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Abstract. The availability of nutrients is one of the factors that regulate terrestrial carbon cycling and modify ecosystem 

responses to environmental changes. Nonetheless, nutrient availability is often overlooked in climate-carbon cycle studies 

because it depends on the interplay of various soil factors that would ideally be comprised into metrics applicable at large 10 

spatial scales. Such metrics do currently not exist. Here, we use a Swedish forest inventory database that contains soil data and 

tree growth data for > 2500 forests across Sweden to (i) test which combination of soil factors best explains variation in tree 

growth, (ii) evaluate an existing metric of constraints on nutrient availability, and (iii) adjust this metric for boreal forest data. 

With (iii), we thus aimed to provide an adjustable nutrient metric, applicable for Sweden and with potential for elaboration to 

other regions. While taking into account confounding factors such as climate, N deposition and soil oxygen availability, our 15 

analyses revealed that the soil organic carbon concentration (SOC) and the ratio of soil carbon to nitrogen (C:N) were the most 

important factors explaining variation in “normalized” (climate-independent) productivity (mean annual volume increment - 

m³ ha-1 yr-1) across Sweden. Normalized forest productivity was significantly negatively related to soil C:N ratio (R² = 0.02–

0.13), while SOC exhibited an empirical optimum (R² = 0.05–0.15). For the metric, we started from a (yet unvalidated) metric 

for constraints on nutrient availability that was previously developed by the International Institute for Applied Systems 20 

Analysis (IIASA - Laxenburg, Austria) for evaluating potential productivity of arable land. This IIASA-metric requires 

information on soil properties that are indicative of nutrient availability (SOC, soil texture, total exchangeable bases - TEB 

and pH) and is based on theoretical considerations that are also generally valid for non-agricultural ecosystems. However, the 

IIASA-metric was unrelated to normalized forest productivity across Sweden (R² = 0.00–0.01), because the soil factors under 

consideration were not optimally implemented according to the Swedish data, and because the soil C:N ratio was not included. 25 

Using two methods (each one based on a different way of normalizing productivity for climate), we adjusted this metric by 

incorporating soil C:N and modifying the relationship between SOC and nutrient availability in view of the observed 

relationships across our database. In contrast to the IIASA-metric, the adjusted metrics explained some variation in normalized 

productivity in the database (R² = 0.03–0.21; depending on the applied method). A test for five manually selected local fertility 

gradients in our database revealed a significant and stronger relationship between the adjusted metrics and productivity for 30 
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each of the gradients (R² = 0.09–0.38). This study thus shows for the first time how nutrient availability metrics can be 

evaluated and adjusted for a particular ecosystem type, using a large-scale database.  

1 Introduction 

Nutrients determine structure and functioning at all levels of biological organization. The availability of mineral elements 

influences plant growth (von Liebig, 1840), patterns of biodiversity (Fraser et al., 2015) and ecosystem processes (e.g. Janssens 35 

et al., 2010; Vicca et al., 2012; Fernández-Martínez et al., 2014). Moreover, nutrient availability can modify ecosystem 

responses to global atmospheric and climatic changes, such as nitrogen (N) deposition (Nohrstedt, 2001; Hyvönen et al., 2008; 

Vadeboncoeur, 2010), increasing CO2 levels (Norby et al., 2010; Terrer et al., 2016), warming (Dieleman et al., 2012) and 

drought (Friedrich et al., 2012). Given the crucial role of nutrients in terrestrial carbon cycling and in shaping the magnitude 

and direction of its feedbacks to climate change, nutrient availability should be taken into account in global analyses and in 40 

Earth system models (Goll et al., 2012; Thomas et al., 2015; Wieder et al., 2015). This is, however, not yet common practice 

because we often lack the soil data and metrics needed to accurately account for nutrient availability.  

Comparing nutrient availability among terrestrial ecosystems is difficult for two reasons: comprehensive and harmonized data 

on soil properties and nutrients are not usually available from experimental and observational sites, and no standardized 

quantitative metric exists to compare the nutrient statuses of terrestrial ecosystems at the global scale, or even at a national 45 

scale (e.g. for Sweden, which is considered in this study). In the absence of a standardized nutrient availability metric, studies 

comparing nutrient availability across sites commonly use soil fertility-related approximations such as the height of 100 year 

old trees (which, however, also depends on other factors such as soil depth and hydrology - Hägglund and Lundmark, 1977) 

or manually classify sites as low, medium, and high nutrient availability based on existing site information (Vicca et al., 2012; 

Fernández-Martínez et al., 2014). The absence of a more nuanced expression impedes elucidating the role of nutrient 50 

availability in ecosystem processes and functioning (Cleveland et al., 2011) and how these respond to global change, and 

precludes investigating non-linear effects of nutrient availability.  

Although various proxies exist to estimate soil N and phosphorus (P) availability at the local scale (e.g. “snapshots” of 

extractable pools), no perfect method exists to quantify N and P availability in a comparable way across ecosystems (Binkley 

and Hart, 1989; Holford, 1997; Neyroud and Lischer, 2003). This limits the potential for inter-site comparisons based on these 55 

data alone (Cleveland et al., 2011). Soil properties like soil texture, soil organic matter (SOM) quantity and quality, and pH, 

on the other hand, are more indicative of the general nutrient status, because together with environmental factors (temperature 

and moisture - Binkley and Hart, 1989), they control (1) the total amount of nutrients in soil solution, (2) ion exchange sites 

and (3) unavailable pools of soil nutrients, as well as fluxes between these three (Roy et al., 2006). For instance, a high clay 

fraction corresponds to a high cation exchange capacity (CEC), i.e. the soil’s potential to retain positively charged, 60 

exchangeable ions such as NH4
+, K+, Ca2+ and Mg2+ (Chapman, 1982; Chapin et al., 2002), while SOM has a positive influence 
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on nutrient availability by acting as a nutrient reserve (Grand and Lavkulich, 2015) and provides cation as well as anion 

exchange sites (IIASA and FAO, 2012). Finally, soil pH strongly influences availability of P and base cations (K+, Ca2+ and 

Mg2+). At low pH, P is bound to Fe and Al oxides, while at high pH, P is typically unavailable because of complex formation 

with Ca. P availability is thus maximal at intermediate pH (Chapin et al., 2002; Bol et al., 2016), while enhanced leaching of 65 

base cations occurs in acidic soils, thus reducing TEB (i.e. the cation equivalent of summed K, Ca, Mg and Na - IIASA and 

FAO, 2012). Hence, unlike temperature or precipitation, nutrient availability cannot be assessed by measuring one single 

parameter. It is determined by the interplay of various nutrients and soil properties. A nutrient availability metric should thus 

combine critical soil properties and nutrients, while considering important non-linearities. To be widely applicable, such a 

metric is preferably constructed only of easy-to-obtain variables.   70 

Only a few exploratory attempts to find an expression for nutrient availability at the global scale have been made. The most 

recent one was developed by IIASA and FAO, who provide a simple index in their Global Agro-ecological Zones report of 

2012 (IIASA and FAO, 2012). It is a worldwide applicable metric for constraints on nutrient availability, principally meant 

for agricultural purposes. This metric represents, for a particular crop species, the percentage of the maximum attainable 

productivity that could be reached given constraints imposed by environmental characteristics such as climate, rooting 75 

conditions and soil oxygen availability, but absent nutrient limitation: 

Actual productivity = Metric score [%] x Attainable productivity ,      (1) 

                                                   100 

The species-specific score of the metric depends on four measurable soil variables, related to soil fertility: SOC (%), soil 

texture, TEB (cmol+ kg-1 dw) and pH measured in water (pHw). The metric score combines the scores of each of these four 80 

attributes (provided in a look-up table), but giving more weight to the attribute with the lowest score. Together with the non-

linear relationships (e.g. for pH and SOC - see Methods), this increases the realism of the metric (cf. Liebig’s Law of the 

Minimum (von Liebig, 1840); e.g. at optimal pH, the limiting effect of low SOC on plant growth will be stronger than in soils 

with very low or high pH where plant growth becomes more likely to be P-limited).  

To the best of our knowledge, the accuracy of the IIASA-metric has not yet been tested against data from natural ecosystems, 85 

and it is not known to what extent the metric – aimed at describing constraints on nutrient availability – can describe variation 

in nutrient availability of non-agricultural soils. Evaluation of the IIASA-metric, and further development of a widely 

applicable metric of nutrient availability, requires datasets that combine the necessary information on soil properties and 

nutrients with data on plant productivity, while also covering a substantial variation in nutrient availability. Such a unique 

dataset – that comprises > 2500 conifer forest plots and thus provides sufficient statistical power for an evaluation of the metric 90 

– is provided by the Swedish forest inventory service. Moreover, it contains additional variables of interest related to N 

availability, such as soil total N stock and concentration, and especially the soil C:N ratio, which we expected to be an important 

factor in explaining variation in nutrient availability. This large dataset also allows evaluating our country-scale findings 
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against local gradients in nutrient availability that avoid confounding effects of covarying factors such as climate and N 

deposition.  95 

Specifically, we used the Swedish dataset to address the following questions: 

Question 1: which single soil variables can explain variation in normalized (i.e. climate-independent) productivity across 

Sweden? Which combination of soil factors best explains variation in normalized productivity?  

Question 2: can the IIASA-metric of constraints on nutrient availability explain variation in normalized productivity? Are the 

soil variables already included in the metric (SOC, soil texture, TEB and pHw) accurately implemented?  100 

Question 3: can the IIASA-metric be adjusted to characterize nutrient availability in Swedish forests?  

2 Methods 

2.1 The Swedish forest and soil inventories (national database) 

We combined a Swedish forest soil (Olsson, 1999; Lundin, 2011) and inventory database for the period 2003–2012 (Lundin, 

2011) with a database with soil texture and climate information across Sweden. Precipitation data were extracted from the 105 

European Commission Joint Research Centre Monitoring Agricultural Resources dataset (EC–JRC–MARS, based on ECMWF 

model outputs and a reanalysis of ERA–Interim; see http://spirits.jrc.ec.europa.eu/), based on the geographic location of each 

site. The dataset’s spatial resolution is 0.25° and averages were calculated for the period 1989–2012. The resulting data 

collection thus incorporated information on location, climate, soil and vegetation for about 2500 forested plots (n = 1099 for 

spruce, n = 1422 for pine), spread over Sweden (Table 1). 110 

Many of the (mostly managed) forest plots were not monocultures, but contained both Norway spruce (Picea abies (L.) H. 

Karst.) and Scots (or Lodgepole) pine (Pinus sylvestris L. or Pinus contorta Douglas) trees, as well as other species. In order 

to contrast spruce and pine forests, we classified forests with ≥ 50 % basal area of spruce (pine) trees as spruce (pine). To 

quantify the influence of climate on productivity across Sweden (question 1), we first determined the annual growing season 

temperature sum (TSUM) following a recently reparameterized version of the equation given in Odin et al. (1983), available 115 

on www.kunskapdirekt.se: 

TSUM [°C days]  

    = 4203.212488 - 40.21083 * latitude [° N] - 2.564434 * elevation [m]  

    + 0.030492 * latitude [° N] * elevation [m] - 0.117532 * latitude² [° N] + 0.00188 * elevation² [m]  

    – 0.000000556 * latitude² [° N] * elevation² [m] ,          (2) 120 

In order to facilitate between-site comparisons and to allow calculating the nutrient availability metric, we converted the soil 

measurements (SOC, soil texture, TEB, pHw, pHKCl, total nitrogen concentration (TN) and soil C:N ratio) taken per horizon to 
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values representative of the upper 10 cm (i.e. the 0–10 cm layer) and the upper 20 cm (i.e. the 0–20 cm layer) of the soil, 

including the organic layer. To this end, we first calculated bulk densities (BD) as  

BDorganic horizon [kg m-3] =  
𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑙𝑎𝑦𝑒𝑟 𝑠𝑡𝑜𝑐𝑘 [𝑘𝑔/𝑚²]

𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑙𝑎𝑦𝑒𝑟 𝑑𝑒𝑝𝑡ℎ [𝑚]
 ,          (3) 125 

for the organic horizons and 

BDmineral horizon [kg m-3] = 1546.3 * exp(-0.3130 * √𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 [%]) ,                    (4)  

for the mineral soil (Nilsson and Lundin, 2006).                       

Conversions of soil data (“variables”) per horizon to data per depth interval (layer x–y cm) were then performed as follows 

(soil mass per m² [kg m-2] = BD [kg m-3] * thicknesshorizon or layer [m]): 130 

Variablex-ycm = (soil masshorizon1/soil massx-ycm) * variablehorizon1  

+ (soil masshorizon2/soil massx-ycm) * variablehorizon2 + …      (5) 

The IIASA-metric of constraints on nutrient availability, originally meant for use on arable land, incorporates four crop specific 

scores (estimated for SOC, soil texture, TEB and pHw) that can be assigned to a soil (IIASA and FAO, 2012). These scores, 

which can be found in look-up tables (http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/soil_evaluation.html), were 135 

derived from crop growth data on different agricultural soils. Given that we consider boreal forests and not crops, we averaged 

the scores of the different crop species for each of the four soil properties. We thus removed crop specific requirements, but 

generally known relationships between the soil variables and plant performance (not only valid for agro-ecosystems), such as 

an optimum for pH, remained. In addition, we replaced the look-up table derived step functions by continuous empirical 

formulas, to facilitate their calculation as well as their modification (Fig. 1): 140 

SOC Score [%] = 38.94 + (100 - 38.94) * (1-exp(-1.4192 * SOC[%])) ,      (6) 

Soil texture Score [%] = max(100 + 0.4911 * (1-exp(0.0522 * SAND[%])), 35) ,     (7) 

TEB Score [%] = 28.05 + (100 - 28.05) * (1-exp(-0.4508 * TEB[cmol+ kg-1])) ,     (8)  

pH Score [%] = max(-17.228 * (pHw - 4.04) * (pHw - 8.84), 0)  

= max(-17.228 * (pHw - 6.44)² + 99.32, 0) ,       (9) 145 

The total score for nutrient availability, which can be interpreted as the expected actual yield (i.e. aboveground productivity) 

proportional to the maximum attainable yield (i.e. without nutrient constraints), was then calculated as follows (IIASA and 

FAO, 2012): 

Total IIASA Score [%] = 0.5 * Lowest Score + 0.5 * Average of other Scores ,     (10) 
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2.2 General approach 150 

Forest productivity across Sweden depends not only on soil nutrient availability, but also on climate, soil wetness and N 

deposition. Before evaluating the metric, we removed the influence of climate on forest productivity (“PRE” in Fig. 2). The 

influence of soil moisture and N deposition are considered in further analyses (see section 2.3.1). Normalized productivity was 

calculated in two alternative ways: (1) as the residuals of the regression model (of PRE; from here on referred to as “method 

1”; Figs. 3a and S1a,b, Tables S1 and S2, and Eq. (S1)) and (2) as the ratio of the original productivity relative to the theoretical 155 

maximum productivity (from here on referred to as “method 2”; Figs. 3b and S1b,c). This theoretical maximum productivity, 

which was extracted from a map provided by Bergh et al. (2005) with ArcGIS (ESRI, 2011), indicates the productivity that 

could be obtained under non-nutrient-limited conditions and is further referred to as attainable productivity. The second method 

is thus very similar to the IIASA approach (cf. Eq. (1)), but because an estimate for attainable productivity was only available 

for spruce, it could only be applied for this species. The two alternative methods for normalizing productivity were used to 160 

verify the robustness of the analyses, and because each method has its own advantages and disadvantages. The main 

disadvantage of method 1 is that not only the direct influence of climate on productivity is removed, but also its indirect effect 

through nutrient availability, so that only effects of regional variation in nutrient availability on productivity remain. Method 

2, on the other hand, involves an extrapolation based on the results of only a few fertilization experiments and thus comes with 

high uncertainty on the estimates of attainable productivity. 165 

Regression analysis was then used to elucidate how the different soil variables were related to normalized productivity (Q1). 

In addition, normalized productivity was fitted against the IIASA-metric to test its performance. The correlation between the 

residuals of this relationship and each of the four variables of the metric then indicated whether or not the variables were well 

implemented (Q2). Finally, the associations found in Q1 indicated how the metric could be adjusted (Q3). Two adjusted metrics 

were then evaluated in the same way as the original IIASA-metric in Q2, and by investigating if they could explain variation 170 

in productivity for five local gradients in nutrient availability. An overview of the methodology is presented in Fig. 2. 

2.3 Data analyses 

As explained in the paragraphs above, productivity was normalized using two methods. Method 1 considers the residuals to 

reflect deviations in productivity imposed by spatial variation in nutrient availability and in the absence of climate effects. 

However, residuals deviated more strongly from zero towards the warmer south (Fig. 3a), thus causing heteroscedasticity and 175 

a potential bias in the further analyses if not properly accounted for. For further analyses, we therefore split the database into 

three TSUM groups (north, middle and south; Fig. 3a). For method 2, considering the ratio actual/attainable productivity, this 

separation of different regions was not required. 
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2.3.1 Identifying potentially confounding factors 

In order to understand the correlation structure of the database, and avoid multicollinearity in the subsequent analyses, we 180 

examined correlations among the soil variables (SOC, TN, total N stock, soil C:N ratio, sand fraction, clay fraction, TEB, pHw 

and pHKCl). We performed a principal component analysis (princomp function, package MASS - Venables and Ripley, 2002) 

in R (R Core Team, 2015) for a visualization and constructed a correlation matrix with Pearson’s r as correlation coefficients 

for each variable pair.  

Soil moisture and soil type (available as categorical variables) may act as confounding factors for associations between 185 

productivity and other soil properties (e.g. in wet soils, the rooting environment is anoxic and decomposition is inhibited 

(Olsson et al., 2009), leading to reduced productivity and accumulation of SOM). We therefore tested if the selected soil 

variables and normalized productivity differed among soil moisture classes (dry, fresh, fresh-moist and moist, as available 

from the database and derived from a combination of indicators such as groundwater depth – Olsson, 1999; Olsson et al., 2009) 

and the most common World Reference Base for Soil Resources based soil types (histosols, gleysols, regosols, leptosols and 190 

podzols) using two-way ANOVA with soil moisture/type and tree species as fixed factors. 

Numerous studies have shown the strong influence of N deposition on forest productivity (e.g. Laubhann et al., 2009; Solberg 

et al., 2009; de Vries et al., 2014; Binkley and Högberg, 2016; Wang et al., 2017). Although N deposition can influence the 

soil properties considered in our analyses, it may also influence productivity without immediate changes in these soil properties 

(i.e. there is a time lag - Novotny et al., 2015). In other words, for a given set of soil characteristics and climate, productivity 195 

may vary depending on N deposition, which would weaken the link between soil properties and normalized productivity. To 

verify whether N deposition confounded our analyses, we extracted N deposition data of 2015 from a map available at 

http://www.smhi.se/sgn0102/miljoovervakning/kartvisare.php?lager=15DTOT_NOY___ (Swedish Meteorological and 

Hydrological Institute, 2018), using the ArcGIS software (ESRI, 2011). We then tested whether N deposition correlated with 

productivity and soil variables, using Pearson’s correlation coefficient (r), and performed regression analyses on normalized 200 

productivity vs N deposition, stratified by soil moisture and type.     

2.3.2 Question 1 - Normalized productivity vs single and combined soil variables 

Simple regression analysis was used to determine the relationship between single soil variables and normalized productivity. 

To test the robustness of the observed relationships in the absence of potentially confounding effects of soil moisture and type, 

we performed these analyses on all data, and on the data stratified by soil moisture and soil type. Then, we tested which 205 

combination of continuous soil variables best explained variation in normalized productivity across Sweden (multiple 

regression analysis). Starting from the full model containing all explanatory variables, the least significant term was removed, 

resulting in a simplified model. Performance of the full and simplified model was then compared using the mean squared error 

(mse), based on cross-validation (package DAAG - Maindonald and Braun, 2015). We repeated this model simplification 

procedure until mse stopped decreasing. Interaction effects up to the first order were added if suggested by regression trees 210 
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(package tree - Ripley, 2015). For method 1 (Fig. 3), first-order interactions of continuous variables with region as a factor 

(levels: N, M, S) were included in the selection procedure (i.e. an ANCOVA was used for this approach). 

2.3.3 Question 2 - Evaluation of the IIASA-metric 

Irrespective of the method applied, a well-functioning nutrient availability metric would be recognized by a clear, positive 

relationship with productivity. We used linear model analysis to test the significance of the relationship between the metric 215 

and normalized productivity, and to determine its explanatory power (R2). To test whether the variables included in the metric 

were accurately implemented, we also examined the correlation between the residuals of this linear model and each of the 

variables included in the metric (SOC, soil texture, TEB and pHw). A significant correlation suggests that the soil variable 

under consideration is not optimally implemented in the metric.  

2.3.4 Question 3 - Adjustments of the IIASA-metric 220 

Outcomes of question 1 indicated which soil variables best explained variation in normalized productivity. This information 

was further used to i) assess if the relationships for variables already included in the IIASA-metric should be altered, ii) remove 

soil variables from the metric if their empirical associations with normalized productivity were opposite from their 

relationships in the original IIASA-metric, which would complicate parameterization and iii) include additional soil variables 

to improve performance of the metric. Two new metrics were developed: “adjusted metric 1” and “adjusted metric 2”, referring 225 

to the respective methods of normalizing productivity (Fig. 3). As a starting point for adjusted metric 1, half of the dataset 

from southern Sweden (where productivity varied most, cf. Fig 3a) was used as a calibration set to derive regression equations, 

while half of the complete national dataset for spruce served as a calibration set for adjusted metric 2. The best predictors of 

normalized productivity as indicated by the analyses in Question 1 were then adopted as partial metric scores (cf. the original 

Eqs. (6–9)). Moreover, for adjusted metric 1, the minimum and maximum normalized productivities observed in southern 230 

Sweden were included as lower and upper boundaries to the partial metric scores to avoid possible unrealistic values for future 

applications to other datasets. For method 2, the minima and maxima were, as in the IIASA-metric, set to 0 and 100%, 

respectively (units for this metric [%] remained the same as in the original IIASA-metric, while for new metric 1, the unit was 

[m3 ha-1 yr-1]). Finally, the two improved metrics for nutrient availability were calculated as in Eq. (10).  

Performance of the adjusted metrics was evaluated by (i) testing normalized productivity in the database against the metrics 235 

and inspecting the implementation of the variables, and by (ii) testing productivity against the metrics and examining variable 

implementation for five manually selected local gradients in nutrient availability. For (i), the metrics were thus evaluated as 

described for the IIASA-metric under question 2, with the exceptions that validation datasets were used (i.e. the data that were 

used for developing the metrics were not included for the evaluations), and that the same analyses were also performed after 

stratifying by soil moisture and type, to assess robustness. For (ii), two gradients with spruce, and three gradients with pine 240 

(locations indicated in Fig. S2) were selected in ArcGIS (ESRI, 2011). Each of these gradients included at least 40 data points 
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from the Swedish database that were (i) located in the same region, without showing substantial spatial variation in climate, 

and (ii) showed high spatial variation in either soil moisture, TEB or productivity (we also searched specifically for clear soil 

C:N gradients, but found none for which climate did not vary; variables like soil C:N or SOC did however sufficiently vary 

within the five selected gradients: ≤ 16.8 – ≥ 32.2 and ≤ 1.6 – ≥ 48.5 %, resp.). We thus not only evaluated the adjusted metrics 245 

against normalized productivity across the complete database, but also tested their performance for local gradients, which 

offered the advantage that no normalization of productivity for climate was needed. 

We examined the validity of the linear models’ assumptions (linearity, normality of residuals, no influential outliers, 

homoscedasticity) with standard functions of R (R Core Team, 2015), including diagnostic plots. Moreover, for all regressions, 

potential non-linearities were detected with histograms of all variables’ distributions and generalized additive models from the 250 

mgcv package (Wood, 2006). Data were log-transformed if their distribution was right-skewed, while polynomial (e.g. 

quadratic) functions were included in the model selection procedure where the general additive models suggested non-linear 

patterns. The variance inflation factor (package car - Fox and Weisberg, 2011) assessed possible multicollinearity. Whenever 

confidence intervals are given, they represent standard errors of the mean. For all analyses, α = 0.05 was taken as significance 

level, whereas P-values between 0.05 and 0.10 were considered as borderline significant. 255 
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3 Results 

3.1 Identifying potentially confounding factors 270 

Correlations among soil properties and nutrients were investigated to verify if any of the variables could be excluded in the 

subsequent analyses due to redundancy. In this database, pHw and pHKCl were strongly correlated. As pHKCl has the practical 

advantage of showing less seasonal variation than pHw (Soil Survey Staff, 2014), we opted to use only pHKCl in the analyses 

for research question 1. Similarly, TN and SOC largely shared the same information. We included SOC in the analyses and 

discarded TN because SOC is a component of the IIASA-metric of constraints on nutrient availability. Moreover, soil organic 275 

matter acts as a nutrient store and provides cation and anion exchange sites, while TN is merely correlated to SOM but only a 

(small) proportion of total N is available to the plants. Collinearity among other variables was minor (|Pearson’s r| < 0.65; Fig. 

4), and they were thus all included in the analysis.   

Relationships between soil variables and normalized productivity might vary depending on factors such as soil moisture and 

soil type. Therefore, we first examined how these factors influence soil properties and normalized productivity. Soil moisture, 280 

for example, may influence nutrient availability of ecosystems by – among others – affecting the rate of decomposition, and 

consequently change other soil characteristics. In the database, each forest was originally assigned to a soil moisture category. 

Using these categories, we found that SOC and soil C:N ratio increased from dry to moist. A similar trend was observed for 

TEB, while the sand fraction and pHKCl decreased from dry to moist. For clay, no significant differences among soil moisture 

classes occurred (Fig. S3). Lastly, normalized productivity was highest in the “fresh” soil moisture class and lowest for the 285 

wettest forests (Fig. 5). This pattern was most pronounced in southern Sweden (north - F3,568 = 22.43, P < 0.01; middle - F4,844 

= 39.47, P < 0.01; south - F4,1056 = 35.23, P < 0.01; moisture x region - F7,2468 = 3.77, P < 0.01). 

Soil properties not only differed among soil moisture classes, but also among soil types. Especially histosols and podzols could 

be distinguished from the other soils: histosols (which largely overlapped with the wet soil moisture classes) were characterized 

by a low pHKCl, high SOC and soil C:N ratio, while podzols were sandy and had a low TEB stock (Fig. S4). Differences in 290 

normalized productivity among soil types were observed as well. Histosols in particular showed reduced productivities 

compared to other soil types (Fig. 6). Hence, the wetness of a site and its type of soil (partly in parallel with wetness) could 

confound observed patterns in productivity associated with the soil variables and are therefore taken into account in the further 

analyses and their interpretation. 

Besides soil moisture and soil type, N deposition also may confound associations between normalized productivity and soil 295 

data. In our Swedish database, N deposition correlated significantly with all soil variables. Especially TN and SOC correlated 

positively with N deposition (Fig. 4b). N deposition was also strongly positively correlated with productivity (Pearson’s r = 

0.73); both variables increased from north to south, as did the growing season temperature sum (TSUM - which was therefore 

also highly correlated with (ln) N deposition - Pearson’s r = 0.91). However, N deposition did generally not have a significant 

effect on productivity normalized with method 1 (i.e. residual productivity), while with method 2 (i.e. actual/attainable 300 
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productivity), there was a strong positive relationship with N deposition. The increasing N deposition along the north-south 

gradient in Sweden (e.g. Olsson et al., 2009) should thus be kept in mind when interpreting effects of soil variables on 

productivity when normalized following method 2. 

3.2 Question 1 - Normalized productivity vs single and combined soil variables 

In order to elucidate how soil variables affect nutrient availabilities across Sweden, we used their single and combined 305 

relationships with normalized productivity. For method 1, we found that most single soil variables were significantly related 

to normalized productivity (Table 2; R² ranged between 0.002 and 0.146). For both SOC (Fig. 7a) and pHKCl, the relationship 

with normalized productivity showed an optimum (i.e. an empirical quadratic relationship fitted better than a linear model). 

Normalized productivity was significantly negatively correlated with the soil C:N ratio (Fig. 7b), for which the effect became 

more pronounced towards the south (i.e. slopes and R²s increased; F2,2274 = 34.23, P < 0.01). Finally, associations with soil N 310 

stocks and clay were weak (but significantly positive). The strongest relationships were found for normalized productivity 

versus SOC, pHKCl and soil C:N ratio and consequently these were among the variables selected for the model with multiple 

covariates (Table 3).  

Results of method 2 were qualitatively similar to those of the other approach for SOC (Fig. 8a), N stock, soil C:N ratio (Fig. 

8b), clay fraction and TEB, although the N stock explained a larger proportion of the variation here and the curve for 315 

actual/attainable productivity decreased logarithmically rather than linearly with increasing C:N ratio. However, the function 

for pHKCl did not show an optimum, but was linear with a significantly positive slope (Table 2). In summary, SOC and the soil 

C:N ratio were the only soil factors that showed a similar trend according both methods with an R² of at least a few percent, 

and were thus included in the multiple regression models for both methods 1 and 2 (these models also included other variables 

resulting from the stepwise regression analysis; Table 3). 320 

Since soil moisture and soil type influenced both soil properties and normalized productivity, we also stratified the analyses 

above by these factors. In general, these separate analyses confirmed the robustness of the observed patterns across the database 

(despite low R²s), as the results and parameter estimates were similar to those of the previous analysis (Tables S5 and S6).   

3.3 Question 2 - Evaluation of the IIASA-metric 

Both methods agreed on the poor performance of the IIASA-metric to elucidate patterns in nutrient availability, as the weakly 325 

positive correlation between normalized productivity and the metric was rarely significant, and explained < 1 % of the variation 

in normalized productivity in northern Sweden for method 1 (Fig. 9). Residual values of the relationship between normalized 

productivity of method 1 and the metric score (Fig. 9a) were significantly associated with all four input variables of the metric 

(SOC, soil texture, TEB and pHw - Table S9). SOC and TEB correlated negatively with these residuals, while sand was 

significantly positively related to these same residuals, and productivities at low pHw were overestimated (the empirical 330 

quadratic functions were concave; not shown in Table S9). Residuals of method 2 (Fig. 9b) confirmed the negative trend with 
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TEB, but showed no statistically significant relationship with SOC, texture or pHw (Table S9). Overall, the fact that residuals 

were still correlated with the variables in the metric suggests that the input variables were not optimally implemented in the 

formula. 

3.4 Question 3 - Adjustments of the IIASA-metric 335 

From the statistical analyses for question 1, we deduce that SOC, soil C:N and pH each play a role in influencing nutrient 

availability in Sweden. Based on their relationships with normalized productivity in southern Sweden according to method 1 

(Table S10), and in entire Sweden according to method 2 (Table S11), the following formulae were implemented in two 

adjusted nutrient availability metrics (Figs. S5 and S6): 

SOC Score [m³ ha-1 yr-1] = max(-0.18 * (ln(SOC0-20cm [%]) - ln(2.3))² + 0.525, -5.65) ,   (11) 340 

Soil C:N Score [m³ ha-1 yr-1] = max(-0.08 * C:N0-20cm + 2.1, -5.65) ,     (12) 

pH Score [m³ ha-1 yr-1] = max(-0.9 * (pHw,0-20cm – 4.67)² + 0.6, -5.65) ,     (13)  

for the metric based on method 1 (“adjusted metric 1”), and 

SOC Score [%] = max(-2.8 * (ln(SOC0-20cm [%]) - ln(8.1))² + 43.5, 0) ,     (14) 

Soil C:N Score [%] = max(-19 * ln(C:N0-10cm) + 102, 0) ,      (15) 345 

pH Score [%] = max(2 * pHw,0-20cm + 31, 0) ,        (16)  

for the metric based on method 2 (“adjusted metric 2”). 

In the same way as for the IIASA-metric, Eqs. (11–13) and (14–16) were combined in Eq. (10) to calculate the final nutrient 

availability score for each metric. Soil texture and exchangeable bases were not included here, as their empirical relationships 

with normalized productivity showed opposite trends as compared to their implementation in the IIASA-metric (Fig. 1 vs 350 

Tables 2 and S9), likely due to indirect effects of soil moisture and related organic matter accumulation. 

In contrast to the IIASA-metric of constraints on nutrient availability, the adjusted metrics were significantly related with 

normalized productivity (Figs. 10 and 11), albeit with low R²s. The same analyses stratified by soil moisture (Tables S12 and 

S14) gave similar results for the intermediate “fresh” and “fresh-moist” moisture classes (i.e. those with the majority of data 

points), while stratification by soil type generally weakened relationships between the metrics and normalized productivity 355 

(only for podzols and and regosols, the metrics could always describe variation; Tables S13 and S15). Only on few occasions 

did the soil variables included in metric 1 show a (borderline) significant correlation with the residuals of the relationship 

between normalized productivity and the adjusted metrics (and the associated R²s were always low (≤ 0.005); Table S16). We 

therefore conclude that SOC, soil C:N and pH are generally well implemented in this adjusted metric, at least for the database 

considered here. For adjusted metric 2, however, significant associations with higher R²s emerged, thus indicating suboptimal 360 

implementation of the variables in the metric, but the sign of the significant slope differed depending on whether normalization 

method 1 or 2 was used (Table S17).  
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Five nutrient availability gradients were selected to evaluate the performance of the adjusted metrics in the absence of 

confounding climate and N deposition effects (Fig. S2). Both metrics were capable of describing variation in productivity for 

all gradients, with R²s of 0.092–0.383 (Tables 4 and 5). Variable implementation was generally good, except for SOC in 365 

adjusted metric 2. There, SOC was significantly negatively associated with the residuals of the productivity-metric relationship 

(for four out of five gradients; Tables S18 and S19). Both the results of the national database and the gradients thus indicate 

that the adjusted metrics explain part of the spatial variation in productivity, and that adjusted metric 1 performs better than 

adjusted metric 2. Further adjustments, for example with other soil variables, may be needed to increase their performance.  

 370 
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4 Discussion 390 

4.1 Identifying potentially confounding factors 

Soil moisture varies between dry and very wet across Sweden, and may obfuscate associations between nutrient related soil 

properties and (normalized) productivity. Across our database, we indeed observed that certain soil properties (SOC, soil C:N 

ratio, TEB) were related with soil moisture (Fig. S3), and also normalized productivity depended on soil wetness (Fig. 5.): 

productivity was highest for intermediate soil moisture levels, and was significantly reduced for the most dry and wet soils. 395 

The influence of soil moisture on productivity can be explained as follows: at high water content, the anoxic rooting 

environment inhibits root and microbial respiration. Tree productivity is thus suppressed, both directly due to the lack of 

oxygen for the tree itself, and because nutrient supply is limited due to the inhibition of mineralization (Gorham, 1991). For 

relatively dry soils, on the other hand, productivity is reduced because of water limitation (which has been shown to occur in 

southern Sweden - Bergh et al., 1999), lower nutrient inputs through groundwater, fewer periods with easily available nutrients 400 

in the soil solution (Qian and Schoenau, 2002), and lower retention (Larcher, 2003; Roy et al., 2006) and supply (Binkley and 

Hart, 1989) of nutrients by organic matter. In summary, any associations between a soil variable and productivity should be 

interpreted in view of the fact that soil moisture may act as a factor influencing both this soil variable and productivity. We 

therefore performed our analyses not only for the complete set of data, but also stratified by soil moisture to assess whether 

relationships between soil properties and productivity would change. 405 

In the same way as for soil moisture, stratification by soil type might help in resolving nutrient-productivity relationships. Soil 

properties and productivity differed among the five most common soil types in the database (i.e. histosols, gleysols, regosols, 

leptosols and podzols - Fig. S4). To some extent, these differences among soil types overlapped with these observed for soil 

moisture classes (e.g. wet histosols had the highest SOC, soil C:N and the lowest productivity), but additional patterns emerged 

as well (e.g. podzols had a particularly low TEB stock). Although actual differences in nutrient availability among soil types 410 

will in part underlie the variations in productivity, other factors related to soil type (e.g. wetness, soil depth or the rooting 

environment) may also influence productivity (Binkley and Hart, 1989). The main analyses of the current study were therefore 

stratified by both soil moisture and type to test the robustness of associations between nutrient related soil properties and 

normalized productivity.  

Many studies have shown the strong influence of N deposition on forest productivity (e.g. Laubhann et al., 2009; Solberg et 415 

al., 2009; de Vries et al., 2014; Binkley and Högberg, 2016; Wang et al., 2017). As expected, N deposition correlated to some 

extent with some of the soil variables considered in the present study, such as the total soil N stock and concentration (Fig. 

4b). Furthermore, N deposition was strongly positively related to productivity. However, this effect of N deposition on 

productivity cannot be separated from the influence of climate and light, as all these factors increase together in the north-

south direction. Nevertheless, we argue that for the goals of this study, i.e. investigating soil nutrient-productivity relationships 420 

across Sweden and developing a nutrient metric, the spatially varying N deposition is not problematic, since the normalization 
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for climate and species according to method 1 (Fig. 3a) at the same time also removed the influence of the confounding N 

deposition on productivity. Accordingly, “Residual productivity” was generally not correlated with N deposition (Table S3). 

The response variable derived from method 2 (i.e. actual/attainable productivities for spruce - Fig. 3b) in contrast, correlated 

strongly with N deposition (Table S4), because both actual/attainable productivity and N deposition increased from north to 425 

south. Consequently, relationships between actual/attainable productivity and soil data for this method were unavoidably 

confounded by N deposition. 

4.2 Question 1 - Normalized productivity vs single and combined soil variables 

Soil C:N ratio had a negative effect on normalized productivity for both methods (Figs. 7b and 8b). Apart from high N 

concentrations at low C:N, increased productivities with decreasing C:N ratio can follow from its influence on litter 430 

decomposition and mineralization, and thus on nutrient availability: when the ratio in organic matter is high, microbes more 

strongly immobilize N to adjust their internal C to N stoichiometry. As a consequence, N is not easily released and made 

available for plant uptake. A low C:N ratio, on the other hand, facilitates N mineralization (Roy et al., 2006) and thus enhances 

N availability (Wilkinson et al., 1999).  

The relationship of ln SOC with normalized productivity, which showed an optimum (Figs. 7a and 8a), is partly explained by 435 

the role of SOM in storing and exchanging nutrients, but also partly by the confounding effect of soil moisture. At high moisture 

levels, SOC most likely increases because decomposition is reduced in water saturated soils, leading to organic matter 

accumulation (Fig. S3a). Anoxic soils impede productivity, because of the aforementioned prevention of root respiration and 

reduced supply of newly available nutrients through mineralization. At low SOC, on the other hand, productivity supposedly 

decreases with decreasing SOC because of water limitation and low availability of organic matter, which acts as a nutrient 440 

store. Together, these results suggest that the empirical relationship between SOC and productivity might have an optimum 

below which soil fertility is reduced due to a lack of sufficient organic matter, and above which high SOC indicates hostile 

rooting conditions and limited nutrient supply through slow mineralization. The first aspect is thus included in the IIASA-

metric (Fig. 1), while the decreasing part of the curve should be included in the empirical relationship of SOC with nutrient 

availability if the effect of reduced decomposition is not captured by any of the other soil variables in an updated metric.  445 

Soil factors other than the soil C:N ratio and SOC either exhibited only a marginal influence on normalized productivity or 

their effect depended on the approach (Table 2). N stocks could explain variation across both methods, but their explanatory 

power was rather modest for method 1. We anticipate that if we aim to develop metrics applicable beyond the boreal biome, 

including N stock will be of limited value, as this variable is only loosely related to N availability (Högberg et al., 2017). 

Mineral soil clay fractions had a weak but significantly positive effect on normalized productivity. Even though clay particles 450 

can protect SOM from decomposition (Xu et al., 2016), clay soils in the Swedish database in all likelihood positively influence 

nutrient availability by means of their negative charges that serve as cation exchange sites (i.e. for NH4
+, K+, Ca2+ and Mg2+ - 
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IIASA and FAO, 2012). Effects of TEB and pH were dependent on the method, possibly reflecting differences between 

regional (method 1) and national (method 2) variation in nutrient availability.  

All equations resulting from multiple regression analysis combining different soil variables contained the soil C:N ratio and 455 

SOC (Table 3), confirming that, in the absence of direct soil nutrient data, these are key and complementary determinants of 

nutrient availability in northern coniferous forests. Qualitatively considered, associations of C:N ratio (-), SOC (concave 

quadratic after log-transformation), N stock (+) and clay fraction (+) with normalized productivity were consistent for both 

approaches (Table 2). Together with their abilities to explain variation, the consistent effects of soil C:N and SOC suggest 

these soil variables have most potential for inclusion in an improved nutrient availability metric. 460 

4.3 Question 2 - Evaluation of the IIASA-metric 

Although the IIASA-metric of constraints of nutrient availability was originally designed for arable lands, we opted to start 

with this metric for a few reasons. Apart from the fact that to our knowledge, it represents the only attempt so far to develop a 

generic nutrient metric, the structures of its formulas (Eqs.(6-9)) reflect general mechanisms that link soil properties to nutrient 

availability, which are also valid for non-agricultural ecosystems. Soil pH for example shows a typical optimum effect on 465 

nutrient availability, while SOC and TEB have a direct positive non-linear influence (IIASA and FAO, 2012). The final 

weighing of the four partial scores (Eq. (10)) finds its rationale in the idea that if a certain soil property is particularly 

suboptimal, it will be the most important nutrient-related determinant of productivity, with less influence of the other soil 

properties that are closer to or within their optimal range. This way of weighing can be considered as a type of interaction, but 

one that cannot be implemented in a simple linear regression model. Hence, our main reason for adopting the IIASA-metric 470 

as a starting point is that, in spite of its simplicity, it is based on theoretical considerations. Moreover, adopting this structure 

allows for updating with other datasets - something that can probably not be achieved with multiple regression equations (see 

section 4.4). 

The IIASA-metric of constraints on nutrient availability does not clarify much variation in normalized productivity among 

Swedish forests. Moreover, SOC, soil texture, TEB and pHw were apparently not optimally implemented. A low performance 475 

of the IIASA-metric in its current form for the Swedish database was expected, as it was initially developed for evaluating 

(constraints on) the soil fertility of agricultural ecosystems, and the Swedish database contains variable values outside the 

ranges to which the metric is sensitive. Soil conditions of agro-ecosystems indeed greatly differ from the boreal forests 

investigated in the present study. Many Swedish forest soils are for instance coarse-textured, and in addition, the database 

contains wet-soil forests, while arable soils are typically not water saturated.  480 

4.4 Question 3 - Adjustments of the IIASA-metric 

Based on results of the analyses for question 1, the nutrient availability metric was adjusted by i) including an empirical 

optimum in the influence of SOC on normalized productivity, and ii) including soil C:N, thus more explicitly incorporating 
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the availability of N. In the current analysis, soil texture and TEB were excluded from the metrics, as they exhibited negative 

instead of the expected positive associations with normalized productivities (IIASA and FAO, 2012), probably due to indirect 485 

effects of low soil oxygen, reduced decomposition and suppressed productivity where the proportion of sand is low and TEB 

is high.  

In contrast to the original metric developed by IIASA, the adjusted metrics described some variation across all approaches 

using the full database (Figs. 10 and 11). Variables were generally properly implemented, at least for adjusted metric 1 (Table 

5). For metric 2, significant (but normalization method-dependent) associations emerged between residuals of normalized 490 

productivity and SOC and pH (Table S17). The stratified analyses confirm that the metrics are an improvement, at least for 

those soil moisture classes and soil types with sufficient data points (Tables S12-15). Moreover, each metric could describe 

spatial variation in productivity for five manually selected local nutrient availability gradients (Tables 4 and 5). The coefficients 

of determination were generally higher for these gradients than for the database analyses, likely because the gradients did not 

require a normalization for climate (the latter increased the uncertainty on the response variable, see section 4.5 on sources of 495 

uncertainty and future challenges). Lastly, the gradients generally confirmed the correct implementation of soil variables in 

adjusted metric 1 (Table S18), whereas for metric 2, scores for high SOC might be overestimated (Table S19).  

Variation in normalized productivity explained by the adjusted metrics (R² = 0.03–0.21 and R² = 0.06–0.18) was similar to the 

variation explained by multiple regression equations (R² = 0.18–0.22) that contained the same (and more) soil variables than 

the metrics. The metrics, however, have the advantage that they can be updated more easily than equations from multiple 500 

regressions, especially if additional soil parameters need to be included for other ecosystems. Moreover, the interaction effect 

– with the highest weight for the least optimal soil parameter – cannot be mimicked with a multiple regression approach. In 

order to further adjust the metrics, and to test to what extent they can already describe variation in nutrient availability outside 

of Swedish conifer forests, additional datasets with productivity and soil information are needed. Such datasets include large-

scale inventories such as the one considered in the present study, but also local gradients and nutrient manipulation 505 

experiments. The latter two have lower generalizability, but offer the advantage that normalization for climate is not needed.   

4.5 Sources of uncertainty and future challenges 

Even though normalized productivity was significantly related to soil properties, and to our adjusted metrics, much of the 

variation in normalized productivity remains unexplained. The considerable unexplained variation may have multiple reasons. 

Apart from a possible lack of soil and nutrient data more closely related to N availability than the ones available in our database, 510 

another possible factor reducing R²s could be the quality of the data in the database. This could for instance be due to an 

insufficient number of replicates sampled per data point (n = 3 for the soils), although this is probably of limited importance 

because of the large number of data points in the database itself. A more important source of uncertainty is probably the 

inevitable uncertainty related to the response variable, i.e. “climate-normalized” aboveground productivity. This includes 

uncertainty in the original productivity estimates (for which for example differences in management or disturbances likely 515 
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increased variability) and additional variation caused by soil moisture effects on oxygen availability (which we accounted for 

by also performing analyses on split datasets). However, there is also uncertainty related to the normalization for climate: by 

taking residuals of the productivity vs climate regression model (method 1), we for instance unintentionally not only removed 

the direct effect of climate on productivity, but also its indirect effect through nutrient availability. Normalized productivity 

based on this method thus mainly represents productivity as influenced by regional variation in nutrient availability. The 520 

approach taking actual/attainable productivity as a response variable (method 2) does not suffer from this issue, but there the 

estimates of attainable productivity come with a high uncertainty, as they were based on only limited experimental data to 

establish a relationship between productivity and intercepted radiation. As a consequence, the low R² values are partly due to 

shortcomings of the normalization procedure that can only be overcome by using datasets where climate does not vary but 

nutrient availability does. Such datasets are provided by local gradients, such as the five local nutrient availability gradients 525 

that we selected from our database for additional evaluation of our adjusted metrics. 

The similar and significant results for the different methods (1 and 2) and subsets of the database (regions, soil moisture classes 

and soil types) indicate that the findings about the soil properties and nutrients are generally robust. The adjusted metrics 

explained up to 21 % of the variation in normalized productivity. It is unclear to what degree the influence of nutrient 

availability is covered by this percentage. Future studies, where additional soil data (e.g. P) can be included, will need to verify 530 

this. In any case, the significant relationships with normalized productivity, the better implementation of the soil variables and 

the capability of the metrics to explain up to 38 % of the variation in productivity across different gradients imply a significant 

improvement compared to the original IIASA-metric for this database.     

A key challenge in the further development of a metric describing spatial variation in nutrient availability both within and 

outside the boreal biome is differential nutrient limitation. Eventually, we want to be able to compare for example N-limited 535 

and P-limited systems. The original structure of the IIASA-metric, which was kept in our adjusted metrics, facilitates this by 

allowing the inclusion of multiple soil variables such as soil C:N (mainly relating to N availability), pH (among others a critical 

factor controlling P availability) and TEB in one single metric. In fact, the IIASA-metric is particularly useful in this regard, 

as it gives more weight to the soil factor with the lowest score. This corresponds to reality and enables accounting for the type 

of nutrient limitation. For instance, if soil C:N is high, indicating N limitation, the metric score will be substantially reduced 540 

by this high C:N, while at low C:N other limiting factors can dominate the metric score. 
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5 Conclusions 545 

In our database, the soil properties explaining most variation in tree productivity across Swedish conifer forests were SOC and 

the soil C:N ratio. The empirical relationship between SOC and normalized productivity showed an optimum, reflecting the 

soil characteristic’s direct positive effect on nutrient availability only at low soil carbon concentrations, whereas at high SOC, 

its effect was masked by other environmental factors (soil moisture and oxygen, and temperature), affecting both SOC and 

productivity through their role in regulating organic matter formation and decomposition rates. The soil C:N ratio showed the 550 

expected negative correlation with normalized productivity in the present database. Based on the resulting regression 

equations, we adjusted the IIASA-metric for Swedish conifer forests by modifying the relationship between SOC and nutrient 

availability, and by incorporating soil C:N. 

The current nutrient availability metrics were developed based on data from Swedish conifer forests only, and can therefore 

not  be extrapolated outside the boreal biome. In order to verify if development of a metric that compares the nutrient status 555 

across sites also beyond the boreal biome is feasible, the adjusted metrics developed in this study will need to be validated 

(and if necessary further modified) based on other forests elsewhere for which the necessary soil information is available. In a 

later stage, this approach can then be expanded to other ecosystem types.   
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Table 1. Overview of variables of the database used in the current study. Each plot for soil and vegetation analyses had a 10 m radius and 

was sampled once during the period 2003-2012. The (mostly managed) forests in the inventory represent a random sample of Swedish 

forests. Abbreviations: MAP = mean annual precipitation; TSUM = growing season temperature sum; SOC = soil organic carbon 

concentration; TEB = total exchangeable bases; pHw = pH measured in water; pHKCl = pH measured in KCl solution; TN = total nitrogen 720 
concentration; soil C:N ratio = soil carbon to nitrogen ratio. 

Available 

data 

location climate soilb vegetation 

 
latitude [° N] 

longitude [° E] 

elevation [m] 

MAP [mm] 

TSUMa [° C days] 

horizon thickness [cm] 

organic layer stock [ton ha-1]   

organic layer depth [cm] 

SOC [%]  

texturec [% sand, silt, clay]  

TEB [cmol+ kg-1 or cmol+ m-2] 

pHw, pHKCl 

TN [%], soil C:N ratio,  

soil moistured [classified] 

soil typee [classified] 

agef [yrs],  

tree species 

composition [%] 

productivityg 

[m³ ha-1 yr-1] 

aTSUM was calculated for each data point based on its latitude, longitude and elevation. 
bn = 3; soil variables were determined using standard sampling and laboratory procedures (e.g. Olsson et al., 2009; Stendahl et al., 2010). 
cIn an earlier version of the database, percentages of sand, silt and clay were approximated from field based soil texture class. 
dSoil moisture was determined in the field based on indicators (e.g. groundwater depth, moisture at the surface, ground vegetation, elevated 725 
tree trunks, ....). The classification is representative of the average moisture conditions during the growing season (Olsson, 1999; Olsson et 

al., 2009). 
eTaxonomic soil classification based on the World Reference Base for Soil Resources. 
fStand age ranged between 1 and 350 years, with an average of 65 years. 
gProductivities (site quality) or mean annual volume increments (MAI) over a full rotation were estimated based on height development 730 
curves. In situ productivities may be lower, depending on the management.  
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 5 

Normalized 

productivity 

response 

Region ln SOC 

0-20cm  

[%] 

ln N stock 

0-20cm 

[g m-2] 

Soil C:N ratio 

0-20cm 

ln soil C:N ratio 

0-10 cm 

Mineral soil sand 

[%] 

Mineral soil clay  

[%] 

ln TEB stock 

0-20cm  

[cmol+ m-2] 

pHKCl  

0-20cm 

 

Residual MAI 

(method 1) 

N 

(n = 542) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.49 ± 0.08 

P < 0.01 

intercept 

   = -0.19 ± 0.08 

P = 0.03 

R²tot = 0.145 

slope = 0.29 ± 0.06 

P < 0.01 

intercept = -1.5 ± 0.3 

P < 0.01 

R²tot = 0.012 

slope  

   = -0.014 ± 0.004 

P < 0.01  

intercept = 0.3 ± 0.1 

P < 0.01 

R² = 0.021 

N/A slope  

   = 0.003 ± 0.001 

P = 0.01  

intercept  

   = -0.2 ± 0.1 

P = 0.03  

R²tot = 0.008 

 

slope  

   = 0.009 ± 0.004 

P = 0.02  

intercept  

   = -0.05 ± 0.03 

P = 0.14  

R²tot = 0.002 

 

 

slope  

   = 0.009 ± 0.004 

P = 0.02  

intercept  

   = -0.05 ± 0.03 

P = 0.14  

R²tot = 0.002 

 

 

slope  

   = 0.009 ± 0.004 

P = 0.02  

intercept  

   = -0.05 ± 0.03 

P = 0.14  

R²tot = 0.002 

P = 0.11  

 

 

 

 

 

 

 

 

P = 0.11 

 

 

 

 

 

P = 0.11 

 

quad  

   = -0.71 ± 0.06  

P < 0.01  

lin = 5.3 ± 0.4 

P < 0.01  

intercept  

   = -9.7 ± 0.9 

P < 0.01 

R²tot = 0.099 

 

M 

(n = 777) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.35 ± 0.08 

P < 0.01 

intercept 

   = -0.03 ± 0.08 

P = 0.71 

R²tot = 0.145 

slope = 0.29 ± 0.06 

P < 0.01 

intercept = -1.5 ± 0.3 

P < 0.01 

R²tot = 0.012 

slope  

   = -0.027 ± 0.005 

P < 0.01  

intercept = 0.7 ± 0.2 

P < 0.01  

R² = 0.029 

N/A slope  

   = 0.003 ± 0.001 

P = 0.01  

intercept  

   = -0.23 ± 0.09 

P = 0.01  

R²tot = 0.008 

 

quad  

   = -0.71 ± 0.06 

P < 0.01  

lin = 5.6 ± 0.4 

P < 0.01 

intercept  

   = -10.8 ± 0.8 

P < 0.01 

R²tot = 0.099 

S 

(n = 946) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.19 ± 0.09 

P = 0.03 

intercept 

   = 0.5 ± 0.1 

P < 0.01 

R²tot = 0.145 

slope = 0.29 ± 0.06 

P < 0.01 

intercept = -1.5 ± 0.3 

P < 0.01 

R²tot = 0.012 

slope  

   = -0.082 ± 0.007 

P < 0.01  

intercept = 2.0 ± 0.2 

P < 0.01  

R² = 0.112 

N/A slope  

   = 0.003 ± 0.001 

P = 0.01  

intercept  

   = 0.00 ± 0.08 

P = 0.98  

R²tot = 0.008 

 

quad  

   = -0.71 ± 0.06 

P < 0.01  

lin = 5.9 ± 0.4 

P < 0.01  

intercept  

   = -11.5 ± 0.8 

P < 0.01 

R²tot = 0.099 

Actual/attainable 

MAI 

(method 2) 

entire 

Sweden 

(n = 955) 

quad 

   = -2.6 ± 0.4 

P < 0.01 

lin = 11 ± 2 

P < 0.01 

intercept = 32 ± 2 

P < 0.01 

R² = 0.048 

slope = 10.7 ± 0.8 

P < 0.01 

intercept = -18 ± 5 

P < 0.01 

R² = 0.146 

N/A slope = -19 ± 5 

P < 0.01  

intercept = 100 ± 5 

P < 0.01  

R² = 0.131 

slope = -0.04 ± 0.02 

P = 0.01 

intercept = 42 ± 1 

P < 0.01 

R² = 0.005 

slope  

   = 0.18 ± 0.06 

P < 0.01  

intercept  

   = 39.2 ± 0.6 

P < 0.01  

R² = 0.008 

slope = 2.0 ± 0.5 

P < 0.01  

intercept = 32 ± 2 

P < 0.01  

R² = 0.014 

slope = 3 ± 1 

P < 0.01  

intercept = 29 ± 4 

P < 0.01  

R² = 0.009 

Table 2. Associations between single soil variables and normalized productivity for Swedish spruce and pine forests. Significance (P-values) of single soil variable effects on residual productivity (mean annual 

increment - MAI [m³ ha-1 yr-1]) and actual/attainable MAI (for spruce only) across Sweden are given. For (near) significant variables (i.e. P < 0.10), parameter estimates ± s.e.m. and the proportion of variation 

explained (R²) are shown as well. Abbreviations: N = north; M = middle; S = south; SOC = soil organic carbon concentration; Soil C:N = soil carbon to nitrogen ratio; TEB = total exchangeable bases; quad = 

parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function. For actual/attainable MAI, the model including 0-10 cm soil C:N performed better than the one with 0-20 cm 

soil C:N (ms = 173 vs 159). No depths are given for soil texture (% sand and % clay), because these were previously calculated based on texture classes of the upper mineral soil with the help of particle size 

diagrams.  
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 5 

 

 

 

 

Normalized 

productivity 

response 

Region ln SOC 

0-20cm  

[%] 

ln N stock 

0-20cm 

[g m-2] 

Soil C:N ratio 

0-20cm 

ln soil  

C:N ratio 

0-10 cm 

Mineral soil 

sand 

[%] 

ln TEB stock 

0-20cm  

[cmol+ m-2] 

pHKCl  

0-20cm 

 

intercept P and R² 

Residual MAI 

(method 1) 

N 

(n = 542) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.34 ± 0.08 

P < 0.01 

 

not 

selected 

lin  

   = -0.004 ± 0.007 

P = 0.58  

 

N/A not  

selected 

lin  

   = 0.13 ± 0.04 

P < 0.01  

 

 

 

 

lin  

   = 0.13 ± 0.04 

P < 0.01  

 

 

 

 

 

lin  

   = 0.13 ± 0.04 

P < 0.01  

 

 

quad  

   = 0.3 ± 0.2 

P = 0.22  

lin = -2 ± 2 

P = 0.22  

 

 4 ± 3 

P = 0.27  

P < 0.01 

R²tot = 0.180 

M 

(n = 777) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.34 ± 0.08 

P < 0.01 

 

 

 lin  

   = -0.014 ± 0.006 

P = 0.03  

 

N/A 
 

quad  

   = 0.0 ± 0.1 

P = 0.88 

lin = 0.2 ± 0.9 

P = 0.86 

 

0 ± 2 

P = 0.81 

 

S 

(n = 946) 

quad  

   = -0.16 ± 0.02 

P < 0.01 

lin = 0.34 ± 0.08 

P < 0.01 

 

 lin  

   = -0.050 ± 0.008 

P < 0.01  

 

N/A 
 

quad  

   = -0.40 ± 0.08 

P < 0.01  

lin = 2.7 ± 0.6 

P < 0.01  

 

-3 ± 1 

P < 0.01 

 

Actual/attainable 

MAI 

(method 2) 

entire 

Sweden 

(n = 955) 

quad 

   = -2.3 ± 0.4 

P < 0.01 

lin = 9 ± 2 

P < 0.01 

lin = 6 ± 1 

P < 0.01 

 

N/A lin  

   = -15 ± 2 

P < 0.01  

 

lin = -0.02 ± 0.02 

P = 0.20 

not selected lin = -3 ± 1 

P < 0.01  

 

64 ± 13 

P < 0.01 

P < 0.01 

R² = 0.215 

Table 3. Estimates ± s.e.m. for parameters of the selected multiple regression equations linking soil variables to normalized productivity for Swedish conifer forests. Significance of the pattern (P 

values) and proportion of variation explained (R²) are given as well. Abbreviations: MAI = mean annual increment [m³ ha-1 yr-1]; N = north; M = middle; S = south; SOC = soil organic carbon 

concentration; Soil C:N = soil carbon to nitrogen ratio; TEB = total exchangeable bases; quad = parameter estimate for quadratic term; lin = parameter estimate for linear term of a quadratic function. 

Output of the model selection procedures for methods 1 and 2 is shown in Tables S7 and S8. Data for method 1 are for both spruce and pine, whereas actual/attainable MAI (method 2) was only 

available for spruce. No depths are given for soil texture (% sand), because these were previously calculated based on texture classes of the upper mineral soil with the help of particle size diagrams.  
 



28 

 

Table 4. Evaluation of adjusted nutrient availability metric 1 for selected nutrient availability gradients in Sweden (Fig. S2). Statistics 

indicate the relationship between productivity (mean annual increment - m³ ha-1 yr-1) and the metric. For (near) significant variables (i.e. P 

< 0.10), parameter estimates ± s.e.m. and the proportion of variation explained (R²) are given. For Norway spruce, no TEB gradient without 

substantial variation in climate was found, so that only for Scots pine, there was a gradient in TEB. Abbreviations: TEB = total exchangeable 

bases. Error bars represent the s.e.m. 5 
Dominant tree 

species 

Soil moisture 

gradient 

TEB gradient Productivity 

gradient 

Norway spruce slope = 1.6 ± 0.4 

P < 0.01 

R² = 0.125 

n = 132 

N/A slope = 1.6 ± 0.4 

P < 0.01 

R² = 0.150 

n = 78 

Scots pine slope = 1.4 ± 0.2 

P < 0.01 

R² = 0.208 

n = 141 

slope = 1.1 ± 0.3 

P < 0.01 

R² = 0.205 

n = 59 

slope = 1.9 ± 0.3 

P < 0.01 

R² = 0.350 

n = 67 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 



29 

 

Table 5. Evaluation of adjusted nutrient availability metric 2 for selected nutrient availability gradients in Sweden (Fig. S2). Statistics 

indicate the relationship between productivity (mean annual increment - m³ ha-1 yr-1) and the metric. For (near) significant variables (i.e. P 

< 0.10), parameter estimates ± s.e.m. and the proportion of variation explained (R²) are given. For Norway spruce, no TEB gradient without 

substantial variation in climate was found, so that only for Scots pine, there was a gradient in TEB. Abbreviations: C:N = soil carbon to 

nitrogen ratio; TEB = total exchangeable bases. Error bars represent the s.e.m. 5 
Dominant tree 

species 

Soil moisture 

gradient 

TEB gradient Productivity 

gradient 

Norway spruce slope = 0.31 ± 0.08 

P < 0.01 

R² = 0.092 

n = 132 

N/A slope = 0.36 ± 0.08 

P < 0.01 

R² = 0.188 

n = 78 

Scots pine slope = 0.28 ± 0.05 

P < 0.01 

R² = 0.177 

n = 141 

slope = 0.23 ± 0.06 

P < 0.01 

R² = 0.213 

n = 59 

slope = 0.52 ± 0.08 

P < 0.01 

R² = 0.383 

n = 67 
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Figure 1. IIASA soil scores for soil organic carbon concentration (SOC), texture, total exchangeable bases (TEB) and pH measured in water 

(pHw). The curves were drawn based on approximate functions through the points, which were derived from crop-specific scores in a look-

up table ((http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/soil_evaluation.html, IIASA and FAO, 2012) and averaged over all crop 

species in the table. 5 
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Figure 2. Objectives and methods followed in the current paper. PRE refers to a regression model of productivity vs climate and species 

(spp.); Q1, Q2 and Q3 refer to the research questions. Performance of the adjusted nutrient metrics was evaluated against the entire database, 

and against five nutrient availability gradients, selected from the database (Fig. S2). 
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Figure 3. Normalized productivity was calculated in two alternative ways. (a) In method 1, residual values were taken from a regression 

model, explaining variation in mean annual increments (MAI) by climate (growing season temperature sum or TSUM and precipitation) 

and species. The selection procedure, equation and parameter estimates are given in the supplementary information (resp. Table S1, Eq. (S1) 

and Table S2). In order to avoid heteroscedasticity-induced artefacts, the dataset was split in a northern (TSUM < 900 °C days), middle (900 5 
°C days < TSUM < 1200 °C days) and southern (TSUM > 1200 °C days) region for this approach. (b) In method 2, actual productivities for 

spruce were divided by theoretically attainable productivities, provided by Bergh et al. (2005).   
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Figure 4. Correlation structure of a set of potential key soil variables for a soil depth of 0-20 cm. (a) = PCA biplot (sd for PC1 = 1.75, sd 

for PC2 = 1.63); (b) = correlation matrix, showing Pearson’s r for the variable pairs, including correlations with nitrogen deposition. 

Underlined correlations were significant. Abbreviations: SOC = soil organic carbon concentration [%]; TN = soil total nitrogen [%], N stock 5 
= amount of nitrogen in the layer [g m-2]; Soil C:N ratio = soil carbon to nitrogen ratio; Sand = % sand in the mineral soil; Clay = % clay in 

the mineral soil; TEB = total exchangeable bases [cmol+ m-2]; pHw = pH measured in water; pHKCl = pH measured in KCl solution; N dep 

= nitrogen deposition. 
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Figure 5. Normalized productivity per soil moisture class. (a) Productivity normalized following method 1 (residual mean annual increment 

- MAI) vs soil moisture. (b) Productivity normalized following method 2 (actual/attainable mean annual increment - MAI) vs soil moisture. 

In panel a, separate analyses were performed for northern, middle and southern Sweden, as the moisture effects differed among regions. *** 5 
indicates significant differences at the P < 0.01 level. Error bars represent the s.e.m. 
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Figure 6. Normalized productivity per soil type. (a) Productivity normalized following method 1 (residual mean annual increment - MAI) 

vs soil type. (b) Productivity normalized following method 2 (actual/attainable mean annual increment – MAI for spruce) vs soil type. In 

panel a, separate analyses were performed for northern, middle and southern Sweden, as the soil type effects differed among regions. *** 5 
indicates significant differences at the P < 0.01 level. Error bars represent the s.e.m. 

 

 

 

 10 
 

 

 

 

 15 
 

 

 

 

 20 
 



36 

 

 

 

 

Figure 7. Relationship between normalized productivity following method 1 (residual mean annual increment - MAI) and, (a) log-

transformed soil organic carbon concentration (SOC), (b) soil carbon to nitrogen (C:N) ratio at depth 0-20 cm. Separate analyses were 5 
performed for northern, middle and southern Sweden, as the SOC and C:N effects differed among regions. Point darkness in panel a 

represents soil moisture (darker = moister). Statistics corresponding to the panels are presented in Table 2. Note that the horizontal axis for 

SOC covers a broader range here than in Fig. 1, as SOC varied widely in the Swedish database. 
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Figure 8. Relationship between normalized productivity following method 2 (actual/attainable mean annual increment – MAI for spruce) 

and, (a) log-transformed soil organic carbon concentration (SOC), (b) soil carbon to nitrogen (C:N) ratio. Point darkness in panel a represents 5 
soil moisture (darker = moister). Statistics corresponding to the panels are presented in Table 2. Note that the horizontal axis for SOC covers 

a broader range here than in Fig. 1, as SOC varied widely in the Swedish database. Also note that the C:N ratio of the upper 10 cm was used 

instead of the upper 20 cm here, owing to a better description of variation in the response variable. Even though the C:N ratio roughly 

decreased southwards (Fig. S1d), it was only weakly correlated with the growing season temperature sum (r = -0.13 for C:N0-20cm and r = -

0.28 for C:N0-10cm). 10 
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Figure 9. Evaluation of the IIASA-metric of constraints on nutrient availability for Swedish conifer forests. (a) Method 1 - association with 

residual mean annual increments (MAI) of the productivity-climate regression model (Fig. 3a, Eq. (S1) and Table S2), distinguishing 5 
northern, middle and southern Sweden. (b) Method 2 - association with actual/attainable MAI for the entire Swedish land area (Fig. 3b). 

Full line = significant slope (P < 0.05). 
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Figure 10. Evaluation of adjusted nutrient availability metric 1 for Swedish conifer forests. (a) Method 1 - association with residual mean 

annual increments (MAI) of the productivity-climate regression model (Fig. 3a, Eq. (S1) and Table S2), distinguishing northern, middle and 

southern Sweden. (b) Method 2 - association with actual/attainable MAI (Fig. 3b) for the entire Swedish land area. Full line = significant 

slope (P < 0.05). 5 
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Figure 11. Evaluation of adjusted nutrient availability metric 2 for Swedish conifer forests. (a) Method 1 - association with residual mean 

annual increments (MAI) of the productivity-climate regression model (Fig. 3a, Eq. (S1) and Table S2), distinguishing northern, middle and 

southern Sweden. (b) Method 2 - association with actual/attainable MAI (Fig. 3b) for the entire Swedish land area. Full line = significant 

slope (P < 0.05). 5 

 


