We thank the Associate Editor and reviewers for their time in reading our manuscript and have a
full detailed response to each comment. Lastly, we have our revised manuscript. We hope that
our manuscript is strong, organized and well representative of our study.

5Dear Authors,

While | feel that your manuscript has improved by addressing the previous reviewers comments,
the third reviewer has raised a few additional points, mostly concerning the presentation that I
would like you to consider.

10
Best regards,
Katja Fennel

OUR RESPONSE

15>>> In order to address this commentary from Reviewer #3, we have switched the order of our
second section to improve the overall organization and flow of the manuscript, and have edited
Figure 8C and D to be easier for colorblind individuals to read. Additionally, we have included
the five box model equations to the second section and posted the multi-environmental model on
GitHub (https://github.com/georgehagstrom/-bg-2017-367-/blob/master/CP.m).

20
We gratefully thank Referee #3 for their time, constructive comments, and suggestions to our
manuscript. Below we have a detailed response to each comment posed by Referee #3. We have
amended the manuscript in hopes that it will be much improved and our study presented clearer.

25Anonymous Referee #3
Received and published: 29 March 2018

This manuscript has already gone one round of review and revision. | generally agree with the
comments by the previous reviewers. The comments below mostly concern the presentation of
30this work, not the scientific substance.

1) A complete set of model equations is missing and should be added, especially for the 5-
ocean box model framework and the new multi-environmental model. While many
descriptions for the former and parameterizations of the latter are given in sections 2.1.4

35 and 2.2, none of the full model equations are given. This makes it really hard for the
reader to grasp how the model actually works. I certainly don’t feel I could reproduce
what was done based on the information provided.

OUR RESPONSE
>>> |n order to address this we have added the 5-ocean box model equations within the

40 model description section. We amended the model description to add in the equations as
follows: “The conservation equations of phosphorus are as follows:

dt VT




dps_(PT_Ps)TC+(PT_P5)TW_(C+d)PS

dt Vs
dPH_(PS_PH)'TC+(PD_PH)'fhd_Ph
dt VH

45
dPM_(PD_PM)'TC+(PS_PM)'TW+a'Pt+C'PS
dt VM

dPD_(PH_PD)'TC+(PH_PD)'fhd+Ph+b'Pt+d'PS
dt VD

where P represents the concentration of phosphorus at a specific box, a and c represents
0.25 remineralization, b and d represents 0.75 remineralization, and V represents the
50  volume of the specified box.”

In terms of the multi-environmental model, our description does have many of the
parameterizations of the model. As such we have placed the full model equations on

GitHub (https://github.com/georgehagstrom/-bg-2017-367-/blob/master/CP.m) for

55  those interested in recreating the model.

2) It would also be more logical to me if the order of the first part of section 2.2 (the text
describing the box model) and section 2.1 was switched. The current section 2.2.1 could
follow on from the current 2.1.
60 OUR RESPONSE
>>>We agree that switching the model description sections provides a better flow in the
manuscript. As such, we have moved section 2.2 to be first followed by section 2.1 and 2.2.1
(now 2.3).

65 3) Similar to Reviewer 1, I’m concerned about the complete omission of N in the model.
I’m not sure the response adequately addresses this concern. | would be more
comfortable if the authors acknowledged that variability in N could affect the results.
They seem to do so in the response, but not in the modified manuscript.

OUR RESPONSE

70  >>>This is a very important point. As stated previously, readers need to understand our
reasoning for omitting N in the model. To make this point clear and more explicit we have
added more information to our choice of omitting N.

We have amended the manuscript to better represent this change in the following way:

75  “Phosphorus is used to represent the role of nutrient availability in controlling stoichiometry
and C export. We chose this over N because on long time-scales, P is commonly considered
the ultimate limiting nutrient whereas N is only limiting productivity and export on short
time-scales (Tyrrell, 1999). On long time-scales, nitrogen fixation/denitrification will
presumably adjust the N inventory. Our modeling is focused on long term steady-state

80  outcomes and we would like to avoid issues associated with modeling the N cycle (like
getting N-fixation and denitrification rates correct). Thus, we chose to use P as a


https://github.com/georgehagstrom/-bg-2017-367-/blob/master/CP.m

representative for nutrient availability representing the long-term steady-state
biogeochemical equilibrium.”

85Minor comments:
4) Line 54: “flu” should be changed to “flux”
OUR RESPONSE
>>> We changed this in the document.

90 5) The color choices in the color Figures, especially in Fig 8 C and D are not good for
colorblind readers. Suggest the authors pick something better.
OUR RESPONSE
>>> Thank you for the suggestion. We have modified Figure 8C and D so that it is easier for
color blinded individuals.
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Abstract

Marine phytoplankton stoichiometry links nutrient supply to marine carbon export.
Deviations of phytoplankton stoichiometry from Redfield proportions (106C:1P) could
120therefore have a significant impact on carbon cycling, and understanding which
| environmental factors drive these deviations may reveal new mechanisms regulating the
carbon cycle. To explore the links between environmental conditions, stoichiometry, and
| carbon cycling, we compared four different models of phytoplankton C:P: a fixed Redfield
model, a model with C:P given as a function of surface phosphorus concentration ([P]), a
125model with C:P given as a function of temperature, and a new multi-environmental model
that predicts C:P as a function of light, temperature, and [P]. These stoichiometric models
were embedded into a five ocean circulation box model, which resolves the three major
ocean biomes (high-latitude, subtropical gyres, and tropical upwelling regions). Contrary to
the expectation of a monotonic relationship between surface nutrient drawdown and
130carbon export, we found that lateral nutrient transport from lower C:P tropical waters to
high C:P subtropical waters could cause carbon export to decrease with increased tropical
nutrient utilization. It has been hypothesized that a positive feedback between temperature
and pCO2,amm will play an important role in anthropogenic climate change, with changes in
the biological pump playing at most a secondary role. Here we show that environmentally
135driven shifts in stoichiometry make the biological pump more influential, and may reverse
the expected positive relationship between temperature and pCOzam. In the temperature-
only model, changes in tropical temperature have more impact on the A pCO2atm (~-41
ppm) compared to subtropical temperature_ changes (~4.5 ppm). Our multi-environmental
model predictedpreducedpredicted a decline in pCO2atm of ~46 ppm when temperature
140spanned a change of 10°C. Thus, we find that variation in marine phytoplankton
| stoichiometry and its environmental controlling factors can lead to non-linear controls on
pCO2am, suggesting the need for further studies of ocean C:P and the impact on ocean
carbon cycling.
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1 Introduction
The discovery of large-scale deviations of phytoplankton stoichiometry from the Redfield
| ratio in the past decade (M(Martiny et al., 2013a, 2013b; Weber and Deutsch, 2010) has
significant consequences for our understanding of the biological carbon pump and global
1%0carbon cycling {(Galbraith and Martiny, 2015; Moreno and Martiny, 2018). Traditionally
the biological pump is thought to be controlled by a combination of the vertical nutrient

flux and nutrient utlllzatlon eff1c1encv #aLse—knew—a—a&eleme&tal—s%ewheme&ﬂ

15 SFelated—t&elemeﬂ%al—smwmeme%Fv%—@(Sarmlento and Toggweller 1984) EV1dence that

elemental stoichiometry is variable thus adds a new dimension to the biological pump, and
may lead to hlgher than currentlv exnected carbon export in subtromcal reglons E%deﬂee

1€ Obiole 2 am bo h
ea%beﬂ—e*pe%t—[& J:m—s&btPepJ:ea-l—Png‘eas—E(Emerson 2014 Tanloka and Matsumoto
2017; Teng et al,, 2014). Global carbon export has been estimated to range between 5 and
12 Pg C/year {B(Boyd and Trull, 2007; Henson et al., 2011), but these projections have yet
to incorporate the environmental controls on C:Pexpore. Variation in C:Pexpor: from Redfield
165proportions can be linked to environmental conditions. There are two leading
environmental parameters thought to control C:Pexort; nutrients, predominantly phosphate
concentrations, and temperature. Galbraith and Martiny used a simple three-box model to
show that variable stoichiometry driven by phosphate availability could enhance the
; efficiency of the biological pump in the low-latitude ocean {&(Galbraith and Martiny, 2015).
170In contrast, Yvon-Durocher and co-workers_ (2015) used a meta-analysis of global
temperature and stoichiometric ratios to propose that C:P increased 2.6-fold from 0° C to
30° C. Thus, it is unclear if differences in nutrient supply, temperature, or some
combination of them, control the global variation in C:P of plankton and exported material.
There are two important ingredients missing from published studies that could alter
175the interactions among phytoplankton stoichiometry, carbon export, and atmospheric
| pCO2 (pCO2,atm). The first is the presence of two distinctuniquedistinet low-latitude biomes,
namely the equatorial upwelling regions and the macronutrient-depleted subtropical gyres.
In direct observations and inverse model analyses, these two biome types appear to have
unlque elemental composmons wh+eh4eads—te¥e¥atwely—umeased—mte&ef—e%q&e¥t—£mm
v a A sions{P(DeVries and Deutsch,
2014 Martlny etal, 20133 Teng et al 2014) Thus in order to properly represent global
variations in surface plankton C:P and carbon export, it is essential to separately model
beth macronutrient-limited subtropical gyres and -iren-limited-equatorial upwelling zones.
The second missing ingredient is that environmental factors beyond nutrient
185availability may impact the elemental composition of surface plankton and C:Pexpore.
| Temperature, irradiance, and nutrient concentrations are all important environmental
factors, which influence the physiology and stoichiometry of phytoplankton. However,
surveys of phytoplankton C:P are insufficient to distinguish between-the separate effects of
each factor on C:P due to strong environmental covariance. Cellular -traittrait-based
190models use detailed studies of phytoplankton physiology to determine how phytoplankton
| cells should allocate their resources as a functionfunetional of environmental conditions,




allowing us to model the interactive influence of temperature, nutrient concentrations, and

| irradiance on C:P ratios {€(Clark et al., 2011; Daines et al., 2014; Shuter, 1979; Talmy et al.,

14

2(

2(

2]

2014; Toseland et al,, 2013). Numerous physiological mechanisms have been proposed to
Sexplain variation in phytoplankton stoichiometry, including growth rate {S(Sterner and
Elser, 2002), photoacclimation {£(Falkowski and LaRoche, 1991; Geider et al., 1996;
Leonardos and Geider, 2004, 2005), nutrient-limitation responses {G(Garcia et al., 2016;
Goldman et al,, 1979; Rhee, 1978), and temperature acclimation {R(Rhee and Gotham,
1981; Toseland et al., 2013; Yvon-Durocher et al., 2015). Through incorporation of such
Ophysiological responses, a trait-based model has revealed that differences in ribosomal

content and cell size between warm-water, oligotrophic environments and cold-water

eutrophic environments are important mechanisms driving stoichiometric variation in the
ocean (Daines et al., 2014). Thus, linking biome-scale variations in environmental

conditions with a detailed trait-based model of phytoplankton resource allocation and
5elemental composition may enable us to more fully explore interactions among multiple
ocean environmental eenditiensfactors, the biological pump, and pCO2.atm.

5 Here, we create a five ocean circulation box modelfive-bex-medel, incorporating the
three major ocean biomes, to study the feedback effects of variable stoichiometry on
carbon export and pCO2am. We will explicitly address the following research questions: (1)
How does environmental variability influence marine phytoplankton cellular allocation
strategies and in turn the elemental stoichiometric ratioy? (2) What are the effects of

220changing environmental conditions on stoichiometric ratios, carbon export, and pCOz,atm?,
| and (3) What is the influence of the environmental gradients-conditions among the three

21

23

23

major surface biomes on carbon export and pCOzatm?

2 Methods

52.1 Box Model Design /{Formatted: Font: +Headings (Cambria)

To quantify the feedbacks between phytoplankton stoichiometry, carbon export, and

pCO.2.atm, we formulated a five-box ocean circulation model of the phosphorus and carbon /[Formatted: Font: +Headings (Cambria)

cycles in the ocean coupled to an atmospheric box. The foundation of our model is based on \[Formatted: Font: +Headings (Cambria)

the models introduced in Ito and Follows (2003) and DeVries and Primeau (2009).
OPhosphorus is used to represent the role of nutrient availability in controlling
stoichiometry and C export. We chose this over N because on long time-scales, P is
commonly considered the ultimate limiting nutrient whereas N is only limiting productivity
and export on short time-scales (Tyrrell, 1999). On long time-scales, nitrogen
fixation/denitrification will presumably adjust the N inventory. Our modeling is focused on
5long term steady-state outcomes and we would like to avoid issues associated with
modeling the N cycle (like getting N-fixation and denitrification rates correct). Thus, we

chose to use P as a representative for nutrient availability representing-theatlong-term ~__{ Formatted: Font: +Headings (Cambria)
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steady-state biogeochemical equilibrium. The model includes three surface boxes, each
corresponding to one of the major biomes: the tropical equatorial upwelling regions
10(labeled T), the subtropical gyres (labeled S), and the high-latitude regions (labeled H)
(Figure 1). We define the oligotrophic subtropical gyre regions where the mean annual
hosphate concentration is less than 0.3 uM (Teng et al., 2014), with the remainder of the
surface ocean assigned either to box T or- box H based on latitude. We use these
assignments to calculate the baseline physical properties of each region, including mean
15annual averaged irradiance and temperature. The subsurface ocean is divided into two
regions: the thermocline waters that underlies the subtropical gyres and the equatorial
upwelling regions (labeled M), and deep waters (labeled D) (DeVries and Primeau, 2009).
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Figure 1: Box Model Design. A) Sea surface breakdown by region. All peach-colored regions represent the
Otropical surface ocean box, the cream-colored regions represent the subtropical surface ocean box, and grey
regions represent the high-latitude surface ocean box. B) The model includes tropical (T), subtropical (S), and
high-latitude (H) surface ocean boxes, a mixed thermocline (M) box, and a deep water (D) box. The thermohaline
circulation Tc is set to 20 Sv, while the wind driven shallow overturning circulation is set to 5 Sv. The high-
latitude mixing flux fhd is set to 45.6 Sv. The thickness of Box H is 1000 m, and Box M is 900 m. Box T has a

Stemperature of 26°C, box S has a temperature of 24°C, and box H has a temperature of 7°C. Box S covers 39%
and Box T covers 25% of the ocean surface area, /(Formatted: Font: +Headings (Cambria), 10 pt J
A /(Formatted: Font: +Headings (Cambria) j

To simulate the global transport of water between boxes, our model includes a
thermohaline circulation (Jabeled-Tc) that upwells water from the deep ocean into the
Otropics, laterally transports water into the subtropics and high-latitudes, and downwells
water from the high-latitude region to the deep ocean. Surface winds produce a shallow

overturning circulation (Jabeled-Tw), that transports water from the thermocline to the

tropics and then laterally into the subtropics. These circulations create teleconnections of

nutrient supply in the surface ocean boxes. A bidirectional mixing term that ventilates the
5deep box directly through the high-latitude surface box (labeled-fhd) represents deep

water formation in the Northern Atlantic region and around Antarctica (Sarmiento and
Toggweiler, 1984). The parameters Tc, Tw and fhd are considered adjustable parameters,
which we calibrate using phosphate data from WOA13 (Garcia et al., 2014). In order to
simulate the movement of particles, we included export fluxes (Pt, Ps, and Ph) of organic

f0phosphorus out of each surface box. The conservation equations of phosphorus are as A Formatted: Font: +Headings (Cambria)
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follows:
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where C represents the concentration of total carbon in a specific box , Sol is the solubility +—— Formatted:
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Figure 2: pCOz.q:m_(ppm) sensitivity to extreme fhd values under changing surface phosphate
335concentrations. A.) Range of pCO . (ppm) using an fhd value of 18 Sv. B.) Range of pCO .4um (ppm) using an

fhd value of 108 Sv.

2.2% Stoichiometric Models

340To quantify and understand the feedbacks between carbon export and pCOzam, we

embedded four stoichiometric models into our five--ecean-—cireulation-box ocean circulation

modclfive bex-oceanmedel. [LochWeinecluded four distinet stoichiometric models-to

ealewlate C:Pewors-eEach model differsdifferof-which-differss according to itstheir

complexity and how much environmental information they utilize. These are a static

345Redfie1d model that assumes that C:Pexpor: is-a-constant acrossfunetion-ofacress
environmental conditions, a nutrient-only model that uses surface [P] to predict C:Pexport
(from Galbraith and Martiny, 2015), a temperature-only model that uses T to predict
C:Pexport (modified from Yvon-Durocher et al.,, 2015, and a multi-environmental model that
uses light, T, and [P] to predict C:Pexport

350

| 2.21.1Static Redfield Model
Our control model uses a static Redfield stoichiometry. The Redfield ratio is based on an
average value of organic carbon to phosphorus of 106:1.

3$52.;1.2 Nutrient-Only Model
The nutrient-only stoichiometric model expresses phytoplankton C:P as a function of the
ambient phosphate concentration:

A > - 1 + ‘/{Formatted Table
‘ P =TT+ [P P (1)

where the parameters k = 6.9x10"3——=uM-1and [P], = 6.0x10 3} —=-6——were
obtained by regressing the reciprocal of C:P onto [P] {&(Galbraith and Martiny, 2015).

360
| 2.21.3 Temperature-Only Model
The temperature-only stoichiometric model expresses phytoplankton C:P as a function of
temperature:

| In(C:P) = (T — 15°C) + b, (28) +——{ Formatted Table
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where the parameters IT = 0.037/°C9-037/€> and b = 5.5938 (Yvon-Durocher et al.,
3652015)¥ven-Purecheretal;2015}). The temperature-only model was created to determine

the temperature responses of log-transformed C:P ratios centered at 15°C.

2.12.4 Multi-Environmental Model
We created a multi-environmental model which predicts how cell sizesizeularradius,
370biomass allocations to biosynthesis and photosynthesis, and C:P ratios vary with
temperature, light levels, temperature, and phosphorus concentrations. The multi-
environmental factor model was derived from a non-dynamic physiological trait-based
model. We used a theoretical cellular-allocation trait model based on phytoplankton
physiological properties that divides the ‘cell’ into several functional pools
375whichineludingwhich represent cellular investments in biosynthesis, photosynthesis, and
structure, and a storage pool, which represents variations in the level of P-rich molecules
such as polyphosphates (full model equations can be found on GitHub:
https://github.com/georgehagstrom/-bg-2017-367-/blob/master/CP.m). The functional
Dools are composed of biological macromolecules such as ribosomes, proteins,
ellmenr e e e ge carbohydrates and lipids;
2 abiremele 2 S5 4 ids: The model predicts
the size of each pool asa functlon of llght T and [P]. The size of each functional pool is
modeled by using subcellular resource compartments, which connect the fitness of a
hypothetical phytoplankton cell in a given environment to its cellular radius and the
385relative allocation of cellular material to photosynthetic proteins, ribosomes, and
biosynthetic proteins. We assume that real phytoplankton populations have physiological
behaviors that cluster around the strategy that produces the fastest growth rate in each
environment {N(Norberg et al,, 2001), and use the stoichiometry of this optimal strategy to
model the elemental composition of cellular material (Figure 11).
390 Phytoplankton can accumulate large reserves of nutrients that are not immediately
| incorporated into the functional components of the cell {B(Diaz et al., 2016; Mino et al.,
1998; Van Mooy and Devol, 2008; Mouginot et al.,, 2015). This storage capability varies
among phytoplankton species, and depends on the particular nutrient under consideration:
the cost for storing physiologically relevant quantities of nutrients is low for nutrients with
395low quotas such as phosphorus, in comparison to nitrogen and carbon. Thus, the
phosphorus storage is assumed highly plastic in comparison to carbon storage (M(Moore et
al,, 2013). Further, —~we assume that each cell dedicates a fixed fraction of its biomass to
carbon reserves, and focus our modeling efforts on the variability of the stored phosphorus
pool. To predict the size of the storage pool, we assume a linear relationship between
400stored phosphorus and ambient environmental phosphorus levels and used statistical
| modeling of an oceanic C:P dataset {M(Martiny et al., 2014) to calculate the constant of
proportionality. The result is a relatively simple model that both qualitatively and
| quantitatively predicts the variation of C:P in phytoplankton-threugheutthe-oceans.
Phytoplankton physiology is modeled through allocations of cell dry mass to three
405distinct pools: structure (S(r)), biosynthesis (E), and photosynthesis (L). Allocations satisfy:

(93)

1=S(r)+E+1L, **f*‘[ Formatted Table

where the variables S, E, and L represent the specific allocations of cellular biomass.
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| Figure 31: Diagram of physiological model. Phytoplankton strategies are represented in a two-dimensional
410strategy space (E, r). Each strategy is assigned a fitness in each environment using physiological principles, and
the strategy with the highest fitness is selected to represent the local population. The stoichiometry of cellular
components is used to calculate the stoichiometry of the functional pools in the cell.

The specific allocation of biomass to the cell membrane is inversely proportional to
415the cell radius (%) f€(Clark et al., 2011), which accounts for the changing relative volume of

the cell -membrane with radius. The structure pool includes the cell membrane plus wall
and other components (¥), which are not related to photosynthesis or biosynthesis and is
given by:

(1 0 4_) «,///[ Formatted Table

a
S(r)=—+7.
() ~ty

In an environment specified by T, [P], and light level (I), the growth rate of a cell using a
420given strategy is the minimum of the following growth rates:

‘ u = min(ug, U, Up). (115) **f*‘[ Formatted Table

Here pg is determined by the specific rate of protein synthesis, y; is determined by the
specific rate of carbon fixation, and yp is determined by the specific rate of phosphorus
uptake, or:

425

_ frLD=-2u(T) _ 1 Vin (1) [P] «/{ Formatted Table

Ug = kE(T)EI Uy = 1+og yHp = Qp(1.E) KP(T)+[P]' (26)

We assume that part of the energy captured by a cell via photosynthesis is used for
maintenance (@,,), whereas the rest is used to drive the synthesis of new macromolecules
(@s), so that a cell growing at rate y; is in energy balance. The efficiency of biosynthesis kg
and the carbon cost of maintenance @, are functions of T, whose dependence is modeled

4$Ousing Q10 = 2.0 £¥(Van Bogelen and Neidhardt, 1990; Broeze et al., 1978; Shuter, 1979).
Uptake is regulated by a Monod function with kinetic parameters depending on the radius
through the allometric scaling relationships derived from measurements of phytoplankton

| populations (Edwards et al., 2012){Edwards-etal;2012}:

«*f*{ Formatted Table

= bp = bk
‘ Vi, (r) = apr®?, Kp(r) = agr’k. (137)
. . . . . . Formatted: Font: (Default) +Headings
4:?5:1‘1’115 use of allometric scaling relationships departs from the conventions adopted by /{ (Cambria)
Shuter (1979){Shuter; 1979 Shuter; 1979 Shuter, 1979 Shuter; 19793 or Daines et /,/[ Formatted: Font: +Headings (Cambria)
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20143} (Bainesetal; 20443, who assume that uptake rates are diffusion-limited.
{26343 -whe-assume-that-uptakerates-are-diffusion-tmited-

10 The phosphorus quota for functional elements of the cell (thus not including any Formatted: Font: (Default) +Headings

storage) is determined by the allocation to biosynthesis E and the percentage_ppy 4 of (Cambria)
cellular dry mass allocated to DNA:

(agE Py, + PonaPona) ‘/{ Formatted Table

Qp biosynthesis (E T)Q—GE—?%— 71'7' pcellpdry 31 . (Mg)

Here, we assume that there is no contribution to the functional-apparatus P quota from

15phospholipids, which instead is-are merged with storage molecules. This differs from
Daines et al. (2014).£2644); who assumes that phospholipids occupy 10% of the cell by
mass. Phytoplankton can substitute sulfoquinovosdiaglycerol (SQDG) for phospholipids in
their cell membranes under low P conditions (Van Mooy et al., 2009). Similarly, P storage
molecules are also regulated by P availability. Thus, we here-assume thattreat

ODhothollmds and P- storagee*h+b+&the—same—behawe%aﬂd—th&s—mede¥w+se—tpeated as one

The function fp is the cellular—mpb&ng—that—m&aapmp#meéﬁmmﬂauy—tpeat—them

togetherwith-thestoragepook

5 The funectionf-is-the response of the-cel-to light levels, and is chosen to capture the Formatted: Font: (Default) +Headings

effects of both electron transport and carbon fixation on photosynthesis, and is closely (Cambria)

related to a previous model -derived by Geiderand Talmy(Talmy et al., 2013){Falmy-etal; —{ Formatted: Font: +Headings (Cambria)

204 (Talmy-etal 204 Talmy-etal 204 { Falmy-etal; 20449, This prior model

included four compartments: electron transport, carbon fixation, photoprotection, and

Oblosynthesw %Ww%ew%w—e%al—%@%wmedekmehﬂed—m

Formatted: Font: +Headings (Cambria)

or greatly changing component of their allocations. We therefore do not include this within
our model due to its high complexity with little qualitative results. Our biosynthesis was
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The d—Onthe-otherhandtThedecomposition of photosynthesis into light

harvesting and carbon fixation components is critical, and makes our model predictions

10agree much better with experiments studying the variations of C:P or N:P ratios with

irradiance. Models that do not have this decomposition predict too large efa decrease in
cellular allocations to photosynthesis at high--light levels. In a two- compartment model,
increases in allocations to carbon fixation cause the overall allocation to light harvesting to
have a more mild decrease. The two-compartment treatment also seems more

T5physiologically realistic than a 1-compartment treatment, which only models

photosynthetic pigments. Thus, we used the functional forms and parameters that were

derived (experimentall reviouslyi i for carbon -fixation and light

harvesting (Talmy et al., 2013).
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| Our model interprets the-light harvesting allocation, L, as being composed of
480proteins dedicated to carbon fixation (F;), such as RuBisCO, and proteins dedicated to
| lighteleetrontranspertlight harvesting (F,), such as photosynthetic pigments. The rate of
photosynthetic carbon fixation is a function of the allocations to each of these, which satisfy
Fi + F, = L. The relative allocations together determine the overall photosynthetic rate:

. —apn Py Fol Formatted Table
Prax = mln(lel,kZFZ)' fp = Bnax <1 — exp <p—>> (159) ‘/[

Pmax

485For a given I and L, there is a pair of values (Fl,opt' leopt) that maximize the photosynthetic
rate f,,. We estimate the photosynthetic rate f,,(L, I) under the assumption that cells
assume the optimal allocations to carbon fixation and electron transport. This-Our model
departs from the models developed by Shuter {19793}(1979) and Daines et al.
(2014).£26443; which assume that energy acquisition is a linear function of light levels;
490with leading to functional responses linearly proportional to the cellular investment in light
harvesting proteins.

We model photosynthesis as having a Qi0=1, which is consistent with physiological
studies going back to Shuter (1979)1979 that suggest that photosynthetic efficiency does
not depend on temperature over physiologically relevant ranges. The discrepancy between

495photosynthetic and biosynthetic temperature dependence has traditionally been explained

by referring to the differences in the chemistry and physics of the two processes. The

electron transport chain relies on quantum mechanical processes, which are unaffected by

variations in temperature in a physiologically relevant range (Devault, 1980). Required

maintenance respiration rates are also modeled as having a Q10=2.0- (Devault,

5001980 . Required maintenance respiration rates are also modeled as havin
aQ10=2.0.

We model the phytoplankton community residing in a given environment by
assuming it consists solely of the phytoplankton type using the highest growth rate
strategy in that environment. This strategy is found by solving for the values of-r and
505F #and- Ewhich-that make

U= U, = Up = Ug 106 %/——[Formatted Table
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We will now show that under two assumptions that will be true in nearly any realistic
situation, a strategy maximizing ¢ always exists, is unique, and satisfies 4 = y; = pup = g
('Fhebastestuntionisdepieatedintfioure 42) <

5

The function y; is a function of the chosen strategy (r, E), and it is an increasing function of
r_.and¥and decreasing function of E. The first assumptionassmumption is that light levels

Oare sufficiently high that there exists some 7y,;, such that y; (i, 0) > 0, which means that
light is sufficient for some phytoplankton to be able to overcome maintenance costs. The
function pp_is a monotonically decreasing function of both r and E. As
Beecause -there is a non-zero amount of P_contained in the structure pool, and because
uptake rates decline to zero with r, there will be some 7,4, at which pp(#,4x,0) > 0. The

5second assumption is that 7y,;;, < %nax. Which will be true for most realistic values of the
light level. We note that for fixed r, ug is a monotonically decreasing function of E. Since
none of pg,- y;, -or up have critical points, the function g can only have a maximum at places
where two or more of y;, tp#te, and pg are equal, or at the boundaries of the strategy space.
On the boundaries of strategy space, E = 0_or L = 0_so that- y < 0. We can exclude the

54

l0boundary and focus on places where two or more of y;, ip, and ug are equal. We define
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two curves, one on which y; = ug, and the other on which yp = pg. The curve for which
U, = ugbegins at the point r = r,,;,, and can be described by a monotonically increasing
function E = g(r)_on the interval [7y,;,, ]. This curve exists because pz = 0. when E = 0,
up > 0when E = 0.and 7y, < 7r,and y;, < OwhenL =1 —S5(r) — E = 0,so that there is
545always a solution to y; = ug for fixedd r > 13,,;,. To see that the curve is an increasing
function of-r, consider the function V(E,r) = u;, — ugand apply the chain rule to the
equation V(g (r),r) = 0_to find-tha that along the curve E=g(r) }t:

dE _ a_V Formatted Table
ar =g'(r) = a?/r 174 Formatted: Centered
OF

550

We consider the terms in equation 147 carefully. The function V is an increasing function of

r because ug is independent of r and because g, is an increasing function of r_(for a fixed

investment in biosynthesis, a -larger radius leads to a greater investment in photosynthesis

and greater photosynthetic growth rate). Thus, the numerator of equation 171 is negative.

555The function V is a decreasing function of E because y; is a decreasing function of

E (greater investments in biosynthesis at fixed radius lead to smaller investments in
hotosynthesis) and p_is an increasing function of E. Thus the denominator of equation

147 is negative, and the quotient on the right hand side is positive, so g'(r)is positive and
describes an increasing curve.

560 By similar logic, we can define a curve- h(r)that solves the equation- up(h, 1) =

ug (h, ). This curve exists on the finite interval [ry, 7,4, ], Where 17 solves the equation

wp(1 = S(ry), 1) = ug(1 — S(ry), ;). Thus, -h(r)represents a decrasing curve from the point
(1 = S(rp), )10 (0,754, )- We can see that h(r) is always decreasing by using the chain rule

on up(h,7) — pug(h,r) = 0,justas in the previous argument.

565 The growth maximizing strategy must occur somewhere on the curves described by
(g(),r).and (h(r),r).The functions p, (r) = u(g(r),r).and u,(r) = u(h(r),r) are
continuously differentiable functions of r except where g(r) = h(r)_(which must exist by
the intermediate value theorem). Therefore, the only place where p_gcan have a maximum
is at the place where g(r)_and h(r) intersect. This ;whieh-is the strategy that leads to
570equality of all the growth rates. We refer to this strategy, as a function of environmental
conditions, as

(rm(P, 1,T),E,(P,1,T),L,(P,I, T))L Using this strategy, we can predict the stoichiometry of
the functional components of the phytoplankton population in a given environment.

We assume that real phytoplankton populations cluster near the optimal strategy in

515the local environment {N(Norberg et al., 2001):
| (Em, 1) = argmaxg ). (182120) «——{ Formatted Table

For all values of environmental parameters used in this study, the unique maximum of the
growth rate occurs for the set of parameter values that lead to co-limitation by nutrients,
photosynthesis, and biosynthesis, analogously to the predictions of Klausmeier etal-and
co-workers (2004).20643) The optimal strategy determines the model prediction of the
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580C:P of functional components in a given environment by taking the quotient of the carbon

and phosphorus quotas.

| Table 21. Physiological Model Constants.

) L o

PARAMETER DESCRIPTION VALUE UNITS SOURCE
a Proportionality 0.12 - {F(Toseland et al,, 2013)
coefficient for radius
Y Percent dry mass 0.2 - {F(Toseland et al,, 2013)
devoted to structure
other than membrane
Formatted: Font: Subscript
Kgo Synthesis rate of 0.168 hr-1 £S(Shuter, 1979) /{
biosynthesis
apparatus at Tp=25 /,//[ Formatted: Font: Subscript
Fbi theti 2.0 (s(Shuter, 1979 Formatted: Font: Subscript
of biosynthetic . er,
Q‘m'E Q.10 Y (Shu ) {Formatted: Font: Subscript
apparatus
/{ Formatted: Font: Subscript
Do Specific carbon cost of 10-3 hr-1 £S(Shuter, 1979) )
maintenance at Ty=25 //—/[ Formatted: Font: Subscript
f maint 20 Shuter. 1979 Formatted: Font: Subscript
Qo Quo of maintenance : (S(Shuter, ) [Formatted: Font: Subscript
Quo.of ph hesi 10 (sh 1979) Formatted: Subscript
Q of photosynthesis . ter
10,P 10 0L D Sy SIS £ = 4[ Formatted: Subscript
[N Carbon cost of 0.67 - {S(Shuter, 1979)
synthesis
ap Allometric scaling 1.04x10-16 (mol P)(hr)~1 {E(Edwards et al., 2012)
constant for VMP
bP Allometric scaling 3.0 - {E(Edwards et al., 2012)
exponent for VMP
aK Allometric scaling 6.4x10~8 (mol P)(L)~1 {E(Edwards et al., 2012)
constant for KP
bK Allometric scaling 1.23 - {E(Edwards et al., 2012)
exponent for KP
pcell Cell Density 106 g/m3 {S(Shuter, 1979)



,,,,//'{ Formatted: Centered
-

pdry Fraction of dry mass 0.47 - {F(Toseland et al., 2013)
in cell
[o42) Fraction of dry mass 0.55 - {F(Toseland et al., 2013)
in biosynthetic
apparatus devoted to
ribosomes
Prib Fraction of ribosomal 0.047 - {S(Sterner and Elser, 2002)
mass in phosphorus
pDNA Fraction of cell dry 0.01 - {F(Toseland et al., 2013)
mass in DNA
PDNA Fraction of DNA mass 0.095 - {S(Sterner and Elser, 2002)
in phosphorus
k1 Specific Efficiency of 0.373 hr-1 {F(Talmy et al, 2013)
Carbon Fixation
Apparatus
k2 Specific Efficiency of 0.857 hr-1 {F(Talmy etal, 2013)
Electron Transport
Apparatus
aPh Light Absorption 1.97 mz/gC {M(Morel and Bricaud,
1981)
oM Maximum Quantum 10-6 gC/umol photons | {E(Falkowski and Raven,
Efficiency 1997)
Myip Fraction of cell 0.3 -
membrane composed
of lipids {F(Toseland et al,, 2013)
Mprot Fraction of cell 0.7 -
membrane composed
of protein {F(Toseland et al,, 2013)
Puip Fraction of cell dry 0.1 -
mass in storage lipids
{S(Sterner and Elser, 2002)
Pearb Fraction of cell dry 0.04 -

mass in storage
carbohydrates

{S(Sterner and Elser, 2002)
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Cpna Fraction of DNA mass 0.36 -
in Carbon
{S(Sterner and Elser, 2002)
Crip Fraction of ribosomal 0.42 -
mass in Carbon
£S(Sterner and Elser, 2002)
Cpmt Fractior.l of protein 0.53 -
mass in Carbon
{S(Sterner and Elser, 2002)
C“.p Fraction of lipid mass 0.76 -
in Carbon
{S(Sterner and Elser, 2002)
Cearp Fraction of 0.4 -
carbohydrate mass in
Carbon £S(Sterner and Elser, 2002)
The carbon quota is calculated as: +—{ Formatted Table
myi,a m a
( lip PlipClip*tPcarbCearb +aEECrib+<(1_aE)E+L+ p:“ )Cprut+pDNACDNA) (193431)
Qc= -
¢ %nrspcellpdry

585Here we see the contributions of carbon contained in both functional and storage pools, the

latter of which are assumed to occupy a fixed fraction of the cell independent of the
| environment (but linked to cell size).
Measurements of cellular P partitioning indicate that the ribosomal RNA can

sometimes contribute only 33% of the total P quota {G(Garcia et al., 2016). The additional

590phosphorus includes membrane phospholipids and storage compounds, ;tuxury-storage
compounds,and-pelyphesphates;each of which can be up- or down-regulated in response
to phosphorus availability in the environment. To model this phenomenon, we assume the
existence of an additional stored P pool, whose size is a linear function of environmental P,
or:

595

| (P: C)storage = ¢[P], (2014142) «*J”{ Formatted Table

| where € is determined by the best fit to the Martiny et al. (2014){26443} data. Our model
then predicts C:P as:

C-p = 1 21 ) ///{ Formatted Table
' (P:C) (gpr) T+ €[P] -

The model parameter € is calculated by minimizing the residuals of the P:C ratio predicted
by Eq.1943 in comparison to the global data-set on particulate organic matter
6(0stoichiometry compiled by Martiny and others £{(2014). To maintain consistency with the
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linear regression model of Galbraith and Martiny (2015), we restrict the dataset to
observations from the upper 30 meters of the water column containing particulate organic
phosphorus and carbon concentrations of greater than 8:005 nM5xM, Observations from
the same station and the same day, but at different depths in the water column are

5averaged together. The P:C ratio of the functional apparatus is calculated using irradiance,
T, and [P] data from the World Ocean Atlas (Garcia et al., 2014; Locarnini et al., 2013;
oceancolor.gsfc.nasa.gov/data/10.5067 /AQUA/MODIS/L3B/PAR/2014/), which are used
to estimate environmental conditions at the location and date of particulate organic matter
measurements. Light levels are computed by averaging irradiance over the top 50 meters

Oof the water column, assuming an e-folding depth of 20 meters. Linear regression
determines € = 2500 M ~! which fits the data with an R? = 0.28. All parameters for the
model are listed in Table 2.
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2.2:13 Experimental Design

715To address how changing environmental conditions affected stoichiometric ratios, carbon
export, and pCO2z,am we performed two tests; a change in nutrients and a change in sea
surface temperature. These tests allowed us to observe how the relationships between
environmental conditions, carbon export and pCO2,am, depend on the mechanisms
responsible for stoichiometric variation in the ocean. In order to account for the effects of

720particulate inorganic carbon (PIC) export, we multiply model predicted C:Pexpore by 1.2,

| consistent with previous studies {B(Broecker, 1982; Sarmiento and Toggweiler, 1984).
The first set of numerical experiments examined the sensitivity of pCO2aum to
nutrient availability in the tropical and subtropical boxes for each of the three

st01ch10metr1c models %sset—e#expmen@a%mﬂs#%as—m{eﬂded—te—&}pt&?em&eﬁeet&ef

i i atori —We varled troplcal [P] from
O 15 to 1.5 uM and subtroplcal [P] from 1X109—}e 3 to 0 5 uM by adjusting the implied

- /{ Formatted: Superscript

biological export and determined the equilibrium pCO2am values.

730 The second set of experimental tests was done to quantify how temperature
modifies carbon export and pCO2,am for each stoichiometric model. Temperature influences
carbon cycling in two ways within our model: through the solubility of inorganic carbon in
seawater and through changes in phytoplankton stoichiometry within the temperature-
only and multi-environmental models. Due to the well-known effects of temperature on

735C0: solubility, it is generally predicted that there is to be a positive feedback between

| pCO2am and temperature mediated by declining CO2 solubility at high temperaturess. To
study the relative strengths of the temperature solubility feedback and the temperature
regulation of C:P feedback, we performed a numerical experiment in which we varied the
sea surface temperature by five degrees in either direction of modern sea surface

740temperature. This represents a plausible range of variation under both ice-age and

anthropogenic climate change scenarios. We varied tropical temperature from 21° to 31°C
and subtropical temperature from 19° to 29°C, determining equilibrium pCO2,am values for
combinations of temperature conditions.
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7453 Results
To quantify the linkages between phytoplankton physiology, elemental stoichiometry, and
ocean carbon cycling, we divide our results into two parts. The first is a direct study of the

stoichiometric models, comparing their predictions about the relationship between
stoichiometry and environmental conditions, and in the case of the trait-based model,

750illustrating how cellular physiology is predicted to vary across these conditions. In the
| second part, we show how variablevariables stoichiometry influences carbon export and

pCOz,atm, under changing phosphorus concentrations and temperature. Within these

results, we distinguish the influence or lack thereof ofefn the three distinct biemes;biomes;

in particular the irenstressed-equatorial upwelling regions and the macronutrient

755depleted subtropical gyres.

3.1 Multi-environmental and physiological controls on plankton stoichiometry
Our multi-environmental model captured several major mechanisms hypothesized to be
environmental drivers of C:P ratios including a temperature dependence of many cellular

760processes, a link between growth rate and ribosome abundance, and storage drawdown

during nutrient limitation. The predicted relationship between environmental conditions
and C:P can be understood through the environmental regulation of three factors: (i) the

balance between photosynthetic proteins and ribosomes, (ii) the cell radius and associated

allocation to structural material, and (iii) the degree of phosphorus storage. Our model

765predicted that for an optimal strategy, specific protein synthesis rates will match specific

74

74

74

rates of carbon fixation. Thus, the ratio of photosynthetic machinery to biosynthetic
machinery is therefere-primarily controlled by irradiance and temperature. Increases in

light levels lead to higher photosynthetic efficiency, higher ribosome content, smaller cells

(due to a lower requirement for photosynthetic machinery), and lower C:P ratios (Figure

7705). The response of C:P to light levels predicted by our model was muted in comparison to

other subcellular compartment models because we separately modeled electron transport

and carbon fixation {(Talmy et al., 2013), and our predictions were consistent with the
weak relationship between irradiance and C:P (Thrane et al., 2016){Thrane-etal; 20163}
(Figure 5A).

5 Increases in temperature increase the efficiency of biosynthesis, but not
photosynthesis{Q 1o =1}. Therefore elevated temperature lead to a reduced ribosome

content relative to photosynthetic proteins and higher C:P ratios (Figure 6A). There leads

toteis a non-monotonic, concave relationship between temperature and cell size, which is

due to a subtle interaction between biosynthesis efficiency (which varies greatly with
OtemperatureT), maintenance costs, and size dependent uptake rates.

Nutrient concentrations do not affect the ratio of biosynthetic to photosynthetic
machinery but positively relate to both P storage and cell radius. Cell radius directly
influences the specific rate of nutrient uptake, and indirectly biosynthesis and
photosynthesis as the cell membrane and wall affects the space available for other

5investments. %&eeﬂ—mdms—wﬂkva%y—wﬁ#d#ﬁerenee&ﬂwsphew&eeneeﬂﬁm

pronounced lnl—l—ﬂ ollgotrophlc condltlons ([P] < 100nM) Heret, cell radlus declines
belowsubstantiallybelow 1um resulting in ;-decreasing-the allocations to both

at This effect i

1S

photosynthesis and biosynthesis and drivingupelevated C:P ratios. MuehlargerHigher
Ovalues of the cell radius are observed athighin nutrient eencentratiensrich conditions.
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74

P concentrations also influenced C:P through their direct control of P storage. We
plotted the relative contribution of the storage compartment and the functional
compartment to the P quota, as a function of environmental conditions. The impact of the
residual pool on the overall size of the P pool is heavily dependent on environmental

5cond1t10ns Varvmg from a minimum of close to0% toa max1mum of lust under 50%;fer

malorltv of the parameter range con51dered here, the contrlbutlon of the re51dual poolis

much more modest; (10-20%). High values occur when phosphorus is available and the
temperature is high. In these conditions, ribosomal contributions are decreased; but the

8(r0residual contribution is high. In cold water, high P ecosystems, the residual contribution is

8(

approximately 25%, and in oligotrophic ecosystems it is close to 0. Thus, C:P was predicted
to be a decreasing function of [P] with two distinct regimes: a moderate sensitivity regime
for [P] above 100nM, and a high sensitivity regime for [P] below 100nM.
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Figure 5: Influence of phosphate concentration and irradiance on cellular stoichiometry and cellular
traits, at a constant T = 25 °C. A) Cell radius (r). B) P storageSterage-{S} allocation. C) Biosynthesis allocation.

810D) Photosynthesis (L) allocation. E) The C:P ratio. As irradiance increases, there is a tendency towards greater

allocation to biosynthesis and lesser allocation to photosynthesis, which leads to lower C:P ratios. When
phosphorus is very low, there is a large decrease in both biosynthesis and photosynthesis allocations due to the
large relative allocation to the cell membrane. C:P ratios are inversely proportional to phosphorus
concentration, driven by an increase in luxury storage and ribosomal content as P increases.
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Figure 6: Influence of phosphate concentration and temperature on cellular stoichiometry and cellular

8¢0traits, at a constant irradiance I = 50uEm ™25, A) Cell radius (r). B) P storageStorage-£S) allocation. C)
Biosynthesis allocation. D) Photosynthesis (L) allocation. E) The C:P ratio. Consistent with the translation
compensation hypothesis, increases in T led to a reduction in the allocation to biosynthesis and an increase in
C:P.

825 We next used the outcome of the trait model as a multi-environmental model to
predict C:P ratios in the modern ocean based on annual mean light, T, and [P]. Our

Formatted: Font:

predictions reproduced the global pattern n(Martiny et al.,, 2013b)-(M{Martiny-etal; 2614}

with C:P ratios above the Redfield ratio in subtropical gyres and C:P ratios below the
Redfield ratio in equatorial and coastal upwelling regions and subpolar gyres (Figure 7A).

830Additionally, our model also reproduced basin-scale stoichiometric gradients among
similar biomes in each ocean, predicting the highest C:P ratios in the western
Mediterranean Sea and the western North Atlantic Subtropical Gyre, and somewhat
elevated C:P ratios in the South Atlantic Subtropical Gyre as well as the North and South
Pacific Subtropical Gyres.

835
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Figure 7: Predicted C:P ratios in the global ocean in differing climatic regimes. A) C:P ratio under modern
ocean conditions. Large differences in C:P are predicted between distinct types of ocean biome, with low C:P in
equatorial upwelling regions and subpolar gyres, and high C:P in subtropical gyres. Regional differences between

840biomes of similar type are observed as well, with the low phosphorus Atlantic having a higher C:P than the
Pacific. B.) C:P ratio under cooling temperature conditions (-5°C from the modern ocean). C) C:P ratio under
warming temperature conditions (+5°C from the modern ocean). Each 5 degree change leads to a shift of 15% in
the mean C:P ratio of organic matter.

845 To study the potential impact of sea -surface temperature on phytoplankton
resource allocation and stoichiometry, we used our multi-environmental model to predict
C:P in ocean conditions both five degrees colder (Cooling environments) and warmer
(Warming environments) than the modern ocean. According to our model, a five-degree
increase (or decrease) in sea surface temperature would cause a 15% rise (or fall) in C:P

850ratios (Figure 7). This sensitivity suggested that the relative effect of T on biochemical
processes could have large implications for biogeochemical cycles, making it important to
determine the relative importance of physiological mechanisms regulating C:P ratios.
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Figure 8: Comparison of C:P between the multi-environmental model and the nutrient-only model and
temperature-only model. The upper panels show predicted C:P for the global ocean under the nutrient-only (A)

C:Psubeeli=C:Pother
”

and temperature-only (B) models, and the lower panels show the normalized difference, i. €. o

860between the C:P in the subcellular model (C, D).

subcell

We compared the multi-environmental model to the predictions made by two other
models: the nutrient-only model used by the Galbraith and Martiny model (2015),{26453};
and our temperature-only model modified from Yvon-Durocher and co-workers
8¢5(2015)={—29—15}. These two models also successfully predicted the qualitative pattern of
stoichiometric variation in the ocean, but were unable to replicate the full range of
variation observed in the data (Figure 8). In particular, they-misrepresentedthere were
mismatches in the North Atlantic Subtropical Gyre and the Southern Ocean, where the C:P
ratio is at the extreme (Figure 84, B). The nutrient-only model had a tendency to predict
870lower C:P ratios than the multi-environmental model in warm tropical and subtropical

waters, and predict higher C:P ratios in cold waters (Figure 8A). This difference is driven by
the T sensitivity of biosynthesis in the multi-environmental model, leading to increasing
C:P in all warm water regions and decreasing C:P in cold water regions (Figure 8C ). The
multi-environmental model predicted a wider range of C:P in the ocean. The temperature-
8750nly model overall had higher C:P ratios globally compared with the multi-environmental
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model (Figure 8B) but suggested lower C:P in the gyres and higher C:P in high latitudes,
especially in the Southern Ocean (Figure 8D).

3.2 Impact of nutrient availability on carbon export and atmospheric pCO:
880We next quantified the impact of nutrient availability in the tropics and subtropics on
stoichiometry, carbon export, and pCOzam (Figure 9A-L). Using a constant Redfield model
(or the temperature-only model), we replicated the previously observed approximately
linear relationship between surface [P] and pCOz,am (equivalent to how pre-formed [P] will
| influence pCO2,am) }(Ito and Follows, 2003; Sigman and Boyle, 2000). We found that [P]
885drawdown in the subtropical box had a greater impact on carbon export, since export from
the high-latitude box was not enhanced by the [P] supply from the subtropical box (Figure
9A, D, G). In the Redfield model, pCO2am appeared to be much more sensitive to
subtropical [P] than tropical [P], which was partially due to enhanced carbon export in the
subtropical box and partially due to the larger surface area of the subtropical box (implying
890a greater potential for CO; exchange) (Figure 9]).
| In contrast to the predictions made using Redfield stoichiometry, when we used the
nutrient-only model for phytoplankton stoichiometry, we observed a non-linear
relationship between surface [P] and pCOz.am (Figure 9B, E, H, K). At fixed tropical [P],
there was a strong relationship between subtropical [P] drawdown, export, and pCO2,atm in
895accordance with the findings of Galbraith and Martiny (2015)8453} (Figure 9B, E,H). The
total decline in pCO2,aum as subtropical [P] declined from 0.4 uM to 1x10-3 8 uM could be
more than 60 ppm, which was more than twice the decline that occurred in the fixed
stoichiometry experiment (Figure 9K). We found a non-linear monotonic relationship
between tropical [P] and pCOzam: when tropical [P] was high, declines in tropical [P] led to
900lower carbon export and increased pCOzatm. However, this trend reversed when tropical
| [P] was further drawn downlewer (Figure 9K). The counter intuitive decline in pCO2,atm
with higher export from tropics was driven by a teleconnection in nutrient delivery
between the subtropical and tropical boxes. Increases in export in the tropical box due to
inereased [P] drawdown decreased the supply of [P] to the subtropics, which led to a
905decrease in the more efficient (higher C:P) subtropical export. Thus, the nutrient-only
model predicted a greater decrease in subtropical export than the esunter-increase in
tropical export

/{ Formatted: Not Superscript/ Subscript

The multi-environmental model also predicted a non-linear relationship between
surfaee-P_draw down, carbon export, and pCO2am. However, the pattern was somewhat
910distinct from that of the nutrient-only model results (Figure 9C, F, I, L). First, subtropical

[P] drawdown had a nonlinear relationship with pCO2,am: when subtropical [P] was high,
| declines in subtropical [P] led to slight declines in pCO2,atm, and when subtropical [P] is low,
small declines in tropical [P] lead to large declines in pCOzm. This intensification of the
relationship between subtropical [P] and pCOzam was due to the nonlinear relationship
915between [P] and C:P predicted by the trait-based model (Figure 91). The multi-
| environmental model predicted extremely high subtropical? export, but only when [P] was

/{ Formatted: Highlight

lower than 0.05 pM (Figure 9C, F, I). Second, the effect of tropical [P] levels on pCO2,atm Was
strongly modulated by subtropical [P], reversing from a negative to a positive relationship
as subtropical [P] declines (Figure 91, L). The difference between the nutrient-only model
920and the multi-environmental model arose because the multi-environmental model
incorporated a temperature impact on resource allocation and elemental ratios. Although
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we were not varying temperature in these experiments, we did represent regional
temperatures differences between the different boxes. The result is that a large
stoichiometric contrast between the tropical and sub-tropical regions only arose when

925there was a large difference in nutrient levels between the two regions (Fig. 9L). However,
both the nutrient-only model and the multi-environmental model predicted that carbon
export and pCO2,am Were sensitive to the interaction between regional nutrient availability
and C:Pexport.
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| We next quantified the impact of sea -surface temperatureZ (SST)Z.in the tropics and

940subtropics on C:Pexport, carbon export, and pCOzam (Figure 10A-D). The Redfield model

3.3 Interactive effect of temperature on stoichiometry, carbon export and

Figure 9: Carbon export (Tmol C yr1) and pCOz atm (PpM ) in changmg surface phosphate concentratlons
Columns correspond to type of stoichiometry; Redfield (Left), nutrient-only (Middle), and muiliti-environmental
model (Right). Rows correspond to either tropical carbon export (A through C), subtropical carbon export (D
through F), total carbon export (G through I) or atmospheric pCO; (] through L). The grey points represent
935where pCOzaem was calculated, between spaces are interpolated.

| predicts that increases in temperature lead to a decline in the solubility of CO2 in

seawater and consequently an increase in pCOzam from 288 to 300 ppm (A pCO2am = 12)
(Figure 10A). This feedback was present with the same strength in the nutrient-only model
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(with no T dependence on C:P), in which pCO2am ranged from 268 to 280 ppm (A pCO2,atm
945= 12) (Figure 10B).

| In contrast to the Redfield and nutrient-only models, the temperature-only model
predicted a negative linear relationship between pCOzam and tropical sea surface T and a
positive linear relationship between pCO2am and subtropical sea surface T (Figure 10C).
The decline in pCO2am with tropical SST seasurface-Twas driven by an enhancement of
9%0export due to increased C:P at higher temperatures®s (Figure 11). At 5°C below modern
ocean temperature?, the model predicted C:P in the tropics was 131 and subtropical was
121, resulting in a pCO2,atm of 305 ppm. At 5°C above modern ocean temperature?, the
model predicts aedpredieted C:P ratio in the tropics ofis 189 and C:P ratio of 175 in the
subtropicsal-subtrepiealwas 175, resulting in a pCO2,atm of 263 ppm. Tropical SSTF had
9%5more impact with A pCOz2atm = 41 ppm compared to subtropical SSTFs-effeect with a- A
pCO2am rangingerange from 4 to 5 ppm (Figure 11).

Similar to the temperature-only model, the multi-environmental model predicted a
negative linear relationship between pCOz,atm and tropical SST seasurface-T-and a positive
linear relationship between pCO2,am and subtropical SST seasurface-T-(Figure 10D). The
9¢0decline in pCO2,atm With tropical SSTseasurfaceT was driven by an enhancement of export

due to increased C:P at higher Ts (Figure 11). In the subtropical region, the expected

increase in export was mitigated by a decline in solubility. At 5°C below modern ocean
| temperature”, the trait-based model predicted that C:P in the tropics was 147 and that C:P

in the subtropics was 155, resulting in an increase of pCO2am to 279 ppm (Figure 11).
9¢5Variationm tropical SST-Ts overinever a 10°C span led to a significant decline in pCO2,atm,
with a A pCO2zatm of approximately 46, and tropical C:P ranging from 147 to 210 (Figure
11). Because the subtropical box has a large surface area, the decrease in surface CO;
solubility at high temperatures is sufficient to overcome the increase in export due to
higher C:P leading to a positive relationship between pCOzam and subtropical
970temperatures.
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and pCOzam is the dashed gray line. Temperature-only model total carbon export is the solid black line, and
pCO2aum Is the dashed black line.

9854 Discussion
Here, we found that variable stoichiometry of exported organic material moderates the
interaction between low-latitude nutrient fluxes and ocean carbon cycling. A full
connecting circulation allows for complete movement of nutrients between ocean regions
resulting in strong linkages between nutrient supply ratios and cellular stoichiometric

9¢Oratios {B(Deutsch and Weber, 2012). It has been shown that the inclusion of an oceanic
circulation connecting high and low-latitude regions results in a feedback effect between

| high-latitude nutrient export and relative nutrient supply in low-latitudes {S(Sarmiento et

al,, 2004; Weber and Deutsch, 2010). Together, the inclusion of lateral transport between
ocean regions and of deviations from Redfield stoichiometry within our model led us to

9¢5predict the existence of strong teleconnections between the iren-limited-tropics and the
macronutrient limited subtropics. The degree of nutrient drawdown in the tropics had a
strongly non-monotonic relationship with pCO2m because this drawdown influenced both
nutrient supply to the subtropics and tropical C:P. The idea of biogeochemical
teleconnections has been proposed before, but we found that variations in stoichiometry

10¢Ogreatly enhance the importance and strength of such linkages {S(Sarmiento and
Toggweiler, 1984). Thus biome-scale variations in phytoplankton elemental stoichiometry
| may change the sensitivity of the carbon pump to iren depesition-or—other phenomena that

regulate patterns of nutrient drawdown. We also see that the degree of nutrient drawdown
had a strong impact on predicted (and observed) C:P leading to highly non-linear controls

10050n pCO2.atm, Whereby increased export in the tropics counter intuitively leads to increasing —{ Formatted: Not Superscript/ Subscript

pCOZatm Larg %ebseﬁ%a%m&s&gges%ﬂmbpégmmay—havmemple*hﬂktemﬂ

demand—Thust+ - - scale gradlents in stOIChlometry can alter the reglonal eff1c1ency of the
biological pump: [P] supplied to high C:P regions leads to a larger export of carbon than [P]

10105upp11ed to low C:P regions. This lends; giving-an important role to-the details of-the ocean
circulation and other processes that alter nutrient supply and phytoplankton physiological
responses in different surface ocean regions. Therefore, biome-scale variations in
phytoplankton elemental stoichiometry can lead to a fundamental change in the
partitioning of carbon between the atmosphere and the ocean.

1015 We have created a box model to simulate the impact of the low latitude

stoichiometric ratios, its environmental controlling factors, and itsthe relationships ento

pCO2amm, Low latitude phosphorus concentrations can be set in one of two fashions; ~__{ Formatted: Not Superscript/ Subscript

through iron limitation and through nutrient availabilitysupply. Here we will briefly
discussion how iron limitation weould play a significant role on phosphorus concentrations
1020and associated C:P. The biogeochemical functioning of tFropical regions are commonly
influenced by iron availability (€oale et al., 1996; Moore, 2004; Raven et al., 1999)-in such

a way that macronutrients cannot be fully drawn down by phytoplankton (Coale et al,,
1996; Moore, 2004; Raven et al., 1999). The degree of nutrient drawdown has a strong

impact on predicted (and observed) C:P. This environmental control on C:P could lead to
1025highly non-linear controls on pCO2.m Whereby increased iron availability lead to increased
[P] draw down and export in the tropics. However, as we have shown this may lead to
increasing rather than commonly assumed deeraesingdecreasing pCO2am. This link
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between iron and export would differ in the subtropics, where iron is thought to stimulate

nitrogen levels through nitrogen fixation. This would result in elevated phosphate draw
103 Odown hlgher C:Pand hlgher export. %eh—awav—that—phespheﬂis%vebeaﬂ-net—be—ﬁaﬂ-v

103

coulditln essence iron's role in the lowlatitude FEEHORS thoughy LN US, iron avallabllltv may Dlav a Complex

/{ Formatted: Not Superscript/ Subscript

1040role depending on whether there is an increased delivery in upwelling zones (leading to a
potential declining global C export) or in the subtropical gyres (leading to a potential

increase in global C export) FptheSHdeas—aﬂd—Ghe—mﬂ-plemenmﬁe&ef—expke}t—meﬂ

1045 Past studies using box models have found pCOzatm to be insensitive to low-latitude
nutrients {E(Follows et al., 2002; Ito and Follows, 2003; Sarmiento and Toggweiler, 1984;
Toggweiler, 1999). This phenomena was explored by DeVries and Primeau (2009).{26693};
who showed that the strength of the thermohaline circulation is the strongest control on
pCO2,am, and that changes in low-latitude export arerelatively-unimpertanthas a minor
10%0impact. Unlike our study, such earlier work relied on a uniform Redfield stoichiometry.
However, we find that when stoichiometric variation is included, carbon export and
pCO2am become dependent on details of low-latitude processes.

It is important to recognize that a five-box model is an incomplete description of
ocean circulation, and is meantenly-to-identifyrthe-mosthere used to illustrate important
1055mechanisms, not to make precise quantitative predictions. In order for our model to
adequately reflect important features of the carbon and phosphorus nutrient distributions,
we had to carefully select the values of the thermohaline and wind-driven upper ocean
circulations that lead to reasonable nutrient fluxes and standing stocks. The value of
thermocline circulation, Tc, has been calibrated in different box models to range from 12 to
106030 Sv {B(DeVries and Primeau, 2009; Galbraith and Martlny, 2015 Sarmlento and
Toggweller 1984; Toggweller 1999 Rep

c1rculat10n influence the abundance of nutrlents in different boxes. Depending on the
strength of this circulation, our model accumulated nutrients in the thermocline box and
1065we tuned this parameter to most accurately mimic nutrient variation across ocean regions.

Anether-Other caveats relates to our choice of the wind driven

overturning circulation and:-Fw in-asimple box-modelhas receiveddessattention ;the two-

way flux values. Similar to the circulation values, a wide range of two-way flux values have
been used in the literature. We therefore performed sensitivity experiments to find the best
1070value for our full model set-up but the qualitative trends observed are insensitive to the
choice of such fluxes.
| Nutrient availability and temperature have been alternatively proposed as drivers
of variation in stoichiometric ratios in the global ocean, and the strong statistical
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correlation between temperature and nutrients throughout the ocean has prevented
1075identification of the relative importance of each factor (Martlny etal., 2013b; Moreno and

Formatted: Highlight

Martiny, 2018) fMartiny-e Aereno-an 72018} We see that
although temperature regulatlon of C: Pexport can influence pCOz atm, this regulation is
strongly dependent on the detailed physiological control mechanism and also generally
diverge from expectations based on the solubility pump. The decrease in surface CO;
1080solubility at high-elevated temperatures is sufficient to overcome the increase in export due
to higher C:P leading to a positive relationship between pCO32.tm_and subtropical
temperatures. Itis important to point out that the relative importance of the two
competing effect depends critically on the physical circulation of the ocean. Predicted
increases in stratification are often invoked as a mechanism that would decrease the
1085vertical supply of nutrients, which one might think would further compensate for the effect
of higher C:P. However, the strength of the biological pump in the subtropics is is-also
mfluenced bV lateral transoort of nutrients (Letscher etal, 2015] as such socontrolledthe

104 O%gh%nekbem}peﬁaﬂts&we argue that it is unclear if you should expect 1ncreasm,q

unchanged, or decreasing C export in low latitude regions with ocean warming and
stratification. Similarly, itis unclear how increases in stratification might affect the
strength of the solubility pump. The sensitivity of pCO2.m_to changes in subtropical surface
temperatures depends critically on the volume of the ocean ventilated from the subtropics,
1095i.e. on the volume of the thermocline box in our model. How this volume might change in
response to a warming world is a complicated dynamical problem that is beyond the scope
of the present work.

Our results do not identify whether temperature or nutrient concentrations is the
most important driver of phytoplankton C:P, but do suggest that the physiological effect of
1100temperature could be important for ocean carbon cycling. Both the temperature-only and

multi-environmental models predict that temperature increases enhance tropical export,
causing substantial decreases in pCOzam with temperature. This relationship is the reverse
of that predicted by the nutrient-only and Redfield models, and represents a sizable
potential negative feedback on carbon cycling. The multi-environmental model also
1105predicted that C:P responds in a nonlinear fashion to [P], with significantly increased
sensitivity in highly oligotrophic conditions. Thus, aA deeper understanding of the
physiological mechanisms regulating phytoplankton C:P ratios are thus-key to
understanding the carbon cycle.
| Our derivation of the multi-environmental model relies on several important
1110assumptions. The growth rate in the multi-environmental model is determined by a set of
environmental conditions and quantified by the specific rate of protein synthesis, carbon
fixation, and phosphorus uptake. The effect of growth rate on stoichiometry will likely be
dependent on whether light, a specific nutrient, or temperature controls growth_(Moreno

and Martiny, 2018) i .. The value of specific ies-values of Q1o Formatted: Highlight

1115leads to uncertainty in our multi-environmental model because of the range of possible
values is highly dependent on the cell or organism being tested. In a study examining Q1o of
various processes within the cell, it was found that the Q10 of photochemical processes
| ranged from 1.0 to 2.08, and for carboxylase activity of RuBisCO to be 2.66 {R(Raven and
Geider, 1988). In addition to the high uncertainty between Q1o values, there is high
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1120ambiguity associated with cellular inorganic P stores (e.g., polyphosphates and
phospholipids) (&(Kornberg et al., 1999). P storage, such as polyphosphates, can serve as
both energy and nutrient storage that may be regulated by unique environmental factors:

112

ebsewaﬂen&aepess—speekesr Thus, we recognize mult1p1e caveats w1th1n the tralt based

model but expect that it improves our ability to link environmental and phytoplankton
stoichiometry variation.

5 Conclusions
1130We find that processes that affect nutrient supply in oligotrophic gyres, such as the
strength of the thermohaline circulation, are particularly important in setting pCO2,atm but
via a complex link with C:Pexpore. By explicitly modeling the shallow overturning circulation,
we showed that increased export in the tropics, which might be influenced by increased
atmospheric iron dust deposition, may lead to increases, rather than decreases, in pCOzatm.
1135Increased [P] drawdown in the tropics shifts export away from the subtropical gyres, and
changes the mean export C:P in the low-latitude ocean. We-weould-expect-thatnutrient
WMGMWMM%%M%W
-cetulaallocationandadaptation-canlead-to-counterintuitive-controls-on-pCo v
Additionally, we find that it is even-mere-difficult to separateseparatseparateing nutrient
1140supply and temperature controls on marine phytoplankton stoichiometry, carbon export,
and pCOz,am and we need better physiological experiments and field data to fully
understand the relative impact of the two factors. Nevertheless, it is likely that both play a
key role in regulating phytoplankton stoichiometry, C:Pexport, and ultimately ocean carbon
cycling.
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