Supplementary materials

Diurnal, seasonal and long-term behaviours of high Arctic tundra heath ecosystem dynamics inferred from model ensembles constrained by the time-integrated CO₂ fluxes

Wenxin Zhang^{1*}, Per-Erik. Jansson¹ and Bo Elberling¹

¹Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark

*Correspondence to: W. Zhang (zhang wenxin2005@hotmail.com)

Table S1 List of relevant equations and parameters used in this modelling study. The parameters denoted as bold type are selected for the Monte-Carlo multi-runs. A detailed description of all biotic and abiotic processes in the CoupModel can be referred to Jansson and Karlberg (2011) or the CoupModel home page (http://www.coupmodel.com).

Snow dynamics

(1) Snow densification as a function of ice and liquid water content

$$\rho_{oldsnow} = \rho_{newsnow} + s_{dl} \frac{S_{wl}}{S_{wl \max}} + s_{dw} S_{res}$$

 $\rho_{oldsnow}$: DensityOfOldSnow – Density of old snow (kg m⁻³)

 $\rho_{newsnow}$: **DensityOfNewSnow** – Density of new snow (kg m⁻³)

 S_{dl} : **DensityCoefWater** – Liquid water coefficient (kg m⁻³)

 S_{wlmax} : WROfSnow_{Max} – Maximum water retention capacity in the snowpack (m)

 S_{wl} : WROfSnow – Water retention in the snowpack (m)

 S_{dw} : **DensityCoefMass** – Mass coefficient (m⁻¹)

 S_{res} : SWE – Snow water equivalent (kg m⁻²)

(2) The upper limit of the aerodynamic resistance at extreme stable conditions

$$r_{aa,snow} = \left(\frac{1}{r_{aa,snow}} + r_{a,\max,snow}^{-1}\right)^{-1}$$
Eqn. S2

 $r_{a,\max,snow}^{-1}$: WindlessExSnow – Minimum turbulent exchange coefficient (inverse of the maximum allowed aerodynamic resistance) over snow (s⁻¹)

(3) The aerodynamic resistance at neutral conditions

$$r_{aa,snow} = \frac{1}{k^2 u} \ln\left(\frac{z_{ref} - d}{z_{OM,snow}}\right) \ln\left(\frac{z_{ref} - d}{z_{OH,snow}}\right) f(\mathbf{R}_{ib})$$
Eqn. S3

- u: WindSpeed Wind speed at the reference height (m s⁻¹)
- k : The von Karman's constant (-)
- d: DisplacementHeight Displacement height (m)

 Z_{ref} : Reference Height – Reference height (m)

 R_{ib} : The bulk Richardson number (-)

Eqn. S1

Z_{OM.snow} : *RoughLMomSnow* – Roughness length for momentum above snow (m)

 $Z_{OH,snow}$: RoughLHSnow – Roughness length for heat above snow (m)

(4) Snow albedo

$$a_{snow} = a_{\min} + a_1 e^{a_2 S_{age} + a_3 \sum T_a}$$
Eqn. S4

 a_1, a_2, a_3 : The parameters for calculating snow albedo (-)

 a_{\min} : *AlbSnowMin* – The lowest albedo in the albedo function, which accounts for snow age and positive sum of air temperature since latest new snow (-)

Soil water and soil heat

(5) The mixed composition of organic and mineral soil at the top layer

$$T_{b} = \frac{T_{1} + aT_{s}}{1 + a}$$
Eqn. S5
$$a = \frac{k_{ho} (\Delta z_{1} / 2 - \Delta z_{humus})}{k_{hm} \Delta z_{humus}}$$
Eqn. S6

 T_{h} : Boundary temperature between organic soil and mineral soil (°C)

 T_s : Soil surface temperature (°C)

 T_1 : Top soil layer temperature (°C)

 k_{ho} : Conductivity of the organic soil (K m W⁻¹)

 k_{hm} : Conductivity of the mineral soil (K m W⁻¹)

 ΔZ_{humus} : **OrganicLayerThick** – Thickness of the organic layer (m)

 ΔZ_1 : Thickness of the first soil layer (m)

 $q_{h.low}$: *GeothermalFlow* – Constant heat flow (J m⁻² d⁻¹)

(6) The vapor pressure at the soil surface
$$e_{corr} = 10^{-\delta_{surf}\psi_{eg}}$$
Eqn. S7

 ψ_{eq} : EquilAdjustPsi – The factor to account for the differences between water tension in the middle of top layer and vapor pressure at soil surface

 δ_{surf} : SurfmoistureBalance – The flow variable for mass balance of water at the soil surface (mm)

(7) The correction of thermal conductivity in the upper soil layer due to freezing

$$R_f = e^{-y^{-s}}c_{md} + (1 - c_{md})$$
 Eqn. S8

 R_{f} : CorrFrozen – The correction factor of thermal conductivity in the upper frozen soil

 c_{md} : CFrozenMaxDamp – The parameter for frozen surface damping function

C_f: CFrozenSurCorr – The parameter for frozen surface damping function

(8) Surface water $(\mathbf{W} = \mathbf{W})$

$$q_{surf} = a_{surf} \left(W_{pool} - W_{pmax} \right)$$
Eqn. S9

 q_{surf} : Surfrunoff – Surface runoff (mm)

c T

 a_{surf} : SurfCoef – First order rate coefficient used when calculating the surface runoff from the surface pool exceeding the

residual storage.

 W_{pool} : SurfPool – The total amount of water in the surface pool (mm)

 $W_{p \max}$: SurfPoolMax – The maximal amount of water stored on the soil surface without causing any surface runoff (mm)

(9) Precipitation

$$P = (c_{rain} + Qc_{snow})P_m$$
 Eqn. S10

Eqn. S11

Eqn. S12

c_{rain}: *PreA0Corr* – Wind correction for rain precipitation

c_{snow}: *PreA1Corr* – Wind correction for snow precipitation

 P_m : MeasPre – Measured precipitation (mm)

(10) Altitude of simulated site

 e_{lesim} : AltSimPosition – The parameter used in the function of "air temperature affected by altitude"

(11) The fraction factor to calculate a residual unfrozen amount of water

$$\theta_{lf} = d_1 \theta_{wilt}$$

 d_1 : FreezepointFWi – The fraction of wilting point (θ_{wilt}) remaining as unfrozen water (θ_{lf}) at -5 °C (-)

Plan growth

(12) Light use efficiency approach $C_{Atm \to a} = f(T_1) f(CN, p_{fixedN}) f(E_{ta} / E_{tb}) \mathbf{R}_{s.nl}$

 $C_{Atm \rightarrow a}$: CAtmNewMobile – Carbon assimilation (g C m⁻² d⁻¹)

 p_{fixedN} : FixNsupply – Nitrogen supply capacity for photosynthesis

 $R_{s pl}$: *RadSPl* – Radiation absorbed by canopy (J m⁻² d⁻¹)

 E_{ta} : Eatr – Actual transpiration (mm)

 E_{tn} : *Eptr* – Potential transpiration (mm)

(13) Leaf temperature response

$$(T_{1} - p_{mm}) / (p_{o1} - p_{mm}) \qquad p_{mm} \leq T_{1} \leq p_{o1}$$

$$f(T_{1}) = 1 \qquad p_{mm} \leq T_{1} \leq p_{o1}$$

$$1 - (T_{1} - p_{o2}) / (p_{mx} - p_{o2}) \qquad p_{mm} \leq T_{1} \leq p_{o1}$$

$$0$$
Eqn. S13

 p_{mn} :**TLMin**– Minimum mean air temperature for photosynthesis (°C)

 P_{o1} :**TLOpt1** – Low limit mean air temperature for optimum photosynthesis (°C)

0

 p_{o2} :**TLOpt2** – High limit mean air temperature for optimum photosynthesis (°C)

 P_{mx} : *TLMax* – Maximum mean air temperature for photosynthesis (°C)

(14) Litter fall from leaves or roots

$$C_{Leaf \to LitterSurface} = f(\mathbf{l}_{(leaf / root)}) \mathbf{C}_{Leaf}$$
 Eqn. S14

 l_{leave} : LeafRate – Rate coefficient for the litter fall from leaves before the first threshold temperature sum is reached.

 l_{root} : **RootRate** – Rate coefficient for the litter fall from roots before the first threshold temperature sum is reached.

(15) The maintenance respiration of leaves or roots

$C_{respleaf} = k_{mrespleaf} f(\mathbf{T}_{a}) \mathbf{C}_{Leaf} + k_{gresp} \mathbf{C}_{a \to leaf}$	Eqn. S15
$k_{mresproot}$: <i>MCoefRoot</i> – Maintenance respiration coefficient for roots (d ⁻¹)	
$k_{mresleaf}$: MCoefLeave – Maintenance respiration coefficient for leaves (d ⁻¹)	
(16) The temperature response function for plant respiration	
$f(\mathbf{T}) = t_{Q10}^{(\mathbf{T} - t_{Q10bas})/10}$	Eqn. S16
t_{Q10} : TempQ10 – Response to a 10 °C of soil temperature change on microbial activity, mineralization, immobilized	zation,
nitrification and denitrification (-)	
(17) $r_{Optimum}$: <i>rOptimum</i> – Optimum root depth (m)	
(18) N_{leaf} : <i>INleaf</i> – Initial nitrogen mass in leaves (g)	
Soil decomposition	
(19) Decomposition of soil organic matter	
$C_{Decompl} = k_l f(T) f(\theta) C_{Litter}$	Eqn. S17

 k_l : **RateCoefLitter** – Rate coefficient for the decay of litter (d⁻¹)

$$C_{Decompl} = k_h f(T) f(\theta) C_{Humus}$$
Eqn. S18

 k_h : **RateCoefHumus** - Rate coefficient for the decay of humus (d⁻¹)

(20) Soil temperature response for soil decomposition using the Ratkowsky function

$$f(\theta) = 1 \qquad T > t_{\max}$$

$$f(T) = \left(\frac{T - t_{\min}}{t_{\max} - t_{\min}}\right)^2 \qquad t_{\min} < T < t_{\max}$$

$$f(\theta) = 0 \qquad T < t_{\min}$$
Eqn. S19

 t_{\min} : *TempMin*- Minimum temperature for microbial activity, mineralization-immobilization, nitrification and denitrification in the Ratkowsky function (°C). Below this temperature, the response function is 0.

 t_{max} : *TempMax* – Maximum temperature at which the response on microbial activity, mineralization-immobilization, nitrification and denitrification in the Ratkowsky function (°C). Above this temperature, the response function is 1. (21) Soil moisture response function for soil decomposition

$$f(\theta) = p_{\theta satact} \qquad \theta = \theta_s$$

$$f(\theta) = \min\left[\left(\frac{\theta_s - \theta}{p_{\theta Upp}}\right)^{p_{\theta p}} (1 - p_{\theta satact}) + p_{\theta satact}, \left(\frac{\theta - \theta_{wilt}}{p_{\theta Low}}\right)^{p_{\theta p}}\right] \qquad \theta_{wilt} < \theta < \theta_s \quad \text{Eqn. S20}$$

$$f(\theta) = 0 \qquad \theta < \theta_{wilt}$$

 $p_{\theta Low}$: *ThetaLowerRange* - Water content interval in the soil moisture response function for microbial activity, mineralization-immobilization, nitrification and denitrification (vol %). The response increases from 0 at the wilting point to optimum at the end of the interval.

 θ : Actual soil moisture content (vol %)

 θ_{wilt} : Soil moisture content at the wilting point (vol %)

 θ_{s} : Soil moisture at saturation (vol %)

 $P_{\theta U p p}$: The water content interval in the soil moisture response function for microbial activity, mineralization-

immobilization, nitrification and denitrification. The response decreases from optimum at the beginning of the interval to saturation activity at saturation.

 $P_{\theta Satact}, P_{\theta p}$: Coefficient in the soil moisture response function (-)

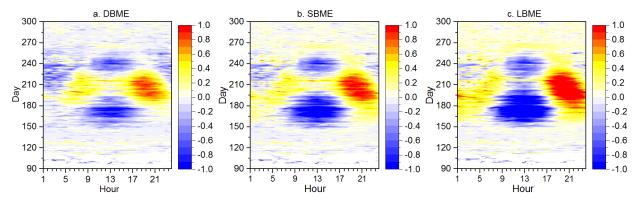


Figure S1. Hourly residuals (the model minus measurements, g C m^{-2}) of the days in three behavior model ensembles. a. DBME, the diurnal behavior model ensemble. b. SBME, the seasonal behavior model ensemble. c. LBME, the long-term behavior model ensemble.



Figure S2. Daily residuals (the model minus measurements, g C m^{-2}) of the years in three behavior model ensembles. a. DBME, the diurnal behavior model ensemble. b. SBME, the seasonal behavior model ensemble. c. LBME, the long-term behavior model ensemble.

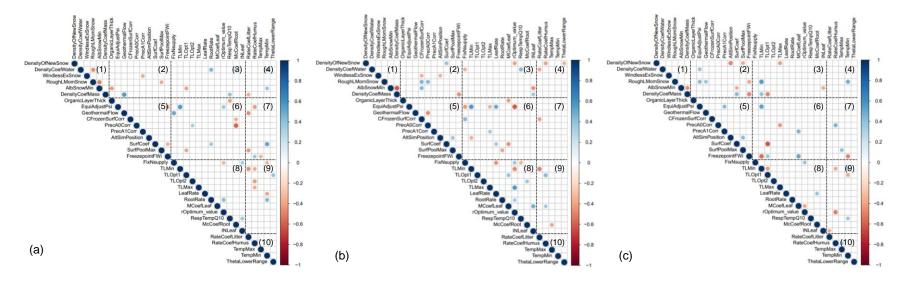


Figure S3. The inter-correlations (-1, 1) for posterior parameters in the behavior model ensembles. a. DBME; b. SBME; c. LBME. The dots represent the Pearson correlation coefficients with P-value < 0.05. The correlation matrix has been divided into 10 areas according to different ecosystem processes. Snow dynamics: 1, 2, 3 and 4; Soil heat and soil water: 2, 5, 6 and 7; Plant growth: 3, 6, 8 and 9; Soil decomposition: 4, 7, 9 and 10.

References

Jansson, P.-E. and Karlberg, L.: Coupled heat and mass transfer model for soil-plant-atmosphere systems, Royal Institute of Technology, Stockholm, 484 pp., available at: http://www.coupmodel.com/documentation, 2010.