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Abstract

Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms.
These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to
anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix
atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium
(NH4%). We measured NHa4* regeneration and potential uptake rates and total nitrification using
stable isotope techniques. Nitrification studies included abundance of the functional gene for
NH4* oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential
NH4* uptake rates ranged from 0.02-6.80 umol L h* in the light and 0.05-3.33 umol L h*t in
the dark, and NH4* regeneration rates ranged from 0.03-2.37 umol L h, Nitrification rates
exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded
200 nmol L1 d* and was >1000 nmol L d* at one station near a river discharge. AOA amoA
gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only
abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and
all seasons (p < 0.005). Nitrification rates in Taihu varied seasonally; at most stations, rates were
highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom
progression, suggesting that nitrifiers were poor competitors for NH4* during the bloom.
Regeneration results suggested that cyanobacteria relied extensively on regenerated NHs* to
sustain the bloom. Internal NH4* regeneration exceeded external N loading to the lake by a factor
of two but was ultimately fueled by external N loads. Our results thus support the growing
literature calling for watershed N loading reductions in concert with existing management of P

loads.
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1. Introduction

Nitrogen (N) and phosphorus (P) are important nutrients in aquatic ecosystems, often co-
limiting primary production (Elser et al., 2007). Biologically unavailable (except to diazotrophs)
atmospheric N can be fixed to readily assimilable ammonium (NH4*) and biomass via N2
fixation (Vitousek et al., 2013). However, fertilizer production from anthropogenic N fixation
(the Haber-Bosch process) has changed N cycling and the global N budget over the last century.
Non-point source N loads from agriculture are a main driver of eutrophication in aquatic
systems, which is often manifested as hypoxia, loss of biodiversity, cyanobacterial harmful algal
blooms (cyanoHABS; Paerl et al., 2016; Paerl and Paul, 2012), and other detrimental
characteristics. CyanoHABS are particularly problematic because they often produce toxins,
compete for nutrients with other microbes and primary producers, and indicate unhealthy aquatic
systems.

The increase in extent and frequency of cyanoHABS correlates to increased application of
NHa4* and urea fertilizers, both globally and in China (Glibert et al., 2014). Diatoms are
competitive for oxidized forms of N (e.g., NOs’), but non-Nz2 fixing cyanobacteria, such as
Microcystis, thrive on chemically reduced N forms, such as NH4* and urea (Blomqvist et al.
1994; Glibert et al., 2016; McCarthy et al., 2009). NH4" transport across the cell membrane and
assimilation into biomass is less energy intensive than for NOs™ (Glibert et al., 2016). Due to high
biological demand and fast turnover rates, NH4* often does not accumulate in the water column,
resulting in low in situ concentrations. Ammonium regeneration is especially important to
phytoplankton productivity in eutrophic systems (Gardner et al. 1998, 2017; McCarthy et al.,
2013). For example, water column regeneration was up to six times higher than sediment

regeneration in Lake Taihu, China (McCarthy et al., 2007; Paerl et al., 2011).
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Nitrification is the link between chemically reduced and oxidized N forms. Most
nitrification pathways are a two-step process; NH4* is oxidized to nitrite (NO2) via ammonia
oxidation, and NOz" is then oxidized to NOs™ via NO2" oxidation. Ammonia oxidation is a rate
limiting step (Ward, 2008) carried out by chemolithoautotrophic, ammonia oxidizing bacteria
(AOB) and ammonia oxidizing archaea (AOA; Konneke et al., 2005). NO2" oxidation is carried
out by NO2 oxidizing bacteria (NOB). Recently, a species of NOB was described that is capable
of one step, complete nitrification (“comammox”); however, comammox bacteria have yet to be
well documented in the environment (Daims et al., 2015). The ammonia and NO2 oxidation
steps are often tightly coupled, where the product of the first step serves as a substrate for the
second step (Ward, 2008). However, some studies in marine environments suggest that the
process can be decoupled, with one step outpacing the other (Fussel et al., 2012; Heiss and
Fulweiler, 2016).

In Taihu, the abundance of ammonia oxidizing organisms (AOO) was investigated in
sediments, where AOA outnumbered AOB, often by an order of magnitude (Wu et al., 2013;
Zeng et al., 2012; Zhao et al., 2013). Another sediment study revealed that, while AOO were
present at all sites, the distribution of AOA and AOB depended on lake trophic status (Hou et al.,
2013). Abundance of AOA decreased, while AOB increased, with increasing trophic status,
following the substrate concentration hypothesis presented in kinetic experiments (Martens-
Habbena et al., 2009). A suite of environmental variables (substrate concentration, oxygen
concentration, light intensity, pH, etc.) influences nitrification rates and AOO community
composition, including AOA and AOB relative abundances (Bristow et al., 2015; Merbt et al.,

2012; Ward, 2008)
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Nitrification can be closely coupled in time and space to N removal via denitrification,
particularly in shallow systems with tightly coupled benthic-pelagic interactions (An and Joye,
2001; Jenkins and Kemp, 1984). Microbial removal of excess N in eutrophic systems is a crucial
process to mitigate excessive N loads, and substrate availability for denitrification can depend on
nitrification. However, nitrifiers must compete with phytoplankton and other primary producers
for NH4™. In eutrophic systems, this competition could help determine microbial community
structure and cyanoHAB severity. Although both AOO and cyanobacteria, such as Microcystis,
have a strong affinity for NH4* (Martens-Habbena 2009; Baldia et al., 2009), we are unaware of
measurements made when AOO and cyanobacteria were in direct competition. At some point in
the bloom progression, cyanobacteria must outcompete AOO for available NH4*.

The overall objective of this study was to investigate seasonal NH4* dynamics and the
degree of competition between AOO and cyanobacteria in hypereutrophic Taihu. We measured
community NH4* uptake and regeneration rates, and nitrification rates, under different bloom
conditions to help determine how cyanoHABSs influence NH4* fluxes. We compare these rates to:
(1) investigate the competition for NH4" between phytoplankton/cyanobacteria and nitrifying
bacteria and archaea; (2) quantify the oxidation of NH4* to NOs", which is in turn available for
removal via denitrification or assimilation by other organisms; (3) determine the fraction of
NHa4* that is supplied within the system via water column regeneration/remineralization; and (4)
characterize the community composition of AOO. We hypothesized that: (1) lower nitrification
rates occur during cyanoHABSs due to increased competition for NH4*; (2) rates of nitrification
are higher in Taihu than in most coastal and marine systems due to high in situ substrate
concentrations; (3) rapid NH4* turnover increases with phytoplankton biomass; and (4) AOB

outnumber AOA due to higher saturation concentrations.
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2. Methods
2.1 Site description and time frame

Lake Tai (Taihu; from the Chinese for “Great Lake”) is China’s third largest freshwater
lake. Due to industrial development and urbanization in the watershed, Taihu has shifted from a
diatom-dominated, mesotrophic lake to a hypereutrophic lake experiencing cyanoHABs (Paerl et
al., 2014; Qin et al., 2007). Historically, these blooms have been associated with toxin
producing, non-N2 fixing Microcystis spp., which can form surface scums on the lake for up to
10 months per year (Chen et al., 2003; Duan et al., 2009; Ma et al., 2016; Otten and Paerl 2011).
The surface blooms have a well-documented negative impact on fisheries, tourism, and local
economies, including a drinking water shutdown in 2007 (Qin et al., 2007; Steffen et al., 2017;
Xu et al., 2010).

Taihu is a large (2,338 km?), shallow (mean depth = 1.9 m) lake in southeast China,
situated in the Yangtze river delta about 150 km west of Shanghai. The lake is an important
source of freshwater and resources for the ~40 million people within the watershed. Taihu has a
complicated hydrology, with 172 rivers and channels connected to the lake (Qin et al., 2007).
This network of rivers carries nutrient loads from agricultural runoff, factories, and household
wastewater. Taihu has a relatively long residence time of approximately 280—-300 days (Paerl et
al., 2014; Xu et al., 2010).

Water samples were collected from four locations: Stations 1 and 3 in Meiliang Bay,
Station 7 in the north-central part of the lake, and Station 10 on the western side of the lake basin
(Fig. 1). In previous studies (e.g., McCarthy et al., 2007), sampling Stations 1, 3, and 7 followed
a discharge gradient from the Liangxihe River in the northeast part of Meiliang Bay to the central

lake, and Station 0 (“river”) was located at the Liangxihe River discharge. However, in 2007, the
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Yangtze River was diverted into Taihu in an effort to decrease the lake residence time and flush
Microcystis spp. and nutrients out of the lake (Qin et al., 2010). Diverted water from the Yangtze
River now flows into Gonghu Bay, the easternmost of the three northern bays. This diversion
resulted in intermittent flow reversals through Meiliang Bay, where the Liangxihe River now
mainly serves as an outflow. Since the discharge gradient from Station 1 to 7 was no longer
consistent in Meiliang Bay, Station 0 was replaced with a new river input (Station 10) on the
western side of the lake near the Dapugang River mouth. Environmental variables (temperature,
dissolved oxygen, pH, total dissolved solids (TDS), and chlorophyll a) were measured in situ at
each site using a YSI 6600 multi-sensor sonde.

Water samples were collected in August 2013, June 2014, March 2015, and July 2016.
Each of these sampling events corresponded with a pronounced Microcystis bloom at all sites
(Maetal., 2016; Deng et al., 2014; Li et al., 2017; Su et al., 2017; Qian et al., 2017), except
Stations 7 and 10 in March 2015 (visual observation). Our sampling dates were representative of
seasonal conditions in the region, specific to this subtropical climate zone, and did not
correspond with any extreme weather patterns (e.g., typhoons, droughts). Temperature and
precipitation patterns were average for this climate region. Water was collected into 4 | carboys
at the surface (top 20 cm) and near-bottom (approximately 2 m depth) to investigate any changes
in nutrient dynamics associated with depth. Samples for nutrient analyses (NO3", NO2", 0-PO4*,
and urea) were filtered immediately in the field using 0.2 um nylon syringe filters (GE
Millipore) into 15 ml snap-cap tubes (Falcon) and stored frozen at -20°C. Nutrient samples were
analyzed on a Lachat QuikChem 8000 nutrient analyzer at the University of Texas Marine
Science Institute (UTMSI; Aug 2013, June 2014) or a Lachat 8500 nutrient analyzer at Wright

State University (WSU; March 2015, July 2016) according to manufacturer directions. Ambient



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

NH4* concentrations were determined by ammonium retention time shift (AIRTS) high
performance liquid chromatography (HPLC) at UTMSI (Gardner et al., 1995). Briefly, the atom
% °N-NH4* and total NH4* concentration are determined by comparing the retention time shift
of the sample relative to the natural abundance NH4* standard (Gardner et al., 1996)
2.2 Water column NH4* uptake and regeneration

NH4" uptake and regeneration rates were determined following the protocol of McCarthy
et al. (2013). Water collected in 4 | carboys was returned to the Taihu Laboratory for Lake
Ecosystem Research (TLLER) for isotope amendments and incubations. 500 ml from each
site/depth was amended with 98% *NH4CI (Isotec; concentration added 8-96 uM) and
distributed into six (triplicates for light and dark) 70 ml, clear tissue culture bottles (Corning;
McCarthy et al., 2007). The goal of the substrate additions in these uptake/regeneration
experiments was to add more-than-trace levels to ensure that all of the label was not taken up
during the incubations; our goal was to add the label concentration at an equivalent value to the
most recent monitoring data we could obtain for NH4" concentrations, or at least 8 UM (even
when concentrations are low, recycling rates can be quite high). Dark bottles were wrapped with
thick aluminum foil. Initial samples (To) were withdrawn from each bottle with a rinsed syringe,
filtered (0.2 pm filters) immediately into 8 ml glass vials (Wheaton), and frozen until analysis at
UTMSI. Light and dark bottles were then submerged (approximate depth 0.2 m) in a mesh bag at
in situ light and temperature in the lake. After ~24 h, final samples (Tf) were filtered in the same
manner as the To samples. Total NH4* concentrations and atom % *°N for all samples were
determined by AIRTS/HPLC (Bruesewitz et al., 2015; Gardner et al., 1995). Potential uptake and
actual regeneration rates were calculated using the Blackburn/Caperon isotope dilution model

(Blackburn, 1979; Caperon et al., 1979; McCarthy et al., 2013). The uptake rate is considered a
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potential rate, which includes nitrification, assimilation, and other consumption processes, and
regeneration is an actual rate that encompasses remineralization, decomposition of dead organic
matter, heterotrophic excretion, respiration, biodegradation, and sloppy feeding by zooplankton
(Saba et al., 2011).
2.3 Ammonia and nitrite oxidation rates

Nitrification rates were measured directly using the 1>NHs* tracer addition method. 500
ml of water from each station and depth was distributed into 750 ml polycarbonate bottles,
enriched with a tracer amount (approximately 20% of the total pool) of 98% >NH4CI (Isotec),
mixed thoroughly by inverting 10 times, and distributed into three 125 ml polycarbonate
incubation bottles. Unenriched samples for each station and depth were distributed into 125 ml
incubation bottles. Initial samples (To) were filtered using 0.22 pum syringe filters into 30 ml
polycarbonate bottles and frozen until analysis. Final samples were collected as described after
incubating for 24 h at in situ light and temperature. Samples were returned frozen to WSU for
analysis.

Accumulation of >NO2" was measured using the sodium azide (NaNs) reduction method
(Heiss and Fulweiler, 2016; Mcllvin and Altabet, 2005; Newell et al., 2011). Briefly, 7.5 ml from
each sample was distributed into a 12 ml Exetainer vial (Labco, UK) and capped tightly. Each
sample was then injected (with gastight syringe) with 0.25 ml of 1:1 (v:v) 2 M NaNs :20%
CH3COOH solution (previously purged with Ar for 30 min), followed by incubation for 1 h at 30
°C (Mcllvin and Altabet, 2005). All NO2 accumulated in the sample from NH3 oxidation was
transformed chemically to N2O. After 1 h, the reaction was stopped by injection of 0.15 ml of 10

M NaOH.
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Accumulation of 1®NO3- was measured using the Cd reduction/NaNs reduction method
(Heiss and Fulweiler, 2016). Approximately 25 ml from each sample was transferred into 50 ml
centrifuge tubes. First, in situ NO2 was removed with 0.25 ml of 0.4 M sulfamic acid (HsNSO3).
After 10 min, the reaction was neutralized with 0.125 ml of 2 M NaOH (Granger and Sigman,
2009). NOs" was reduced to NO2z" by addition of 100 mg of MgO, 6.6 g of NaCl, and 0.75-1 g of
acidified Cd powder to each sample, followed by 17 h incubation on a shaker table (Mcllvin and
Altabet, 2005). Samples were centrifuged at 2000 rpm for 15 min, and 7.5 ml of supernatant was
carefully transferred into 12 ml Exetainers. Cadmium-reduced NO2" was further reduced to N2O
with the previously described NaNs method.

Samples were sent inverted to the University of California Davis Stable Isotope Facility
for isotopic analysis of **#4N>0O using a ThermoFinnigan GasBench + PreCon trace gas
concentration system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass
spectrometer (Bremen, Germany). Nitrification rates were corrected for NaNs reduction
efficiency, and ®NO2 production was calculated as:

NHs Ox (in nM day™?) = ((**N/“N * [NO27)2ah — (N/¥“4N * [NO2T)on)/ o * t
Where o = [®*NH4*]/ ([**NH4*] + [**NH4*])

And *NOs- production:
NO2 Ox (in nM day?) = (**N/*N * [NO37])24n — (**N/*N * [NOs])on)/ o * t
Where o = [®*NO27/ ([**NO2] + [**NO2])
Total nitrification rates were calculated from the sum of *NO2 and NOs" accumulation.
2.4 Quantitative Polymerase Chain Reaction (QPCR)
During the 2014-2016 sampling events, environmental DNA for AOO abundance was

collected using 0.2 um Sterivex filters (EMD Millipore, MA, USA) and preserved with Ambion
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RNAIater (Invitrogen, Carlsbad, CA, USA). Approximately 60—120 ml of site water was pushed
through the filter for each station and depth and then stored filled with 5 mL RNAlater.
Preserved filters were frozen at -80 °C and transported to WSU. DNA was extracted using the
Gentra PureGene kit (Qiagen Inc., USA) extraction protocol with slight modifications (Newell et
al., 2011). Sterivex filters were first washed with Phosphate Buffer Saline 1X Solution (Fisher
BioReagents, USA) to remove any residual RNAlater. Lysis buffer (0.9 ml) and Proteinase K (4
pl) were added to the filters, followed by 1 h incubation at 55 °C and 1 h incubation at 65 °C.
The solution was removed to a 1.5 ml tube, and the incubation was repeated with fresh lysis
buffer and Proteinase K.

Concentration and purity of the DNA were measured spectrophotometrically (Nanodrop
2000, ThermoScientific). AOA were targeted with Arch-amoAF and Arch-amoAR primers
targeting the 635 base pair (bp) region of the amoA gene, subunit A of the ammonia
monooxygenase enzyme (AMO; Francis et al. 2005). Bacterial amoA was quantified using
amoAF and amoA2R primers (Rotthauwe et al., 1997) to target the 491 bp region of amoA.
gPCR standards were prepared by cloning the fragment of interest for AOA and AOB with the
TOPO TA Cloning Kit (Invitrogen, USA), inserting it into a competent cell plasmid (One Shot
E. coli cells, Invitrogen, USA), and isolating the plasmid containing the amoA gene using the
UltraClean Standard Mini Plasmid Prep Kit (Mo Bio Laboratories Inc., Carlsbad, CA, USA).

AOA and AOB gPCR assays were conducted within a single 96 well plate for each year
(2014, 2015, and 2016). Each run included three negative controls (no template), five standards
from serial dilution in triplicates, and the environmental DNA samples in triplicate. Each sample
and standard received 12.5 ul of SYBR green Fast Mastermix (Qiagen Inc., USA), 0.5 ul of each

100 puM primer, and 2-15 ng of template DNA.

11



242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

All PCR work was performed in a PCR fume hood after cleaning the surface with
DNAaway (ThermoScientific, USA) and engaging the UV light (20 min) to prevent
contamination. qPCR protocol followed the method of Bollmann et al. (2014) for AOA (95 °C
initial denaturation for 5 min, 95 °C denaturation for 30 sec, 53 °C annealing for 45 sec, and 72
°C extension for 1 min; 45 cycles) and AOB (95 °C initial denaturation for 5 min, 95 °C
denaturation for 30 sec, 56 °C annealing for 45 sec, 72 °C extension for 1 min; 45 cycles),
followed by the melting curve. Automatic settings for the thermocycler (Realplex, Eppendorf)
were used to determine threshold cycle (Ct values), efficiency (85-95%), and a standard curve
with R? values above 0.9. Gene copy number was calculated as (ng * number mol 1)/ (bp * ng g
1> g mol* of bp) and is reported in gene copies/ml of sample water. The detection limit was 980
copies/ml for AOB and 4807 copies/ml for AOA. These calculated detection limits do not
represent the greatest sensitivity possible with our method, as the standard concentrations were
selected to bracket the expected environmental concentrations. Indeed, our reported values are

above the detection limit for both AOA (by two orders of magnitude) and AOB.

2.5 Statistical analysis

All statistical analyses were performed using RStudio software (R Version 3.3.1). Prior to
statistical analysis, data were checked for normality using the Shapiro-Wilk normality test. The
only variables that were normally distributed were DO, pH, and TDS. To explore potential
environmental drivers of the rates, a multivariate correlation analysis was performed using the
Kendall correlation method for nonparametric data. A p-value of <0.05 was considered
statistically significant. Additionally, stepwise multiple regression models were run using the

MASS package (R Version 7.3). The best fitting model was selected based on the minimum

12
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Akaike’s Information Criteria (AIC; Akaike 1974). To normalize data for parametric analysis, all
non-normally distributed variables were log(x+1) transformed prior running the model.

3. Results
3.1 Lake ambient conditions

Physicochemical parameters in Taihu varied seasonally and spatially (Table 1). The most
pronounced seasonal variations were observed in temperature and DO, with highest water
temperature recorded in August. DO varied significantly, with highest values in March and
lowest in August (p < 0.01). pH varied significantly with season, with lowest values in March
and highest in August (p < 0.01). TDS values were highest in July 2016 and lowest in August
2013 (p < 0.001). Chlorophyll a concentrations were lowest in March 2015 (mean = 11.1 ug L),
but bloom conditions (> 20 pg L*; Xu et al., 2015) were observed at some locations (e.g., 20.3
ug L at Station 3, and visual confirmation at Stations 1, 3, and several other areas of the lake).
Bloom conditions were also present and observed at all sites in June 2014 (mean = 36.6 pg L),
July 2016 (mean =58.1 pg L?), and August 2013 (43.7 pug L™Y).

Ammonium concentrations remained high throughout all sampling events, with highest
values in March 2015 and lowest values in August 2013, but differences were not statistically
significant (p = 0.125). Nitrite concentrations were not different between seasons, although they
were significantly higher at Station 10 than other stations (p < 0.001). Nitrate concentrations
followed the pattern of NH4* concentrations and were highest in March 2015 and lowest in
August 2013 (p < 0.001). Orthophosphate concentrations followed a seasonal pattern with lowest
concentrations in March and highest in August (p < 0.005), and 0-PO4* concentrations at Station
10 were significantly higher than at any other station (p < 0.001).

3.2 Potential NH4* uptake

13
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In August 2013, light uptake rates (all NH4* uptake are potential rates) were uniform
across sites (mean = 0.40 + 0.04 umol L h) and did not vary between surface and bottom
waters (Fig. 2a). In June 2014, light uptake rates in surface waters at Stations 1, 7, and 10 (mean
=0.80 + 0.06 umol Lt h') were significantly higher than deep rates (mean = 0.31 + 0.08 pmol
Lt h?; p<0.001). However, light uptake rates at Station 3 did not differ from zero at either
depth (Fig. 2a). Mean surface and deep uptake rates in the dark in August 2013 (0.25 + 0.01
umol L h't) and June 2014 (0.13 + 0.05 pmol L h') were significantly lower than light uptake
rates (Fig. 2b; p < 0.05). In March 2015, light uptake rates at Stations 1-7 (mean = 0.12 £ 0.04
umol Lt h) were lower than those during August 2013 and June 2014 (mean = 0.43 + 0.41
umol Lt h') except for Station 10, where the rates were significantly higher (mean = 1.36 + 0.20
pumol L ht; p <0.001). In contrast to summer, dark uptake rates in March 2015 were not
significantly different than light rates (Fig. 2b). In July 2016, light uptake rates were highest at
Stations 1, 7, and 10 (1.31 — 6.82 umol L h'1). Stations 3 and 7 rates were highest in bottom
waters (0.80 £ 0.16 umol L** h't and 2.55 + 0.14 umol L h', respectively). In July 2016, light
and dark uptake rates did not differ significantly (p = 0.15); highest dark uptake rates were
observed at Station 1 in surface water (3.33 + 0.67 umol L h1). Light uptake rates, across all
stations and seasons, correlated positively with TDS and NH4":NOs™ and negatively with pH,
while dark uptake rates correlated positively with TDS, NH4*, and NH4*:NOs", and negatively
with pH (Table 2).

3.3 Regeneration of NH4*

Regeneration rates in the light and dark (all NH4* regeneration rates are actual rates, not

potential) were not significantly different from each other across all years and seasons; therefore,

light and dark rates were averaged together (Fig. 2c). Regeneration rates did not differ
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significantly between the summer bloom sampling events in August 2013 and June 2014 (mean
=0.22 £ 0.03 umol Lt h't), but July 2016 regeneration rates (mean = 0.75 + 0.16 umol L h')
were significantly higher than in August and June (p = 0.004), with exceptionally high
regeneration rates occurring in surface waters in July at Station 1 (mean = 2.37 + 0.16 pmol L™
h"1). In March 2015, mean surface and deep regeneration rates decreased from the river mouth
(Station 10; 0.88 + 0.15 umol L h't) towards the center of the lake, with significantly higher
regeneration rates at 10 than Stations 1-7 (mean = 0.10 + 0.03 umol L h; p < 0.01).
Regeneration rates were positively correlated with TDS, NH4*, and 0-PO4% concentrations, and
NH4":NOs" (Table 2).

3.4 Nitrification (2014-2016)

Note that nitrification rates are presented in nmol L d! for consistency with literature
reported values. From ®NH4* additions, 91.8 % of the label was detected as 1®NOz™ and only 8.2
% as >NOz2". Total nitrification rates at Station 3 did not vary across seasons. At Station 7 in the
central lake, highest total nitrification rates were observed in March 2015 (mean = 663 + 69.4
nmol Lt d?) in both surface and deep waters compared to the lowest rates in July 2016 (mean =
1.58 + 0.78 nmol L d1). At Station 1, the highest rates were measured in surface waters in July
2016 (mean = 773 £ 50.7 nmol L d1), but the rates at depth followed a seasonal pattern from
high in the spring (mean = 646 + 158 nmol L d%) to an order of magnitude lower in the summer
(mean = 9.86 + 3.28 nmol L1 d%).

Total nitrification rates at Station 10 were significantly higher than other stations (Fig.
3b; p < 0.001). Rates were, at times, orders of magnitude higher, and total nitrification ranged

from 148 — 3750 nmol L d! (mean = 1590 + 1390 nmol L d'!), compared to Stations 1-7
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ranging from 2.00 — 771 nmol Lt d! (mean = 270 + 277 nmol L d!). At Station 10 in July
2016, 80% of the >NH4 addition was detected as ®NO2".
3.5 Ammonia oxidizer abundance
Abundance of the bacterial amoA gene for all years (2014-2016) varied from

undetectable to 2.85 x 10° + 5.20 x 10* copies ml*. Archaeal amoA abundance ranged from
undetectable to 1.03 x 107 + 3.37 x 10° copies ml* (Fig. 4a). Neither AOB nor AOA amoA gene
copy abundances were statistically different between the three seasons. The highest ratio of
AOB:AOA gene abundance (1.81) was reported at Station 3 in Meiliang Bay (Fig. 4b), and the
lowest ratio (0.01) was observed at Station 7. AOB gene abundance was positively correlated
with NH4*, NO2", and 0-PO4* concentrations, and NH4*:NOsz", while AOA gene abundance was
not significantly correlated to any environmental variable (Table 2).

4. Discussion
4.1 Ammonium regeneration and potential uptake

Ammonium uptake rates (0.02 — 6.82 umol L h) reported here were within the range of or
slightly higher than rates reported in other studies (Table 3). Rates were higher than uptake rates
reported previously in Meiliang Bay (0.11 — 1.54 pmol L h!) and the central lake (0.03 — 0.32
pumol Lt h't) but within the range of rates reported in the Liangxihe River (0.70 — 4.19 pmol L*
h"l; McCarthy et al., 2007). Light uptake rates in March, June, and August resembled rates in
eutrophic Lake Okeechobee but were higher than rates in Missisquoi Bay, Lake Champlain,
Lake Michigan, and eutrophic New Zealand lakes Rotorua and Rotoiti (Table 3 and references
therein). Higher light uptake rates were reported only in hypereutrophic Lake Maracaibo,
Venezuela (Table 3) and in Maumee Bay, Lake Erie during a summer cynaoHAB bloom

(Gardner et al. 2017). Potential NH4* uptake rates in these systems, evaluated using the same
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methods, increase with chlorophyll a (p < 0.05), but the proportion of community uptake that can
be supported by regeneration remains relatively consistent (Table 3).

Light uptake rates in Taihu were marginally higher (p = 0.08) than dark uptake rates,
presumably due to reduced photosynthetic phytoplankton activity. Photoautotrophs may continue
to assimilate nutrients in the dark under nutrient limitation (Cochlan et al., 1991), but Taihu is
generally nutrient replete, so we assume that dark uptake rates can be attributed mostly to
heterotrophic or chemolithoautotrophic organisms. Uptake rates were significantly higher in July
2016 than at other times, which may have been due to higher precipitation and subsequent
runoff; during summer 2016, average rainfall in June and July was about 305 mm compared to
106 mm in June 2014, 105 mm in August 2013, and 54 mm in March 2015
(WorldWeatherOnline.com; accessed on <08/02/2017>) however, it is within the range of typical
summer rainfall (185-320 mm; WorldWeatherOnline.com). Dark uptake rates in Taihu exceeded
dark rates reported in Lake Okeechobee (0.02 — 0.04 pmol Lt h%; James et al. 2011), Missisquoi
Bay, Lake Champlain (0.10 pmol L h't; McCarthy et al., 2013), and Lake Michigan (7 nmol L™
h1; Gardner et al., 2004) suggesting high activity of both heterotrophs and chemolithoautotrophs
in Taihu. A previous metagenomics study of the bloom composition in Taihu revealed an
overlooked contribution of heterotrophic bacteria to N assimilation processes by Microcystis,
which could be important in driving toxic blooms (Steffen et al., 2012).

Internal NH4* cycling via regeneration is important in Taihu and varies seasonally (McCarthy
et al., 2007; Paerl et al., 2011). In March 2015, about 38% of light uptake for all sites and depths
was supported by regeneration (Fig. 2d). This proportion increased in June 2014 and July 2016
to 58% and 42%, respectively, and was highest in August 2013 (109%). The importance of

regeneration corresponded to decreasing in situ NH4" concentrations (Fig. 2D). These results
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suggest that, in March and June, regeneration supplemented ambient NH4* in the water column
to support algal production, whereas cyanobacteria relied more heavily on NH4* from
regeneration to sustain blooms in July and August. Water column regeneration may supply more
NH4* for blooms than sediment NH4" regeneration in Taihu due to combined spatial,
temperature, and biogeochemical factors (McCarthy et al., 2007; Gardner et al., 2017). Rapid
decomposition of cyanoHAB biomass may provide NH4* for nitrification, which provides
substrate for denitrification. High rates of sediment denitrification (McCarthy et al., 2007) also
may drive N limitation in late summer and fall (Paerl et al., 2011; Xu et al., 2010)

To calculate whole-lake, water column NH4* regeneration and uptake rates, we divided the
lake (2,338 km?; Qin et al., 2007) into four different sections based on geochemical and
ecological properties (Qin, 2008): (1) three northern bays (361.8 km?; depth = 1.9 m) most
affected by the blooms; (2) the main lake (1,523.9 km?; depth = 1.9 m); (3) the East Taihu
region, dominated by rooted and floating macrophytes (357.5 km?; depth = 1.4 m); and (4)
shorelines <1 m deep (94.8 km?). We considered regeneration and uptake rates from Stations 1
and 3 to represent the northern bays area, Station 7 as the main lake, Station 10 as shoreline, and
regeneration rates previously reported for East Taihu (McCarthy et al., 2007; Paerl et al., 2011).
When extrapolated to the volume of these four zones in Taihu, regeneration returned about 3.04
x 107 kg of NH4* annually in the three northern bays, 6.71 x 107 kg of NH4* in the main lake,
8.87 x 10 kg of NH4* along the shorelines, and 2.88 x 106 kg of NH4* in East Taihu Lake. These
values sum to 1.09 x 108 kg of NHa*recycled in the water column, approximately two times
higher than reported external N loadings, which range from 5.11 x 107 to 7.00 x 107 kg annually
(Chenetal.,, 2012; Yan et al., 2011). The same procedure for extrapolation of whole-lake uptake

rates yields 3.5 x 108 kg of NH4*, which is 4-6 times higher than external N loads. The
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combination of external loads and regeneration cannot support the demand for NH4", suggesting
that the remaining NH4* demand must be satisfied by internal loads from sediments or some
other unknown source, or that reported TN loads are underestimated. These rough estimates of
lake-wide regeneration and uptake are based on rates measured at specific stations at discreet
times; improved spatial and temporal resolution of measurements are needed to improve these
estimates. Additionally, these calculated values are probably an overestimate given that most of
the rates measured and reported in this study are during spring and summer months, not fall and
winter, when we might expect lower rates. Taihu is a complex ecosystem with 172 rivers and
channels connected to the lake (Qin et al., 2007), making any estimations of total N loadings
challenging. As such, we believe that the reported total N loads to Taihu are likely an
underestimate. However, our results show that these external N loads lead to higher biomass and
fuel high regeneration rates. Combined with high ambient nutrient concentrations, these data
suggest that microbial denitrification cannot remove N fast enough to keep pace with external N
loading. Increasing nutrient loads can result in decreasing efficiency of denitrification (Gardner
and McCarthy, 2009; Mulholland et al., 2008), which will limit the ability of a system to self-
mitigate excess N loads.
4.2 Nitrification

Total nitrification rates reported in this study exceeded previously reported rates in most
oligotrophic and mesotrophic freshwater systems. Published nitrification rates in lakes include
the water columns of saline Lake Mono, CA (60-480 nmol L™ d**; Carini and Joye, 2008) and
Lake Superior, USA (0-51 nmol L d1; Small et al., 2013), both measured via *>NHa4* tracer
additions, and Lake Okeechobee, FL (67-97 nmol L h; James et al., 2011), measured via the

15N O3 pool dilution method (Carini et al., 2010). Rates on this scale were previously reported
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only in eutrophic Lake Mendota (WI; 1700 — 26000 nmol L h'; Hall, 1986) and the Paerl River
Estuary (China; 2100 — 65100 umol L d*; Dai et al., 2008). However, these rates were
measured from accumulation of NO2" and NOs", not stable isotope additions. High total
nitrification rates in Taihu can be attributed to high ambient NH4* concentrations, up to 40 uM at
Station 1 in 2016 and 135 uM at Station 10 in 2014. These high concentrations of NH4* are due
to high external N loadings, including N in organic matter, into the lake, of which ~1.32 x 107 kg
were loaded as NH4* in 2009 (Yan et al., 2011). The significant relationships between
nitrification and NH4*, NO27, and NOs™ concentrations (p < 0.05; Table 2) support these
observations.

Substrate concentrations drive NH4* oxidation rates and, therefore, end-product pools,
since it is the rate limiting step of nitrification (i.e., completion of nitrification is dependent on
the first step). Accumulation of >NO3"exceeded accumulation of *®NOz by a factor of 9 at
Stations 1, 3, and 7 across all sampling events (Fig. 3a), indicating that NO2™ oxidation is keeping
pace with or exceeding NH4* oxidation. Higher accumulation of >NOs" was expected, since
NOgs™ is the final product of total nitrification.

At Station 10, accumulation of 1°NOz" exceeded ®NOz2" in March 2015 and June 2014. In
July 2016, however, accumulation of 1°NO2" was three times higher in surface water and
comparable at depth (Fig. 3b). Ambient NO2 concentration at Station 10 in July 2016 was 9.6
MM in surface water and 8.4 UM at depth (Table 1). This accumulation of NO2" suggests that
NO:2 oxidizers were saturated, consistent with Km values reported for NO2 oxidation in the
oligotrophic open ocean were 0.25 + 0.16 uM (Sun et al., 2017). However, culture experiments
report Km values ranging from 6-544 uM for Nitrospira, Nitrobacter, and Nitrotoga spp.

(Blackburne et al., 2007; Nowka et al., 2015; Ushiki et al., 2017).
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At most stations, nitrification rates in Taihu were highest in March, lower in June, and lowest
in July. During the spring sampling, nitrification accounted for about 8% of light uptake and
15% of dark uptake at Stations 1 — 7. In June, nitrification accounted for 2.6% of light uptake
and 9.6% of dark uptake, and in July only 0.2% and 0.3% of light and dark uptake, respectively.
These results show a seasonal trend of decreasing contribution of nitrification to total uptake
rates and higher contribution of nitrifiers to dark uptake. As stated above, chemolithoautotrophs
(including nitrifiers) do not rely on light for energy and continue to assimilate NH4* in dark
conditions, while photoautotrophic cyanobacteria can assimilated NH4* in the dark only when
nutrient limited (Cochlan et al., 1991). However, the presence of high dissolved inorganic N
concentrations in ambient water samples suggests that the observed dark uptake was likely
performed primarily by non-photoautotrophs, including nitrifiers.

We observed no significant seasonal change in nitrification across all stations and no
consistent pattern between temperature and nitrification. While the lack of relationship of
nitrification with temperature agrees with nitrification studies in the ocean (Ward, 2008), other
studies have reported temperature as a potential driver of nitrification in coastal waters (Heiss
and Fulweiler, 2016). Although not statistically linked to changes in temperature, the
contribution of nitrification to total uptake rates decreased in summer months, likely as a result
of competition with the Microcystis bloom and associated heterotrophic bacteria. Non-Nz fixing
cyanobacteria, including Microcystis, are exceptional competitors for NH4* in high nutrient
environments (Blomqvist et al., 1994). With a high saturation threshold and reported Km values
from 26.5 uM to 37 uM (Baldia et al., 2007; Nicklisch and Kohl 1983) in culture, and up to
112.9 pM in Taihu populations (Yang et al., 2017), Microcystis should be able to outcompete

nitrifiers at the high ambient NH4* concentrations in Taihu as nitrifiers may become saturated as
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much lower concentrations. Additionally, Microcystis can regulate its buoyancy and scavenge
nutrients throughout the water column to effectively compete for light with other phytoplankton
(Brookes and Ganf, 2001).

Nitrification at Station 10 differed dramatically from other stations. Total nitrification rates
were, at times, orders of magnitude higher than at other stations. Also, Station 10 did not follow
the trend of decreasing nitrification contribution with the bloom. Nitrification accounted for 19%
of light uptake and 64.8% of dark uptake in June and only 1.7% and 2%, respectively, in March.
We speculate that Station 10 differs from other stations because of the large nutrient and
suspended particle loads from the Dapugang River, the second largest inflow into the lake (Yan
et al., 2011). Suspended particles from sediments could trigger heterotrophic and anaerobic
processes at Station 10, including reduction of NOs™ to NO2 (Krausfeldt et al., 2017; Yao et al.
2016). In fact, denitrification and anammox gene transcripts were observed recently in the water
column at Station 10 (Krausfeldt et al., 2017). These authors also speculated that the discharge of
suspended sediments from the river might play a role in coupling anaerobic and aerobic
processes in the turbid water column, resulting in rapid cycling of reduced and oxidized forms of
N. Nitrification is the link between introduction of reduced N into the system and the removal of
N through denitrification. Therefore, the efficiency of nitrification is crucial to the removal of N
from this hypereutrophic lake.

4.3 Ammonia oxidizer abundance

AOB and AOA coexist in the environment, and environmental variables shape the
community structure. AOA often dominate in environments with low substrate concentrations,
such as the open ocean or oligotrophic lakes (Beman et al., 2008; Bollmann et al., 2014; Newell

et al., 2011), while AOB are often more abundant in nutrient rich waters and soils (Hou et al.,
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2013; Jia and Conrad, 2009; Kowalchuk and Stephen, 2001; Verhamme et al., 2011). This
substrate concentration adaptation is dictated by different physiological abilities to assimilate
NH4*. Culture studies show that AOA have a very high affinity (low half saturation constant;

Km) for NH4", and in general are saturated faster than AOB (Martens-Habbena et al., 2009). The
low half saturation constant (Km = 0.132 puM; Martens-Habbena et al., 2009) of AOA gives them
a competitive advantage in low NHa4* conditions. In contrast, the high Km of AOB (10-1000 pM)
allows them to assimilate more NH4* before becoming fully saturated, an advantage for higher
NH4* concentration conditions. Although oligotrophic AOA appear to proliferate in the
environment (Francis et al., 2005), some species adapt to higher substrate concentrations (Jung et
al., 2011; Tourna et al., 2011).

Results from the amoA gene copy abundance analysis show that AOA were more abundant
than AOB across all stations and seasons in Taihu. Although this result does not support our
original hypothesis, the results agree with previous studies in the water column and sediments in
Taihu (Zeng et al., 2012), which reported higher AOA abundance (4.91 x 10° — 8.65 x 10° copies
g* sediment) than AOB (3.74 x 10* — 3.86 x 10° copies g sediment) in Meiliang Bay. Similarly,
another Taihu sediment study showed more AOA than AOB in sediments at all 20 investigated
stations (Wu et al., 2010).

The differences in abundance of AOO between stations, represented as AOB:AOA, show
spatial variability between the more nearshore and central lake stations (Fig. 4b). In this study,
AOA were more abundant in the central lake (Station 7), whereas AOB were more abundant
closer to shore. Due to a higher affinity for substrate (lower Km), AOA are likely more
competitive when nutrient concentrations are lower, such as in the open lake (mean offshore

NH4* concentration = 3.69 uM). In contrast, AOB, with higher Km, thrive at higher NH4*

23



517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

concentrations at nearshore locations (mean nearshore NH4* concentration = 31.3 uM). These
results agree with previous research in Taihu, where AOA outnumbered AOB in sediments at
mesotrophic sites, and AOB were more abundant at hypereutrophic locations (Hou et al., 2013).
Another study in Taihu sediments also reported that both AOA abundance and AOA:AOB were
negatively correlated with ambient NH4* concentration (Wu et al., 2010). However, the data
reported in this study show no significant relationship between AOA abundance and NH4+*, NOz2,
and NOs™ concentrations (Table 2).

Despite AOA outnumbering AOB, AOB abundance was correlated with total nitrification
rates for all stations and all seasons (p < 0.005), but AOA abundance was not. This result agrees
with a previous study in Taihu sediments, where AOA were negatively correlated (r = 0.53, p <
0.05) with potential nitrification rates (0 — 3.0 ug NOs—N g* dry sediment; Hou et al., 2013). We
speculate that AOA oxidized NH4* at lower rates due to oversaturation and inhibition and may
not have contributed as much as AOB to nitrification rates in our study. This conclusion was also
reached in Plum Island Sound (MA, USA), where abundance of archaeal amoA was higher than
bacterial, but potential nitrification rates did not correlate with AOA (Bernhard et al., 2010). The
authors hypothesized various scenarios, including inhibition of AOA due to high substrate
concentrations, competition for NH4* with AOB, or AOA using an alternative energy source
(Bernhard et al., 2010). Our results support the interpretation that AOA are at a disadvantage
when competing with AOB for NH4" in a hypereutrophic system and most likely did not play a
major role in observed nitrification in Taihu. Recent studies show that AOA can oxidize cyanate
(Palatinszky et al., 2015) and urea (Tolar et al., 2016), although growth and oxidation rates may
be slow. Therefore, AOA may play an expanded role in Taihu, beyond just NH4* oxidation.

4.4 Multiple regression model
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The best-fitting multiple regression models for N dynamics in Taihu (Table 4) supported
the Kendall non-parametric analysis (Table 2). Ammonium uptake and regeneration rates and
nitrification were correlated with ambient NH4*, NO27, and NO3™ concentrations. Additionally,
the best-fitting models revealed that variables changing with season had major influences on the
models (Table 4). For example, uptake in the light and dark and regeneration rates were
positively influenced by temperature and DO and negatively by pH. However, the model for
nitrification rates did not reveal that the seasonal variables, such as temperature, played a major
role in the model.

5. Conclusions

This study highlights the importance of water column NH4* regeneration in providing a
large proportion of the substrate necessary to sustain cyanoHABs. The results also show that
nitrification does not account for a large proportion of NH4* demand during cyanoHABS in
Taihu. We showed that nitrification rates were detectable during the bloom but decreased as the
bloom progressed, suggesting that nitrifiers are weaker competitors for substrate than
Microcystis. Also, seasonal changes in light and dark NH4* uptake and nitrification rates showed
that AOO are outcompeted by Microcystis. Extremely high nitrification rates at the river mouth
(Station 10) differed from rates at other stations, suggesting that other processes, such as coupled
nitrification/denitrification, might be important in suspended sediments. Previous studies
reported coupled denitrification with nitrification in sediments (McCarthy et al., 2007).
Functional gene analysis suggested that gene abundance does not necessarily reflect performance
of the function in eutrophic lakes. We speculate that AOA are present in the lake but do not
contribute proportionately to nitrification, suggesting that AOA might play another role in the

lake.
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Ammonium inflow into the lake is a large source of reduced N, but external inputs are
not the sole source. Extrapolated whole-lake regeneration rates in the water column were twice
as high as external N loadings into the lake. To mitigate harmful algal blooms, N loadings into
the lake must be reduced so that N can be efficiently removed through denitrification, instead of
being recycled in the water column. Our results support the recent calls for dual nutrient (N + P)
management strategies (Paerl et al., 2011) and highlight the importance of (chemically) reduced

N removal through nitrification and denitrification.
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Figure list
Figure 1. Map of sampling stations in Taihu (modified from Paerl et al. 2011).

Figure 2. Ammonium dynamics in Taihu. (a) potential light uptake rates + one standard error. (b)
potential dark uptake rates + one standard error. (c) Mean light and dark regeneration rates + one
standard error. (d) Seasonal averaged percent of light uptake supported by regeneration + one
standard error and averaged in situ NH4* concentrations.

Figure 3. Total nitrification rates calculated from accumulation of **NO2" (grey) and *°NOs-
(black) * one standard deviation. (a) Stations 1-7. (b) Station 10. The two axis show different
units for total nitrification rates: nmol L d* (left) and pmol L ht (right).

Figure 4. Ammonia oxidizing organism population characteristics. (a) Ammonia oxidizer
abundance (DNA) + one standard deviation. (b) Ratio of abundance of AOB to AOA.
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973 Table 1.

974  Environmental characteristics during sampling events for each station/depth: temperature,

975 dissolved oxygen (DO), pH, chlorophyll a (chl a; surface only), total dissolved solids (TDS), and
976 insitu nutrient concentrations. S in station name = surface water (0.2 m), and D = deep, near-
977 _ bottom water (~2 m).

Year/  Station Temp DO pH Chla  TDS [NH4] [NO2] [NOs3] [PO4*]
Month (°C) _ (mgL™) (Mg L™ EM) (M) M)  (uM)
2013 1S 30.9 3.53 8.11 53.9 377 137 0.28 2.09 251
1D 30.8 4.24 8.05 377 1.79 0.23 2.17 2.96
3S 32.5 9.07 9.02 57.6 390 051 0.23 1.84 1.64
3D 31.9 7.40 8.97 390 056 0.25 0.60 1.62
7S 30.4 3.40 8.05 22.2 357 0.26 0.21 2.20 0.41
7D 30.4 3.40 8.18 357 032 0.14 0.90 2.73
10S 32.1 8.60 9.33 40.8 375 0.61 1.90 7.74 4.83
10D 32.0 8.00 9.43 375 029 1.04 3.76 5.69
2014 1S 23.9 8.50 8.11 13.7 436 6.16 3.33 87.5 1.75
1D 22.7 5.10 8.07 437 8.34 3.36 87.1 0.69
3S 27.2 8.60 8.73 11.1 419 1.09 172 58.3 0.24
3D 25.4 7.30 8.71 411 120 261 57.4 0.35
7S 22.8 9.70 7.85 42.4 383 155 0.83 66.3 0.39
7D 22.5 8.60 7.69 384 159 0.74 61.6 2.13
10S 26.3 5.60 8.89 79.5 424 354 149 70.0 2.43
10D 26.4 5.50 8.60 424 357 15.1 68.9 2.52
2015 1S 11.6 10.1 8.34 7.5 393 249 055 53.9 0.20
1D 11.7 3.40 6.67 393 249 0.58 54.7 0.04
3S 94 12.8 7.74 20.4 414 BDL* 0.82 1194 0.03
3D 8.2 12.9 7.52 414 0.83 0.86 117.6 0.05
7S 10.8 11.3 8.40 10.5 416 593 1.95 172.2 0.02
7D 10.7 10.7 8.01 416 593 144 136.2 0.12
10S 9.6 8.90 7.94 6.0 422 131 7.05 270.6 141
10D 94 8.71 7.73 421 132 6.97 269.5 1.36
2016 1S 26.7 11.3 7.89 96.8 445 43.3 8.86 79.7 1.95
1D 25.5 7.55 7.67 458 200 6.71 58.8 131
3S 26.1 7.00 8.50 101.0 410 176 0.86 3.81 1.05
3D 26.3 7.30 8.50 410 211 0.72 3.87 1.16
7S 25.8 10.0 7.95 13.2 465 0.33 0.08 16.4 0.03
7D 25.1 8.88 7.88 466 0.25 0.11 16.5 0.05
10S 25.6 4.10 1.75 21.3 470 134  9.66 94.0 2.43
10D 23.4 4.10 7.62 470 65.3 8.45 66.8 3.18

*Nutrient analysis detection limits: NH4+ = 0.04 pM; NOx = 0.04 yuM; OP = 0.008 pM.
978
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Table 2.

Details of non-parametric Kendall’s correlation analysis. Statistically significant (p < 0.05) Kendall’s Tau coefficients are bold.

Temp DO pH Chla TDS NH4* NOz NOs PO+ NH4":NOs
Uptake L Kendall's T -0.010 -0.061 -0.326 0.133 0321 0230 0.020 0.048 0.081 0.301
p value 0.935 0.626 0.009 0471 0.010 0.064 0871 0.697 0.517 0.016
Uptake D Kendall's T -0.014 -0.041 -0.293 0.117 0.337 0.295 0.000 0.069 0.069 0.369
p value 0.910 0.745 0.019 0529 0.007 0018 1.000 0.581 0.581 0.003
Regeneration Kendall's T 0.095 -0.110 -0.103 0.300 0.301 0.344 0.149 0.012 0.259 0.487
p value 0.446 0.381 0.408 0.105 0.016 0.006 0.230 0.923 0.038 <0.001
Nitrification  Kendall's T -0.138 -0.128 -0.214 0.242 -0.058 0.385 0.341 0.377 0.341 0.272
p value 0.346 0.385 0.143 0273 0.691 0.009 0.020 0.010 0.020 0.063
AOA Kendall's T 0.109 0.179 0.083 0273 0.161 0.015 -0.014 -0.051 0.043 -0.004
p value 0.457 0.224 0568 0217 0275 0921 0921 0.728 0.766 0.980
AOB Kendall's T 0.175 -0.157 -0.149 0.273 0.175 0458 0341 0.130 0.500 0.425
p value 0.234  0.286 0309 0.217 0.233 0.002 0.020 0.372 0.001 0.004

37



Table 3.

Comparison of ammonium dynamics (in pumol L hrt) and chlorophyll a concentrations among different

freshwater studies.

Up(L) Up(D) Reg Avg Chla (ug L™ Reference
Lake Lugano 0.017 £0.001 0.008 +0.003 0.010 +0.002 <2.00 McCarthy unpublished
Lake Michigan 0.019+0.004 0.01+0.002 0.008 +0.001 2.44 Gardner et al., 2004
Lake Rotorua 0.114 +0.008 0.021 +£0.005 0.047 £ 0.007 23.3 Gardner et al., 2017
Lake Rotoiti 0.132+0.033 0.08+0.019 0.063+0.018 7.66 Gardner et al., 2017
Missisquoi Bay 0.205+0.022 0.104+£0.015 0.085+0.013 16.2 McCarthy et al., 2013
Lake Erie 0.258 +0.128 0.036 £ 0.009 0.124 + 0.052 19.9 McCarthy unpublished
Lake Okeechobee 0.577+£0.006 0.029+0.01  0.160 +0.021 16.8 James et al. 2011
Taihu Lake 0.655+0.285 0.271+£0.111 0.325+0.144 11.5 McCarthy et al.2007
Taihu Lake 0.886 +0.09 0.399+0.121 0.368 +0.071 37.4 This study
Lake Maracaibo 3.35+0.795  2.73+0.643 0.389 £0.175 22.0 Gardner et al. 1998
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Table 4.

Details of best-fitting multiple regression models determined by stepwise regression. All rates,

temperature, and ambient nutrient concentrations were log-transformed prior to analysis.

Process Variable Parameter Model
Std. Adj.
Estimate estimate P R? F P
Uptake Light T 1.048 0.216 0.0001  0.643 10.3 9.14x10®
DO 0.053 0.012 0.0002
pH -0.320 0.054 0.0000
NH4* 0.669 0.272 0.0213
Uptake Dark T 0.488 0.121 0.0005 0.745 16.1 1.66x10”7
DO 0.034 0.007 0.0000
pH -0.187 0.031 0.0000
NH4* 0.579 0.153 0.0008
NO2 -1.619 0.660 0.0215
NOs -0.098 0.034 0.0086
Regeneration T 0.321 0.098 0.0031  0.695 12.8 1.42x10°
DO 0.025 0.005 0.0003
pH -0.092 0.024 0.0008
NH4* 0.386 0.126 0.0053
NOsz -0.061 0.027 0.0340
Nitrification NO2 3.262 1.226 0.0165 0.498 4.80 0.004
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Figure 3
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