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Abstract  
Marine phytoplankton stoichiometry links nutrient supply to marine carbon export. 
Deviations of phytoplankton stoichiometry from Redfield proportions (106C:1P) could 
therefore have a significant impact on carbon cycling, and understanding which 25 
environmental factors drive these deviations may reveal new mechanisms that regulate the 
carbon cycle. To explore the links between environmental conditions, stoichiometry, and 
carbon cycling, we compared four different models for variations in phytoplankton C:P: a 
fixed Redfield model, a model with C:P given as a function of  surface phosphorus 
concentration ([P]), a model with C:P given as a function of temperature, and a new multi-30 
environmental model that predicts C:P as a function of light, temperature, and [P]. These 
stoichiometric models were embedded into a box model of the ocean circulation, which 
resolves the three major ocean biomes (high-latitude, subtropical gyres, and iron-limited 
tropical upwelling regions). Contrary to the expectation of a monotonic relationship 
between surface nutrient drawdown and carbon export, we found that lateral nutrient 35 
transport from lower C:P tropical waters to high C:P subtropical waters could cause 
carbon-export to decrease with increased tropical nutrient utilization. Temperature is 
thought to be one of the primary drivers of changes in atmospheric pCO2 (pCO2,atm) across 
glacial/interglacial periods, and it has been hypothesized that a positive feedback between 
temperature and pCO2,atm will play an important role in anthropogenic climate change, with 40 
changes in the biological pump playing at most a secondary role. Here we show that 
environmentally driven shifts in stoichiometry make the biological pump more influential, 
and may reverse the expected negative relationship between temperature and pCO2,atm . In 
the temperature-only model changes in tropical temperature have more impact on the Δ 
pCO2,atm (~41 ppm) compared to subtropical temperature (~4.5 ppm). Our multi-45 
environmental model produced a decline in pCO2,atm of ~46 when temperature spanned a 
change of 10°C. Thus, we find that variation in marine phytoplankton stoichiometry and its 
environmental controlling factor can lead to counterintuitive controls on pCO2,atm, 
suggesting the need for further studies of ocean C:P and the impact on ocean carbon 
cycling.  50 
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1 Introduction   
The discovery of large-scale deviations of phytoplankton stoichiometry from the Redfield 
ratio in the past decade (Martiny et al., 2013a, 2013b; Weber and Deutsch, 2010) has 55 
significant consequences for our understanding of the biological carbon pump and global 
carbon cycling (Galbraith and Martiny, 2015). Traditionally, the biological pump is thought 
to be controlled by a combination of the vertical nutrient flux and nutrient utilization 
efficiency (Sarmiento and Toggweiler, 1984). However, variable elemental stoichiometry of 
exported organic material (C:Pexport) adds a new biological dimension to this problem and 60 
may lead to higher than currently expected carbon export in subtropical regions (Emerson, 
2014; Teng et al., 2014). Global carbon export has been estimated to range between 5 and 
12 Pg C/year (Boyd and Trull, 2007; Henson et al., 2011), but these projections have yet to 
incorporate the controls on C:Pexport. Variation in C:Pexport from Redfield proportions can be 
linked to environmental conditions. There are two leading environmental parameters 65 
thought to control C:Pexport; nutrients, predominantly phosphate concentrations, and 
temperature. Galbraith and Martiny (2015) used a simple three-box model to show that 
variable stoichiometry driven by phosphate availability could enhance the efficiency of the 
biological pump in the low-latitude ocean (Galbraith and Martiny, 2015). In contrast, Yvon-
Durocher (2015) used a meta-analysis of global temperature and stoichiometric ratios to 70 
propose that C:P increased 2.6-fold from 0° C to 30° C. Thus, it is currently unclear if 
differences in nutrient supply, temperature, or some combination of them, control the 
global variation in C:P of plankton and exported material, 

There are two important ingredients missing from published studies that could alter 
the interactions among phytoplankton stoichiometry, carbon export, and atmospheric pCO2 75 
(pCO2,atm). The first is the presence of two unique low-latitude biomes, namely the iron-
stressed equatorial upwelling regions and the macronutrient-depleted subtropical gyres. 
Iron deposition in the tropical upwelling zones strongly controls nutrient drawdown and 
the degree of macronutrient limitation. In direct observations and inverse model analyses, 
these two biome types appear to have unique elemental compositions, which leads to 80 
relatively increased rates of export from oligotrophic gyres in comparison to equatorial 
upwelling regions (DeVries and Deutsch, 2014; Martiny et al., 2013a; Teng et al., 2014). 
Thus, in order to properly represent global variations in surface plankton C:P and carbon 
export, it is essential to separately model both macronutrient limited subtropical gyres and 
iron-limited equatorial upwelling zones.  85 

The second missing ingredient is that environmental factors beyond nutrient 
availability may impact the elemental composition of surface plankton and C:Pexport. 
Temperature, irradiance, and nutrient concentrations are important environmental factors, 
which influence the physiology and stoichiometry of phytoplankton. However, surveys of 
phytoplankton C:P are insufficient to distinguish between the separate effects of each 90 
factor on C:P due to strong environmental covariance. Cellular trait based models use 
detailed studies of phytoplankton physiology to determine how phytoplankton cells should 
allocate their resources as a functional of environmental conditions, allowing us to model 
the interactive influence of temperature, nutrient concentrations, and irradiance on C:P 
ratios (Clark et al., 2011; Daines et al., 2014; Shuter, 1979; Talmy et al., 2014; Toseland et 95 
al., 2013). Numerous physiological mechanisms have been proposed to explain variation in 
phytoplankton stoichiometry, including growth rate (Sterner and Elser, 2002), 
photoacclimation (Falkowski and LaRoche, 1991; Geider et al., 1996; Leonardos and 
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Geider, 2004, 2005), nutrient-limitation responses (Garcia et al., 2016; Goldman et al., 
1979; Rhee, 1978), and temperature acclimation (Rhee and Gotham, 1981; Toseland et al., 100 
2013; Yvon-Durocher et al., 2015). Through incorporation of such physiological responses, 
a trait-based model has revealed that differences in ribosomal content and cell radius 
between warm-water, oligotrophic environments and cold-water, eutrophic environments 
are important mechanisms driving stoichiometric variation in the ocean (Daines et al., 
2014). Thus, linking biome-scale variations in environmental conditions with a detailed 105 
trait-based model of phytoplankton resource allocation and elemental composition may 
enable us to more fully explore interactions among ocean environmental conditions, the 
biological pump, and pCO2,atm. 

Here we create a five-box model, incorporating the three major ocean biomes, to 
study the feedback effects of variable stoichiometry on carbon export and pCO2,atm. We will 110 
explicitly address the following research questions: (1) How does environmental variability 
influence marine phytoplankton stoichiometry? (2) What are the effects of changing 
environmental conditions on stoichiometric ratios, carbon export, and pCO2,atm?, and (3) 
What is the influence of the environmental gradients among the three major surface 
biomes on carbon export and pCO2,atm?  115 
 
2 Methods 
2.1 Stoichiometric Models 
To quantify and understand the feedbacks between carbon export and pCO2,atm, we 
embeded four stoichiometric models into our box model. We included four distinct 120 
stoichiometric models to calculate C:Pexport, each of which differs according to their 
complexity and how much environmental information they utilize. These are a static 
Redfield model that assumes that C:Pexport is a constant function of environmental 
conditions, a nutrient-only model that uses surface [P] to predict C:Pexport (from Galbraith 
and Martiny, 2015), a temperature-only model that uses T to predict C:Pexport (modified 125 
from Yvon-Durocher et al., 2015, and a multi-environmental model that uses light, T, and 
[P] to predict C:Pexport.  
 
2.1.1Static Redfield Model  
Our control model uses a static Redfield stoichiometry. The Redfield ratio is based on an 130 
average value of organic carbon to phosphorus of 106:1.  
 
2.1.2 Nutrient-Only Model 
The nutrient-only stoichiometric model expresses phytoplankton C:P as a function of the 
ambient phosphate concentration:  135 
 

C: P =
1

𝜅𝜅[𝑃𝑃] + [𝑃𝑃]0
, (1) 

where the parameters 𝜅𝜅 = 6.0μM-1 and [𝑃𝑃]0 = 6.9 were obtained by regressing the 
reciprocal of C:P onto [P] (Galbraith and Martiny, 2015).  
 
2.1.3 Temperature-Only Model 140 
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The temperature-only stoichiometric model expresses phytoplankton C:P as a function of 
temperature:  

ln(C: P) =  𝛱𝛱(𝑇𝑇 − 15°C) + 𝑏𝑏, (2) 
where the parameters 𝛱𝛱 =  0.037/C° and 𝑏𝑏 = 5.5938 (Yvon-Durocher et al., 2015). The 
temperature-only model was created to determine the temperature responses of log-
transformed C:P ratios centered at 15°C.  145 
 
2.1.4 Multi-Environmental Model 
The multi-environmental factor model was derived from a non-dynamic physiological trait-
based model. We used a theoretical cellular-allocation trait model based on phytoplankton 
physiological properties that divides the ‘cell’ into functional pools including ribosomes, 150 
proteins, the cell membrane, and storage molecules. Storage pools include carbohydrates, 
lipids, and P containing molecules such as polyphosphates and phospholipids. The model 
predicts the size of each pool as a function of light, T, and [P]. The size of each functional 
pool is modeled by using subcellular resource compartments, which connect the fitness of a 
hypothetical phytoplankton cell in a given environment to its cellular radius and the 155 
relative allocation of cellular material to photosynthetic proteins, ribosomes, and 
biosynthetic proteins. We assume that real phytoplankton populations have physiological 
behaviors that cluster around the strategy that produces the fastest growth rate in each 
environment (Norberg et al., 2001), and use the stoichiometry of this optimal strategy to 
model the elemental composition of cellular material (Figure 1). 160 

Phytoplankton can accumulate large reserves of nutrients that are not immediately 
incorporated into the functional components of the cell (Diaz et al., 2016; Mino et al., 1998; 
Van Mooy and Devol, 2008; Mouginot et al., 2015). This storage capability varies among 
phytoplankton species, and depends on the particular nutrient under consideration: the 
cost for storing physiologically relevant quantities of nutrients is low for nutrients with low 165 
quotas such as phosphorus, in comparison to nitrogen and carbon. Thus, the phosphorus 
storage is assumed highly plastic in comparison to carbon storage (Moore et al., 2013). 
Further,  we assume that each cell dedicates a fixed fraction of its biomass to carbon 
reserves, and focus our modeling efforts on the variability of the stored phosphorus pool. 
To predict the size of the storage pool, we assume a linear relationship between stored 170 
phosphorus and ambient environmental phosphorus levels and used statistical modeling of 
an oceanic C:P dataset (Martiny et al., 2014) to calculate the constant of proportionality. 
The result is a relatively simple model that both qualitatively and quantitatively predicts 
the variation of C:P in plankton throughout the oceans.  

Phytoplankton physiology is modeled through allocations of cell dry mass to three 175 
distinct pools: structure (S(r)), biosynthesis (E), and photosynthesis (L). Allocations satisfy: 

1 = S(r) + E + L, (3) 
 

where the variables S, E, and L represent the specific allocations of cellular biomass.  
 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-367
Manuscript under review for journal Biogeosciences
Discussion started: 20 September 2017
c© Author(s) 2017. CC BY 4.0 License.



6 
 

 
Figure 1: Diagram of physiological model. Phytoplankton strategies are represented in a two-dimensional 180 
strategy space (E, r). Each strategy is assigned a fitness in each environment using physiological principles, and 
the strategy with the highest fitness is selected to represent the local population. The stoichiometry of cellular 
components is used to calculate the stoichiometry of the functional pools in the cell. 
 

The specific allocation of biomass to the cell membrane is inversely proportional to 185 
the cell radius (𝛼𝛼 𝑟𝑟⁄ ) (Clark et al., 2011), which accounts for the changing relative volume of 
the cell-membrane with radius.  The structure pool includes the cell membrane plus wall 
and other components (𝛾𝛾), which are not related to photosynthesis or biosynthesis and is 
given by: 

𝑆𝑆(𝑟𝑟) =
𝛼𝛼
𝑟𝑟

+ 𝛾𝛾. (4) 

In an environment specified by T, [P], and light level (I), the growth rate of a cell using a 190 
given strategy is the minimum of the following growth rates: 
 

𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝐸𝐸 , 𝜇𝜇𝐿𝐿 , 𝜇𝜇𝑃𝑃). 
 (5) 

Here 𝜇𝜇𝐸𝐸  is determined by the specific rate of protein synthesis, 𝜇𝜇𝐿𝐿 is determined by the 
specific rate of carbon fixation, and 𝜇𝜇𝑃𝑃 is determined by the specific rate of phosphorus 
uptake, or: 195 
 

𝜇𝜇𝐸𝐸 = 𝑘𝑘𝐸𝐸(𝑇𝑇)𝐸𝐸,   𝜇𝜇𝐿𝐿 = 𝑓𝑓𝑃𝑃(𝐿𝐿,𝐼𝐼)−𝛷𝛷𝑀𝑀(𝑇𝑇)
1+𝛷𝛷𝑆𝑆

,    𝜇𝜇𝑃𝑃 = 1
𝑄𝑄𝑃𝑃(𝑟𝑟,𝐸𝐸)

𝑉𝑉𝑚𝑚(𝑟𝑟)[𝑃𝑃]
𝐾𝐾𝑃𝑃(𝑟𝑟)+[𝑃𝑃]. 

 
(6) 

We assume that part of the energy captured by a cell via photosynthesis is used for 
maintenance (𝛷𝛷𝑀𝑀), whereas the rest is used to drive the synthesis of new macromolecules 
(𝛷𝛷𝑆𝑆), so that a cell growing at rate 𝜇𝜇𝐿𝐿 is in energy balance. The efficiency of biosynthesis 𝑘𝑘𝐸𝐸  
and the carbon cost of maintenance 𝛷𝛷𝑀𝑀 are functions of T, whose dependence is modeled 200 
using 𝑄𝑄10 = 2.0 (Van Bogelen and Neidhardt, 1990; Broeze et al., 1978; Shuter, 1979). 
Uptake is regulated by a Monod function with kinetic parameters depending on the radius 
through the allometric scaling relationships derived from measurements of phytoplankton 
populations (Edwards et al., 2012): 

 205 
𝑉𝑉𝑚𝑚(𝑟𝑟) = 𝑎𝑎𝑃𝑃𝑟𝑟𝑏𝑏𝑃𝑃 , 𝐾𝐾𝑃𝑃(𝑟𝑟) = 𝑎𝑎𝐾𝐾𝑟𝑟𝑏𝑏𝐾𝐾 . 

 (7) 

This use of allometric scaling relationships departs from the conventions adopted by 
Shuter (1979)or Daines (2014), who assume that uptake rates are diffusion-limited.  
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The phosphorus quota for functional elements of the cell is determined by the 
allocation to biosynthesis 𝐸𝐸 and the percentage 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 of cellular dry mass allocated to DNA: 

 210 

𝑄𝑄𝑝𝑝(𝐸𝐸, 𝑟𝑟) =
4
3
𝜋𝜋𝑟𝑟3𝜌𝜌cell𝑝𝑝dry

(𝛼𝛼𝐸𝐸𝐸𝐸𝑃𝑃rib + 𝑝𝑝DNA𝑃𝑃DNA)
31

. 
 

(8) 

Here we assume that there is no contribution to the functional-apparatus P quota from 
phospholipids, which instead is merged with storage molecules. This differs from Daines 
(2014), who assume that phospholipids occupy 10% of the cell by mass. Phytoplankton can 
substitute sulfoquinovosdiaglycerol (SQDG) for phospholipids in their cell membranes in 
low P conditions (Van Mooy et al., 2006), implying that it is appropriate to functionally 215 
treat them together with the storage pool.    

The function 𝑓𝑓𝑃𝑃 is the response of the cell to light levels, and is chosen to capture the 
effects of both electron transport and carbon fixation on photosynthesis (Talmy et al., 
2014). Our model interprets the light harvesting allocation 𝐿𝐿 as being composed of proteins 
dedicated to carbon fixation (𝐹𝐹1), such as RuBisCO, and proteins dedicated to electron 220 
transport (𝐹𝐹2), such as photosynthetic pigments. The rate of photosynthetic carbon fixation 
is a function of the allocations to each of these, which satisfy 𝐹𝐹1 + 𝐹𝐹2 = 𝐿𝐿. The relative 
allocations together determine the overall photosynthetic rate: 

𝑃𝑃max = min�𝑘𝑘1𝐹𝐹1,𝑘𝑘2𝐹𝐹2�, 𝑓𝑓𝑝𝑝 = 𝑃𝑃max �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝛼𝛼ph𝜙𝜙𝑀𝑀𝐹𝐹2𝐼𝐼

𝑃𝑃max
��. (9) 

 
For a given I and 𝐿𝐿, there is a pair of values �𝐹𝐹1,opt,𝐹𝐹2,opt� that maximize the photosynthetic 225 
rate 𝑓𝑓𝑝𝑝. We estimate the photosynthetic rate 𝑓𝑓𝑝𝑝(𝐿𝐿, 𝐼𝐼) under the assumption that cells 
assume the optimal allocations to carbon fixation and electron transport. This model 
departs from the models developed by Shuter (1979) and Daines (2014), which assume 
that energy acquisition is a linear function of light levels, with functional response linearly 
proportional to the cellular investment in light harvesting proteins.  230 

We assume that real phytoplankton populations cluster near the optimal strategy in 
the local environment (Norberg et al., 2001): 

(𝐸𝐸𝑚𝑚, 𝑟𝑟𝑚𝑚) = argmax(𝐸𝐸,𝑟𝑟)𝜇𝜇. (10) 
For all values of environmental parameters used in this study, the unique maximum of the 
growth rate occurs for the set of parameter values that lead to co-limitation by nutrients, 
photosynthesis, and biosynthesis, analogously to the predictions of Klausmeier et al. 235 
(2004). The optimal strategy determines the model prediction of the C:P of functional 
components in a given environment by taking the quotient of the carbon and phosphorus 
quotas. 
 
Table 1. Physiological Model Constants.  240 
PARAMETER DESCRIPTION VALUE UNITS SOURCE 

α Proportionality 
coefficient for radius 

0.12 - (Toseland et al., 2013) 

γ Percent dry mass 
devoted to structure 

0.2 - (Toseland et al., 2013) 
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other than membrane 
kE0 Synthesis rate of 

biosynthesis 
apparatus at T0=25 

0.168 hr−1 (Shuter, 1979) 

Q10,E Q10 of biosynthetic 
apparatus 

2.0  (Shuter, 1979) 

ΦM0 Specific carbon cost of 
maintenance at T0=25 

10−3 hr−1 (Shuter, 1979) 

Q10,M Q10 of maintenance 2.0 - (Shuter, 1979) 
ΦS Carbon cost of 

synthesis 
0.67 - (Shuter, 1979) 

aP Allometric scaling 
constant for VMP 

1.04×10−16 (mol P)(hr)−1 (Edwards et al., 2012) 

bP Allometric scaling 
exponent for VMP 

3.0 - (Edwards et al., 2012) 

aK Allometric scaling 
constant for KP 

6.4×10−8 (mol P)(L)−1 (Edwards et al., 2012) 

bK Allometric scaling 
exponent for KP 

1.23 - (Edwards et al., 2012) 

ρcell Cell Density 106 g/m3 (Shuter, 1979) 
pdry Fraction of dry mass 

in cell 
0.47 - (Toseland et al., 2013) 

αE Fraction of dry mass 
in biosynthetic 

apparatus devoted to 
ribosomes 

0.55 - (Toseland et al., 2013) 

Prib Fraction of ribosomal 
mass in phosphorus 

0.047 - (Sterner and Elser, 2002) 

pDNA Fraction of cell dry 
mass in DNA 

0.01 - (Toseland et al., 2013) 

PDNA Fraction of DNA mass 
in phosphorus 

0.095 - (Sterner and Elser, 2002) 

k1 Specific Efficiency of 
Carbon Fixation 

Apparatus 

0.373 hr−1 (Talmy et al., 2013) 

k2 Specific Efficiency of 
Electron Transport 

Apparatus 

0.857 hr−1 (Talmy et al., 2013) 

αPh Light Absorption 1.97 m2/gC (Morel and Bricaud, 1981) 
ϕM Maximum Quantum 

Efficiency 
10−6 gC/μmol photons (Falkowski and Raven, 

1997) 
     𝒎𝒎𝒍𝒍𝒍𝒍𝒍𝒍  Fraction of cell 

membrane composed 
of lipids 

0.3 -  
(Toseland et al., 2013) 

𝒎𝒎𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 Fraction of cell 
membrane composed 

of protein 

0.7 -  
(Toseland et al., 2013) 

𝒑𝒑𝒍𝒍𝒍𝒍𝒍𝒍 Fraction of cell dry 
mass in storage lipids 

0.1 -  
(Sterner and Elser, 2002) 

𝒑𝒑𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 Fraction of cell dry 
mass in storage 

0.04 -  
(Sterner and Elser, 2002) 
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carbohydrates 
𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫 Fraction of DNA mass 

in Carbon 
0.36 -  

(Sterner and Elser, 2002) 
𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓 Fraction of ribosomal 

mass in Carbon 
0.42 -  

(Sterner and Elser, 2002) 
𝑪𝑪𝒑𝒑𝒑𝒑𝒑𝒑𝒕𝒕 Fraction of protein 

mass in Carbon 
0.53 -  

(Sterner and Elser, 2002) 
𝑪𝑪𝒍𝒍𝒍𝒍𝒍𝒍 Fraction of lipid mass 

in Carbon 
0.76 -  

(Sterner and Elser, 2002) 
𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 Fraction of 

carbohydrate mass in 
Carbon 

0. 4 -  
(Sterner and Elser, 2002) 

 
The carbon quota is calculated as:  
 

𝑄𝑄𝐶𝐶 = 4
3
𝜋𝜋𝑟𝑟3𝜌𝜌cell𝑝𝑝dry

�𝛼𝛼𝐸𝐸𝐸𝐸𝐶𝐶rib+�(1−𝛼𝛼𝐸𝐸)𝐸𝐸+𝐿𝐿+
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛼𝛼

𝑟𝑟   �𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝑝𝑝DNA𝐶𝐶DNA+ ( 
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼

𝑟𝑟   𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙) 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙+𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

12
. 

 

(11) 

Here we see the contributions of carbon contained in both functional and storage pools, the 
latter of which are assumed to occupy a fixed fraction of the cell independent of the 
environment. 

Measurements of cellular P partitioning indicate that the ribosomal RNA can 245 
sometimes contribute only 33% of the total P quota (Garcia et al., 2016). The additional 
phosphorus includes membrane phospholipids, luxury storage compounds, and 
polyphosphates, each of which can be up- or down-regulated in response to phosphorus 
availability in the environment. To model this phenomenon, we assume the existence of an 
additional stored P pool, whose size is a linear function of environmental P, or: 250 

 
(P: C)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜖𝜖[𝑃𝑃], (12) 

where 𝜖𝜖 is determined by the best fit to the Martiny et al. (2014) data. Our model then 
predicts C:P as: 

C: P =
1

(𝑃𝑃:𝐶𝐶)(𝐸𝐸𝑚𝑚,𝑟𝑟𝑚𝑚) + 𝜖𝜖[𝑃𝑃]. (13) 

The model parameter 𝜖𝜖 is calculated by minimizing the residuals of the P:C ratio predicted 
by Eq.13 in comparison to the global data-set on particulate organic matter stoichiometry 255 
compiled by Martiny and others (2014). To maintain consistency with the linear regression 
model of Galbraith and Martiny (2015), we restrict the dataset to observations from the 
upper 30 meters of the water column containing particulate organic phosphorus and 
carbon concentrations of greater than 0.005𝜇𝜇𝜇𝜇. Observations from the same station and 
the same day, but at different depths in the water column are averaged together. The P:C 260 
ratio of the functional apparatus is calculated using T, [P], and irradiance data from the 
World Ocean Atlas (Garcia et al., 2014; Locarnini et al., 2013; 
oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3B/PAR/2014/), which are used 
to estimate environmental conditions at the location and date of particulate organic matter 
measurements. Light levels are computed by averaging irradiance over the top 50 meters 265 
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of the water column, assuming an e-folding depth of 20 meters.  Linear regression 
determines 𝜖𝜖 = 2500 M −1 which fits the data with an 𝑅𝑅2 = 0.28. All parameters for the 
model are listed in Table 1.   
 
2.2 Box Model Design 270 
To quantify the feedbacks between phytoplankton stoichiometry, carbon export, and 
pCO2,atm, we formulated a five-box model of the phosphorus and carbon cycles in the ocean 
and atmosphere. The foundation of our model is based on the models introduced in Ito and 
Follows (2003) and DeVries and Primeau (2009). The model includes three surface boxes, 
each corresponding to one of the major biomes: the tropical equatorial upwelling regions 275 
(labeled T), the subtropical gyres (labeled S), and the high-latitude regions (labeled H) 
(Figure 2). We define the oligotrophic subtropical gyre regions where the mean annual 
phosphate concentration is less than 0.3 μM (Teng et al., 2014), with the remainder of the 
surface ocean assigned either to box T or  box H based on latitude. We use these 
assignments to calculate the baseline physical properties of each region, including mean 280 
annual averaged irradiance and temperature. The subsurface ocean is divided into two 
regions: the thermocline waters that underlies the subtropical gyres, the equatorial 
upwelling regions (labeled M), and deep waters (labeled D) (DeVries and Primeau, 2009).  

 
Figure 2: Box Model Design. A) Sea surface breakdown by region. All regions peach color represents the 285 
tropical surface ocean box, cream represents the subtropical surface ocean box, and grey color represents the 
high-latitude surface ocean box. B) The model includes tropical (T), subtropical (S), and high-latitude (H) 
surface ocean boxes, a mixed thermocline (M) box, and a deep water (D) box. The thermohaline circulation Tc is 
set to 20 Sv, while the wind driven shallow overturning circulation is set to 5 Sv. The high-latitude mixing flux fhd 
is set to 45.6 Sv. The thickness of Box H is 1000 m, and Box M is 900 m. Box T has a T of 26°C, box S has a T of 290 
24°C, and box H has a T of 7°C. Box S covers 39% and Box T covers 25% of the ocean surface area. 
 

To simulate the global transport of water between boxes, our model includes a 
thermohaline circulation (labeled Tc) that upwells water from the deep ocean into the 
tropics, laterally transports water into the subtropics and high-latitudes, and downwells 295 
water from the high-latitude region to the deep ocean. Surface winds produce a shallow 
overturning circulation (labeled Tw), that transports water from the thermocline to the 
tropics and then laterally into the subtropics. These circulations create teleconnections of 
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nutrient supply in the surface ocean boxes. A bidirectional mixing term that ventilates the 
deep box directly through the high-latitude surface box (labeled fhd) represents  deep 300 
water formation in the Northern Atlantic region and around Antarctica (Sarmiento and 
Toggweiler, 1984). The parameters Tc, Tw and fhd are considered adjustable parameters, 
which we calibrate using phosphate data from WOA13 (Garcia et al., 2014). In order to 
simulate the movement of particles, we included export fluxes (Pt, Ps, and Ph) of organic 
phosphorus out of each surface box.  305 

Our box model simulates [P], alkalinity and various forms of C; total carbon in the 
surface boxes is partitioned into carbonate, bicarbonate, and pCO2. The global mean [P] is 
prescribed according to the observed mean ocean value (Garcia et al., 2014). The export of 
carbon is linked to phosphorus export using the C:Pexport ratio. To quantify the breakdown 
of carbon into these components, we model the solubility pump, using temperature and 310 
salinity to determine the partitioning of inorganic carbon. CO2 cycles through the 
atmosphere via the air-sea gas exchange fluxes (fah, fas, fat). We used a uniform piston 
velocity of 5.5 x 10-5 m s-1 to drive air-sea gas exchange (DeVries and Primeau, 2009; 
Follows et al., 2002). Iron limitation is implicitly simulated through its control on the 
tropical [P], which is used as a control variable in our experimental runs.  315 

We calibrated our model parameters (Tc, Tw, fhd) so that the macronutrients were 
at similar average values based on the World Ocean Atlas 2013 dataset for its location. We 
tested the sensitivity of modeled pCO2,atm to the fluxes Tc, Tw, and fhd and found that with 
Tc = 20 Sv and Tw = 5 Sv (values that allowed the model to match [P] and alkalinity) the  
pCO2,atm was sensitive to the value of fhd (Sarmiento and Toggweiler, 1984). Guided by 320 
values previously used in the literature we set fhd to 45.6 Sv (Table 2) but we also present 
results for the nutrient-only stoichiometry model at two extreme values of fhd, 18 and 108 
Sv (Figure 3). The functional dependence of pCO2,atm with changing subtropical and tropical 
[P] for each extreme value of fhd was quite similar, though the value of pCO2,atm for the high 
fhd simulation was approximately twice that of the low fhd simulation (Figure 3). We found 325 
that our value of 45.6 Sv provides a modern pCO2,atm value.  

For certain values of the parameters, the model produced excessive nutrient 
trapping in the thermocline. In order to dampen the nutrient trapping, we tuned the 
remineralization depth.  Assuming that 25% of the total export is respired in the 
thermocline with the remaining 75% exported into the deep ocean, produced a better 330 
match between the modeled and observed [P] in the thermocline box.  
 
Table 2: High-latitude deep water exchange range 
REFERENCE RANGE OF FHD [SV] 
Sarmiento and Toggweiler, 1984 38.1 
Toggweiler, 1999 3-300 
Devries and Primeau, 2009 60 
Galbraith and Martiny, 2015 30-130 
This Study 18-108 (default value 45.6) 
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 335 
Figure 3: pCO2,atm (ppm) sensitivity to extreme fhd values  under changing surface phosphate 
concentrations.  A.) Range of pCO2,atm (ppm) using an fhd value of 18 Sv. B.) Range of pCO2,atm (ppm) using an 
fhd value of 108 Sv.  

 
2.2.1 Experimental Design 340 
To address how changing environmental conditions affected stoichiometric ratios, carbon 
export, and pCO2,atm we performed two tests; a change in nutrients and a change in sea 
surface temperature. These tests allowed us to observe how the relationships between 
environmental conditions, carbon export and pCO2,atm, depend on the mechanisms 
responsible for stoichiometric variation in the ocean. In order to account for the effects of 345 
particulate inorganic carbon (PIC) export, we multiply model predicted C:Pexport by 1.2, 
consistent with previous studies (Broecker, 1982; Sarmiento and Toggweiler, 1984).  

The first set of numerical experiments examined the sensitivity of pCO2,atm to 
nutrient availability in the tropical and subtropical boxes for each of the three 
stoichiometric models. This set of experimental runs was intended to capture the effects of 350 
changing levels of iron deposition, which could lead to shifts in phosphorus drawdown by 
relieving iron limitation of diazotrophic phytoplankton in subtropical gyres and of bulk 
phytoplankton populations in equatorial upwelling regions.  We varied tropical [P] from 
0.15 to 1.5 uM and subtropical [P] from 0 to 0.5 uM by adjusting the implied biological 
export and determined the equilibrium pCO2,atm values.  355 

The second set of experimental tests was done to quantify how temperature 
modifies carbon export and pCO2,atm for each stoichiometric model. Temperature influences 
carbon cycling in two ways within our model: through the solubility of inorganic carbon in 
seawater and through changes in phytoplankton stoichiometry within the temperature-
only and multi-environmental models. Due to the well-known effects of temperature on 360 
CO2 solubility, it is generally predicted that there is to be a positive feedback between 
pCO2,atm and temperature mediated by declining CO2 solubility at high T’s. To study the 
relative strengths of the temperature solubility feedback and the temperature regulation of 
C:P feedback, we performed a numerical experiment in which we varied the sea surface 
temperature by five degrees in either direction of modern sea surface temperature. This 365 
represents a plausible range of variation under both ice-age and anthropogenic climate 
change scenarios. We varied tropical temperature from 21° to 31°C and subtropical 
temperature from 19° to 29°C, determining equilibrium pCO2,atm values for combinations of 
temperature conditions.  
 370 
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3 Results 
To quantify the linkages between phytoplankton physiology, elemental stoichiometry, and 
ocean carbon cycling, we divide our results into two parts. The first is a direct study of the 
stoichiometric models, comparing their predictions about the relationship between 
stoichiometry and environmental conditions, and in the case of the trait-based model, 375 
illustrating how cellular physiology is predicted to vary across these conditions. In the 
second part, we show how variables stoichiometry influences carbon export and pCO2,atm, 
under changing phosphorus concentrations and temperature. Within these results, we 
distinguish the influence or lack thereof on the three distinct biomes, in particular the iron 
stressed equatorial upwelling regions and the macronutrient depleted subtropical gyres.  380 
 
3.1 Multi-environmental and physiological controls on plankton stoichiometry  
Our multi-environmental model captured several major mechanisms hypothesized to be 
environmental drivers of C:P ratios including a temperature dependence of many cellular 
processes, a link between growth rate and ribosome abundance, and storage drawdown 385 
during nutrient limitation. The predicted relationship between environmental conditions 
and C:P can be understood through the environmental regulation of three factors: (i) the 
balance between photosynthetic proteins and ribosomes, (ii) the cell radius and associated 
allocation to structural material, and (iii) the degree of phosphorus storage. Our model 
predicted that for an optimal strategy, specific protein synthesis rates will match specific 390 
rates of carbon fixation. Thus, the ratio of photosynthetic machinery to biosynthetic 
machinery is therefore primarily controlled by irradiance and temperature. Increases in 
light levels lead to higher photosynthetic efficiency, higher ribosome content, and lower C:P 
ratios (Figure 4). The response of C:P to light levels predicted by our model was muted in 
comparison to other subcellular compartment models because we separately modeled 395 
electron transport and carbon fixation (Talmy et al., 2014), and our predictions were 
consistent with the weak relationship between irradiance and C:P (Thrane et al., 2016) 
(Figure 4A). Increases in temperature increase the efficiency of biosynthesis, but not 
photosynthesis. Therefore elevated temperature lead to a reduced ribosome content 
relative to photosynthetic proteins and higher C:P ratios (Figure 5A). Nutrient 400 
concentrations do not affect the ratio of biosynthetic to photosynthetic machinery but 
positively relate to both P storage and cell radius. Cell radius directly influences the specific 
rate of nutrient uptake, and indirectly biosynthesis and photosynthesis as the cell 
membrane and wall affects the space available for other investments. This effect becomes 
pronounced at small radius. In oligotrophic conditions ([P] < 100nM), cell radius declines 405 
substantially, decreasing the allocations to both photosynthesis and biosynthesis and 
driving up C:P ratios. P concentrations also influenced C:P through their direct control of P 
storage. Thus, C:P was predicted to be a decreasing function of [P] with two distinct 
regimes: a moderate sensitivity regime for [P] above 100nM, and a high sensitivity regime 
for [P] below 100nM. 410 
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Figure 4: Influence of phosphate concentration and irradiance on cellular stoichiometry and cellular 
traits, at a constant T = 25 °C. A) The C:P ratio. B) Biosynthesis allocation. C) Photosynthesis (L) allocation. As 
irradiance increases, there is a tendency towards greater allocation to biosynthesis and lesser allocation to 415 
photosynthesis, which leads to lower C:P ratios. When phosphorus is very low, there is a large decrease in both 
biosynthesis and photosynthesis allocations due to the large relative allocation to the cell membrane. C:P ratios 
are inversely proportional to phosphorus concentration, driven by an increase in luxury storage and ribosomal 
content as P increases. 
 420 
 

 
Figure 5: Influence of phosphate concentration and temperature on cellular stoichiometry and cellular 
traits, at a constant irradiance I = 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 𝒎𝒎−𝟐𝟐𝒔𝒔−𝟏𝟏. A) The C:P ratio. B) Biosynthesis allocation. C) 
Photosynthesis (L) allocation. Consistent with the translation compensation hypothesis, increases in T led to a 425 
reduction in the allocation to biosynthesis and an increase in C:P.  
 

We next used the outcome of the trait model as a multi-environmental model to 
predict C:P ratios in the modern ocean based on annual mean light, T, and [P]. Our 
predictions reproduced the global pattern (Martiny et al., 2014) with C:P ratios above the 430 
Redfield ratio in subtropical gyres and C:P ratios below the Redfield ratio in equatorial and 
coastal upwelling regions and subpolar gyres (Figure 6A). Additionally, our model also 
reproduced basin-scale stoichiometric gradients among similar biomes in each ocean, 
predicting the highest C:P ratios in the western Mediterranean Sea and the western North 
Atlantic Subtropical Gyre, and somewhat elevated C:P ratios in the South Atlantic 435 
Subtropical Gyre as well as the North and South Pacific Subtropical Gyres.   
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Figure 6: Predicted C:P ratios in the global ocean in differing climatic regimes. A) C:P ratio under modern 
ocean conditions. Large differences in C:P are predicted between distinct types of ocean biome, with low C:P in 440 
equatorial upwelling regions and subpolar gyres, and high C:P in subtropical gyres. Regional differences between 
biomes of similar type are observed as well, with the low phosphorus Atlantic having a higher C:P than the 
Pacific. B.) C:P ratio under cooling temperature conditions (-5°C from the modern ocean). C) C:P ratio under 
warming temperature conditions (+5°C from the modern ocean). Each 5 degree change leads to a shift of 15% in 
the mean C:P ratio of organic matter. 445 
 

To study the potential impact of sea surface temperature on phytoplankton resource 
allocation and stoichiometry, we used our multi-environmental model to predict C:P in 
ocean conditions both five degrees colder (Cooling environments) and warmer (Warming 
environments) than the modern ocean. According to our model, a five-degree increase (or 450 
decrease) in sea surface temperature would cause a 15% rise (or fall) in C:P ratios (Figure 
6). This sensitivity suggested that the relative effect of T on biochemical processes could 
have large implications for biogeochemical cycles, making it important to determine the 
relative importance of physiological mechanisms regulating C:P ratios. 
 455 
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Figure 7: Comparison of C:P between the multi-environmental model and the nutrient-only model and 
temperature-only model. The upper panels show predicted C:P for the global ocean under the nutrient-only (A) 
and temperature-only (B) models, and the lower panels show the normalized difference,  𝑖𝑖. 𝑒𝑒. 𝐶𝐶:𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝐶𝐶:𝑃𝑃𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

𝐶𝐶:𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
, 460 

between the C:P in the subcellular model (C, D).  
 
We compared the multi-environmental model to the predictions made by two other 

models: the nutirent-only model used by the Galbraith and Martiny model (2015), and our 
temperature-only model modified from Yvon-Durocher and co-workers (2015).  These two 465 
models also successfully predicted the qualitative pattern of stoichiometric variation in the 
ocean, but were unable to replicate the full range of variation observed in data (Figure 7). 
In particular, they misrepresented the North Atlantic Subtropical Gyre and the Southern 
Ocean, where the C:P ratio is at the extreme (Figure 7A, B). The nutrient-only model had a 
tendency to predict lower C:P ratios than the multi-environmental model in warm tropical 470 
and subtropical waters, and predict higher C:P ratios in cold waters (Figure 7A). This 
difference is driven by the T sensitivity of biosynthesis in the multi-environmental model, 
leading to increasing C:P in all warm water regions and decreasing C:P in cold water 
regions (Figure 7C ). The multi-environmental model predicted a wider range of C:P in the 
ocean. The temperature-only model overall had higher C:P ratios globally compared with 475 
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the multi-environmental model (Figure 7B) but suggested lower C:P in the gyres and 
higher C:P in high latitudes, especially in the Southern Ocean (Figure 7D).  

 
3.2 Impact of nutrient availability on carbon export and atmospheric pCO2 
We next quantified the impact of nutrient availability in the tropics and subtropics on 480 
stoichiometry, carbon export and pCO2,atm (Figure 8A-L). Using a constant Redfield model 
(or the temperature-only model), we replicated the previously observed approximately 
linear relationship between surface [P] and pCO2,atm (equivalent to how pre-formed [P] will 
influence pCO2,atm) (Ito and Follows, 2003; Sigman and Boyle, 2000). We found that [P] 
drawdown in the subtropical box had a greater impact on carbon export, since export from 485 
the high-latitude box was not enhanced by the [P] supply from the subtropical box (Figure 
8A, D, G). In the Redfield model, pCO2,atm appeared to be much more sensitive to subtropical 
[P] than tropical [P], which was partially due to enhanced carbon export in the subtropical 
box and partially due to the larger surface area of the subtropical box (implying a greater 
potential for CO2 exchange) (Figure 8J).  490 

In contrast to the predictions made using Redfield stoichiometry, when we used the 
nutrient-only model for phytoplankton stoichiometry, we observed a non-linear 
relationship between surface [P] and pCO2,atm (Figure 8B, E, H, K). At fixed tropical [P], 
there was a strong relationship between subtropical [P], export, and pCO2,atm in accordance 
with the findings of Galbraith and Martiny (2015) (Figure 8B, E,H). The total decline in 495 
pCO2,atm as subtropical [P] declined from 0.4 uM to 0 uM could be more than 60 ppm, which 
was more than twice the decline that occurred in the fixed stoichiometry experiment 
(Figure 8K). We found a non-linear monotonic relationship between tropical [P] and 
pCO2,atm: when tropical [P] was high, declines in tropical [P] led to lower carbon export and 
increased pCO2,atm. However, this trend reversed when tropical [P] was lower (Figure 8K). 500 
The counter intuitive decline in pCO2,atm with higher export from tropics was driven by a 
teleconnection in nutrient delivery between the subtropical and tropical boxes. Increases in 
export in the tropical box due to increased [P] drawdown decreased the supply of [P] to the 
subtropics, which led to a decrease in the more efficient (higher C:P) subtropical export. 
Thus, the nutrient-only model predicted a greater decrease in subtropical export than the 505 
counter increase in tropical export.  

The multi-environmental model also predicted a non-linear relationship between 
surface P, carbon export, and pCO2,atm. However, the pattern was somewhat distinct from 
that of the nutrient-only model results (Figure 8C, F, I, L). First, subtropical [P] drawdown 
had a nonlinear relationship with pCO2,atm: when subtropical [P] was high, declines in 510 
subtropical [P] led to slight declines in pCO2,atm, and when subtropical [P] is low, small 
declines in tropical [P] lead to large declines in pCO2,atm. This intensification of the 
relationship between subtropical [P] and pCO2,atm was due to the nonlinear relationship 
between [P] and C:P predicted by the trait-based model (Figure 8I). The multi-
environmental model predicted extremely high export, but only when [P] was lower than 515 
0.05 μM (Figure 8C, F, I). Second, the effect of tropical [P] levels on pCO2,atm was strongly 
modulated by subtropical [P], reversing from a negative to a positive relationship as 
subtropical [P] declines (Figure 8I, L). The difference between the nutrient-only model and 
the multi-environmental model arose because the multi-environmental model 
incorporated a temperature impact on resource allocation and elemental ratios. Although 520 
we were not varying temperature in these experiments, we did represent regional 
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temperatures differences between the different boxes. The result is that a large 
stoichiometric contrast between the tropical and sub-tropical regions only arose when 
there was a large difference in nutrient levels between the two regions (Fig. 8L). However, 
both the nutrient-only model and the multi-environmental model predicted that carbon 525 
export and pCO2,atm were sensitive to the interaction between regional nutrient availability 
and C:Pexport. 

 

 
Figure 8: Carbon export (Tmol C yr-1) and pCO2,atm (ppm) in changing surface phosphate concentrations. 530 
Columns correspond to type of stoichiometry; Redfield (Left), nutrient-only (Middle), and mulit-environmental 
model (Right). Rows correspond to either tropical carbon export (A through C), subtropical carbon export (D 
through F), total carbon export (G through I) or atmospheric pCO2 (J through L). The grey points represent 
where pCO2,atm was calculated, between spaces are interpolated.  
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 535 
3.3 Interactive effect of temperature on stoichiometry, carbon export and 
atmospheric pCO2 
We next quantified the impact of sea surface T in the tropics and subtropics on C:Pexport, 
carbon export, and pCO2,atm (Figure 9A-D). The Redfield model predicts that increases in T 
lead to a decline in the solubility of CO2 in seawater and consequently an increase in 540 
pCO2,atm  from 288 to 300 ppm (Δ pCO2,atm = 12) (Figure 9A). This feedback was present 
with the same strength in the nutrient-only model (with no T dependence on C:P), in which 
pCO2,atm ranged from 268 to 280 ppm (Δ pCO2,atm = 12) (Figure 9B).  

In contrast to the Redfield and nutrient-only models, the temperature-only model 
predicted a negative linear relationship between pCO2,atm and tropical sea surface T and a 545 
positive linear relationship between pCO2,atm and subtropical sea surface T (Figure 9C). The 
decline in pCO2,atm with tropical sea surface T was driven by an enhancement of export due 
to increased C:P at higher T’s (Figure 10). At 5°C below modern ocean T, the model 
predicted C:P in the tropics was 131 and subtropical was 121, resulting in a pCO2,atm of 305 
ppm. At 5°C above modern ocean T, the model predicted C:P in the tropics is 189 and 550 
subtropical was 175, resulting in a pCO2,atm of 263 ppm. Tropical T had more impact with Δ 
pCO2,atm = 41 ppm compared to subtropical T’s effect with a  Δ pCO2,atm  range from 4 to 5 
ppm (Figure 10).  

Similar to the temperature-only model, the multi-environmental model predicted a 
negative linear relationship between pCO2,atm and tropical sea surface T and a positive 555 
linear relationship between pCO2,atm and subtropical sea surface T (Figure 9D). The decline 
in pCO2,atm with tropical sea surface T was driven by an enhancement of export due to 
increased C:P at higher Ts (Figure 10). In the subtropical region, the expected increase in 
export was mitigated by a decline in solubility. At 5˚C below modern ocean T, the trait-
based model predicted that C:P in the tropics was 147 and that C:P in the subtropics was 560 
155, resulting in an increase of pCO2,atm to 279 ppm (Figure 10). Variation tropical Ts in a 
10˚C span led to a significant decline in pCO2,atm, with a Δ pCO2,atm of approximately 46, and 
tropical C:P ranging from 147 to 210 (Figure 10). Because the subtropical box has a large 
surface area, the decrease in surface CO2 solubility at high temperatures is sufficient to 
overcome the increase in export due to higher C:P leading to a positive relationship 565 
between pCO2,atm and subtropical temperatures.  

 

 
Figure 9: pCO2,atm (ppm) as a function of changing surface temperature concentrations. Based on A) 
Redfield (fixed) stoichiometry model, B) nutrient-only stoichiometry model, C) temperature-only stoichiometry 570 
model, and D) multi-environmental stoichiometry model. 
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Figure 10: The effect of changing sea surface temperature (°C) on pCO2,atm and total carbon export (Tmol 
C yr-1) in the temperature-only and multi-environmental model. Phosphate concentrations are 0.3 µM in the 
tropical and 0.05 µM in the subtropical box. Multi-environmental model total carbon export is the solid gray line, 575 
and pCO2,atm is the dashed gray line. Temperature-only model total carbon export is the solid black line, and 
pCO2,atm  is the dashed black line.   
 
4 Discussion 
Here, we found that variable stoichiometry of exported organic material moderates the 580 
interaction between low-latitude nutrient fluxes and ocean carbon cycling. A full 
connecting circulation allows for complete movement of nutrients between ocean regions 
resulting in strong linkages between nutrient supply ratios and cellular stoichiometric 
ratios (Deutsch and Weber, 2012). It has been shown that the inclusion of an oceanic 
circulation connecting high and low-latitude regions results in a feedback effect between 585 
high-latitude nutrient export and relative nutrient supply in low-latitudes (Sarmiento et al., 
2004; Weber and Deutsch, 2010). Together, the inclusion of lateral transport between 
ocean regions and of deviations from Redfield stoichiometry within our model led us to 
predict the existence of strong teleconnections between the iron-limited tropics and the 
macronutrient limited subtropics. The degree of nutrient drawdown in the tropics had a 590 
strongly non-monotonic relationship with pCO2,atm because this drawdown influenced both 
nutrient supply to the subtropics and tropical C:P. The idea of biogeochemical 
teleconnections has been proposed before, but we found that variations in stoichiometry 
greatly enhance the importance and strength of such linkages (Sarmiento and Toggweiler, 
1984). Thus biome-scale variations in phytoplankton elemental stoichiometry may change 595 
the sensitivity of the carbon pump to iron deposition or other phenomena that regulate 
patterns of nutrient drawdown. We also see that the degree of nutrient drawdown had a 
strong impact on predicted (and observed) C:P leading to highly non-linear controls on 
pCO2,atm whereby increased export in the tropics counter intuitively leads to increasing 
pCO2,atm. This observation suggests that pCO2,atm may have a complex link to iron delivery 600 
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that is modulated by macro-nutrient availability and phytoplankton resource demand. 
Thus, large-scale gradients in stoichiometry can alter the regional efficiency of the 
biological pump: [P] supplied to high C:P regions leads to a larger export of carbon than [P] 
supplied to low C:P regions, giving an important role to the details of the ocean circulation 
and other processes that alter nutrient supply and phytoplankton physiological responses 605 
in different surface ocean regions. Therefore, biome-scale variations in phytoplankton 
elemental stoichiometry can lead to a fundamental change in the partitioning of carbon 
between the atmosphere and the ocean.  

Past studies using box models have found pCO2,atm to be insensitive to low-latitude 
nutrients (Follows et al., 2002; Ito and Follows, 2003; Sarmiento and Toggweiler, 1984; 610 
Toggweiler, 1999). This phenomena was explored by DeVries and Primeau (2009), who 
showed that the strength of the thermohaline circulation is the strongest control on 
pCO2,atm, and that changes in low-latitude export are relatively unimportant. Unlike our 
study, such earlier work relied on a uniform Redfield stoichiometry. However, we find that 
when stoichiometric variation is included, carbon export and pCO2,atm become dependent 615 
on details of low-latitude processes.  

It is important to recognize that a five-box model is an incomplete description of 
ocean circulation, and is meant only to identify the most important mechanisms, not to 
make precise quantitative predictions. In order for our model to adequately reflect 
important features of the carbon and phosphorus nutrient distributions, we had to 620 
carefully select the values of the thermohaline and wind-driven upper ocean circulations 
that lead to reasonable nutrient fluxes and standing stocks. The value of thermocline 
circulation, Tc, has been calibrated in different box models to range from 12 to 30 Sv 
(DeVries and Primeau, 2009; Galbraith and Martiny, 2015; Sarmiento and Toggweiler, 
1984; Toggweiler, 1999). Representation of the wind driven overturning, Tw, in a simple 625 
box model has received less attention. Variations in the thermohaline circulation influence 
the abundance of nutrients in different boxes. Depending on the strength of this circulation, 
our model accumulated nutrients in the thermocline box and we tuned this parameter to 
most accurately mimic nutrient variation across ocean regions. Another caveat relates to 
our choice of the two-way flux values. Similar to the circulation values, a wide range of two-630 
way flux values have been used in the literature. We therefore performed sensitivity 
experiments to find the best value for our full model set-up but the qualitative trends 
observed are insensitive to the choice of such fluxes. 

Nutrient availability and temperature have been alternatively proposed as drivers 
of variation in stoichiometric ratios in the global ocean, and the strong statistical 635 
correlation between temperature and nutrients throughout the ocean has prevented 
identification of the relative importance of each factor. We see that although temperature 
regulation of C:Pexport can influence pCO2,atm, this regulation is strongly dependent on the 
detailed control mechanism and also generally diverge from expectations based on the 
solubility pump. Our results do not identify whether temperature or nutrient 640 
concentrations is the most important driver of phytoplankton C:P, but do suggest that the 
physiological effect of temperature could be important for ocean carbon cycling. Both the 
temperature-only and multi-environmental models predict that temperature increases 
enhance tropical export, causing substantial decreases in pCO2,atm with temperature. This 
relationship is the reverse of that predicted by the nutrient-only and Redfield models, and 645 
represents a sizable potential negative feedback on carbon cycling. The multi-
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environmental model also predicted that C:P responds in a nonlinear fashion to [P], with 
significantly increased sensitivity in highly oligotrophic conditions. A deeper 
understanding of the physiological mechanisms regulating phytoplankton C:P ratios are 
thus key to understanding the carbon cycle.  650 

Our derivation of the multi-environmental model relies on several important 
assumptions. The growth rate in the multi-environmental model is determined by a set of 
environmental conditions and quantified by the specific rate of protein synthesis, carbon 
fixation and phosphorus uptake. The effect of growth rate on stoichiometry will likely be 
dependent on whether light, a specific nutrient, or temperature controls growth. The value 655 
of specific species of Q10 leads to uncertainty in our multi-environmental model because of 
the range of possible values is highly dependent on the cell or organism being tested. In a 
study examining Q10 of various processes within the cell, it was found that the Q10 of 
photochemical processes ranged from 1.0 to 2.08, and for carboxylase activity of RuBisCO 
to be 2.66 (Raven and Geider, 1988). In addition to the high uncertainty between Q10 660 
values, there is high ambiguity associated with cellular inorganic P stores (e.g., 
polyphosphates and phospholipids) (Kornberg et al., 1999). P storage, such as 
polyphosphates, can serve as both energy and nutrient storage that may be regulated by 
unique environmental factors. Finally, we assume that our choice of the value of Q10 for 
each metabolic process is a potential source of error within our model, because measured 665 
values are highly dependent on the cell or organism being tested, and it is difficult to 
extend these single-organism observations across species.  Thus, we recognize multiple 
caveats within the trait-based model but expect that it improves our ability to link 
environmental and phytoplankton stoichiometry variation. 
 670 
5 Conclusions 
We find that processes that affect nutrient supply in oligotrophic gyres, such as the 
strength of the thermohaline circulation, are particularly important in setting pCO2,atm but 
via a complex link with C:Pexport. By explicitly modeling the shallow overturning circulation, 
we showed that increased export in the tropics, which might be influenced by increased 
atmospheric iron dust deposition, may lead to increases, rather than decreases, in pCO2,atm. 675 
Increased [P] drawdown in the tropics shifts export away from the subtropical gyres, and 
changes the mean export C:P in the low-latitude ocean. We would expect that nutrient 
drawdown leads to high export and declines in pCO2,atm, but instead we find that variation 
in cellular allocation and adaptation can lead to counterintuitive controls on pCO2,atm. 
Additionally, we find that it is even more difficult to separating nutrient supply and 680 
temperature controls on marine phytoplankton stoichiometry, carbon export, and pCO2,atm 
and we need better physiological experiments and field data to fully understand the 
relative impact of the two factors. Nevertheless, it is likely that both play a key role in 
regulating phytoplankton stoichiometry, C:Pexport, and ultimately ocean carbon cycling.   
 685 
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