
1 
 

We gratefully thank Associate Editor for their time in reading our manuscript. Below we have a 
full detailed response to each comment posed by Associate Editor, Referee #1, Referee #2 and 
our revised manuscript. We hope that our manuscript is clear, concise and well representative of 
our study.  
 5 
Associate Editor Decision: Reconsider after major revisions (02 Jan 2018) by Katja Fennel 
Comments to the Author: 
Dear Authors, 
 
Please upload your revised manuscript and responses to the reviewer comments according to the 10 
instructions you will be provided by e-mail. In addition to the responses you have already posted 
in the discussion forum, I would ask that you explicitly address the following comment by 
Reviewer #2:  
"My criticism of the paper is that the multi-environmental model is presented very much at face 
value. The assumptions and construction seem very logical but the choice and constraint of the 15 
parameters is by and large opaque. In particular the relationship between the storage component 
of the multi-environmental model and the Galbraith and Martiny parameterization seems 
interesting and important but is not really discussed. How important is the storage term in 
controlling the overall response of the multi-environmental model? It is not at all clear from the 
manuscript. I feel that some clarification and discussion along these lines is important for the 20 
reader." 
 
Best regards, Katja Fennel 
 
OUR RESPONSE 25 
>>> In order to address this commentary from Reviewer #2, we have added a new figure (Fig.2) 
and expanded our multi-environmental model description. This had been down throughout the 
2.1.4 Multi-Environmental Model section within the manuscript (below the Referee #2 here in 
this document).  
_______ 30 
We gratefully thank Referee #1 for their time, constructive comments, and suggestions to our 
manuscript. Below we have a detailed response to each comment posed by Referee #1. We have 
amended the manuscript in hopes that it will be much improved and our study presented clearer.  
 
Anonymous Referee #1 35 
Received and published: 7 November 2017 
 
Variability in marine phytoplankton stoichiometry can lead to differences in carbon export to the 
deep ocean. This manuscript expands on previous models (mainly Galbraith and Martiny, 2015 
and Yvon-Durocher et al., 2015) to further our understanding of how various environmental 40 
factors lead to changes in phytoplankton stoichiometry. The authors show how incorporating 
factors, such as temperature, light, and phosphorus concentrations, are able to model variations 
across the global ocean that would otherwise be lost in more mainstream models using fixed C:P 
ratios. The manuscript overall nicely lays out the difference modeling approaches taken and how 
they ultimately change the effect on carbon export in the global ocean. I want to point out that I 45 
am not a modeler and therefore cannot asses the math presented to its full extend, but I am a 
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biogeochemist and can provide a critique on the science presented in this manuscript. I believe 
this manuscript should be published with the revisions I have outlined below. 
 

1) My first issue with the manuscript in general is the lack of nitrogen. The ocean overall is 50 
nitrogen limited and it is a bit worrisome that it is never mentioned. Why was nitrogen 
left out? There must be a reason, and including a sentence or two to explain why it has 
been left out would be sufficient without having to incorporate it into the models. 

 
OUR RESPONSE 55 
>>> This is a very important point and the reviewer comments make it clear that the 
justification of using P as a representative of nutrient availability needs to be clarified in our 
manuscript. The underlying reason for picking P rather than N is linked to ideas outlined by 
Tyrrell, 1999. On long time-scales, P is commonly considered the ultimate limiting nutrient 
whereas N is only limiting productivity and export on short time-scales. On long time-scales, 60 
nitrogen fixation/denitrification will presumably adjust the N inventory. Our modeling is 
focused on long term steady-state outcomes and we would like to avoid issues associated 
with modeling the N cycle (like getting N-fixation and denitrification rates correct). Thus, we 
chose to use P as a representative for nutrient availability. However, we do recognize that the 
reality may be more complex and hope to add an explicit nitrogen (and Fe) cycle in the 65 
future. 
  
We have amended the manuscript to address this concern: “Phosphorus is used to represent 
the role of nutrient availability in controlling stoichiometry and C export. We chose this over 
N to avoid having to include a parameter rich N cycle. Furthermore, P rather than N is 70 
commonly regarded as the ultimate limiting nutrient (Tyrrell, 1999) and thus P availability 
represents the long-term steady-state biogeochemical equilibrium.” 
 
2) My second issue is the inclusion of iron and iron deposition. It is mentioned several times 

throughout the manuscript and honestly seems to be thrown in haphazardly. Even calling 75 
the one region the iron-limited upwelling zone does not really make sense. I do not 
disagree that these regions are distinct from the subtropical gyres, but there needs to be 
another way to separate them. The simplest thing to do would be to remove all talk of 
iron and iron deposition as it does not add anything to the manuscript. If you choose 
though to leave it in, there needs to be more discussion and also a few references as there 80 
are currently none. I have listed below each mention of iron and have provided some 
input should you choose to include it. 

 
OUR RESPONSE 
>>>We agree with the reviewer on this point and realize that the references to Fe limitation 85 
are confusing. Thus, we have removed the labeling of iron-limited regions in the manuscript. 
Now, we only introduce the concept of iron limitation in the discussion as a factor 
contributing to setting surface macronutrient concentrations in tropical ecosystems.  
 
3) My third issue is how phospholipids have been defined and treated within the model. The 90 

decision to functionally treat phospholipids with the storage pool needs to be justified or 
expanded upon as it is currently not clear. As the authors state, phospholipids are 
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localized within the cellular membrane (defined in the model as a functional pool) and 
not as energy storage molecules as suggested in the text. Lipids associated with energy 
storage, localized within intracellular lipid droplets, are generally non-phosphorus, highly 95 
reduced, and non-polar (see Levitan et al 2014 “Remodeling of intermediate metabolism 
in the diatom Phaeodactylum tricornutum under nitrogen stress”). This raises the 
question of how the authors have defined the storage pool, is it defined as utilized by 
organisms for energy storage or is it only in the sense that “this is a pool where some 
phosphorus is stored within the cell?”  100 

 
OUR RESPONSE 
>>> We agree that this can be confusing. Due to the similarity in behavior of P-lipids and P-
storage (no other types of storage molecules like lipids or carbohydrates are considered here), 
they were treated as the same in the model to save parameters. To address this issue, we have 105 
attempted to clarify this issue in the manuscript.  
 
The manuscript now reads as follows: “Phytoplankton can substitute 
sulfoquinovosdiaglycerol (SQDG) for phospholipids in their cell membranes under low P 
conditions (Van Mooy et al., 2009). Similarly, P storage molecules are also regulated by P 110 
availability. Thus, we here assume that phospholipids and P-storage exhibit the same 
behavior and thus model-wise treated as one pool (Van Mooy et al., 2009).” 

 
4) L34: First mention of iron-limited tropical upwelling region. Again, I would honestly 

remove “iron-limited” and just call the region the tropical upwelling region. These 115 
regions become macronutrient limited as well once you leave the immediate upwelling 
zone so its deceiving to just focus on iron. It is also known that the Southern Ocean is 
iron limited, so, again, it is deceiving to focus on iron in the upwelling regions when 
there are other regions that are iron limited. 

 120 
OUR RESPONSE 
>>>As stated in #2, we agree with this point and have changed the description of the tropical 
box as suggested.  
 
5) L46: add “ppm” after ∼46 125 
 
OUR RESPONSE 
>>>We changed this in the document. 
 
6) L70: add “et al.” after Durocher 130 
 
OUR RESPONSE 
>>>We changed this in the document.  

 
7) L76-85: Remove iron-stressed and iron-limited. The sentence “Iron deposition in the 135 

tropical upwelling. . .” is not correct. There is actually very little iron deposition to the 
tropics, the North African dust plume deposits iron to the tropical Atlantic but that is the 
one example (see Jickells et al 2005 “Global Iron Connections Between Desert Dust, 
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Ocean Biogeochemistry, and Climate”). Iron is upwelled along the coasts in these areas 
along with macronutrients, but it is incorrect to call that iron deposition. 140 

 
OUR RESPONSE 
>>>We have removed iron-stressed and iron-limited from this section. Iron limitation will 
now only be referenced in the discussion.  
 145 
Within our paper we have added the following sentence to address this comment, “Here we 
will briefly discussion how iron limitation could play a significant role on phosphorus 
concentrations. The biogeochemical functioning of tropical regions are commonly influenced 
by iron availability in such a way that macronutrient levels cannot be fully drawn down by 
phytoplankton (Coale et al., 1996; Moore, 2004; Raven et al., 1999). The degree of nutrient 150 
drawdown has a strong impact on predicted (and observed) C:P. This environmental control 
on C:P could lead to highly non-linear controls on pCO2,atm whereby increased export in the 
tropics leads to increasing pCO2,atm. This relationship would differ in the subtropics, where 
iron is thought to stimulate nitrogen levels through nitrogen fixation, an iron exhaustive 
metabolic process (Wu et al., 2000). Iron’s potential control on nitrogen fixation could 155 
promote higher carbon fixation and further exported stoichiometric ratios in the subtropical 
regions leading to increasing pCO2,atm (Wu et al., 2000). Thus, iron availability may play a 
complex role depending on whether there is an increased delivery in upwelling zones 
(leading to a potential declining global C export) or in the subtropical gyres (leading to a 
potential increase in global C export).” 160 
 
8) L111-115: Questions 1 and 2 seem redundant, please remove question 1 or give more 

detail if it is in fact different from question 2. 
 
OUR RESPONSE 165 
>>>We recognize the confusion seen between the two research questions. The first is to 
determine the influence of cellular allocation strategies based on different environmental 
conditions (nutrients, temperature, and multi-environmental) on stoichiometric ratios. The 
second is to determine the influence of changing environmental conditions such as 
phosphorus concentrations and temperature on each stoichiometric model. In order to address 170 
this confusion, we have clarified the first question to include cellular allocation strategies. 
 
Within our paper we have changed the research questions to read as follows: “We will 
explicitly address the following research questions: (1) How does environmental variability 
influence marine phytoplankton cellular allocation strategies and in turn the elemental 175 
stoichiometric ratio? (2) What are the effects of changing environmental conditions on 
stoichiometric ratios, carbon export, and pCO2,atm?, and (3) What is the influence of the 
environmental conditions among the three major surface biomes on carbon export and 
pCO2,atm?” 
 180 
9) L135: Where in the water column are you taking the phosphorus concentration? 
 
OUR RESPONSE 
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>>> Phosphorus concentrations are prescribed within each box and then the model is run to 
steady state. The tropical and subtropical surface boxes extend down to a depth of 100 m, the 185 
high latitude surface box extends down to1000 m, the thermocline box extends from a depth 
of 100 m down to a depth of 1000 m, and the deep box extends down to a depth of 4000 m. 
For the use of phosphorus within our multi-environmental stoichiometric model we use the 
concentration in the respective surface box.  
 190 
10) L207: add “et al.” after Daines  
 
OUR RESPONSE 
>>>We changed this in the document.  
 195 
11) L212: add “et al.” after Daines 
 
OUR RESPONSE 
>>>We changed this in the document.  
 200 
12) L213: Expanding on the phospholipid justification, can you explain more why you 

choose a zero contribution for phospholipids? Although non-P substitutes can reduce the 
phosphorus incorporated into P-lipids, observations suggest non-zero quantities remain. 
For example, 1.3 +/- 0.6% P uptake in the P-limited Sargasso are incorporated into 
phospholipids (Van Mooy et al 2009 – mentioned in next correction) and phospholipids 205 
make up approximately 5% of particulate organic P in the P-limited eastern 
Mediterranean (Popendorf et al 2011 “Gradients in intact polar diacylglycerolipids across 
the Mediterranean Sea are related to phosphate availability”). Might it be more 
appropriate to have two distinct P-lipid/total cellular P values for high and low 
phosphorus regions? 210 

 
OUR RESPONSE>>>We do in no way intend to imply that cells do not include P-lipids. 
Please see #3 for a detailed response to this point. 

 
13) L215-216: For phospholipid substitution, a more appropriate reference would be Van 215 

Mooy et al 2009 “Phytoplankton in the ocean use non-phosphorus lipids in response to 
phosphorus scarcity” instead of Van Mooy et al 2006. 

 
OUR RESPONSE 
>>>We have added the Van Mooy et al. 2009 reference. 220 
 
14) L228: add “et al.” after Daines 
 
OUR RESPONSE 
>>>We changed this in the document.  225 
 
15) L282: . . .that underlies the subtropical gyres and equatorial upwelling regions (labeled 

M), and deep waters. . . 
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OUR RESPONSE 230 
>>>We changed this is in the document.  
 
16) L314: “Iron limitation is implicitly simulated through its control on the tropical [P]. . .” – 

how does iron control phosphorus concentrations? This is not clear in the manuscript and 
I personally have not come across any such research stating such. Again, if you are going 235 
to keep iron in the manuscript please provide references of where you have gotten the 
information and expand on the explanation of how you can make this justification. 

 
OUR RESPONSE 
>>>Iron was removed from the manuscript and only discussed briefly in the discussion 240 
section.  
 
17) Table 2: Please switch the columns so that Range of fhd (sv) is first and references is 

second (will be consistent with Table 1). 
 245 
OUR RESPONSE 
>>>We have switched the column to be consistent with Table 1. 
 
18) L350: “This set of experimental runs was intended to capture the effects of changing 

levels of iron deposition. . .” – Again, talking about iron deposition in these tropical up- 250 
welling regions does not make sense and as you have not provided references I would 
just remove it all together. This experiment wanted to test the sensitivity of pCO2 to 
nutrient availability, I believe that is a good enough reason and there is no need to 
mention iron limitation. 

 255 
OUR RESPONSE 
>>>We agree with this reviewer that and have removed this reference to Fe limitation. 
 
19) L377: Change variables to variable  
 260 
OUR RESPONSE 
>>>We changed this in the document.  

 
20) L379: Remove “iron stressed” 
 265 
OUR RESPONSE 
>>>We changed this in the document.  
 
21) Figures 6 and 10: I really like these figures and think you could include more in the 

discussion about the implications of how global temperatures will affect export. It is a 270 
nice way to tie your work with large scale impacts on biogeochemical cycles and reiterate 
the importance of the study. 

 
OUR RESPONSE 
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>>>We completely agree this with observations. We hope to expand on the potential 275 
implications of global temperatures effect on export based on findings.  
 
22) L477: add “the” before data 
 
OUR RESPONSE 280 
>>>We changed this in the document.  
 
23) L589: remove iron-limited 
 
OUR RESPONSE 285 
>>>We changed this in the document.  
 
24) L596: remove “iron deposition or” 
 
OUR RESPONSE 290 
>>>We changed this in the document.  
 
25) L600: remove sentence “This observation suggests that pCO2 may have a complex link: : 

:”. You honestly have not shown anything to do with iron delivery and its link to pCO2, 
there is nothing included in the model that I saw and again have provided zero references 295 
about iron deposition 

 
OUR RESPONSE 
>>>We agree with the reviewer, it has been removed from the document. Instead, we linked 
it to macronutrient availability. 300 
 
26) L650: remove “thus” 
 
OUR RESPONSE 
>>>We changed this in the document.  305 
 
27) L674: remove “which might be influenced by increased atmospheric iron deposition,” 
 
OUR RESPONSE 
>>>We changed this in the document.  310 
 
28) L680: change separating to separate 
 
OUR RESPONSE 
>>>We changed this in the document.  315 
 
29) References: There are a few references that are not mentioned in the manuscript. A 

couple are about iron cycling and I am curious if and where they were originally included 
and also possibly had more of an explanation associated with them of why you link iron 
to phosphorus? Cunningham and John 2017 Moore 2004 Raven and Falkowski 1999 320 
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Also, please move Van Bogelen and Neidhardt 1990 and Van Mooy et al 2008 references 
to after the Toseland et al 2013 reference 

 
OUR RESPONSE 
>>>We apologize for the missing use of these references. This has been fixed in the 325 
manuscript.  

_______ 
We gratefully thank Referee #2 for their time, constructive comments, and suggestions to our 
manuscript. Below we have a detailed response to each comment posed by Referee #2. We have 
amended the manuscript in hopes that it will be much improved and our study presented clearer.  330 
 
Anonymous Referee #2 
Received and published: 1 December 2017 

 
Using a "classical" ocean carbon cycle box model and parameterizations of flexible elemental 335 
stoichiometry in surface ocean particulate, the authors examine the role of elemental composition 
in mediating the response of atmospheric CO2 to ocean temperature change. There is a 
significantly different sensitivity when the particulate C:P ratio is represented by a "multi-
environmental" (Ecological Stoichiometry and temperature dependent) framework compared to a 
fixed, Redfieldian particulate composition. Most notably, compensation between temperature 340 
sensitivity of solubility and biological pumps reduces the sensitivity to subtropical temperature 
change as well as reversing and enhancing the response to tropical perturbations. Variable 
elemental composition and phosphorus storage modify the sensitivity of atmospheric pCO2 to 
the efficiency of phosphate utilization in subtropics and tropics. The key message for is that 
variable elemental ratios have non-negligible impacts on the ocean’s control of atmospheric CO2 345 
and that the temperature sensitivity of solubility and stoichiometrically-mediated biological 
pumps have some interesting regional dependences. 
 
I enjoyed reading this paper. I found it stimulating and thought provoking. There is a lot going 
on. The authors combine classical carbon cycle box model with several parameterizations of 350 
elemental stoichiometry of the sinking particulate (and/or primary producers). The authors 
connect cellular scale physiology and global carbon cycle and have used and developed an 
appropriate framework with which to do so. 
 
My criticism of the paper is that the multi-environmental model is presented very much at face 355 
value. The assumptions and construction seem very logical but the choice and constraint of the 
parameters is by and large opaque. In particular the relationship between the storage component 
of the multi-environmental model and the Galbraith and Martiny parameterization seems 
interesting and important but is not really discussed. How important is the storage term in 
controlling the overall response of the multi-environmental model? It is not at all clear from the 360 
manuscript. I feel that some clarification and discussion along these lines is important for the 
reader. 
 
I found the manuscript very interesting and thought provoking. I had a number of questions, 
comments and need clarification on certain points which I will detail here. Some are more 365 
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important than others. While my recommendation is major revision, it is clarification that I 
would like to see, not changes to what has been done. 
 

30) The Sarmiento and Toggweiler and contemporary carbon cycle models focused a lot on 
the sensitivity of atmospheric pCO2 to "high latitude" changes. This isn’t discussed here - 370 
perhaps there wasn’t any as configured? Some comment would be useful and interesting 
in this regard. 

 
OUR RESPONSE 
>>> In this manuscript, we are focusing our efforts on the potential impacts of the low 375 
latitudes. Sarmiento and Toggweiler both found that high latitudes have a big impact on 
atmospheric pCO2. In no way do we disagree with this seminal work, we simply are trying to 
bring attention to the importance of low latitude processes as an additional mechanism(s) to 
consider when predicted biogeochemical feedbacks. We take their original findings into 
consideration when creating the model. In the box model, fhd, a bidirectional mixing term 380 
that ventilates the deep box directly through the high-latitude surface box, has a large impact 
on the magnitude of atmospheric pCO2. We prescribed the baseline value to be 45.6 Sv in 
our model but when we increase it to 108 Sv, the change in pCO2 is ~105 ppm for C:P at 
Redfield proportions. Thus, high-latitude processes clearly have a major impact on ocean and 
global biogeochemistry.  385 
 
To address this comment in the manuscript, we have added the following: “Although the 
focus of this study is to determine the impact of low latitude biogeochemistry on pCO2,atm,  
we point out that at Redfield stoichiometry, pCO2,atm increases by 100 ppm when fhd is 
increased to 108 Sv from its default value 45.6 Sv.” 390 

 
31) The stoichiometry of sinking particulate and of primary producers is certainly connected 

but not necessarily the same. The multi-environmental model is founded on primary 
producer physiology. Perhaps this potential difference should be flagged? 

 395 
OUR RESPONSE 
>>>We acknowledge that sinking particulate stoichiometry and primary producer 
stoichiometry can be different in certain regions but overall, it has been found to be 
reasonably linked (Teng et al. 2014). Thus, we find that this assumption is reasonable to a 
first order. 400 
 

Within our paper we have added the following statement, “For certain values of the 
parameters, the model produced excessive nutrient trapping in the thermocline. In order to 
dampen the nutrient trapping, we tuned the remineralization depth.  Assuming that 25% of 
the total export is respired in the thermocline with the remaining 75% exported into the deep 405 
ocean, produced a better match between the modeled and observed [P] in the thermocline 
box. Total export is made from both the stoichiometry of sinking particulate and of primary 
producers, based on Teng et al. (2014) this is a reasonable first order assumption.” 

 
32) I would have been interested to see a Droop-style model in the mix as its a relatively 410 

common tool - but there is more than enough going on here anyway. 
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OUR RESPONSE 
>>>We believe that the Galbraith and Martiny (2015) model (nutrient-only model in our 
study) is qualitatively similar to the Droop model. Thus, we expect the outcome to be very 415 
similar (i.e., a direct dependence of C:P on P availability). 

 
33) I very much like the spirit of the multi-environmental model. (Though I find the name a 

little odd). It accounts for the role of cell size in mediating nutrient affinity and cell 
composition (contribution of cell wall material). It was not made clear how sensitive the 420 
final parameterization or the outcomes of the box model are to the assumed cell size. Nor 
could I find any information about the cell size assumed (or modeled?) in the simulations. 

 
OUR RESPONSE 
>>>We do not assume that there is a single size characterizing all phytoplankton cells in our 425 
model. Instead, cell size is one of the key elements of cell strategy that we model. Smaller 
cells have greater specific nutrient uptake rates, but their cell wall and membrane occupies a 
greater fraction of their biomass than larger cells, and thus they have less space (specific to 
biomass) for investments in either photosynthesis or biosynthesis.  
 430 
Figure 4 and 5 (now Figure 5 and 6) are meant to illustrate the predictions that our model 
makes in different environmental conditions. In the original manuscript, these figures showed 
model predictions for C:P ratios, biosynthesis investment, and photosynthesis investments. 
However, in each of these figures, the predicted cell radius is also varying. In order to make 
the predictions of our model clearer, we have augmented each of Figure 5 and 6 with an 435 
additional plot, showing how cell radius varies with environmental conditions.  
 
Our model predicts a strong relationship between nutrient concentrations and cell size. In 
oligotrophic conditions the model predicts a radius under 1 μm. When resources are abundant 
the model predicts much larger cells. Our model also predicts a weak, but non-zero 440 
dependence of both irradiance and temperature on cell size. Higher irradiances lead to 
smaller cells (due to a lower requirement for photosynthetic machinery), and there is a non-
monotonic, concave relationship between temperature and cell size, which is due to a subtle 
interaction between biosynthesis efficiency (which varies greatly with T) and size dependent 
uptake rates. 445 
 
34) The photosynthesis parameterization and allocation scheme is very reminiscent of 

Geider’s models in spirit and mathematical form. What is the relationship? 
 
OUR RESPONSE 450 
>>>Our model is very closely related to the multi-compartment photosynthesis model 
presented in Talmy et al. 2013 (we incorrectly cited Talmy 2014 in the model description; 
this has been changed to correctly cite this paper). Geider is a co-author of this paper and 
indeed the modeling framework presented there is very much consistent with the 
photosynthetic models he has devised throughout his career. We utilized the functional 455 
responses which they derived in that paper to represent the allocation of photosynthetic 
machinery to either light harvesting or carbon fixation. Their model included other 
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compartments (photoprotection and biosynthesis) which were suited to the particular 
dynamic light environment that they were interested in studying. We use our own 
parametrization for biosynthesis. Talmy et al. 2013 found that the photoprotection allocation 460 
was not a large or greatly changing component of their allocations. We have therefore not 
included it would complicate our model with little change in our qualitative results.  
 
On the other hand, the decomposition of photosynthesis into light harvesting and carbon 
fixation components is critical, and makes our model predictions agree much better with 465 
experiments studying the variations of C:P or N:P ratios with irradiance. Models that do not 
have this decomposition predict too large of a decrease in cellular allocations to 
photosynthesis at high-light levels. In a two compartment model, increases in allocations to 
carbon fixation cause the overall allocation to light harvesting to have a more mild decrease. 
The two-compartment treatment also seems more physiologically realistic than a 1-470 
compartment, which only models photosynthetic pigments. Thus we used the functional 
forms and parameters that were derived (experimentally) in Talmy et al. 2013 for carbon-
fixation and light-harvesting. We have added a small amount of text to better clarify the 
relationship. 

 475 
35) The statement at line 235 that the "unique maximum of the growth rate occurs for the set 

of parameters that lead to co-limitation by nutrients, photosynthesis and biosynthesis" is 
very interesting and intriguing. Is that an emergent property? Is it obvious that it should 
be this way? I would have liked to hear more about this. 

 480 
OUR RESPONSE 
>>>It is commonly the case for mathematical models like ours that model the tradeoffs 
between different allocations of biomass to different physiological functions to have a unique 
solution with a maximum growth rate. The reason is that if one increases the investment a 
cell makes in some pool, this will decrease the investments in other pools. Thus, the only 485 
way for a cell to increase the photosynthetic rate is to decrease either biosynthesis or nutrient 
uptake rates, and vice versa. In such cases we generally find a unique solution at which the 
three rates, μPhoto, μE, and phosphorus are the same. This might be obvious for very simple 
models, or for people who primarily work using these models. Indeed, the easiest way to see 
what is going on is to imagine a simpler model with a similar style. For example, if we 490 
modeled a cell with fixed radius which is limited by either light or by biosynthesis, then the 
cell growth rate would be min(μPhoto, μE). If we start with the biosynthesis allocation at 0, 
the growth rate of the cell will be μE = 0, but μPhoto will be high because of all of the 
photosynthesis proteins. As E increases, μE increases, and the cell grows faster. At this time, 
μPhoto is going down, but this doesn’t affect mu. At some value of E, μE = μPhoto (since if 495 
E = 1, μPhoto = 0). This point will be the optimal strategy, since further increases in E will 
cause a switch to limitation by μPhoto, which decreases with increasing E. 
 
We have actually been able to convert the intuitive picture described above into a 
mathematical proof. Since it does not require much additional space to include it, we have 500 
added it to the paper, along with a figure indicating graphically the idea behind the proof. 
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36) Phosphorus storage seems to be very important. Equation (13) controls a residual storage 
pool that constrains the parameterized stoichiometry to match the observed relationship 
between phosphate and particulate stoichiometry, as I understand it. Thus it strongly 505 
mirrors the Galbraith and Martiny model of equation (1). For me, some key questions 
concern this aspect of the model: How significant in the overall control of model 
stoichiometry is this component? If it dominates, then I could view the multi- 
environmental model in some way as a combination of the Galbraith and Martiny model 
with temperature sensitivity. Or does the more mechanistic and detailed physiology have 510 
a significant role? Either way, I think the mechanistic model is valuable and interesting 
but I would like to understand how much the results are driven by the storage of 
phosphorus. Its important for a number of reasons and I feel that this should be clearly 
discussed. 

 515 
OUR RESPONSE 
>>>The impact of the residual pool on the overall size of the P pool is heavily dependent on 
environmental conditions, varying from a minimum of close to 0% to a maximum of just 
under 50%, for the combinations of parameter values used in all of our numerical 
experiments. Over most of the parameter range considered here, the contribution of the 520 
residual pool is much more modest, 10-20%. High values occur when phosphorus is 
available and the temperature is high. In these conditions, ribosomal contributions are 
decreased, but the residual contribution is high. In cold water, high P ecosystems, the residual 
contribution is approximately 25%, and in oligotrophic ecosystems it is close to 0.  
 525 
Thus, we view the mechanistic/physiological part of the model as being more significant, but 
it is important to acknowledge that we don’t believe that this mechanistic model can on its 
own explain all of the observations of C:P in the ocean. In particular, it is not possible for the 
purely mechanistic model to predict the extremely low C:P ratios observed in some ocean 
regions. This is because the C:P ratio of the biosynthesis apparatus sets a lower limit. Even if 530 
we assume that proteins made an even smaller contribution to biosynthesis (which would 
cause biosynthesis to have a lower C:P), it would still be impossible to match the most 
extreme observations. If the C:P of the biosynthesis pool was variable or lower, then the 
contribution of residual pool would be somewhat smaller, but still necessary. (Better 
understanding the balance between ribosomes and non-photosynthetic proteins is likely a 535 
good direction for future research).  
 
In order to make the importance of storage, we have added an additional plot reveals the 
relative contribution of the storage pool to the total P pool as a function of environmental 
conditions, with a short discussion. 540 

 
37) A small thing, but I had to stop and think about equation (1) because [P]o has different 

dimensions than [P]: the former is a ratio and the latter a concentration. I think it would 
be much clearer and more appropriate to denote [P]o as in (13), with a symbol in accord 
with other variables that are ratios. 545 

 
OUR RESPONSE 



13 
 

>>>Thank you for noticing this, we have changed the notation so that [P]0 is now (P:C) 0, i.e. 
the P:C ratio predicted by linear regression at zero P concentration. 

 550 
38) The box model formulation makes sense; the inclusion of the thermocline reservoir is 

important for the sensitivity to changes in the subtropical surface. Some small details: 
how is the carbonate system solved? Is alkalinity fixed or is there an implicit carbonate 
pump? 

 555 
OUR RESPONSE 
>>>Thank you for bringing this to our attention. The nonlinear carbonate system equations 
are solved using Matlab’s fsolve function.  We calculated the solubility constants using 
biome specific salinity and temperature. The solubility constant then is used to break up total 
carbon into pCO2, bicarbonate and carbonate ions. Total carbon is quantified using the 560 
breakdown of carbon ions (pCO2, bicarbonate and carbonate) and alkalinity concentration. 
Total carbon and its breakdowns (which we keep track of at each time step) are transported 
laterally to each box through our thermohaline circulation. We have added more detail to our 
box model design description, to make sure we are clear on how this model is created.  
 565 

Within our paper we have added these lines to address this comment: “To quantify the 
breakdown of carbon into these components, we model the solubility pump, using 
temperature and salinity to determine the partitioning of inorganic carbon among total carbon 
within a box. The global mean alkalinity is prescribed according to the observed mean ocean 
values but is also subject to transport (Sarmiento and Toggweiler, 1984). Our box model 570 
simulates alkalinity and total inorganic carbon, which are conserved tracers from which the 
speciation of inorganic carbon in sea-water can be calculated. Biome specific salinity and 
temperature are used to prescribe the solubility constants of CO2 in seawater and the bromine 
concentration, which is taken to be proportional to salinity. CO2 cycles through the 
atmosphere via the air-sea gas exchange fluxes (fah, fas, fat). We used a uniform piston 575 
velocity of 5.5 x 10-5 m s-1 to drive air-sea gas exchange (DeVries and Primeau, 2009; 
Follows et al., 2002).” 

 
39) The model doesn’t resolve nitrogen, and I would expect that the allocation of nitrogen in 

proteins and pigments would be an important factor, perhaps more so than phosphorus. 580 
Does this actually matter? A comment on this would be helpful. 

 
OUR RESPONSE 
>>>This is an important point that was also raised by reviewer 1(Referee 1: Response #1). In 
short, the reason for using P is its role as the ultimate limiting nutrient on long time-scales as 585 
well as to simplify the model and avoid an explicit N cycle.  

 
40) Why does temperature affect biosynthesis but not photosynthesis (line 398) imposed 

from empirical observations? The model description tells us that Q10=2 for temperature 
dependences, but there is no discussion with regard to photosynthesis. Why this choice? 590 

 
OUR RESPONSE 
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>>>We model photosynthesis as having a Q10=1, which is consistent with physiological 
studies going back to Shuter 1979 that suggest that photosynthetic efficiency does not depend 
on temperature over physiologically relevant ranges. The discrepancy between 595 
photosynthetic and biosynthetic temperature dependence has traditionally been explained by 
referring to the differences in the chemistry and physics of the two processes. The electron 
transport chain relies on quantum mechanical processes, which are unaffected by variations 
in temperature in a physiologically relevant range. A good reference for this is Devault 1980, 
Quantum Mechanical Tunneling in Biological Systems. We have added some text to more 600 
explicitly explain our choice of temperature dependence parameters for different processes. 

 
41) The discussion of sensitivity to cell radius in lines 400-410 doesn’t tell us what is the cell 

radius (or distribution of) in the model? Is it imposed or modeled (I presume the former 
but nothing is said in the paper). This should be clear. 605 

 
OUR RESPONSE 
>>>Cell radius is an emerging property based on the phosphorus concentration, light, and 
temperature on the cell.  

 610 
42) Figures 3,4,5 are a bit small and fuzzy when printed. 
 
OUR RESPONSE 
>>>We have fixed these figures so they are clearer.  

 615 
43) I’d really like to understand how important the storage term is in the overall control of 

figures 4 and 5. We see the variation in C:P and the relative allocation to biosynthesis and 
photosynthesis, but it’s not clear how important the latter is to the former. 

 
OUR RESPONSE 620 
>>>We have included an additional figure (Figure 2, in current manuscript below) as part of 
our response to an earlier comment about the importance of phosphorus storage.  

 
44) What is the cell size in the box model simulations? Is it imposed? Does it vary? How 

sensitive are results to r? 625 
 
OUR RESPONSE 
>>>The cell size varies based on the phosphorus concentration, light, and temperature in 
each surface box when we are running the multi-environmental stoichiometry. When using 
the Redfield, nutrient-only and temperature-only stoichiometric models there are not explicit 630 
cell sizes but implicit varying ones.  

 
45) The model is P based. However, as is alluded to in the manuscript, nitrogen and iron 

dynamics are important. Indeed P is found to be the proximal limiting in only a few areas 
of the global ocean, with N and Fe controlling things locally. So how does this affect the 635 
relevance of the model? Wouldn’t N and Fe dynamics be more important at the 
individual scale? Would this (does this) mean that storage is most significant for P:C? 
Again, understanding the significance of storage for the outcomes here is very important. 
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OUR RESPONSE 640 
>>>It is true that phosphorus rarely is a proximal limiting nutrient, whereas nitrogen and iron 
commonly limit productivity in the short term. However, on long time-scales P is commonly 
considered the ultimate limiting nutrient and our results are indeed based on long-term 
equilibrium states. However, it is also clear that the three nutrient cycles have complex 
interactions both within and outside the cell and we hope to add explicit N and Fe cycles in 645 
future iterations of the model.  
 
46) Line 464: "nutirent" 
 
OUR RESPONSE 650 
>>>We have changed it in the document.  

 
47) The contrasting temperature sensitivities of tropical and subtropical perturbations is very 

interesting. The dominance of the solubility term in subtropical responses is ascribed to 
the "large surface area" of the subtropical region (line 563). I don’t think that’s true: I 655 
think its because the subtropical surface feeds the subtropical thermocline which 
represents a significant contribution to global water volume. Hence, changes in 
subtropical solubility have significant leverage. Since tropical waters don’t directly feed 
into any subsurface water mass, they do not have the same leverage. This is why the 
resolution of the thermocline box is important. The classic Harvardton Bear box models 660 
did not resolve the thermocline and so found very low sensitivity to subtropical 
perturbations relative to 3D circulation models. Resolving the thermocline in the box 
models brings them into consistency (this was the point of Follows et al, 2002). I thought 
this was why the authors had chosen the configuration which resolves a thermocline 
reservoir. 665 

 
OUR RESPONSE 
>>> The reviewer is correct.  The sensitivity of atmospheric CO2 to solubility changes in a 
box in contact with the atmosphere depends on the volume of the subsurface ocean ventilated 
from that box and on the degree of air-sea disequilibrium as explained in Follows et al, 2002 670 
and also in DeVries and Primeau 2009. (The disequilibrium effect can be significant for high 
latitude boxes that have a relatively small surface area and a vigorous exchange rate with 
deeper water masses). We thank the reviewer for allowing us to clarify the point we were 
trying to make, which is that because the nutrient supply to the subtropical gyres is 
dominated by the lateral transport of unused nutrients from the tropical box rather than by 675 
vertical exchange, the strength of the biological pump does not scale with the surface area of 
the subtropical gyre, whereas the volume of the thermocline box very roughly speaking 
scales as the area of the subtropical box, at least in the limit where the surface area of the 
tropical box is negligible compare to that of the subtropical box, simply because volume is 
equal to area times thickness.  680 
 
To make the text clearer and more accurate we have revised it as follows: “The decrease in 
surface CO2 solubility at elevated temperature is sufficient to overcome the increase in export 
due to higher C:P leading to a positive relationship between pCO2,atm and subtropical 



16 
 

temperatures.  It is important to point out that the relative importance of the two competing 685 
effect depends critically on the physical circulation of the ocean. Predicted increases in 
stratification are often invoked as a mechanism that would decrease the vertical supply of 
nutrients, which one might think would further compensate for the effect of higher C:P. 
However, the strength of the biological pump in the subtropics is also influenced by lateral 
transport of nutrients (Letscher et al., 2015) so we argue that it is unclear if you should 690 
expect increasing, unchanged or decreasing C export in low latitude regions with ocean 
warming and stratification. Similarly, it is unclear how increases in stratification might affect 
the strength of the solubility pump. The sensitivity of pCO2,atm to changes in subtropical 
temperatures depends critically on the volume of the ocean ventilated from the subtropics, 
i.e. on the volume of the thermocline box in our model. How this volume might change in 695 
response to a warming world is a complicated dynamical problem that is beyond the scope of 
the present work.” 
 

_______ 
Marine Phytoplankton Stoichiometry Mediates Nonlinear Interactions Between 700 
Nutrient Supply, Temperature, and Atmospheric CO2 
 

Allison R. Moreno1, George I. Hagstrom2, Francois W. Primeau3, Simon A. Levin2, Adam C. 
Martiny1,3* 
 705 
Affiliations: 
1. Department of Ecology and Evolutionary Biology, University of California, Irvine, 

California 92697, USA. 
2. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New 

Jersey 08544, USA. 710 
3. Department of Earth System Science, University of California, Irvine, California 92697, 

USA. 
 
*Corresponding Author 
amartiny@uci.edu 715 
 
Keywords: Redfield Ratio, Traits, Carbon Cycling,  
 
Working title: Feedbacks Between Marine Stoichiometry, Environment, and Atmospheric 
CO2  720 

Formatted: Outline numbered + Level: 1 +
Numbering Style: 1, 2, 3, … + Start at: 1 +
Alignment: Left + Aligned at:  0" + Tab after: 
0.25" + Indent at:  0.25"



17 
 

Abstract  
Marine phytoplankton stoichiometry links nutrient supply to marine carbon export. 
Deviations of phytoplankton stoichiometry from Redfield proportions (106C:1P) could 
therefore have a significant impact on carbon cycling, and understanding which 
environmental factors drive these deviations may reveal new mechanisms regulating the 725 
carbon cycle. To explore the links between environmental conditions, stoichiometry, and 
carbon cycling, we compared four different models of phytoplankton C:P: a fixed Redfield 
model, a model with C:P given as a function of  surface phosphorus concentration ([P]), a 
model with C:P given as a function of temperature, and a new multi-environmental model 
that predicts C:P as a function of light, temperature, and [P]. These stoichiometric models 730 
were embedded into a five ocean circulation box model, which resolves the three major 
ocean biomes (high-latitude, subtropical gyres, and tropical upwelling regions). Contrary to 
the expectation of a monotonic relationship between surface nutrient drawdown and 
carbon export, we found that lateral nutrient transport from lower C:P tropical waters to 
high C:P subtropical waters could cause carbon export to decrease with increased tropical 735 
nutrient utilization. It has been hypothesized that a positive feedback between temperature 
and pCO2,atm will play an important role in anthropogenic climate change, with changes in 
the biological pump playing at most a secondary role. Here we show that environmentally 
driven shifts in stoichiometry make the biological pump more influential, and may reverse 
the expected positive relationship between temperature and pCO2,atm. In the temperature-740 
only model, changes in tropical temperature have more impact on the Δ pCO2,atm (~41 
ppm) compared to subtropical temperature (~4.5 ppm). Our multi-environmental model 
predictedproducedpredicted a decline in pCO2,atm of ~46 ppm when temperature spanned 
a change of 10°C. Thus, we find that variation in marine phytoplankton stoichiometry and 
its environmental controlling factor can lead to non-linear controls on pCO2,atm, suggesting 745 
the need for further studies of ocean C:P and the impact on ocean carbon cycling.  
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1 Introduction   
The discovery of large-scale deviations of phytoplankton stoichiometry from the Redfield 750 
ratio in the past decade (M(Martiny et al., 2013a, 2013b; Weber and Deutsch, 2010) has 
significant consequences for our understanding of the biological carbon pump and global 
carbon cycling ((Galbraith and Martiny, 2015; Moreno and Martiny, 2018). Traditionally, 
the biological pump is thought to be controlled by a combination of the vertical nutrient 
flux and nutrient utilization efficiency (also known as elemental stoichiometry). 755 
Traditionally, the biological pump is thought to be controlled by a combination of the 
vertical nutrient fluflux and nutrient utilization efficiency (also known as (which is closely 
related to elemental stoichiometry) (S(Sarmiento and Toggweiler, 1984). Evidence that 
elemental stoichiometry is variable thus adds a new dimension to the biological pump, and 
may lead to higher than currently expected carbon export in subtropical regions. Evidence 760 
that However, variableEvidence of latitudinal variations in the elemental stoichiometry is 
variable of exported organic material (C:Pexport) thus adds a new biological dimension to the 
biological this problemthe carbon pump, and may lead to higher than currently expected 
carbon export (C:Pexport) in subtropical regions ((Emerson, 2014; Tanioka and Matsumoto, 
2017; Teng et al., 2014). Global carbon export has been estimated to range between 5 and 765 
12 Pg C/year (B(Boyd and Trull, 2007; Henson et al., 2011), but these projections have yet 
to incorporate the environmental controls on C:Pexport. Variation in C:Pexport from Redfield 
proportions can be linked to environmental conditions. There are two leading 
environmental parameters thought to control C:Pexport; nutrients, predominantly phosphate 
concentrations, and temperature. Galbraith and Martiny used a simple three-box model to 770 
show that variable stoichiometry driven by phosphate availability could enhance the 
efficiency of the biological pump in the low-latitude ocean (G(Galbraith and Martiny, 2015). 
In contrast, Yvon-Durocher and co-workers (2015) used a meta-analysis of global 
temperature and stoichiometric ratios to propose that C:P increased 2.6-fold from 0° C to 
30° C. Thus, it is unclear if differences in nutrient supply, temperature, or some 775 
combination of them, control the global variation in C:P of plankton and exported material. 

There are two important ingredients missing from published studies that could alter 
the interactions among phytoplankton stoichiometry, carbon export, and atmospheric pCO2 
(pCO2,atm). The first is the presence of two distinctuniquedistinct low-latitude biomes, 
namely the equatorial upwelling regions and the macronutrient-depleted subtropical gyres. 780 
In direct observations and inverse model analyses, these two biome types appear to have 
unique elemental compositions, which leads to relatively increased rates of export from 
oligotrophic gyres in comparison to equatorial upwelling regions (D(DeVries and Deutsch, 
2014; Martiny et al., 2013a; Teng et al., 2014). Thus, in order to properly represent global 
variations in surface plankton C:P and carbon export, it is essential to separately model 785 
both macronutrient-limited subtropical gyres and iron-limited equatorial upwelling zones.  

The second missing ingredient is that environmental factors beyond nutrient 
availability may impact the elemental composition of surface plankton and C:Pexport. 
Temperature, irradiance, and nutrient concentrations are all important environmental 
factors, which influence the physiology and stoichiometry of phytoplankton. However, 790 
surveys of phytoplankton C:P are insufficient to distinguish between the separate effects of 
each factor on C:P due to strong environmental covariance. Cellular trait trait-based models 
use detailed studies of phytoplankton physiology to determine how phytoplankton cells 
should allocate their resources as a functionfunctional of environmental conditions, 
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allowing us to model the interactive influence of temperature, nutrient concentrations, and 795 
irradiance on C:P ratios (C(Clark et al., 2011; Daines et al., 2014; Shuter, 1979; Talmy et al., 
2014; Toseland et al., 2013). Numerous physiological mechanisms have been proposed to 
explain variation in phytoplankton stoichiometry, including growth rate (S(Sterner and 
Elser, 2002), photoacclimation (F(Falkowski and LaRoche, 1991; Geider et al., 1996; 
Leonardos and Geider, 2004, 2005), nutrient-limitation responses (G(Garcia et al., 2016; 800 
Goldman et al., 1979; Rhee, 1978), and temperature acclimation (R(Rhee and Gotham, 
1981; Toseland et al., 2013; Yvon-Durocher et al., 2015). Through incorporation of such 
physiological responses, a trait-based model has revealed that differences in ribosomal 
content and cell size between warm-water, oligotrophic environments and cold-water, 
eutrophic environments are important mechanisms driving stoichiometric variation in the 805 
ocean (Daines et al., 2014). Thus, linking biome-scale variations in environmental 
conditions with a detailed trait-based model of phytoplankton resource allocation and 
elemental composition may enable us to more fully explore interactions among multiple 
ocean environmental conditionsfactors, the biological pump, and pCO2,atm. 

. Through incorporation of such physiological responses, a trait-based model has 810 
revealed that differences in ribosomal content and cell radius size between warm-water, 
oligotrophic environments and cold-water, eutrophic environments are important 
mechanisms driving stoichiometric variation in the ocean (Daines et al., 2014). Thus, 
linking biome-scale variations in environmental conditions with a detailed trait-based 
model of phytoplankton resource allocation and elemental composition may enable us to 815 
more fully explore interactions among ocean environmental conditions, the biological 
pump, and pCO2,atm. 

Here we create a five ocean circulation box modelfive-box model, incorporating the 
three major ocean biomes, to study the feedback effects of variable stoichiometry on 
carbon export and pCO2,atm. We will explicitly address the following research questions: (1) 820 
How does environmental variability influence marine phytoplankton cellular allocation 
strategies and in turn the elemental stoichiometric ratioratioy? (2) What are the effects of 
changing environmental conditions on stoichiometric ratios, carbon export, and pCO2,atm?, 
and (3) What is the influence of the environmental gradients conditions among the three 
major surface biomes on carbon export and pCO2,atm?  825 
 
2 Methods 
2.1 Stoichiometric Models 
To quantify and understand the feedbacks between carbon export and pCO2,atm, we 
embedded four stoichiometric models into our five ocean circulation box modelfive box 830 
ocean model. EachWe included four distinct stoichiometric models to calculate C:Pexport, 
eEach model differsdifferof which differss according to itstheir complexity and how much 
environmental information they utilize. These are a static Redfield model that assumes that 
C:Pexport is  a constant acrossfunction ofacross environmental conditions, a nutrient-only 
model that uses surface [P] to predict C:Pexport (from Galbraith and Martiny, 2015), a 835 
temperature-only model that uses T to predict C:Pexport (modified from Yvon-Durocher et al., 
2015, and a multi-environmental model that uses light, T, and [P] to predict C:Pexport.  
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2.1.1Static Redfield Model  
Our control model uses a static Redfield stoichiometry. The Redfield ratio is based on an 840 
average value of organic carbon to phosphorus of 106:1.  
 
2.1.2 Nutrient-Only Model 
The nutrient-only stoichiometric model expresses phytoplankton C:P as a function of the 
ambient phosphate concentration:  845 

𝐶𝐶:𝑃𝑃 =
1

𝜅𝜅[𝑃𝑃] + [P]0
1

𝜅𝜅[𝑃𝑃] + ( )0
 (1) 

where the parameters 𝜅𝜅 = 6.9𝑥𝑥10−3 μM-1 and [𝑃𝑃]0 = 6.0𝑥𝑥10−3[ ] = 6.  were 
obtained by regressing the reciprocal of C:P onto [P] (G(Galbraith and Martiny, 2015).  
 
2.1.3 Temperature-Only Model 
The temperature-only stoichiometric model expresses phytoplankton C:P as a function of 850 
temperature:  

𝑙𝑙𝑙𝑙(𝐶𝐶:𝑃𝑃) = 𝛱𝛱(𝑇𝑇 − 15°𝐶𝐶) + 𝑏𝑏, (2) 
where the parameters 𝛱𝛱 = 0.037 °𝐶𝐶⁄ 0.037 𝐶𝐶°⁄  and 𝑏𝑏 = 5.5938 (Yvon-Durocher et al., 
2015)(Yvon-Durocher et al., 2015). The temperature-only model was created to determine 
the temperature responses of log-transformed C:P ratios centered at 15°C.  
 855 
2.1.4 Multi-Environmental Model 
We created a multi-environmental model which predicts how cell sizesizeular radius, 
biomass allocations to biosynthesis and photosynthesis, and C:P ratios vary with 
temperature, light levels, temperature, and phosphorus concentrations. The multi-
environmental factor model was derived from a non-dynamic physiological trait-based 860 
model. We used a theoretical cellular-allocation trait model based on phytoplankton 
physiological properties that divides the ‘cell’ into several functional pools 
whichincludingwhich represent cellular investments in biosynthesis, photosynthesis, and 
structure, and a storage pool, which represents variations in the level of P-rich molecules 
such as polyphosphates.  The functional pools are composed of biological macromolecules 865 
such as ribosomes, proteins,  includepoolsthe cell membrane, and storage molecules. 
Storage  carbohydrates, and lipids., and P containing molecules such as polyphosphates and 
phospholipids. The model predicts the size of each pool as a function of light, T, and [P]. The 
size of each functional pool is modeled by using subcellular resource compartments, which 
connect the fitness of a hypothetical phytoplankton cell in a given environment to its 870 
cellular radius and the relative allocation of cellular material to photosynthetic proteins, 
ribosomes, and biosynthetic proteins. We assume that real phytoplankton populations 
have physiological behaviors that cluster around the strategy that produces the fastest 
growth rate in each environment (N(Norberg et al., 2001), and use the stoichiometry of this 
optimal strategy to model the elemental composition of cellular material (Figure 1). 875 

Phytoplankton can accumulate large reserves of nutrients that are not immediately 
incorporated into the functional components of the cell (D(Diaz et al., 2016; Mino et al., 
1998; Van Mooy and Devol, 2008; Mouginot et al., 2015). This storage capability varies 
among phytoplankton species, and depends on the particular nutrient under consideration: 

Formatted Table

Formatted Table
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the cost for storing physiologically relevant quantities of nutrients is low for nutrients with 880 
low quotas such as phosphorus, in comparison to nitrogen and carbon. Thus, the 
phosphorus storage is assumed highly plastic in comparison to carbon storage (M(Moore et 
al., 2013). Further,  we assume that each cell dedicates a fixed fraction of its biomass to 
carbon reserves, and focus our modeling efforts on the variability of the stored phosphorus 
pool. To predict the size of the storage pool, we assume a linear relationship between 885 
stored phosphorus and ambient environmental phosphorus levels and used statistical 
modeling of an oceanic C:P dataset (M(Martiny et al., 2014) to calculate the constant of 
proportionality. The result is a relatively simple model that both qualitatively and 
quantitatively predicts the variation of C:P in plankton throughout the oceans.  

Phytoplankton physiology is modeled through allocations of cell dry mass to three 890 
distinct pools: structure (S(r)), biosynthesis (E), and photosynthesis (L). Allocations satisfy: 

1 = S(r) + E + L, (3) 
 

where the variables S, E, and L represent the specific allocations of cellular biomass.  
 

 
Figure 1: Diagram of physiological model. Phytoplankton strategies are represented in a two-dimensional 895 
strategy space (E, r). Each strategy is assigned a fitness in each environment using physiological principles, and 
the strategy with the highest fitness is selected to represent the local population. The stoichiometry of cellular 
components is used to calculate the stoichiometry of the functional pools in the cell. 
 

The specific allocation of biomass to the cell membrane is inversely proportional to 900 
the cell radius �𝛼𝛼

𝑟𝑟
� (C(Clark et al., 2011), which accounts for the changing relative volume of 

the cell-membrane with radius.  The structure pool includes the cell membrane plus wall 
and other components (𝛾𝛾), which are not related to photosynthesis or biosynthesis and is 
given by: 

𝑆𝑆(𝑟𝑟) =
𝛼𝛼
𝑟𝑟

+ 𝛾𝛾. (4) 

In an environment specified by T, [P], and light level (I), the growth rate of a cell using a 905 
given strategy is the minimum of the following growth rates: 
 

𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑙𝑙(𝜇𝜇𝐸𝐸 , 𝜇𝜇𝐿𝐿 ,𝜇𝜇𝑃𝑃). 
 (5) 

Here 𝜇𝜇𝐸𝐸  is determined by the specific rate of protein synthesis, 𝜇𝜇𝐿𝐿  is determined by the 
specific rate of carbon fixation, and 𝜇𝜇𝑃𝑃 is determined by the specific rate of phosphorus 
uptake, or: 910 
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𝜇𝜇𝐸𝐸 = 𝑘𝑘𝐸𝐸(𝑇𝑇)𝐸𝐸, 𝜇𝜇𝐿𝐿 = 𝑓𝑓𝑃𝑃(𝐿𝐿,𝐼𝐼)−𝛷𝛷𝑀𝑀(𝑇𝑇)
1+𝛷𝛷𝑆𝑆

, 𝜇𝜇𝑃𝑃 = 1
𝑄𝑄𝑃𝑃(𝑟𝑟,𝐸𝐸)

𝑉𝑉𝑚𝑚(𝑟𝑟)[𝑃𝑃]
𝐾𝐾𝑃𝑃(𝑟𝑟)+[𝑃𝑃]. 

 
(6) 

We assume that part of the energy captured by a cell via photosynthesis is used for 
maintenance (𝛷𝛷𝑀𝑀), whereas the rest is used to drive the synthesis of new macromolecules 
(𝛷𝛷𝑆𝑆), so that a cell growing at rate 𝜇𝜇𝐿𝐿  is in energy balance. The efficiency of biosynthesis 𝑘𝑘𝐸𝐸 
and the carbon cost of maintenance 𝛷𝛷𝑀𝑀 are functions of T, whose dependence is modeled 915 
using 𝑄𝑄10 = 2.0 (V(Van Bogelen and Neidhardt, 1990; Broeze et al., 1978; Shuter, 1979). 
Uptake is regulated by a Monod function with kinetic parameters depending on the radius 
through the allometric scaling relationships derived from measurements of phytoplankton 
populations (Edwards et al., 2012)(Edwards et al., 2012): 

 920 
𝑉𝑉𝑚𝑚(𝑟𝑟) = 𝑎𝑎𝑃𝑃𝑟𝑟𝑏𝑏𝑃𝑃 ,𝐾𝐾𝑃𝑃(𝑟𝑟) = 𝑎𝑎𝐾𝐾𝑟𝑟𝑏𝑏𝐾𝐾 . 

 (7) 

This use of allometric scaling relationships departs from the conventions adopted by 
Shuter (1979)(Shuter, 1979) or Daines et al.(1979) or Daines et al.(2014)(Daines et al., 
2014), who assume that uptake rates are diffusion-limited.  
(2014), who assume that uptake rates are diffusion-limited.  

The phosphorus quota for functional elements of the cell (thus not including any 925 
storage) is determined by the allocation to biosynthesis 𝐸𝐸 and the percentage  𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 of 
cellular dry mass allocated to DNA: 

 

𝑄𝑄𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸, 𝑟𝑟)𝑄𝑄𝑝𝑝(𝐸𝐸, 𝑟𝑟) =
4
3
𝜋𝜋𝑟𝑟3𝜌𝜌cell𝑝𝑝dry

(𝛼𝛼𝐸𝐸𝐸𝐸𝑃𝑃rib + 𝑝𝑝DNA𝑃𝑃DNA)
31

. 
 

(8) 

Here we assume that there is no contribution to the functional-apparatus P quota from 
phospholipids, which instead is are merged with storage molecules. This differs from 930 
Daines et al. (2014),(2014), who assume that phospholipids occupy 10% of the cell by 
mass. Phytoplankton can substitute sulfoquinovosdiaglycerol (SQDG) for phospholipids in 
their cell membranes under low P conditions (V(Van Mooy et al., 2009). Similarly, P storage 
molecules are also regulated by P availability. Thus, we here assume that phospholipids 
and P-storage exhibit the same behavior and thus model-wise treated as one pool 935 
Phytoplankton can substitute sulfoquinovosdiaglycerol (SQDG) for phospholipids in their 
cell membranes in low P conditions ((Van Mooy et al., 2009). 
The function 𝑓𝑓𝑃𝑃 is the cellular.   , implying that it is appropriate to functionally treat them 
together with the storage pool. 

The function 𝑓𝑓𝑃𝑃 is the response of the cell to light levels, and is chosen to capture the 940 
effects of both electron transport and carbon fixation on photosynthesis, and is closely 
related to a previous model  derived by Geider and Talmy(Talmy et al., 2013)(Talmy et al., 
2014). This prior model included four compartments: electron transport, carbon fixation, 
photoprotection, and biosynthesis. Talmy and co-workers 4)3(Talmy et al., 201. Theihisr 
model included four compartments: electron transport, carbon fixation, photoprotection, 945 
and biosynthesis. Talmy and co-workers (2013) foundThe outcome was(2013) found that 
the photoprotection allocation  was not a large or greatly changing component of their 
allocations. We therefore do not include this within our model due to its high complexity 
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with little qualitative results. Our biosynthesis was also separately parametrized. We also 
separately parametrized biosynthesis.it because it would require complicate our model 950 
with little change in our qualitative results. Including We have therefore not included  
 The On the other hand, tThe decomposition of photosynthesis into light 
harvesting and carbon fixation components is critical, and makes our model predictions 
agree much better with experiments studying the variations of C:P or N:P ratios with 
irradiance. Models that do not have this decomposition predict too large of a decrease in 955 
cellular allocations to photosynthesis at high -light levels. In a two- compartment model, 
increases in allocations to carbon fixation cause the overall allocation to light harvesting to 
have a more mild decrease. The two-compartment treatment also seems more 
physiologically realistic than a 1-compartment treatment, which only models 
photosynthetic pigments. Thus, we used the functional forms and parameters that were 960 
derived (experimentally) previouslyin Talmy 2013previously for carbon -fixation and light 
harvesting (Talmy et al., 2013).  
 Our model interprets the light harvesting allocation, 𝐿𝐿, as being composed of 
proteins dedicated to carbon fixation (𝐹𝐹1), such as RuBisCO, and proteins dedicated to 
lightelectron transportlight harvesting (𝐹𝐹2), such as photosynthetic pigments. The rate of 965 
photosynthetic carbon fixation is a function of the allocations to each of these, which satisfy 
𝐹𝐹1 + 𝐹𝐹2 = 𝐿𝐿. The relative allocations together determine the overall photosynthetic rate: 

𝑃𝑃max = min�𝑘𝑘1𝐹𝐹1,𝑘𝑘2𝐹𝐹2�, 𝑓𝑓𝑝𝑝 = 𝑃𝑃max �1 − 𝑒𝑒𝑥𝑥𝑝𝑝 �
−𝛼𝛼ph𝜙𝜙𝑀𝑀𝐹𝐹2𝐼𝐼

𝑃𝑃max
��. (9) 

 
For a given I and 𝐿𝐿, there is a pair of values �𝐹𝐹1,opt,𝐹𝐹2,opt� that maximize the photosynthetic 
rate 𝑓𝑓𝑝𝑝. We estimate the photosynthetic rate 𝑓𝑓𝑝𝑝(𝐿𝐿, 𝐼𝐼) under the assumption that cells 970 
assume the optimal allocations to carbon fixation and electron transport. This model 
departs from the models developed by Shuter (1979)(1979) and Daines et al. 
(2014),(2014), which assume that energy acquisition is a linear function of light levels, 
with functional response linearly proportional to the cellular investment in light harvesting 
proteins.  975 

We model photosynthesis as having a Q10=1, which is consistent with physiological 
studies going back to Shuter (1979)1979 that suggest that photosynthetic efficiency does 
not depend on temperature over physiologically relevant ranges. The discrepancy between 
photosynthetic and biosynthetic temperature dependence has traditionally been explained 
by referring to the differences in the chemistry and physics of the two processes. The 980 
electron transport chain relies on quantum mechanical processes, which are unaffected by 
variations in temperature in a physiologically relevant range (Devault, 1980). Required 
maintenance respiration rates are also modeled as having a Q10=2.0. (Devault 1980). 
Required maintenance respiration rates are also modeled as having a Q10=2.0. 

 We model the phytoplankton community residing in a given environment by 985 
assuming it consists solely of the phytoplankton type using the highest growth rate 
strategy in that environment. This strategy is found by solving for the values of  𝑟𝑟 and  
𝐸𝐸 𝑟𝑟and  𝐸𝐸which that make  

𝜇𝜇 = 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝑃𝑃 = 𝜇𝜇𝐸𝐸 
 (10) 
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 990 
Figure 2: Diagram of strategy space. The (𝑟𝑟,𝐸𝐸) plane is divided into a region in the first quadrant where 
𝐿𝐿 > 0, corresponding to the set of allowable strategies. The optimal strategy occurs at the point �𝑟𝑟𝑏𝑏𝑝𝑝𝑡𝑡,𝐸𝐸𝑏𝑏𝑝𝑝𝑡𝑡�, 
denoted by the red rectangle, where 𝜇𝜇 = 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝑃𝑃 = 𝜇𝜇𝐸𝐸 . 
 
We will now show that under two assumptions that will be true in nearly any realistic 995 
situation, a strategy maximizing 𝜇𝜇 always exists, is unique, and satisfies 𝜇𝜇 = 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝑃𝑃 = 𝜇𝜇𝐸𝐸  
(F.. The basic situation is depicated in figure 2). . 
  
 
 1000 
 
 
 
 
 1005 
 
 
 
 
 1010 
The function 𝜇𝜇𝐿𝐿  is a function of the chosen strategy (𝑟𝑟,𝐸𝐸), and it is an increasing function of 
𝑟𝑟 and𝑟𝑟and decreasing function of 𝐸𝐸. The first assumptionassmumption is that light levels 
are sufficiently high that there exists some 𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛 such that 𝜇𝜇𝐿𝐿(𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛, 0) > 0, which means that 
light is sufficient for some phytoplankton to be able to overcome maintenance costs. The 
function 𝜇𝜇𝑃𝑃 is a monotonically decreasing function of both 𝑟𝑟 and 𝐸𝐸. B 1015 

Because there is a non-zero amount of 𝑃𝑃 contained in the structure pool, and 
because uptake rates decline to zero with 𝑟𝑟, there will be some 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 at which 𝜇𝜇𝑃𝑃(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 0) >
0. The second assumption is that  𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛 < 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, which will be true for most realistic values of 
the light level. We note that for fixed 𝑟𝑟, 𝜇𝜇𝐸𝐸  is a monotonically decreasing function of 𝐸𝐸. Since 
none of 𝜇𝜇𝐸𝐸 ,  𝜇𝜇𝐿𝐿  or 𝜇𝜇𝑃𝑃 have critical points, the function 𝜇𝜇 can only have a maximum at places 1020 
where two or more of 𝜇𝜇𝐿𝐿 , 𝜇𝜇𝑃𝑃𝜇𝜇𝑃𝑃, and 𝜇𝜇𝐸𝐸  are equal, or at the boundaries of the strategy space. 
On the boundaries of strategy space, 𝐸𝐸 = 0 or 𝐿𝐿 = 0 so that  𝜇𝜇 ≤ 0. We can exclude the 
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boundary and focus on places where two or more of  𝜇𝜇𝐿𝐿 , 𝜇𝜇𝑃𝑃, and 𝜇𝜇𝐸𝐸  are equal. We define 
two curves, one on which 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝐸𝐸 , and the other on which 𝜇𝜇𝑃𝑃 = 𝜇𝜇𝐸𝐸 . The curve for which 
𝜇𝜇𝐿𝐿 = 𝜇𝜇𝐸𝐸begins at the point 𝑟𝑟 = 𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛 and can be described by a monotonically increasing 1025 
function 𝐸𝐸 = 𝑔𝑔(𝑟𝑟) on the interval [𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛,∞]. This curve exists because 𝜇𝜇𝐸𝐸 = 0 when 𝐸𝐸 = 0, 
𝜇𝜇𝐿𝐿 > 0 when 𝐸𝐸 = 0 and 𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛 < 𝑟𝑟, and 𝜇𝜇𝐿𝐿 < 0 when 𝐿𝐿 = 1 − 𝑆𝑆(𝑟𝑟) − 𝐸𝐸 = 0, so that there is 
always a solution to 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝐸𝐸  for fixedd 𝑟𝑟 > 𝑟𝑟𝑚𝑚𝑏𝑏𝑛𝑛. To see that the curve is an increasing 
function of  𝑟𝑟, consider the function 𝑉𝑉(𝐸𝐸, 𝑟𝑟) = 𝜇𝜇𝐿𝐿 − 𝜇𝜇𝐸𝐸and apply the chain rule to the 
equation 𝑉𝑉(𝑔𝑔(𝑟𝑟), 𝑟𝑟) = 0 to find tha that along the curve E=g(r):)t: 1030 
 

 

𝑑𝑑𝐸𝐸
𝑑𝑑𝑟𝑟

= 𝑔𝑔′(𝑟𝑟) =
−𝜕𝜕𝑉𝑉𝜕𝜕𝑟𝑟
𝜕𝜕𝑉𝑉
𝜕𝜕𝐸𝐸

 (11) 

 
We consider the terms in equation 11 carefully. The function 𝑉𝑉 is an increasing function of 
𝑟𝑟because 𝜇𝜇𝐸𝐸  is independent of 𝑟𝑟 and because 𝜇𝜇𝐿𝐿is an increasing function of 𝑟𝑟 (for a fixed 1035 
investment in biosynthesis, a  larger radius leads to a greater investment in photosynthesis 
and greater photosynthetic growth rate). Thus, the numerator of equation 11 is negative. 
The function 𝑉𝑉is a decreasing function of 𝐸𝐸 because 𝜇𝜇𝐿𝐿is a decreasing function of 𝐸𝐸 (greater 
investments in biosynthesis at fixed radius lead to smaller investments in photosynthesis) 
and 𝜇𝜇𝐸𝐸  is an increasing function of 𝐸𝐸. Thus the denominator of equation 11 is negative, and 1040 
the quotient on the right hand side is positive, so 𝑔𝑔′(𝑟𝑟)is positive and describes an 
increasing curve. 

By similar logic, we can define a curve  ℎ(𝑟𝑟)that solves the equation  𝜇𝜇𝑃𝑃(ℎ, 𝑟𝑟) =
𝜇𝜇𝐸𝐸(ℎ, 𝑟𝑟). This curve exists on the finite interval [𝑟𝑟𝐼𝐼 , 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚], where 𝑟𝑟𝐼𝐼 solves the equation 
.𝜇𝜇𝑃𝑃(1 − 𝑆𝑆(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼) = 𝜇𝜇𝐸𝐸(1 − 𝑆𝑆(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼). Thus  ℎ(𝑟𝑟)represents a decrasing curve from the point 1045 
(1 − 𝑆𝑆(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼) to (0, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚). We can see that ℎ(𝑟𝑟) is always decreasing by using the chain rule 
on 𝜇𝜇𝑃𝑃(ℎ, 𝑟𝑟) − 𝜇𝜇𝐸𝐸(ℎ, 𝑟𝑟) = 0, just as in the previous argument. 

The growth maximizing strategy must occur somewhere on the curves described by 
(𝑔𝑔(𝑟𝑟), 𝑟𝑟) and (ℎ(𝑟𝑟), 𝑟𝑟). The functions 𝜇𝜇1(𝑟𝑟) = 𝜇𝜇(𝑔𝑔(𝑟𝑟), 𝑟𝑟) and 𝜇𝜇2(𝑟𝑟) = 𝜇𝜇(ℎ(𝑟𝑟), 𝑟𝑟) are 
continuously differentiable functions of 𝑟𝑟 except where 𝑔𝑔(𝑟𝑟) = ℎ(𝑟𝑟) (which must exist by 1050 
the intermediate value theorem). Therefore the only place where 𝜇𝜇 can𝜇𝜇can have a 
maximum is at the place where 𝑔𝑔(𝑟𝑟) and ℎ(𝑟𝑟) intersect, which is the strategy that leads to 
equality of all the growth rates.  We refer to this strategy, as a function of environmental 
conditions, as 
�𝑟𝑟𝑚𝑚(𝑃𝑃, 𝐼𝐼,𝑇𝑇),𝐸𝐸𝑚𝑚(𝑃𝑃, 𝐼𝐼,𝑇𝑇), 𝐿𝐿𝑚𝑚(𝑃𝑃, 𝐼𝐼,𝑇𝑇)�. Using this strategy we can predict the stoichiometry of 1055 
the functional components of the phytoplankton population in a given environment. 

We assume that real phytoplankton populations cluster near the optimal strategy in 
the local environment (N(Norberg et al., 2001): 

(𝐸𝐸𝑚𝑚, 𝑟𝑟𝑚𝑚) = argmax(𝐸𝐸,𝑟𝑟)𝜇𝜇. (12120) 
For all values of environmental parameters used in this study, the unique maximum of the 
growth rate occurs for the set of parameter values that lead to co-limitation by nutrients, 1060 
photosynthesis, and biosynthesis, analogously to the predictions of Klausmeier et al. and 
co-workers (2004). (2004). The optimal strategy determines the model prediction of the 
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C:P of functional components in a given environment by taking the quotient of the carbon 
and phosphorus quotas. 
 1065 
Table 1. Physiological Model Constants.  

PARAMETER DESCRIPTION VALUE UNITS SOURCE 

α Proportionality 
coefficient for radius 

0.12 - (T(Toseland et al., 2013) 

γ Percent dry mass 
devoted to structure 

other than membrane 

0.2 - (T(Toseland et al., 2013) 

kE0 Synthesis rate of 
biosynthesis 

apparatus at T0=25 

0.168 hr−1 (S(Shuter, 1979) 

Q10,E Q10 of biosynthetic 
apparatus 

2.0  (S(Shuter, 1979) 

ΦM0 Specific carbon cost of 
maintenance at T0=25 

10−3 hr−1 (S(Shuter, 1979) 

Q10,M Q10 of maintenance 2.0 - (S(Shuter, 1979) 

Q10,P Q10 of photosynthesis 1.0  (Shuter, 1979) 

ΦS Carbon cost of 
synthesis 

0.67 - (S(Shuter, 1979) 

aP Allometric scaling 
constant for VMP 

1.04×10−16 (mol P)(hr)−1 (E(Edwards et al., 2012) 

bP Allometric scaling 
exponent for VMP 

3.0 - (E(Edwards et al., 2012) 

aK Allometric scaling 
constant for KP 

6.4×10−8 (mol P)(L)−1 (E(Edwards et al., 2012) 

bK Allometric scaling 
exponent for KP 

1.23 - (E(Edwards et al., 2012) 

ρcell Cell Density 106 g/m3 (S(Shuter, 1979) 
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pdry Fraction of dry mass 
in cell 

0.47 - (T(Toseland et al., 2013) 

αE Fraction of dry mass 
in biosynthetic 

apparatus devoted to 
ribosomes 

0.55 - (T(Toseland et al., 2013) 

Prib Fraction of ribosomal 
mass in phosphorus 

0.047 - (S(Sterner and Elser, 2002) 

pDNA Fraction of cell dry 
mass in DNA 

0.01 - (T(Toseland et al., 2013) 

PDNA Fraction of DNA mass 
in phosphorus 

0.095 - (S(Sterner and Elser, 2002) 

k1 Specific Efficiency of 
Carbon Fixation 

Apparatus 

0.373 hr−1 (T(Talmy et al., 2013) 

k2 Specific Efficiency of 
Electron Transport 

Apparatus 

0.857 hr−1 (T(Talmy et al., 2013) 

αPh Light Absorption 1.97 m2/gC (M(Morel and Bricaud, 
1981) 

ϕM Maximum Quantum 
Efficiency 

10−6 gC/μmol photons (F(Falkowski and Raven, 
1997) 

 𝑚𝑚𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of cell 
membrane composed 

of lipids 

0.3 -  

(T(Toseland et al., 2013) 

𝑚𝑚𝑝𝑝𝑟𝑟𝑏𝑏𝑡𝑡 Fraction of cell 
membrane composed 

of protein 

0.7 -  

(T(Toseland et al., 2013) 

𝑝𝑝𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of cell dry 
mass in storage lipids 

0.1 -  

(S(Sterner and Elser, 2002) 

𝑝𝑝𝑐𝑐𝑚𝑚𝑟𝑟𝑏𝑏 Fraction of cell dry 
mass in storage 
carbohydrates 

0.04 -  

(S(Sterner and Elser, 2002) 
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𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 Fraction of DNA mass 
in Carbon 

0.36 -  

(S(Sterner and Elser, 2002) 

𝐶𝐶𝑟𝑟𝑏𝑏𝑏𝑏 Fraction of ribosomal 
mass in Carbon 

0.42 -  

(S(Sterner and Elser, 2002) 

𝐶𝐶𝑝𝑝𝑟𝑟𝑏𝑏𝑡𝑡 Fraction of protein 
mass in Carbon 

0.53 -  

(S(Sterner and Elser, 2002) 

𝐶𝐶𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of lipid mass 
in Carbon 

0.76 -  

(S(Sterner and Elser, 2002) 

𝐶𝐶𝑐𝑐𝑚𝑚𝑟𝑟𝑏𝑏 Fraction of 
carbohydrate mass in 

Carbon 

0. 4 -  

(S(Sterner and Elser, 2002) 

 
The carbon quota is calculated as:  
 

𝑄𝑄𝐶𝐶 =
�
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼

𝑟𝑟 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙+𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐+𝛼𝛼𝐸𝐸𝐸𝐸𝐶𝐶rib+�(1−𝛼𝛼𝐸𝐸)𝐸𝐸+𝐿𝐿+
𝑚𝑚𝑙𝑙𝑟𝑟𝑝𝑝𝑝𝑝𝛼𝛼

𝑟𝑟 �𝐶𝐶𝑙𝑙𝑟𝑟𝑝𝑝𝑝𝑝+𝑝𝑝DNA𝐶𝐶DNA�

4
3𝜋𝜋𝑟𝑟

3𝜌𝜌cell𝑝𝑝dry
. 

 

(13131) 

Here we see the contributions of carbon contained in both functional and storage pools, the 
latter of which are assumed to occupy a fixed fraction of the cell independent of the 
environment (but linked to cell size). 1070 

Measurements of cellular P partitioning indicate that the ribosomal RNA can 
sometimes contribute only 33% of the total P quota (G(Garcia et al., 2016). The additional 
phosphorus includes membrane phospholipids and storage compounds, luxury storage 
compounds, and polyphosphates, each of which can be up- or down-regulated in response 
to phosphorus availability in the environment. To model this phenomenon, we assume the 1075 
existence of an additional stored P pool, whose size is a linear function of environmental P, 
or: 

 
(𝑃𝑃:𝐶𝐶)𝑏𝑏𝑡𝑡𝑏𝑏𝑟𝑟𝑚𝑚𝑠𝑠𝑒𝑒 = 𝜖𝜖[𝑃𝑃], (14142) 

where 𝜖𝜖 is determined by the best fit to the Martiny et al. (2014)(2014) data. Our model 
then predicts C:P as: 1080 

𝐶𝐶:𝑃𝑃 =
1

(𝑃𝑃:𝐶𝐶)(𝐸𝐸𝑚𝑚,𝑟𝑟𝑚𝑚) + 𝜖𝜖[𝑃𝑃]. (15153) 

The model parameter 𝜖𝜖 is calculated by minimizing the residuals of the P:C ratio predicted 
by Eq.13 in comparison to the global data-set on particulate organic matter stoichiometry 
compiled by Martiny and others ((2014). To maintain consistency with the linear 

Formatted Table

Formatted Table

Formatted Table



29 
 

regression model of Galbraith and Martiny (2015), we restrict the dataset to observations 
from the upper 30 meters of the water column containing particulate organic phosphorus 1085 
and carbon concentrations of greater than 0.005 𝑙𝑙𝑛𝑛5𝜇𝜇𝑛𝑛. Observations from the same 
station and the same day, but at different depths in the water column are averaged 
together. The P:C ratio of the functional apparatus is calculated using irradiance, T, and [P] 
data from the World Ocean Atlas (Garcia et al., 2014; Locarnini et al., 2013; 
oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3B/PAR/2014/), which are used 1090 
to estimate environmental conditions at the location and date of particulate organic matter 
measurements. Light levels are computed by averaging irradiance over the top 50 meters 
of the water column, assuming an e-folding depth of 20 meters.  Linear regression 
determines 𝜖𝜖 = 2500 M −1 which fits the data with an 𝑅𝑅2 = 0.28. All parameters for the 
model are listed in Table 1.   1095 
 
2.2 Box Model Design 
To quantify the feedbacks between phytoplankton stoichiometry, carbon export, and 
pCO2,atm, we formulated a five-box ocean circulation box model of the phosphorus and 
carbon cycles in the ocean coupled to anand atmospheric boxe. The foundation of our 1100 
model is based on the models introduced in Ito and Follows (2003) and DeVries and 
Primeau (2009). Phosphorus is used to represent the role of nutrient availability in 
controlling stoichiometry and C export. We chose this over N to avoid having to include a 
parameter rich N cycle. Furthermore, P rather than N is commonly regarded as the ultimate 
limiting nutrient (2015), we restrict the dataset to observations from the upper 30 meters 1105 
of the water column containing particulate organic phosphorus and carbon concentrations 
of greater than0.005𝜇𝜇𝑛𝑛. Observations from the same station and the same day, but at 
different depths in the water column are averaged together. The P:C ratio of the functional 
apparatus is calculated using T, [P], and irradiance data from the World Ocean Atlas (Garcia 
et al., 2014; Locarnini et al., 2013; 1110 
oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3B/PAR/2014/), which are used 
to estimate environmental conditions at the location and date of particulate organic matter 
measurements. Light levels are computed by averaging irradiance over the top 50 meters 
of the water column, assuming an e-folding depth of 20 meters.  Linear regression 
determines 𝜖𝜖 = 2500 M −1which fits the data with an𝑅𝑅2 = 0.28. All parameters for the 1115 
model are listed in Table 1.   
 
2.2 Box Model Design 
To quantify the feedbacks between phytoplankton stoichiometry, carbon export, and 
pCO2,atm, we formulated a five ocean circulation box model five-box model of the 1120 
phosphorus and carbon cycles in the ocean and atmosphere. The foundation of our model 
is based on the models introduced in Ito and Follows (2003) and DeVries and Primeau 
(2009). Phosphorus is used to represent the role of nutrient availability in controlling 
stoichiometry and C export. We chose this over N to avoid having to include a parameter 
rich N cycle. Furthermore, P rather than N is commonly regarded as the ultimate limiting 1125 
nutrient ((Tyrrell, 1999) and thus P availability represents the long-term steady-state 
biogeochemical equilibrium. The model includes three surface boxes, each corresponding 
to one of the major biomes: the tropical equatorial upwelling regions (labeled T), the 
subtropical gyres (labeled S), and the high-latitude regions (labeled H) (Figure 3). We 
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define the oligotrophic subtropical gyre regions where the mean annual phosphate 1130 
concentration is less than 0.3 μM (T(Teng et al., 2014), with the remainder of the surface 
ocean assigned either to box T or  box H based on latitude. We use these assignments to 
calculate the baseline physical properties of each region, including mean annual averaged 
irradiance and temperature. The subsurface ocean is divided into two regions: the 
thermocline waters that underlies the subtropical gyres and , the equatorial upwelling 1135 
regions (labeled M), and deep waters (labeled D) (DeVries and Primeau, 2009).eVries and 
Primeau, 2009).  

 
Figure 3: Box Model Design. A) Sea surface breakdown by region. All regions peach- colored regions color 
represents the tropical surface ocean box, the cream-colored regions represents the subtropical surface ocean 1140 
box, and grey regions color represents the high-latitude surface ocean box. B) The model includes tropical (T), 
subtropical (S), and high-latitude (H) surface ocean boxes, a mixed thermocline (M) box, and a deep water (D) 
box. The thermohaline circulation Tc is set to 20 Sv, while the wind driven shallow overturning circulation is set 
to 5 Sv. The high-latitude mixing flux fhd is set to 45.6 Sv. The thickness of Box H is 1000 m, and Box M is 900 m. 
Box T has a temperatureT of 26°C, box S has a temperatureT of 24°C, and box H has a temperatureT of 7°C. Box S 1145 
covers 39% and Box T covers 25% of the ocean surface area. 
 

To simulate the global transport of water between boxes, our model includes a 
thermohaline circulation (labeled Tc) that upwells water from the deep ocean into the 
tropics, laterally transports water into the subtropics and high-latitudes, and downwells 1150 
water from the high-latitude region to the deep ocean. Surface winds produce a shallow 
overturning circulation (labeled Tw), that transports water from the thermocline to the 
tropics and then laterally into the subtropics. These circulations create teleconnections of 
nutrient supply in the surface ocean boxes. A bidirectional mixing term that ventilates the 
deep box directly through the high-latitude surface box (labeled fhd) represents  deep 1155 
water formation in the Northern Atlantic region and around Antarctica (S(Sarmiento and 
Toggweiler, 1984). The parameters Tc, Tw and fhd are considered adjustable parameters, 
which we calibrate using phosphate data from WOA13 (G(Garcia et al., 2014). In order to 
simulate the movement of particles, we included export fluxes (Pt, Ps, and Ph) of organic 
phosphorus out of each surface box.  1160 

Our box model simulates [P], alkalinity and various forms of C; total carbon in the 
surface boxes is partitioned into carbonate, bicarbonate, and pCO2. The global mean [P] is 
prescribed according to the observed mean ocean value (G(Garcia et al., 2014). The export 
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of carbon is linked to phosphorus export using the C:Pexport ratio. To quantify the 
breakdown of carbon into these components, we model the solubility pump, using 1165 
temperature and salinity to determine the partitioning of inorganic carbon among total 
carbon within a box. The global mean alkalinity is prescribed according to the observed 
mean ocean values but is also subject to transport (Sarmiento and Toggweiler, 1984). Our 
box model simulatessimulatesations various forms of C similar to alkalinity alkalinity and 
total inorganic carbon, which are conserved tracers from which the speciation of inorganic 1170 
carbon in sea-water can be calculated. Biome specific salinity and temperature are used to 
prescribe the solubility constants of CO2 in seawater and the bromine concentration, which 
is taken to be proportional to salinity. We use these calculations to determine the pCO2 
value at standard pressure (1 atm) within each box. Box specific total carbon is calculated 
from the pCO2 value, bicarbonate, carbonate and alkalinity concentrations. CO2 cycles 1175 
through the atmosphere via the air-sea gas exchange fluxes (fah, fas, fat). We used a 
uniform piston velocity of 5.5 x 10-5 m s-1 to drive air-sea gas exchange ((DeVries and 
Primeau, 2009; Follows et al., 2002).. To quantify the breakdown of carbon into these 
components, we model the solubility pump, using temperature and salinity to determine 
the partitioning of inorganic carbon. CO2 cycles through the atmosphere via the air-sea gas 1180 
exchange fluxes (fah, fas, fat). We used a uniform piston velocity of 5.5 x 10-5 m s-1 to drive 
air-sea gas exchange (DeVries and Primeau, 2009; Follows et al., 2002). Iron limitation is 
implicitly simulated through its control on the tropical [P], which is used as a control 
variable in our experimental runs.  

We calibrated our model parameters (Tc, Tw, fhd) so that the macronutrients were 1185 
at similar average values comparedbased on thecompared to World Ocean Atlas 2013 
dataset for eachitseach location. We tested the sensitivity of modeled pCO2,atm to the fluxes 
Tc, Tw, and fhd and found that with Tc = 20 Sv and Tw = 5 Sv (values that allowed the 
model to match [P] and alkalinity), the  pCO2,atm was sensitive to the value of fhd 
(S(Sarmiento and Toggweiler, 1984). Guided by values previously used in the literature we 1190 
set fhd to 45.6 Sv (Table 2) but we also present results for the nutrient-only stoichiometry 
model at two extreme values of fhd, 18 and 108 Sv (Figure 4). The functional dependence of 
pCO2,atm with changing subtropical and tropical [P] for each extreme value of fhd was quite 
similar, though the value of pCO2,atm for the high fhd simulation was approximately twice 
that of the low fhd simulation (Figure 4). We found that our value of 45.6 Sv provides a 1195 
modern pCO2,atm value. Although the focus of this study is to determine the impact of low 
latitude biogeochemistrybiogeochemistrys on pCO2,atm,  we point out that at Redfield 
stoichiometry, pCO2,atm increases by 100 ppm when fhd is increased to 108 Sv from its 
default value 45.6 Sv.  

For certain values of the parameters, the model produced excessive nutrient 1200 
trapping in the thermocline. In order to dampen the nutrient trapping, we tuned the 
remineralization depth.  Assuming that 25% of the total export is respired in the 
thermocline with the remaining 75% exported into the deep ocean, produced a better 
match between the modeled and observed [P] in the thermocline box. Total export is made 
from both the stoichiometry of sinking particulate and of primary producers, based on 1205 
Teng et al. (2014) this is a reasonable first order assumption.For certain values of the 
parameters, the model produced excessive nutrient trapping in the thermocline. In order to 
dampen the nutrient trapping, we tuned the remineralization depth.  Assuming that 25% of 
the total export is respired in the thermocline with the remaining 75% exported into the 
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deep ocean, produced a better match between the modeled and observed [P] in the 1210 
thermocline box.  
 
Table 2: High-latitude deep water exchange range 
RANGE OF FHD [SV] SOURCEREFERENCESOURCE 

38.1 (Sarmiento and Toggweiler, 1984) 

3-300 (Toggweiler, 1999) 

60 (DeVries and Primeau, 2009) 

30-130 (Galbraith and Martiny, 2015) 

18-108 (default value 45.6) This Study 

 
 1215 

 
Figure 4: pCO2,atm (ppm) sensitivity to extreme fhd values  under changing surface phosphate 
concentrations.  A.) Range of pCO2,atm (ppm) using an fhd value of 18 Sv. B.) Range of pCO2,atm (ppm) using an 
fhd value of 108 Sv.  1220 
 
2.2.1 Experimental Design 
To address how changing environmental conditions affected stoichiometric ratios, carbon 
export, and pCO2,atm we performed two tests; a change in nutrients and a change in sea 
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surface temperature. These tests allowed us to observe how the relationships between 1225 
environmental conditions, carbon export and pCO2,atm, depend on the mechanisms 
responsible for stoichiometric variation in the ocean. In order to account for the effects of 
particulate inorganic carbon (PIC) export, we multiply model predicted C:Pexport by 1.2, 
consistent with previous studies (B(Broecker, 1982; Sarmiento and Toggweiler, 1984).  

The first set of numerical experiments examined the sensitivity of pCO2,atm to 1230 
nutrient availability in the tropical and subtropical boxes for each of the three 
stoichiometric models. This set of experimental runs was intended to capture the effects of 
changing levels of iron deposition, which could lead to shifts in phosphorus drawdown by 
relieving iron limitation of diazotrophic phytoplankton in subtropical gyres and of bulk 
phytoplankton populations in equatorial upwelling regions.  We varied tropical [P] from 1235 
0.15 to 1.5 μM and subtropical [P] from 1x1001e-3 to 0.5 μM by adjusting the implied 
biological export and determined the equilibrium pCO2,atm values.  

The second set of experimental tests was done to quantify how temperature 
modifies carbon export and pCO2,atm for each stoichiometric model. Temperature influences 
carbon cycling in two ways within our model: through the solubility of inorganic carbon in 1240 
seawater and through changes in phytoplankton stoichiometry within the temperature-
only and multi-environmental models. Due to the well-known effects of temperature on 
CO2 solubility, it is generally predicted that there is to be a positive feedback between 
pCO2,atm and temperature mediated by declining CO2 solubility at high temperaturesT’s. To 
study the relative strengths of the temperature solubility feedback and the temperature 1245 
regulation of C:P feedback, we performed a numerical experiment in which we varied the 
sea surface temperature by five degrees in either direction of modern sea surface 
temperature. This represents a plausible range of variation under both ice-age and 
anthropogenic climate change scenarios. We varied tropical temperature from 21° to 31°C 
and subtropical temperature from 19° to 29°C, determining equilibrium pCO2,atm values for 1250 
combinations of temperature conditions.  

 
3 Results 
To quantify the linkages between phytoplankton physiology, elemental stoichiometry, and 
ocean carbon cycling, we divide our results into two parts. The first is a direct study of the 1255 
stoichiometric models, comparing their predictions about the relationship between 
stoichiometry and environmental conditions, and in the case of the trait-based model, 
illustrating how cellular physiology is predicted to vary across these conditions. In the 
second part, we show how variablevariables stoichiometry influences carbon export and 
pCO2,atm, under changing phosphorus concentrations and temperature. Within these 1260 
results, we distinguish the influence or lack thereof ofofn the three distinct biomes,biomes; 
in particular the iron stressed equatorial upwelling regions and the macronutrient 
depleted subtropical gyres.  
 
3.1 Multi-environmental and physiological controls on plankton stoichiometry  1265 
Our multi-environmental model captured several major mechanisms hypothesized to be 
environmental drivers of C:P ratios including a temperature dependence of many cellular 
processes, a link between growth rate and ribosome abundance, and storage drawdown 
during nutrient limitation. The predicted relationship between environmental conditions 
and C:P can be understood through the environmental regulation of three factors: (i) the 1270 
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balance between photosynthetic proteins and ribosomes, (ii) the cell radius and associated 
allocation to structural material, and (iii) the degree of phosphorus storage. Our model 
predicted that for an optimal strategy, specific protein synthesis rates will match specific 
rates of carbon fixation. Thus, the ratio of photosynthetic machinery to biosynthetic 
machinery is therefore primarily controlled by irradiance and temperature. Increases in 1275 
light levels lead to higher photosynthetic efficiency, higher ribosome content, smaller cells 
(due to a lower requirement for photosynthetic machinery), and lower C:P ratios (Figure 
5). The response of C:P to light levels predicted by our model was muted in comparison to 
other subcellular compartment models because we separately modeled electron transport 
and carbon fixation ((Talmy et al., 2013), and our predictions were consistent with the 1280 
weak relationship between irradiance and C:P (Thrane et al., 2016)(Thrane et al., 2016) 
(Figure 5A).  
 Increases in temperature increase the efficiency of biosynthesis, but not 
photosynthesis (Q10 = 1). Therefore elevated temperature lead to a reduced ribosome 
content relative to photosynthetic proteins and higher C:P ratios (Figure 6A). There leads 1285 
totois a non-monotonic, concave relationship between temperature and cell size, which is 
due to a subtle interaction between biosynthesis efficiency (which varies greatly with 
temperatureT), maintenance costs, and size dependent uptake rates. 
 Nutrient concentrations do not affect the ratio of biosynthetic to photosynthetic 
machinery but positively relate to both P storage and cell radius. Cell radius directly 1290 
influences the specific rate of nutrient uptake, and indirectly biosynthesis and 
photosynthesis as the cell membrane and wall affects the space available for other 
investments. The cell radius will vary with differences in phosphorus concentration, 
temperature and light levels. .  small radiusThis effect becomes pronounced at This effect is 
pronounced iniIn oligotrophic conditions ([P] < 100nM), cell radius declines 1295 
belowsubstantiallybelow 1μm, decreasing the allocations to both photosynthesis and 
biosynthesis and driving up C:P ratios. Much larger values of the cell radius are observed at 
high nutrient concentrations.  
 P concentrations also influenced C:P through their direct control of P storage. We 
plotted the relative contribution of the storage compartment and the functional 1300 
compartment to the P quota, as a function of environmental conditions. The impact of the 
residual pool on the overall size of the P pool is heavily dependent on environmental 
conditions, varying from a minimum of close to 0% to a maximum of just under 50%, for 
the combinations of parameter values used in all of our numerical experiments. In the vast 
majority of the parameter range considered here, the contribution of the residual pool is 1305 
much more modest, 10-20%. High values occur when phosphorus is available and the 
temperature is high. In these conditions, ribosomal contributions are decreased, but the 
residual contribution is high. In cold water, high P ecosystems, the residual contribution is 
approximately 25%, and in oligotrophic ecosystems it is close to 0. Thus, C:P was predicted 
to be a decreasing function of [P] with two distinct regimes: a moderate sensitivity regime 1310 
for [P] above 100nM, and a high sensitivity regime for [P] below 100nM. 
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 1315 
Figure 5: Influence of phosphate concentration and irradiance on cellular stoichiometry and cellular 
traits, at a constant T = 25 °C. A) Cell radius (r). B) P storageStorage (S) allocation. C) Biosynthesis allocation. 
D) Photosynthesis (L) allocation. E) The C:P ratio. As irradiance increases, there is a tendency towards greater 
allocation to biosynthesis and lesser allocation to photosynthesis, which leads to lower C:P ratios. When 
phosphorus is very low, there is a large decrease in both biosynthesis and photosynthesis allocations due to the 1320 
large relative allocation to the cell membrane. C:P ratios are inversely proportional to phosphorus 
concentration, driven by an increase in luxury storage and ribosomal content as P increases. 
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 1325 

 
Figure 6: Influence of phosphate concentration and temperature on cellular stoichiometry and cellular 
traits, at a constant irradiance I = 50𝜇𝜇𝐸𝐸𝑚𝑚−2𝑠𝑠−1. A) Cell radius (r). B) P storageStorage (S) allocation. C) 
Biosynthesis allocation. D) Photosynthesis (L) allocation. E) The C:P ratio. Consistent with the translation 
compensation hypothesis, increases in T led to a reduction in the allocation to biosynthesis and an increase in 1330 
C:P.  
 

We next used the outcome of the trait model as a multi-environmental model to 
predict C:P ratios in the modern ocean based on annual mean light, T, and [P]. Our 
predictions reproduced the global pattern (M(Martiny et al., 2014) with C:P ratios above 1335 
the Redfield ratio in subtropical gyres and C:P ratios below the Redfield ratio in equatorial 
and coastal upwelling regions and subpolar gyres (Figure 7A). Additionally, our model also 
reproduced basin-scale stoichiometric gradients among similar biomes in each ocean, 
predicting the highest C:P ratios in the western Mediterranean Sea and the western North 
Atlantic Subtropical Gyre, and somewhat elevated C:P ratios in the South Atlantic 1340 
Subtropical Gyre as well as the North and South Pacific Subtropical Gyres.   
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Figure 7: Predicted C:P ratios in the global ocean in differing climatic regimes. A) C:P ratio under modern 
ocean conditions. Large differences in C:P are predicted between distinct types of ocean biome, with low C:P in 1345 
equatorial upwelling regions and subpolar gyres, and high C:P in subtropical gyres. Regional differences between 
biomes of similar type are observed as well, with the low phosphorus Atlantic having a higher C:P than the 
Pacific. B.) C:P ratio under cooling temperature conditions (-5°C from the modern ocean). C) C:P ratio under 
warming temperature conditions (+5°C from the modern ocean). Each 5 degree change leads to a shift of 15% in 
the mean C:P ratio of organic matter. 1350 
 

To study the potential impact of sea surface temperature on phytoplankton resource 
allocation and stoichiometry, we used our multi-environmental model to predict C:P in 
ocean conditions both five degrees colder (Cooling environments) and warmer (Warming 
environments) than the modern ocean. According to our model, a five-degree increase (or 1355 
decrease) in sea surface temperature would cause a 15% rise (or fall) in C:P ratios (Figure 
7). This sensitivity suggested that the relative effect of T on biochemical processes could 
have large implications for biogeochemical cycles, making it important to determine the 
relative importance of physiological mechanisms regulating C:P ratios. 
 1360 
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Figure 8: Comparison of C:P between the multi-environmental model and the nutrient-only model and 
temperature-only model. The upper panels show predicted C:P for the global ocean under the nutrient-only (A) 
and temperature-only (B) models, and the lower panels show the normalized difference,𝑚𝑚. 𝑒𝑒. 𝐶𝐶:𝑃𝑃𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙−𝐶𝐶:𝑃𝑃𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑟𝑟

𝐶𝐶:𝑃𝑃𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙
, 1365 

between the C:P in the subcellular model (C, D).  
 
We compared the multi-environmental model to the predictions made by two other 

models: the nutrient-only model used by the Galbraith and Martiny model (2015),(2015), 
and our temperature-only model modified from Yvon-Durocher and co-workers 1370 
(2015).(2015).  These two models also successfully predicted the qualitative pattern of 
stoichiometric variation in the ocean, but were unable to replicate the full range of 
variation observed in the data (Figure 8). In particular, they misrepresented the North 
Atlantic Subtropical Gyre and the Southern Ocean, where the C:P ratio is at the extreme 
(Figure 8A, B). The nutrient-only model had a tendency to predict lower C:P ratios than the 1375 
multi-environmental model in warm tropical and subtropical waters, and predict higher 
C:P ratios in cold waters (Figure 8A). This difference is driven by the T sensitivity of 
biosynthesis in the multi-environmental model, leading to increasing C:P in all warm water 
regions and decreasing C:P in cold water regions (Figure 8C ). The multi-environmental 
model predicted a wider range of C:P in the ocean. The temperature-only model overall had 1380 
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higher C:P ratios globally compared with the multi-environmental model (Figure 8B) but 
suggested lower C:P in the gyres and higher C:P in high latitudes, especially in the Southern 
Ocean (Figure 8D).  

 
3.2 Impact of nutrient availability on carbon export and atmospheric pCO2 1385 
We next quantified the impact of nutrient availability in the tropics and subtropics on 
stoichiometry, carbon export and pCO2,atm (Figure 9A-L). Using a constant Redfield model 
(or the temperature-only model), we replicated the previously observed approximately 
linear relationship between surface [P] and pCO2,atm (equivalent to how pre-formed [P] will 
influence pCO2,atm) (I(Ito and Follows, 2003; Sigman and Boyle, 2000). We found that [P] 1390 
drawdown in the subtropical box had a greater impact on carbon export, since export from 
the high-latitude box was not enhanced by the [P] supply from the subtropical box (Figure 
9A, D, G). In the Redfield model, pCO2,atm appeared to be much more sensitive to subtropical 
[P] than tropical [P], which was partially due to enhanced carbon export in the subtropical 
box and partially due to the larger surface area of the subtropical box (implying a greater 1395 
potential for CO2 exchange) (Figure 9J).  

In contrast to the predictions made using Redfield stoichiometry, when we used the 
nutrient-only model for phytoplankton stoichiometry, we observed a non-linear 
relationship between surface [P] and pCO2,atm (Figure 9B, E, H, K). At fixed tropical [P], 
there was a strong relationship between subtropical [P], export, and pCO2,atm in accordance 1400 
with the findings of Galbraith and Martiny (2015)015) (Figure 9B, E,H). The total decline in 
pCO2,atm as subtropical [P] declined from 0.4 μM to 1x10-3 0 μM could be more than 60 ppm, 
which was more than twice the decline that occurred in the fixed stoichiometry experiment 
(Figure 9K). We found a non-linear monotonic relationship between tropical [P] and 
pCO2,atm: when tropical [P] was high, declines in tropical [P] led to lower carbon export and 1405 
increased pCO2,atm. However, this trend reversed when tropical [P] was lower (Figure 9K). 
The counter intuitive decline in pCO2,atm with higher export from tropics was driven by a 
teleconnection in nutrient delivery between the subtropical and tropical boxes. Increases in 
export in the tropical box due to increased [P] drawdown decreased the supply of [P] to the 
subtropics, which led to a decrease in the more efficient (higher C:P) subtropical export. 1410 
Thus, the nutrient-only model predicted a greater decrease in subtropical export than the 
counter increase in tropical export.  

The multi-environmental model also predicted a non-linear relationship between 
surface P, carbon export, and pCO2,atm. However, the pattern was somewhat distinct from 
that of the nutrient-only model results (Figure 9C, F, I, L). First, subtropical [P] drawdown 1415 
had a nonlinear relationship with pCO2,atm: when subtropical [P] was high, declines in 
subtropical [P] led to slight declines in pCO2,atm, and when subtropical [P] is low, small 
declines in tropical [P] lead to large declines in pCO2,atm. This intensification of the 
relationship between subtropical [P] and pCO2,atm was due to the nonlinear relationship 
between [P] and C:P predicted by the trait-based model (Figure 9I). The multi-1420 
environmental model predicted extremely high export, but only when [P] was lower than 
0.05 μM (Figure 9C, F, I). Second, the effect of tropical [P] levels on pCO2,atm was strongly 
modulated by subtropical [P], reversing from a negative to a positive relationship as 
subtropical [P] declines (Figure 9I, L). The difference between the nutrient-only model and 
the multi-environmental model arose because the multi-environmental model 1425 
incorporated a temperature impact on resource allocation and elemental ratios. Although 
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we were not varying temperature in these experiments, we did represent regional 
temperatures differences between the different boxes. The result is that a large 
stoichiometric contrast between the tropical and sub-tropical regions only arose when 
there was a large difference in nutrient levels between the two regions (Fig. 9L). However, 1430 
both the nutrient-only model and the multi-environmental model predicted that carbon 
export and pCO2,atm were sensitive to the interaction between regional nutrient availability 
and C:Pexport. 
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 1435 
Figure 9: Carbon export (Tmol C yr-1) and pCO2,atm (ppm) in changing surface phosphate concentrations. 
Columns correspond to type of stoichiometry; Redfield (Left), nutrient-only (Middle), and mulit-environmental 
model (Right). Rows correspond to either tropical carbon export (A through C), subtropical carbon export (D 
through F), total carbon export (G through I) or atmospheric pCO2 (J through L). The grey points represent 
where pCO2,atm was calculated, between spaces are interpolated.  1440 
 
3.3 Interactive effect of temperature on stoichiometry, carbon export and 
atmospheric pCO2 
We next quantified the impact of sea surface temperatureT (SST)T in the tropics and 
subtropics on C:Pexport, carbon export, and pCO2,atm (Figure 10A-D). The Redfield model 1445 
predicts that increases in temperatureT lead to a decline in the solubility of CO2 in seawater 
and consequently an increase in pCO2,atm  from 288 to 300 ppm (Δ pCO2,atm = 12) (Figure 
10A). This feedback was present with the same strength in the nutrient-only model (with 
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no T dependence on C:P), in which pCO2,atm ranged from 268 to 280 ppm (Δ pCO2,atm = 12) 
(Figure 10B).  1450 

In contrast to the Redfield and nutrient-only models, the temperature-only model 
predicted a negative linear relationship between pCO2,atm and tropical sea surface T and a 
positive linear relationship between pCO2,atm and subtropical sea surface T (Figure 10C). 
The decline in pCO2,atm with tropical SST sea surface T was driven by an enhancement of 
export due to increased C:P at higher temperaturesT’s (Figure 11). At 5°C below modern 1455 
ocean temperatureT, the model predicted C:P in the tropics was 131 and subtropical was 
121, resulting in a pCO2,atm of 305 ppm. At 5°C above modern ocean temperatureT, the 
model predicts aedpredicted C:P ratio in the tropics ofis 189 and C:P ratio of 175 in the 
subtropicsal subtropical was 175, resulting in a pCO2,atm of 263 ppm. Tropical SSTT had 
more impact with Δ pCO2,atm = 41 ppm compared to subtropical SSTT’s effect with a  Δ 1460 
pCO2,atm  rangingerange from 4 to 5 ppm (Figure 11).  

Similar to the temperature-only model, the multi-environmental model predicted a 
negative linear relationship between pCO2,atm and tropical SST sea surface T and a positive 
linear relationship between pCO2,atm and subtropical SST sea surface T (Figure 10D). The 
decline in pCO2,atm with tropical SSTsea surface T was driven by an enhancement of export 1465 
due to increased C:P at higher Ts (Figure 11). In the subtropical region, the expected 
increase in export was mitigated by a decline in solubility. At 5˚C below modern ocean 
temperatureT, the trait-based model predicted that C:P in the tropics was 147 and that C:P 
in the subtropics was 155, resulting in an increase of pCO2,atm to 279 ppm (Figure 11). 
Variation in tropical SST Ts overinover a 10˚C span led to a significant decline in pCO2,atm, 1470 
with a Δ pCO2,atm of approximately 46, and tropical C:P ranging from 147 to 210 (Figure 
11). Because the subtropical box has a large surface area, the decrease in surface CO2 
solubility at high temperatures is sufficient to overcome the increase in export due to 
higher C:P leading to a positive relationship between pCO2,atm and subtropical 
temperatures.  1475 
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Figure 10: pCO2,atm (ppm) as a function of changing surface temperature concentrations. Based on A) 
Redfield (fixed) stoichiometry model, B) nutrient-only stoichiometry model, C) temperature-only stoichiometry 1480 
model, and D) multi-environmental stoichiometry model. 
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Figure 11: The effect of changing sea surface temperature (°C) on pCO2,atm and total carbon export (Tmol 
C yr-1) in the temperature-only and multi-environmental model. Phosphate concentrations are 0.3 µM in the 1485 
tropical and 0.05 µM in the subtropical box. Multi-environmental model total carbon export is the solid gray line, 
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and pCO2,atm is the dashed gray line. Temperature-only model total carbon export is the solid black line, and 
pCO2,atm  is the dashed black line.   
 
4 Discussion 1490 
Here, we found that variable stoichiometry of exported organic material moderates the 
interaction between low-latitude nutrient fluxes and ocean carbon cycling. A full 
connecting circulation allows for complete movement of nutrients between ocean regions 
resulting in strong linkages between nutrient supply ratios and cellular stoichiometric 
ratios (D(Deutsch and Weber, 2012). It has been shown that the inclusion of an oceanic 1495 
circulation connecting high and low-latitude regions results in a feedback effect between 
high-latitude nutrient export and relative nutrient supply in low-latitudes (S(Sarmiento et 
al., 2004; Weber and Deutsch, 2010). Together, the inclusion of lateral transport between 
ocean regions and of deviations from Redfield stoichiometry within our model led us to 
predict the existence of strong teleconnections between the iron-limited tropics and the 1500 
macronutrient limited subtropics. The degree of nutrient drawdown in the tropics had a 
strongly non-monotonic relationship with pCO2,atm because this drawdown influenced both 
nutrient supply to the subtropics and tropical C:P. The idea of biogeochemical 
teleconnections has been proposed before, but we found that variations in stoichiometry 
greatly enhance the importance and strength of such linkages (S(Sarmiento and 1505 
Toggweiler, 1984). Thus biome-scale variations in phytoplankton elemental stoichiometry 
may change the sensitivity of the carbon pump to iron deposition or  other phenomena that 
regulate patterns of nutrient drawdown. We also see that the degree of nutrient drawdown 
had a strong impact on predicted (and observed) C:P leading to highly non-linear controls 
on pCO2,atm whereby increased export in the tropics counter intuitively leads to increasing 1510 
pCO2,atm. LargeThis observation suggests that pCO2,atm may have a complex link to iron 
delivery that is modulated by macro-nutrient availability and phytoplankton resource 
demand. Thus, Llarge-scale gradients in stoichiometry can alter the regional efficiency of 
the biological pump: [P] supplied to high C:P regions leads to a larger export of carbon than 
[P] supplied to low C:P regions, giving an important role to the details of the ocean 1515 
circulation and other processes that alter nutrient supply and phytoplankton physiological 
responses in different surface ocean regions. Therefore, biome-scale variations in 
phytoplankton elemental stoichiometry can lead to a fundamental change in the 
partitioning of carbon between the atmosphere and the ocean.  

We have created a box model to simulate the impact of the low latitude 1520 
stoichiometric ratios, its environmental controlling factors and its relationships on pCO2,atm. 
Low latitude phosphorus concentrations can be set in one of two fashions; through iron 
limitation and through nutrient availability. Here we will briefly discussion how iron 
limitation could play a significant role on phosphorus concentrations. The biogeochemical 
functioning of tTropical regions are commonly influenced by iron availability  (Coale et al., 1525 
1996; Moore, 2004; Raven et al., 1999) in such a way that macronutrient levels cannot be 
fully drawn down by phytoplankton (Coale et al., 1996; Moore, 2004; Raven et al., 1999). 
The degree of nutrient drawdown has a strong impact on predicted (and observed) C:P. 
This environmental control on C:P could lead to highly non-linear controls on pCO2,atm 
whereby increased export in the tropics leads to increasing pCO2,atm. This relationship 1530 
would differ in the subtropics, where iron is thought to stimulate nitrogen levels through 
nitrogen fixation, an iron exhaustive metabolic process  in such a way that 
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macrophosphorusnutrient levels cannot be fully drawn down by phytoplankton. The 
degree of nutrient drawdown has a strong impact on predicted (and observed) C:P. This 
environmental control on C:P could lead to highly non-linear controls on pCO2,atm whereby 1535 
increased export in the tropics leads to increasing pCO2,atm. This relationship would differ 
in the subtropics, where iron is thought to stimulate nitrogen levels through nitrogen 
fixation, an iron exhaustive metabolic process (Wu et al., 2000). Iron’s potential control on 
nitrogen fixation could promote higher carbon fixation and further exported stoichiometric 
ratios in the subtropical regions leading to increasing pCO2,atm (W(Wu et al., 2000). Iron’s 1540 
potential control on nitrogen fixation could promote higherincreases in both carbon 
fixationexport and further exported stoichiometric ratios in the subtropicalpCO2,atm.may differ, 

could it In essence iron’s role in the low latitude regions leading to increasing pCO2,atm (Wu et al., 2000)., 
though Thus, iron availability may play a complex role depending on whether there is an 
increased delivery in upwelling zones (leading to a potential declining global C export) or 1545 
in the subtropical gyres (leading to a potential increase in global C export).rt these ideas 
and the implementation of explicit iron concentrations within models could provide 
stronger results to that seen in this study. It is our belief that further research is needed to 
fully suppo  

Past studies using box models have found pCO2,atm to be insensitive to low-latitude 1550 
nutrients (F(Follows et al., 2002; Ito and Follows, 2003; Sarmiento and Toggweiler, 1984; 
Toggweiler, 1999). This phenomena was explored by DeVries and Primeau (2009),(2009), 
who showed that the strength of the thermohaline circulation is the strongest control on 
pCO2,atm, and that changes in low-latitude export are relatively unimportant. Unlike our 
study, such earlier work relied on a uniform Redfield stoichiometry. However, we find that 1555 
when stoichiometric variation is included, carbon export and pCO2,atm become dependent 
on details of low-latitude processes.  

It is important to recognize that a five-box model is an incomplete description of 
ocean circulation, and is meant only to identify the most important mechanisms, not to 
make precise quantitative predictions. In order for our model to adequately reflect 1560 
important features of the carbon and phosphorus nutrient distributions, we had to 
carefully select the values of the thermohaline and wind-driven upper ocean circulations 
that lead to reasonable nutrient fluxes and standing stocks. The value of thermocline 
circulation, Tc, has been calibrated in different box models to range from 12 to 30 Sv 
(D(DeVries and Primeau, 2009; Galbraith and Martiny, 2015; Sarmiento and Toggweiler, 1565 
1984; Toggweiler, 1999). Representation of the wind driven overturning, Tw, in a simple 
box model has received less attention. Variations in the thermohaline circulation influence 
the abundance of nutrients in different boxes. Depending on the strength of this circulation, 
our model accumulated nutrients in the thermocline box and we tuned this parameter to 
most accurately mimic nutrient variation across ocean regions. Another caveat relates to 1570 
our choice of the two-way flux values. Similar to the circulation values, a wide range of two-
way flux values have been used in the literature. We therefore performed sensitivity 
experiments to find the best value for our full model set-up but the qualitative trends 
observed are insensitive to the choice of such fluxes. 

Nutrient availability and temperature have been alternatively proposed as drivers 1575 
of variation in stoichiometric ratios in the global ocean, and the strong statistical 
correlation between temperature and nutrients throughout the ocean has prevented 
identification of the relative importance of each factor (Martiny et al., 2013 Nat Geo, 
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Moreno and Martiny, 2018).. We see that although temperature regulation of C:Pexport can 
influence pCO2,atm, this regulation is strongly dependent on the detailed control mechanism 1580 
and also generally diverge from expectations based on the solubility pump. The decrease in 
surface CO2 solubility at high elevated temperatures is sufficient to overcome the increase 
in export due to higher C:P leading to a positive relationship between pCO2,atm and 
subtropical temperatures.  It is important to point out that the relative importance of the 
two competing effect depends critically on the physical circulation of the ocean. Predicted 1585 
increases in stratification are often invoked as a mechanism that would decrease the 
vertical supply of nutrients, which one might think would further compensate for the effect 
of higher C:P. However, the strength of the biological pump in the subtropics is also 
influenced by lateral transport of nutrients (Letscher et al., 2015) socontrolled the by 
lateral transport of nutrients rather than by vertical exchange is also influenced by lateral 1590 
transport of nutrients (Letscher et al) so that the impact of increasing stratification might 
not be importantso we argue that it is unclear if you should expect increasing, unchanged 
or decreasing C export in low latitude regions with ocean warming and stratification.  
Similarly, it is unclear how increases in stratification might affect the strength of the 
solubility pump. The sensitivity of pCO2,atm to changes in subtropical surface temperatures 1595 
depends critically on the volume of the ocean ventilated from the subtropics, i.e. on the 
volume of the thermocline box in our model. How this volume might change in response to 
a warming world is a complicated dynamical problem that is beyond the scope of the 
present work.  

Our results do not identify whether temperature or nutrient concentrations is the 1600 
most important driver of phytoplankton C:P, but do suggest that the physiological effect of 
temperature could be important for ocean carbon cycling. Both the temperature-only and 
multi-environmental models predict that temperature increases enhance tropical export, 
causing substantial decreases in pCO2,atm with temperature. This relationship is the reverse 
of that predicted by the nutrient-only and Redfield models, and represents a sizable 1605 
potential negative feedback on carbon cycling. The multi-environmental model also 
predicted that C:P responds in a nonlinear fashion to [P], with significantly increased 
sensitivity in highly oligotrophic conditions. Thus, aA deeper understanding of the 
physiological mechanisms regulating phytoplankton C:P ratios are thus key to 
understanding the carbon cycle.  1610 

Our derivation of the multi-environmental model relies on several important 
assumptions. The growth rate in the multi-environmental model is determined by a set of 
environmental conditions and quantified by the specific rate of protein synthesis, carbon 
fixation and phosphorus uptake. The effect of growth rate on stoichiometry will likely be 
dependent on whether light, a specific nutrient, or temperature controls growth. The value 1615 
of specific species of Q10 leads to uncertainty in our multi-environmental model because of 
the range of possible values is highly dependent on the cell or organism being tested. In a 
study examining Q10 of various processes within the cell, it was found that the Q10 of 
photochemical processes ranged from 1.0 to 2.08, and for carboxylase activity of RuBisCO 
to be 2.66 (R(Raven and Geider, 1988). In addition to the high uncertainty between Q10 1620 
values, there is high ambiguity associated with cellular inorganic P stores (e.g., 
polyphosphates and phospholipids) (K(Kornberg et al., 1999). P storage, such as 
polyphosphates, can serve as both energy and nutrient storage that may be regulated by 
unique environmental factors. Finally, we assume that our choice of the value of Q10 for 
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each metabolic process is a potential source of error within our model, because measured 1625 
values are highly dependent on the cell or organism being tested, and it is difficult to 
extend these single-organism observations across species.  Thus, we recognize multiple 
caveats within the trait-based model but expect that it improves our ability to link 
environmental and phytoplankton stoichiometry variation. 
 1630 
5 Conclusions 
We find that processes that affect nutrient supply in oligotrophic gyres, such as the 
strength of the thermohaline circulation, are particularly important in setting pCO2,atm but 
via a complex link with C:Pexport. By explicitly modeling the shallow overturning circulation, 
we showed that increased export in the tropics, which might be influenced by increased 
atmospheric iron dust deposition, may lead to increases, rather than decreases, in pCO2,atm. 1635 
Increased [P] drawdown in the tropics shifts export away from the subtropical gyres, and 
changes the mean export C:P in the low-latitude ocean. We would expect that nutrient 
drawdown leads to high export and declines in pCO2,atm, but instead we find that variation 
in cellular allocation and adaptation can lead to counterintuitive controls on pCO2,atm. 
Additionally, we find that it is even more difficult to separateseparateing nutrient supply 1640 
and temperature controls on marine phytoplankton stoichiometry, carbon export, and 
pCO2,atm and we need better physiological experiments and field data to fully understand 
the relative impact of the two factors. Nevertheless, it is likely that both play a key role in 
regulating phytoplankton stoichiometry, C:Pexport, and ultimately ocean carbon cycling.   
 1645 
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