year (winter outgassing) and the dashed blue line shows 
the same line less the average seasonal amplitude (𝒅Z𝒇𝒇\\\\\\\) – this is the expected amplitude. The orange line shows the minimum 270 
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∆pCO2 for each summer season. The shaded regions around the seasonal maxima and minima show the standard deviation of the 
three products. Eb is the average between-method error and ∆𝒑𝐂𝐎\\\\𝟐 is the average for the entire time series. Light grey shading in 
(a-f) shows the periods used in Figure 5 and Figure 6. 

As found by Landschützer et al. (2015), the estimates of ∆pCO2 (Figure 4) show that the Southern Ocean 

sink strengthens from 2002 to 2011 in all domains, referred to as the reinvigoration. This is preceded by 275 

a period of a net weakening sink (Figures 4b,d,e)  in the 1990s, referred to as the saturation period by Le 

Quéré et al. (2007). In other words, the ensemble shows the same trend found in past literature 

(Rödenbeck et al., 2015; Ritter et al., 2017), but as with these studies we also find that there is large 

uncertainty in the interannual variability of the ensemble estimate, as shown by the between-method error 

in Figure 4 (see Figure S3 for the spread of the product estimates, including the Jena – Mixed Layer 280 

Scheme by Rödenbeck et al., 2014). This disagreement between methods is likely driven by the sparse 

coverage of pCO2 measurements in the Southern Ocean, with empirical methods interpolating the sparse 

data differently (Rödenbeck et al., 2015; Ritter et al., 2017). We thus present our methods and results as 

a framework to assess the drivers of interannual variability of ∆pCO2.  

 285 

Key to understanding the mean interannual variability is that it is the net effect of the decoupled seasonal 

modes of variability for summer and winter. This is particularly evident in the PFZ (Figures 4d-f). Here, 

and in the other biomes, the net strengthening of the CO2 sink is mainly linked to a reduction of ∆pCO2 

in winter for the majority of the time series. This corresponds with the findings of Landschützer et al. 

(2016), who linked the reinvigoration to the decadal variability of the Southern Annular Mode (SAM) – 290 

the dominant mode of atmospheric variability in the Southern Hemisphere (Marshall, 2003). In contrast, 

summer ∆pCO2 variability is shorter (roughly 4 – 6 years), thus providing interannual modulation of 

longer time-scale winter variability. This is demonstrated well in the Indian sector of the PFZ, where a 

decrease in winter ∆pCO2 from 2002 to 2011 is offset by weakening of the summer sink from 2006 to 

2010 (Figure 4d). Similarly, in the Atlantic and Pacific sectors of the PFZ, decoupling occurs from ~2011 295 

to the end of 2014, with a rapid increase in the strength of the summer sink.  

 

The mean amplitude of the seasonal cycle of ∆pCO2 – the mean difference between the summer minima 

and the winter maxima – is perhaps a better way of understanding the strength of the seasonal drivers 

than the mean ∆pCO2. For example, the Atlantic sectors of the SAZ and PFZ (Figures 4c,f) have the 300 

strongest seasonal variability (14.11 and 25.83 µatm respectively). This contrasts with the relatively weak 

seasonal amplitude in the Indian sector of the Southern Ocean, which has mean amplitudes of 7.06 and 

13.64 µatm for the SAZ and PFZ respectively (Figures 4b,e). This contrast can also be seen by comparing 

the mean seasonal maps of ∆pCO2 in Figures 3a and 3c. In summer, strong uptake in the eastern Atlantic 

sector of the Southern Ocean is indicative of large biological drawdown of CO2 by phytoplankton 305 

(Thomalla et al., 2011). Conversely, relatively low primary production in the Indian sectors of the SAZ 

and PFZ result in a small seasonal amplitude (Thomalla et al., 2011). This large discrepancy in biological 
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primary production is related to the availability of iron, a micronutrient required for photosynthesis. The 

lack of large land masses, which are a source of iron, in the Indian sector of the Southern Ocean could be 

a contributing factor to the lack of biomass (Boyd and Ellwood, 2010; Thomalla et al., 2011).  310 

3.4 Framework: Seasonal deconstruction of interannual variability  

Figure 4 gives us insight into the magnitude of interannual ∆pCO2 variability as well as the character of 

these changes; i.e. decoupling of interannual winter and summer modes of variability. This alludes to the 

point that ∆pCO2 is responding to different adjustments of seasonal large-scale atmospheric forcing and/or 

responses of internal ocean dynamics in the Southern Ocean (Landschützer et al., 2015, 2016; DeVries et 315 

al., 2017).  

 

In order to capture the decoupled 4–6 year short-term variability observed in summer, the estimates are 

divided into four objectively selected periods (P1 to P4). The periods are each four years long with the 

exception of P1, which is five years long due to the fact that the duration of the time series is not divisible 320 

by four (with a total duration of 17 years). Given a longer time series, this analysis would benefit from 

testing different durations for each period, as well as varying the starting and end years.  

 

These four periods are too short for trend analyses (Fay and McKinley, 2014b), but the intention here is 

to identify periods that are short enough to resolve interannual changes of large-scale drivers of the 325 

winter and summer pCO2 that would otherwise be averaged out over longer periods. We then calculate 

the relative anomaly between each successive period rather than an anomaly of the mean state (e.g. P2 – 

P1). As a result, four periods give rise to three sub-decadal-scale transition anomalies for summer and 

winter: A (P2 – P1), B (P3 – P2) and C (P4 – P3). We do this separately for each method rather than 

using the ensemble mean (see S4 for calculations). The mean of the method anomalies for each 330 

transition is then taken. These anomalies are considered significant if the absolute estimate of the 

anomaly is larger than the standard deviation between the methods for each period. These calculations 

along with plots for the standard deviation between methods are shown in section 3.4.1.  

 

Note that although only summer and winter anomalies are discussed, it is recognised that autumn and 335 

spring could be equally mechanistically important. Winter anomalies of ∆pCO2, wind stress, SST and 

MLD are shown in Figure 6, while summer anomalies of ∆pCO2, wind stress, SST and Chl-a are shown 

in Figure 7. Chl-a is potentially a more important driver in summer than the generally shallow summer 

MLD (the omitted plots are shown in Figures S4 and S5).  
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3.4.1 Uncertainty of transition anomalies 340 

The transition anomalies are not calculated from the mean of the three products. Rather, we calculate 

the anomalies for each individual product with: 

𝑎cdLef = 𝑠ch (L) − 𝑠ch (LiO)		 (6)  

where s are the estimates for a particular product, n represents an individual product and p represents P1 

to P4. The result, 𝑎c(Lj) thus represents the anomaly for two periods for a particular product. We then 345 

calculate the average of the anomalies with: 

𝑎Le 	=
O
k
⋅ ∑ 𝑎cdLefk

cSO (7)  

where N is 3, the number of products. We then calculate the standard deviation of the three anomalies 

(𝑒Lj), which is analogous to the between-method error, with: 

𝑒Le = @O
k
⋅ ∑ (𝑎c(Le) − 𝑎c(Le)\\\\\\\)Fk

cSO (8)   350 

where the terms are consistent with those above. We use 𝑒Lj as an uncertainty threshold where 

anomalies are only considered significant if |𝑎Lj| > 𝑒Lj. These regions are masked in Figures 6a-c and 

7a-c. Figure 5 shows the winter (a-c) and summer (d-f) 𝑒Lj for each transition anomaly. 

 
Figure 5: Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for ∆pCO2 355 
in Figures 6(a-c) and 7(a-c) for winter and summer respectively. When the standard deviation exceeds the absolute value average 
anomaly, the values are masked, as shown in Figures 6 and 7. 
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3.5 Drivers of winter ∆pCO2 variability 

Figure 6 shows the three transition anomalies for the four periods shown in Figure 4. It is clear that 360 

there is large uncertainty around the ∆pCO2 anomalies in the Southern Ocean owing to the differences 

between the three empirical methods, caused by a paucity of in-situ measurements of ∆pCO2. However, 

there are still small regions that show anomalies with confidence. Figures 6d-l also show the Pearson’s 

correlation coefficients for each of the driver variables with ∆pCO2 for the regions that are above the 

uncertainty threshold.  365 

 

The correlations in Figure 6 show that MLD is a dominant predictor of pCO2 in winter (Figure 6j-l), 

with wind stress being a stronger predictor only in Transition B (6e). However, these correlations are all 

less than |0.3|, indicating that the relationship between ∆pCO2 and MLD is complex and non-linear. 

Moreover, spatial inconsistency in the relationship between pCO2 and the drivers reduce the 370 

correlations, which are applied for the entire domain (above the threshold). This is likely due to MLD 

being a metric that measures the complex interaction of heat, stratification and mixing processes 

(Abernathy et al., 2011) – mechanisms relating to SST and wind stress. We now discuss the results by 

transition.  

 375 

In Transition A (first column of Figure 6), MLD is the strongest driver. Deeper mixed layers in the 

Pacific and eastern Indian sectors of the Southern Ocean correspond with increased deepening, 

correlating with increased ∆pCO2. The reduction of ∆pCO2 along the boundary of the Atlantic and 

Indian sectors of the SAZ corresponds with increased SST. This agrees with the hypothesis put forward 

by Landschützer et al. (2015) that warmer SST in the Atlantic led to increased uptake of CO2. However, 380 

the same is not true for the western Indian sector of the PFZ, where cooling and deepening MLD results 

in a reduction of ∆pCO2.  

 

Increased uptake of ∆pCO2 across the boundary of the Atlantic and Indian sectors of the SAZ continues 

into Transition B (second column of Figure 6). This is again accompanied by an increase in SST (Figure 385 

6h). The reduction of ∆pCO2 extends to the Eastern Indian sector of the SAZ and Tasman Sea. This 

corresponds with weak shoaling of the MLD, weak warming and a reduction of wind stress (Figures 

6e,h,k). Conversely, in the eastern Pacific, cooling surface temperatures, weaker winds and shallower 

MLDs correspond with a reduction of ∆pCO2, again in agreement with Landschützer et al. (2015). The 

large reduction of ∆pCO2 in the Indian sector of the PFZ corresponds with an increase in temperature; 390 
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however, there is also an increase in the depth of the MLD – this interaction is mechanistically unlikely 

and may be an artefact of the sparse data in this region.  

 

In transition C, the reduction of ∆pCO2 in the Indian and western Pacific sector of the SAZ corresponds 

with warmer SST and shallower MLDs. Once again there is a region in the Indian sector of the PFZ that 395 
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experiences a potentially spurious reduction of ∆pCO2 corresponding with deeper MLDs. The 

anomalies in the rest of the domain are not significant.  

 
Figure 6: Transitions (relative anomalies) of winter ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed layer 
depth (j-l) for four periods. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and 400 
McKinley, 2014a) and basin boundaries. Regions with dots are where ∆pCO2 anomalies are not significant i.e: standard deviation 
of the anomalies between methods are greater than the absolute mean of method anomalies, as described in equations 6 to 8. 
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3.5.1 MLD driven interannual variability of pCO2 in winter 

Our results indicate that there is not one dominant driver of ∆pCO2 interannual transition anomalies in 

winter. While MLD is on average the stronger driver, its dominance on ∆pCO2 is only marginal over SST 405 

and wind stress (Figure 6). This marginal dominance over the two other drivers is likely due to MLD 

being a metric that integrates the complex interaction between wind-driven mixing and winter heat loss 

to the atmosphere, of which SST is a response (De Boyer Montégut et al., 2004; Sallée et al., 2010). 

Mechanistically, deeper MLDs would result in greater entrainment of DIC-rich deep waters, while 

shallower MLDs entrain less DIC-rich waters, thus reducing the DIC pool in winter resulting in 410 

potentially stronger ∆pCO2 uptake in the surface ocean (Lenton et al., 2013).  

 

An important point to note is that SST is negatively correlated with ∆pCO2 in Figures 6g-i. This is contrary 

to what is expected for solubility-driven changes of pCO2 (Takahashi et al., 1993). This indicates that 

SST – a response to underlying variability and trends in winter buoyancy and mixing – is not a driver of 415 

∆pCO2 changes in most regions of the Southern Ocean. There are some small sub-regions, where SST 

could drive the ∆pCO2 trend, such as in the east Pacific sector of the PFZ during Transition B (Figure 

6b,h) but they are spatially and temporally limited. Our results suggest that, in winter, a complex 

interaction of changing wind stress and buoyancy fluxes that influence MLD and entrainment may play 

a stronger role than thermodynamics in explaining the ∆pCO2 interannual transitions.  420 

 

Wind-stress anomalies (Figure 6d-f) do not correlate strongly with pCO2 anomalies, with the exception 

of Transition B, when it has the strongest correlation. We propose that this lack of coherence between the 

two variables may be a result of two compounding points. Firstly, wind stress is the only truly independent 

driver in the analysis, with SST and MLD both being used as proxies for ∆pCO2 in each of the products. 425 

Secondly, the wind stress shown in Figure 6d-f considers only wind strength, so it does not take into 

account potential meridional changes in atmospheric circulation. This is the primary hypothesis presented 

in Landschützer et al. (2015), suggesting that atmospheric circulation became more zonally asymmetric. 

This induced a southward shift of warmer waters over the Atlantic and Indian sectors, reducing the depth 

of the MLD. Conversely, in the eastern Pacific cold winds induced colder SST and thus an increase in 430 

solubility.  
 

Past studies have related the variability of Southern Ocean wind stress to the SAM, where the multi-

decadal increasing trend has been cited as a reason for the saturation in the 1990s (Marshall, 2003; Le 

Quéré et al., 2007; Lenton and Matear, 2007; Lovenduski et al., 2008). The SAM is often represented as 435 

a zonally integrating index (Marshall, 2003), but more recent studies have shown that the SAM, as the 

first empirical mode of atmospheric variability, is zonally asymmetric (Fogt et al., 2012). The zonal 

asymmetry of the SAM is thought to be linked with the El Niño – Southern Oscillation and is strongest 
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in winter, particularly over the Pacific sector of the Southern Ocean during a positive phase, in accord 

with the dipole nature of the Pacific–Indian winter wind-stress transition observed in Figures 6d,e (Barnes 440 

and Hartmann, 2010; Fogt et al., 2012). Fogt et al. (2012) noted that the SAM has become more zonally 

symmetric in summer since the 1980s, matching the characteristics of the anomalies of wind-stress 

transitions seen in Figure 6d-f and the hypothesis of Landschützer et al. (2015). 

 

In summary, our analysis of the drivers of ∆pCO2 is consistent with the atmospheric asymmetry (dipole) 445 

conceptual model associated with the SAM proposed by Landschützer et al. (2015). However, our results 

suggest that interannual ∆pCO2 trends are explained by DIC dynamics rather than by the thermodynamic 

response of pCO2. A key part of this emphasis on DIC is that our results indicate that ∆pCO2 and SST are 

not correlated in a way that supports a thermodynamic control of ∆pCO2. The reasons for these differences 

are not clear at this stage, but they could include differences in the temporal resolution of the two studies: 450 

the resolution of the seasonal extremes in this study (seasonal modes) vs annual mean in Landschützer et 

al. (2015).   

3.6 Anomalies of ∆pCO2 and its summer drivers  

Compared to the winter transitions, summer transitions (Figure 7) have larger areas where the anomalies 

between products are within the bounds of the uncertainty. This may be due to the larger magnitude of 455 

the anomalies in summer compared to winter (Figure 6). In summer we also see that Chl-a (Figures 7j-l) 

is likely the first-order driver with the highest correlation scores for transitions A and B.  

 

Transition A (P2 – P1 in Figure 7a) is marked by a decrease of CO2 in the SAZ (Tasman shelf region), 

coinciding with an increase in Chl-a. The Drake Passage region experiences a strong reduction of ∆pCO2 460 

in the PFZ, as found by Munro et al. (2015) and Landschützer et al. (2015). Unlike in the Tasman basin, 

this reduction of ∆pCO2 is not accompanied by a strong increase in Chl-a, but rather a reduction of wind 

stress and an increase in SST. This is contrary to the annually integrated analysis of Landschützer et al. 

(2015), who found that cooling drove a reduction of pCO2 in the eastern Pacific sector of the PFZ. This 

difference likely arises from the integration of seasons and a longer period (2002–2011) compared to the 465 

framework used in this study. In the Indian sector of the PFZ the products agree on a weak increase in 

∆pCO2 corresponding with a weak reduction of Chl-a.  

 

Transition B (P3 – P2 in Figure 7b) shows a large reduction of ∆pCO2 in the Atlantic sector of the PFZ 

and southern SAZ. The reduction coincides with an increase in Chl-a and SST in the same region, in 470 

agreement with Landschützer et al. (2015).  
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In transition C (P4 – P3 in Figure 7c) the reduction of the ∆pCO2 is widespread in the Indian and Pacific 

Oceans in both biomes, as the increase in Chl-a is similarly widespread; however, the increase in Chl-a 

in the Indian sector of the SAZ is not strong compared to other regions where ∆pCO2 and Chl-a variability 475 

correspond. Conversely, there is a reduction in Chl-a and concomitant increase in ∆pCO2 along the Polar 

front in the Atlantic sector, coinciding with the position of the Antarctic Circumpolar Current (ACC) – a 

region with high eddy kinetic energy (EKE) (Meredith, 2016).  

 

Based on these cases we suggest that ∆pCO2 is driven primarily by Chl-a in regions with high Chl-a 480 

concentrations. Note that we will not try to explain Chl-a variability, which is complex due to the 

multitude of factors influencing phytoplankton growth (Thomalla et al., 2011). We further suggest that in 

regions of low Chl-a, buoyancy forcing and mixing are higher-order drivers. As suggested for winter 

variability, these two mechanisms are a complex interaction of variables of which SST and wind stress 

are a part (Abernathy et al., 2011).  485 
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Figure 7: Relative anomalies of summer ∆pCO2 (a-c), wind stress (d-f), sea surface temperature (g-i) and mixed-layer depth (j-l) 
for four periods (as shown above each column). The thin black lines show the boundaries for each of the nine regions described by 
the biomes (Fay and McKinley, 2014a) and basin boundaries. Regions with dots are where ∆pCO2 anomalies are not significant 
i.e: standard deviation of the anomalies between methods are greater than the absolute mean of method anomalies, as described in 490 
equations 6 to 7. 

This then raises the importance of the magnitudes of the interannual variability of ∆pCO2 and its drivers. 

For example, the anomalies of ∆pCO2 and SST are larger in summer than in winter. Conversely, the wind-

stress anomalies are larger for winter than in summer. This is an important consideration for analyses that 
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aim to understand the driving mechanisms, where annual averaging would weight seasonally asymmetric 495 

responses of ∆pCO2 and its drivers unequally.  

3.6.1 Chlorophyll dominated interannual anomalies of pCO2 in summer 

Our finding that Chl-a is the dominant driver of interannual ∆pCO2 variability should not be surprising 

given that models and observations support this notion (Hoppema et al., 1999; Bakker et al., 2008; 

Mahadevan et al., 2011; Wang et al., 2012; Hauck et al., 2013; 2015; Shetye et al., 2015). However, our 500 

data show that the dominance of interannual Chl-a variability over ∆pCO2 is largely limited to regions 

where Chl-a is high, such as the Atlantic, the Agulhas retroflection and south of Australia and New 

Zealand (Figure 8).  

 

The spatial variability of high Chl-a regions in the Southern Ocean is complex due to the dynamics of 505 

light and iron limitation (Arrigo et al., 2008; Boyd and Ellwood, 2010; Thomalla et al., 2011; Tagliabue 

et al., 2014; 2017). This complexity is highlighted in Thomalla et al. (2011), where the Chl-a is 

characterized into regions of concentration and seasonal cycle reproducibility (Figure 8). The seasonal 

cycle reproducibility (SCR) is calculated as the correlation between the mean annual seasonal cycle and 

the observed chlorophyll time series. Here we use the approach of Thomalla et al. (2011), in Figure 8, as 510 

a conceptual framework to understand the interannual variability of ∆pCO2.  

3.6.2 High chlorophyll regions 

While regions of high SCR (dark green in Figure 8) do not correspond with the interannual variability of 

Chl-a (Figure 7j-l), the framework by Thomalla et al. (2011) does present a hypothesis by which the 

variability of Chl-a and its drivers can be interpreted. This is, that the variability of Chl-a in a region is a 515 

complex interaction of the response of the underlying physics (mixing vs buoyancy forcing, which 

modulate light via MLD and iron supply) to the interannual variability in the drivers (SST and wind 

stress). This complexity is exemplified by strong warming in the Atlantic during transition B, which 

results in both an increase and decrease in Chl-a, with inverse consequences for ∆pCO2. The effect is 

even stronger in transition C, where strong cooling in the Atlantic results in both a decrease and increase 520 

of Chl-a (Figure 7i,l). In both transition A and B, the respective increase and decrease of Chl-a occur 

roughly over the ACC, while the opposing effects during transitions A and B occur roughly to the north 

and south of the ACC region. These temperature changes may impact the stratification of the region, but 

complex interaction with the underlying physics results in variable changes in Chl-a. 



22 
 

 525 

  
Figure 8: Chl-a seasonal cycle reproducibility and iron-supply mechanisms in the Southern Ocean. Regions of chlorophyll biomass 
and seasonal cycle reproducibility from Thomalla et al. (2011) (using SeaWIFS data). Seasonality is calculated as the correlation 
between the mean annual seasonal cycle compared to the observed chlorophyll time series. A correlation threshold of 0.4 is applied 
to each time series to distinguish between regions of high and low seasonality; similarly, a threshold of 0.25 mg m-3 is used to 530 
distinguish between low or high chlorophyll waters. Black lines showing the fronts are calculated using altimetry thresholds from 
Swart et al. (2010). 

It is clear that, while there is a relationship between Chl-a and pCO2 as well as a relationship between 

wind stress and SST in summer, the relationship between wind forcing, Chl-a and pCO2 is not as strong 

as in the winter anomalies (Figure 6). It may be that enhanced summer buoyancy forcing resulting from 535 

summer warming and mixed layer eddies drives a more complex response to wind stress in the form of 

vertical velocities and mixing, which influence the iron supply and the depth of mixing (McGillicuddy, 

2016; Mahadevan et al., 2012).  

 

Mesoscale and submesoscale processes may have a part to play in these dynamic responses of Chl-a to 540 

changes in SST and wind stress (amongst other drivers). For example, eddy-driven slumping could act to 

shoal the mixed layer rapidly (Mahadevan et al., 2012; Swart et al., 2015b; du Plessis et al., 2017). This 

allows phytoplankton to remain within the euphotic zone and thus ensuring growth as long as iron is not 

limiting. Similarly, Nicholson et al. (2016) and Whitt et al. (2017) demonstrated that submesoscale 

processes could supply iron to the mixed layer by submesoscale mixing. Importantly, these mechanisms 545 

rely on a mixing transition layer that has sufficient iron to sustain growth – weak dissolved iron gradients 

in the Pacific and east Indian sectors of the Southern Ocean could explain the lack of phytoplankton in 

these regions (Tagliabue et al., 2014; Nicholson et al., 2016). Much of the spatial character of the 

transition anomalies occurs at mesoscale, which strengthens the view that these mesoscale and 

submesoscale processes may be key to explaining changes in Chl-a (Figure 7j-l).  550 
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3.6.3 Low chlorophyll regions 

Entrainment and stratification can explain much of the variability in the eastern Pacific and Indian sector 

of the PFZ (with the exception of the wake of the Kerguelen Plateau). For example, in the eastern Pacific 

in transition A (Figure 7a,d,g), strong warming and weaker winds have little impact on Chl-a, but a 

decrease in ∆pCO2 is observed. Conversely, cooling in the west Indian sector of the PFZ results in a weak 555 

increase in ∆pCO2 during the same transition. In both these cases, the effect of cooling or warming on 

∆pCO2 is negligible relative to the impact of entrainment or stratification respectively. The effect is 

reversed in the eastern Pacific during transition B, where strong cooling results in a weak reduction of 

∆pCO2 rather than the increase that would be expected from entrainment. This is the mechanism that 

Landschützer et al. (2015) ascribed to the reduction of ∆pCO2 in the Pacific, but the effect observed in 6b 560 

is weak. 

 

In summary, regions with high-biomass Chl-a integrate the complex interactions between SST, wind 

stress, MLD and submesoscale variability, resulting in large interannual pCO2 variability compared to 

low-biomass regions, where wind-driven entrainment and stratification are more likely drivers of ∆pCO2.  565 

4 Synthesis 

In this study, an ensemble mean of empirically estimated ∆pCO2 is used to investigate the trends and the 

drivers of these trends in the Southern Ocean. The estimated ∆pCO2 shows that the seasonal cycle is the 

dominant mode of variability imposed upon weaker interannual variability. The ensemble estimates are 

separated into domains defined by functional biomes and oceanic basins to account for the roughly basin-570 

scale zonal asymmetry observed in preliminary analyses of ∆pCO2 (Fay and McKinley, 2014a). A 

seasonal framework is applied to the domains, revealing that winter and summer variability is decoupled 

for each region. The increase and subsequent decrease of pCO2 (and air-sea CO2 fluxes) is in accordance 

with recent studies showing a saturation of the Southern Ocean CO2 sink in the 1990s, followed by the 

reinvigoration in the 2000s (Le Quéré et al., 2007; Landschützer et al., 2015).  575 

 

While there is agreement around the mean of the ensemble, there is a large amount of uncertainty around 

the estimates due to a lack of agreement between products on a regional level. This uncertainty likely 

stems from the way that each method interpolates sparse winter data (Rödenbeck et al., 2015; Gregor et 

al., 2017). We thus interpret only regions where the three empirical products are in agreement.  580 

 

We suggest that changes in the characteristics of the seasonal cycle of the drivers of pCO2 define the 

interannual variability of pCO2. In other words, the mechanisms that drive interannual modes of 

variability are embedded in the seasonal cycle. 
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 585 

Using this approach, we propose a refinement on the hypothesis put forward by Landschützer et al. (2015) 

by adding a seasonal constraint. The authors posit that ∆pCO2 variability is driven by changes in 

atmospheric circulation that in turn affect advection of water masses, thus impacting stratification. Our 

results also show that winter ∆pCO2 variability is best correlated with MLD, which indicates that 

entrainment of deep DIC-rich water masses is an important mechanism of ∆pCO2 variability (Lenton et 590 

al., 2009; 2013; Landschützer et al., 2015). The inverse relationship between SST and ∆pCO2 also 

suggests that in most cases ∆pCO2 is not thermodynamically controlled. Winter ∆pCO2 variability has a 

longer mode than summer variability, which we attribute to the decadal-mode variability of the Southern 

Annular Mode (Lovenduski et al., 2008; Fogt et al., 2012; Landschützer et al., 2016). This mechanism is 

likely dominant in winter due to its role in large seasonal net heat losses that drive convective overturning 595 

of the water column. 

 

We suggest that interannual summer variability of ∆pCO2 occurs from a baseline set by an interannual 

winter trend. Moreover, the shorter time-scale summer interannual variability of ∆pCO2 (roughly 4 – 6 

years) is driven primarily by Chl-a. Buoyancy forcing and mixing still influence ∆pCO2 in summer but 600 

are lower-order drivers. We propose that the interannual variability of the summer seasonal peak is linked 

to the complex interaction of mid-latitude storms with the strong mesoscale and submesoscale gradients 

in the Southern Ocean.    

 

Overall, we propose that although mechanisms linked to winter wind stress explain the decadal trends in 605 

the strengthening and weakening of CO2 uptake by the Southern Ocean, summer drivers may explain the 

shorter term interannual variability (Lovenduski et al., 2008; Landschützer et al., 2015). 

 

Lastly, it is important to note that this study can be improved by two factors. Firstly, increasing the length 

of the time series would allow for the identification of regular seasonal modes of variability. Moreover, 610 

the length of the anomaly periods could also then be adjusted to understand variability of the drivers 

better. Secondly, improving machine-learning estimates of pCO2 so that there is better regional agreement 

between products would decrease the area of insignificant variability. Rödenbeck et al. (2015) and Ritter 

et al. (2017) attribute the uncertainty to the individual methods’ interpolation of sparse data in the 

Southern Ocean. This issue is being addressed by the community with autonomous sampling platforms 615 

closing the “observation gap”. However, strategic deployment and sampling strategies will be critical to 

constrain and improve our understanding of CO2 in the non-stationary context (McNeil and Matear, 2013; 

Monteiro et al., 2015).  
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S Supplementary Materials  

S1 Wind speed and regional surface area 620 

The regional magnitude of integrated air-sea CO2 fluxes are in part determined by the wind speed and 

surface area of the specific region. Figure S1a shows the average wind speeds for summer and winter for 

each of the regions as defined in Figure 1. The wind product used is CCMP v2 (Atlas et al., 2011). Figure 

S1b shows the surface area of each of the regions. Note that the Indian sector of the PFZ has both the 

highest average wind speed and has the largest surface area. This explains the dominance of the region in 625 

the determination of interannual variability of FCO2 (Figure S3), even though ∆pCO2 (Figure 4) 

variability is relatively weak.   

 
Figure S1: (a) Average wind speeds for each of the biomes for summer (dark) and winter (light). The ocean basins are shown by the 
colours depicted in the key for (b), which shows the size of each region separated by biome and basin. 630 
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S2 Seasonal time series 

 
Figure S2: The regional breakdown of the seasonal averages for ∆pCO2. The seasonal mean for summer (solid) and 635 
winter (dashed) for each method is represented by the different coloured lines as shown in the key, where MLS is the 
Mixed Layer Scheme. The other methods are as in the main text. The grey fill is the ensemble mean ∆pCO2 ± Eb, where 
Eb is the between-method error calculated as in Equation 5.  
 

Figure S2 shows the seasonal time series for each region, maintaining separate seasonal averages for each 640 

method. We also include the Marginal Ice Zone plots, with all plots showing the average between-method 

error.  

The Mixed Layer Scheme (MLS) method by Rödenbeck et al. (2013) is also included. Note that the MLS 

is not a machine-learning method as it incorporates prior knowledge of the system. The method results in 

divergent estimates of ∆pCO2, particularly in the SAZ. The MLS fails to produce a seasonal cycle, with 645 

winter and summer ∆pCO2 having the same magnitude. Further work will have to be done to understand 

the cause for this difference. We do not include MLS in the main ensemble as we cannot explain this 

difference. The methods are in much better agreement in the PFZ. 

 

  650 
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S3 Air-Sea CO2 Fluxes 

Air-sea CO2 fluxes are calculated with: 

𝐹COF = 𝑘N ⋅ 𝐾u ⋅ (𝑝COFwxy	–	𝑝COFy{|)	 (S1) 

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the 

coefficients of Wanninkhof et al., 2009. Coefficients from Weiss (1974) are used to calculate K0 and 655 

∆pCO2 is estimated by the empirical models. Wind speed is calculated from the u and v vectors 

(√𝑢F + 𝑣F) of the Cross-Calibrated Multiplatform Product (CCMP) v2 (Atlas et al., 2011; Wentz et al., 

2015). Wind speed is one of the largest contributors to the uncertainty in flux estimates, so the choice of 

the wind product could have a large impact on flux estimates as well as interpretation of the drivers of 

CO2 (Takahashi et al., 2009). We use the ensemble mean ∆pCO2 from Figure 4 to calculate fluxes – note 660 

that the ensemble mean does not include the MLS shown in Figure S2.  

 
Figure S3: FCO2 (dark grey) plotted by biome (rows) and basin (columns). Biomes are defined by Fay and McKinley (2014a). The 
solid red line shows the maximum for each year (winter outgassing) and the dashed line shows the same line less the average 
difference between the minimum and maximum – this is the expected amplitude. Lighter grey shading in (a-i) shows periods used 665 
in Figure 5 and 6. Note that fluxes in the MIZ are calculated from a reduced surface area to maintain consistency between methods. 

Mean FCO2 is shown in Figure S3. Note that the apparent weak fluxes in the MIZ are due to the reduction 

of the surface area and hence flux to maintain equal weighting between machine-learning methods. The 

SAZ clearly dominates the annual uptake of CO2 in the Southern Ocean, but the interannual variability is 

dominated by the PFZ. An interesting point of the SAZ is that the seasonal cycle of wind speed (strong 670 

in winter, weak in summer) opposes that of ∆pCO2 sink (weak in winter, strong in summer). The net result 

is that, compared to ∆pCO2, the seasonal amplitude of FCO2 is reduced. The same effect shifts the mean 

flux in the PFZ, but does not affect the amplitude, where outgassing is amplified in winter and the sink is 
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weaker than if wind speed were constant. Lastly, Figures S3a,d show that the Indian sector of the Southern 

Ocean dominate both uptake (SAZ) and the interannual variability (PFZ).  675 

S4 Additional driver variables 

Here we show additional variables that accompany Figures 6 and 7. Figure S4 shows winter Chl-a, u- 

and v-components of wind, while Figure S5 shows summer  MLD, u- and v-components of wind. These 

variables are not included in the main analyses as they do not contribute significant information to the 

proxy variables already present (wind stress, SST and MLD/Chl-a). It is interesting to note that the u- 680 

and v- components of wind speed highlight the zonally asymmetric dipole during winter (Figures 

S4d,e,g,h) and the annular dipole during summer (Figures S5d,e).  

 

Figure S4: Relative anomalies of winter Chl-a (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as shown above each 
column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and McKinley, 2014a) 685 
and basin boundaries. 
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Figure S5: Relative anomalies of summer mixed layer depth (a-c), u- (d-f), and v-components (g-i) of wind for four periods (as 
shown above each column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay 
and McKinley, 2014a) and basin boundaries.  690 
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