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Abstract 13	
 14	
Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. 15	

These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to 16	

anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix 17	

atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium 18	

(NH4
+). We measured NH4

+ regeneration and potential uptake rates and total nitrification using 19	

stable isotope techniques. Nitrification studies included abundance of the functional gene for 20	

NH4
+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential 21	

NH4
+ uptake rates ranged from 0.02–6.80 µmol L-1 h-1 in the light and 0.05–3.33 µmol L-1 h-1 in 22	

the dark, and NH4
+ regeneration rates ranged from 0.03–2.37 µmol L-1 h-1. Nitrification rates 23	

exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 24	

200 nmol L-1 d-1 and was >1000 nmol L-1 d-1 at one station near a river discharge.  AOA amoA 25	

gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only 26	

abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and 27	

all seasons (p < 0.005). Nitrification rates in Taihu varied seasonally; at most stations, rates were 28	

highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom 29	

progression, suggesting that nitrifiers were poor competitors for NH4
+ during the bloom. 30	

Regeneration results suggested that cyanobacteria relied extensively on regenerated NH4
+ to 31	

sustain the bloom. Internal NH4
+ regeneration exceeded external N loading to the lake by a factor 32	

of two but was ultimately fueled by external N loads. Our results thus support the growing 33	

literature calling for watershed N loading reductions in concert with existing management of P 34	

loads. 35	

  36	
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1. Introduction	37	

Nitrogen (N) and phosphorus (P) are important nutrients in aquatic ecosystems, often co-38	

limiting primary production (Elser et al., 2007). Biologically unavailable (except to diazotrophs) 39	

atmospheric N can be fixed to readily assimilable ammonium (NH4
+) and biomass via N2 40	

fixation (Vitousek et al., 2013). However, fertilizer production from anthropogenic N fixation 41	

(the Haber-Bosch process) has changed N cycling and the global N budget over the last century. 42	

Non-point source N loads from agriculture are a main driver of eutrophication in aquatic 43	

systems, which is often manifested as hypoxia, loss of biodiversity, cyanobacterial harmful algal 44	

blooms (cyanoHABs; Paerl et al., 2016; Paerl and Paul, 2012), and other detrimental 45	

characteristics. CyanoHABs are particularly problematic because they often produce toxins, 46	

compete for nutrients with other microbes and primary producers, and indicate unhealthy aquatic 47	

systems.  48	

The increase in extent and frequency of cyanoHABs correlates to increased application of 49	

NH4
+ and urea fertilizers, both globally and in China (Glibert et al., 2014). Diatoms are 50	

competitive for oxidized forms of N (e.g., NO3
-), but non-N2 fixing cyanobacteria, such as 51	

Microcystis, thrive on chemically reduced N forms, such as NH4
+ and urea (Blomqvist et al. 52	

1994; Glibert et al., 2016; McCarthy et al., 2009). NH4
+ transport across the cell membrane and 53	

assimilation into biomass is less energy intensive than for NO3
- (Glibert et al., 2016). Due to high 54	

biological demand and fast turnover rates, NH4
+ often does not accumulate in the water column, 55	

resulting in low in situ concentrations. Ammonium regeneration is especially important to 56	

phytoplankton productivity in eutrophic systems (Gardner et al. 1998, 2017; McCarthy et al., 57	

2013). For example, water column regeneration was up to six times higher than sediment 58	

regeneration in Lake Taihu, China (McCarthy et al., 2007; Paerl et al., 2011). 59	
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Nitrification is the link between chemically reduced and oxidized N forms. Most 60	

nitrification pathways are a two-step process; NH4
+ is oxidized to nitrite (NO2

-) via ammonia 61	

oxidation, and NO2
- is then oxidized to NO3

- via NO2
- oxidation. Ammonia oxidation is a rate 62	

limiting step (Ward, 2008) carried out by chemolithoautotrophic, ammonia oxidizing bacteria 63	

(AOB) and ammonia oxidizing archaea (AOA; Könneke et al., 2005). NO2
- oxidation is carried 64	

out by NO2
- oxidizing bacteria (NOB). Recently, a species of NOB was described that is capable 65	

of one step, complete nitrification (“comammox”); however, comammox bacteria have yet to be 66	

well documented in the environment (Daims et al., 2015). The ammonia and NO2
- oxidation 67	

steps are often tightly coupled, where the product of the first step serves as a substrate for the 68	

second step (Ward, 2008). However, some studies in marine environments suggest that the 69	

process can be decoupled, with one step outpacing the other (Füssel et al., 2012; Heiss and 70	

Fulweiler, 2016). 71	

In Taihu, the abundance of ammonia oxidizing organisms (AOO) was investigated in 72	

sediments, where AOA outnumbered AOB, often by an order of magnitude (Wu et al., 2013; 73	

Zeng et al., 2012; Zhao et al., 2013). Another sediment study revealed that, while AOO were 74	

present at all sites, the distribution of AOA and AOB depended on lake trophic status (Hou et al., 75	

2013). Abundance of AOA decreased, while AOB increased, with increasing trophic status, 76	

following the substrate concentration hypothesis presented in kinetic experiments (Martens-77	

Habbena et al., 2009). A suite of environmental variables (substrate concentration, oxygen 78	

concentration, light intensity, pH, etc.) influences nitrification rates and AOO community 79	

composition, including AOA and AOB relative abundances (Bristow et al., 2015; Merbt et al., 80	

2012; Ward, 2008) 81	
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 Nitrification can be closely coupled in time and space to N removal via denitrification, 82	

particularly in shallow systems with tightly coupled benthic-pelagic interactions (An and Joye, 83	

2001; Jenkins and Kemp, 1984). Microbial removal of excess N in eutrophic systems is a crucial 84	

process to mitigate excessive N loads, and substrate availability for denitrification can depend on 85	

nitrification. However, nitrifiers must compete with phytoplankton and other primary producers 86	

for NH4
+. In eutrophic systems, this competition could help determine microbial community 87	

structure and cyanoHAB severity. Although both AOO and cyanobacteria, such as Microcystis, 88	

have a strong affinity for NH4
+ (Martens-Habbena 2009; Baldia et al., 2009), we are unaware of 89	

measurements made when AOO and cyanobacteria were in direct competition. At some point in 90	

the bloom progression, cyanobacteria must outcompete AOO for available NH4
+.  91	

The overall objective of this study was to investigate seasonal NH4
+ dynamics and the 92	

degree of competition between AOO and cyanobacteria in hypereutrophic Taihu. We measured 93	

community NH4
+ uptake and regeneration rates, and nitrification rates, under different bloom 94	

conditions to help determine how cyanoHABs influence NH4
+ fluxes. We compare these rates to: 95	

(1) investigate the competition for NH4
+ between phytoplankton/cyanobacteria and nitrifying 96	

bacteria and archaea; (2) quantify the oxidation of NH4
+ to NO3

-, which is in turn available for 97	

removal via denitrification or assimilation by other organisms; (3) determine the fraction of 98	

NH4
+ that is supplied within the system via water column regeneration/remineralization; and (4) 99	

characterize the community composition of AOO. We hypothesized that: (1) lower nitrification 100	

rates occur during cyanoHABs due to increased competition for NH4
+; (2) rates of nitrification 101	

are higher in Taihu than in most coastal and marine systems due to high in situ substrate 102	

concentrations; (3) rapid NH4
+ turnover increases with phytoplankton biomass; and (4) AOB 103	

outnumber AOA due to higher saturation concentrations.  104	
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2. Methods	105	

2.1 Site description and time frame 106	

Lake Tai (Taihu; from the Chinese for “Great Lake”) is China’s third largest freshwater 107	

lake. Due to industrial development and urbanization in the watershed, Taihu has shifted from a 108	

diatom-dominated, mesotrophic lake to a hypereutrophic lake experiencing cyanoHABs (Paerl et 109	

al., 2014; Qin et al., 2007). Historically, these blooms have been associated with toxin 110	

producing, non-N2 fixing Microcystis spp., which can form surface scums on the lake for up to 111	

10 months per year (Chen et al., 2003; Duan et al., 2009; Ma et al., 2016; Otten and Paerl 2011). 112	

The surface blooms have a well-documented negative impact on fisheries, tourism, and local 113	

economies, including a drinking water shutdown in 2007 (Qin et al., 2007; Steffen et al., 2017; 114	

Xu et al., 2010).   115	

Taihu is a large (2,338 km2), shallow (mean depth = 1.9 m) lake in southeast China, 116	

situated in the Yangtze river delta about 150 km west of Shanghai. The lake is an important 117	

source of freshwater and resources for the ~40 million people within the watershed. Taihu has a 118	

complicated hydrology, with 172 rivers and channels connected to the lake (Qin et al., 2007). 119	

This network of rivers carries nutrient loads from agricultural runoff, factories, and household 120	

wastewater. Taihu has a relatively long residence time of approximately 280–300 days (Paerl et 121	

al., 2014; Xu et al., 2010). 122	

Water samples were collected from four locations: Stations 1 and 3 in Meiliang Bay, 123	

Station 7 in the north-central part of the lake, and Station 10 on the western side of the lake basin 124	

(Fig. 1). In previous studies (e.g., McCarthy et al., 2007), sampling Stations 1, 3, and 7 followed 125	

a discharge gradient from the Liangxihe River in the northeast part of Meiliang Bay to the central 126	

lake, and Station 0 (“river”) was located at the Liangxihe River discharge. However, in 2007, the 127	
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Yangtze River was diverted into Taihu in an effort to decrease the lake residence time and flush 128	

Microcystis spp. and nutrients out of the lake (Qin et al., 2010). Diverted water from the Yangtze 129	

River now flows into Gonghu Bay, the easternmost of the three northern bays. This diversion 130	

resulted in intermittent flow reversals through Meiliang Bay, where the Liangxihe River now 131	

mainly serves as an outflow. Since the discharge gradient from Station 1 to 7 was no longer 132	

consistent in Meiliang Bay, Station 0 was replaced with a new river input (Station 10) on the 133	

western side of the lake near the Dapugang River mouth. Environmental variables (temperature, 134	

dissolved oxygen, pH, total dissolved solids (TDS), and chlorophyll a) were measured in situ at 135	

each site using a YSI 6600 multi-sensor sonde. 136	

Water samples were collected in August 2013, June 2014, March 2015, and July 2016. 137	

Each of these sampling events corresponded with a pronounced Microcystis bloom at all sites 138	

(Ma et al., 2016; Deng et al., 2014; Li et al., 2017; Su et al., 2017; Qian et al., 2017), except 139	

Stations 7 and 10 in March 2015 (visual observation). Our sampling dates were representative of 140	

seasonal conditions in the region, specific to this subtropical climate zone, and did not 141	

correspond with any extreme weather patterns (e.g., typhoons, droughts). Temperature and 142	

precipitation patterns were average for this climate region. Water was collected into 4 l carboys 143	

at the surface (top 20 cm) and near-bottom (approximately 2 m depth) to investigate any changes 144	

in nutrient dynamics associated with depth. Samples for nutrient analyses (NO3
-, NO2

-, o-PO4
3-, 145	

and urea) were filtered immediately in the field using 0.2 µm nylon syringe filters (GE 146	

Millipore) into 15 ml snap-cap tubes (Falcon) and stored frozen at -20°C. Nutrient samples were 147	

analyzed on a Lachat QuikChem 8000 nutrient analyzer at the University of Texas Marine 148	

Science Institute (UTMSI; Aug 2013, June 2014) or a Lachat 8500 nutrient analyzer at Wright 149	

State University (WSU; March 2015, July 2016) according to manufacturer directions. Ambient 150	
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NH4
+ concentrations were determined by ammonium retention time shift (AIRTS) high 151	

performance liquid chromatography (HPLC) at UTMSI (Gardner et al., 1995). Briefly, the atom 152	

% 15N-NH4
+ and total NH4

+ concentration are determined by comparing the retention time shift 153	

of the sample relative to the natural abundance NH4
+ standard (Gardner et al., 1996) 154	

2.2 Water column NH4
+ uptake and regeneration 155	

NH4
+ uptake and regeneration rates were determined following the protocol of McCarthy 156	

et al. (2013). Water collected in 4 l carboys was returned to the Taihu Laboratory for Lake 157	

Ecosystem Research (TLLER) for isotope amendments and incubations. 500 ml from each 158	

site/depth was amended with 98% 15NH4Cl (Isotec; concentration added 8–96 µM) and 159	

distributed into six (triplicates for light and dark) 70 ml, clear tissue culture bottles (Corning; 160	

McCarthy et al., 2007). The goal of the substrate additions in these uptake/regeneration 161	

experiments was to add more-than-trace levels to ensure that all of the label was not taken up 162	

during the incubations; our goal was to add the label concentration at an equivalent value to the 163	

most recent monitoring data we could obtain for NH4
+ concentrations, or at least 8 µM (even 164	

when concentrations are low, recycling rates can be quite high). Dark bottles were wrapped with 165	

thick aluminum foil. Initial samples (T0) were withdrawn from each bottle with a rinsed syringe, 166	

filtered (0.2 µm filters) immediately into 8 ml glass vials (Wheaton), and frozen until analysis at 167	

UTMSI. Light and dark bottles were then submerged (approximate depth 0.2 m) in a mesh bag at 168	

in situ light and temperature in the lake. After ~24 h, final samples (Tf) were filtered in the same 169	

manner as the T0 samples. Total NH4
+ concentrations and atom % 15N for all samples were 170	

determined by AIRTS/HPLC (Bruesewitz et al., 2015; Gardner et al., 1995). Potential uptake and 171	

actual regeneration rates were calculated using the Blackburn/Caperon isotope dilution model 172	

(Blackburn, 1979; Caperon et al., 1979; McCarthy et al., 2013). The uptake rate is considered a 173	
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potential rate, which includes nitrification, assimilation, and other consumption processes, and 174	

regeneration is an actual rate that encompasses remineralization, decomposition of dead organic 175	

matter, heterotrophic excretion, respiration, biodegradation, and sloppy feeding by zooplankton 176	

(Saba et al., 2011). 177	

2.3 Ammonia and nitrite oxidation rates 178	

Nitrification rates were measured directly using the 15NH4
+ tracer addition method. 500 179	

ml of water from each station and depth was distributed into 750 ml polycarbonate bottles, 180	

enriched with a tracer amount (approximately 20% of the total pool) of 98% 15NH4Cl (Isotec), 181	

mixed thoroughly by inverting 10 times, and distributed into three 125 ml polycarbonate 182	

incubation bottles. Unenriched samples for each station and depth were distributed into 125 ml 183	

incubation bottles. Initial samples (T0) were filtered using 0.22 µm syringe filters into 30 ml 184	

polycarbonate bottles and frozen until analysis. Final samples were collected as described after 185	

incubating for 24 h at in situ light and temperature. Samples were returned frozen to WSU for 186	

analysis.  187	

Accumulation of 15NO2
- was measured using the sodium azide (NaN3) reduction method 188	

(Heiss and Fulweiler, 2016; McIlvin and Altabet, 2005; Newell et al., 2011). Briefly, 7.5 ml from 189	

each sample was distributed into a 12 ml Exetainer vial (Labco, UK) and capped tightly. Each 190	

sample was then injected (with gastight syringe) with 0.25 ml of 1:1 (v:v) 2 M NaN3 :20% 191	

CH3COOH solution (previously purged with Ar for 30 min), followed by incubation for 1 h at 30 192	

°C (McIlvin and Altabet, 2005). All NO2
- accumulated in the sample from NH3 oxidation was 193	

transformed chemically to N2O. After 1 h, the reaction was stopped by injection of 0.15 ml of 10 194	

M NaOH.  195	
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Accumulation of 15NO3
- was measured using the Cd reduction/NaN3 reduction method 196	

(Heiss and Fulweiler, 2016). Approximately 25 ml from each sample was transferred into 50 ml 197	

centrifuge tubes. First, in situ NO2
- was removed with 0.25 ml of 0.4 M sulfamic acid (H3NSO3). 198	

After 10 min, the reaction was neutralized with 0.125 ml of 2 M NaOH (Granger and Sigman, 199	

2009). NO3
- was reduced to NO2

- by addition of 100 mg of MgO, 6.6 g of NaCl, and 0.75–1 g of 200	

acidified Cd powder to each sample, followed by 17 h incubation on a shaker table (McIlvin and 201	

Altabet, 2005). Samples were centrifuged at 1000 x g for 15 min, and 7.5 ml of supernatant was 202	

carefully transferred into 12 ml Exetainers. Cadmium-reduced NO2
- was further reduced to N2O 203	

with the previously described NaN3 method. 204	

Samples were sent inverted to the University of California Davis Stable Isotope Facility 205	

for isotopic analysis of 45/44N2O using a ThermoFinnigan GasBench + PreCon trace gas 206	

concentration system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass 207	

spectrometer (Bremen, Germany). Nitrification rates were corrected for NaN3 reduction 208	

efficiency, and 15NO2
- production was calculated as: 209	

NH3 Ox (in nM day-1) = ((15N/14N * [NO2
-])24h – (15N/14N * [NO2

-])0h)/ a * t 210	

Where a = [15NH4
+] / ([15NH4

+] + [14NH4
+]) 211	

And 15NO3
- production: 212	

NO2
- Ox (in nM day-1) = ((15N/14N * [NO3

-])24h – (15N/14N * [NO3
-])0h)/ a * t 213	

Where a = [15NO2
-] / ([15NO2

-] + [14NO2
-]) 214	

Total nitrification rates were calculated from the sum of 15NO2
- and 15NO3

- accumulation. 215	

2.4 Quantitative Polymerase Chain Reaction (qPCR) 216	

During the 2014–2016 sampling events, environmental DNA for AOO abundance was 217	

collected using 0.2 µm Sterivex filters (EMD Millipore, MA, USA) and preserved with Ambion 218	



	 11 

RNAlater (Invitrogen, Carlsbad, CA, USA). Approximately 60–120 ml of site water was pushed 219	

through the filter for each station and depth and then stored filled with 5 mL RNAlater. 220	

Preserved filters were frozen at -80 ˚C and transported to WSU. DNA was extracted using the 221	

Gentra PureGene kit (Qiagen Inc., USA) extraction protocol with slight modifications (Newell et 222	

al., 2011). Sterivex filters were first washed with Phosphate Buffer Saline 1X Solution (Fisher 223	

BioReagents, USA) to remove any residual RNAlater. Lysis buffer (0.9 ml) and Proteinase K (4 224	

µl) were added to the filters, followed by 1 h incubation at 55 °C and 1 h incubation at 65 °C. 225	

The solution was removed to a 1.5 ml tube, and the incubation was repeated with fresh lysis 226	

buffer and Proteinase K.  227	

Concentration and purity of the DNA were measured spectrophotometrically (Nanodrop 228	

2000, ThermoScientific). AOA were targeted with Arch-amoAF and Arch-amoAR primers 229	

targeting the 635 base pair (bp) region of the amoA gene, subunit A of the ammonia 230	

monooxygenase enzyme (AMO; Francis et al. 2005). Bacterial amoA was quantified using 231	

amoAF and amoA2R primers (Rotthauwe et al., 1997) to target the 491 bp region of amoA. 232	

qPCR standards were prepared by cloning the fragment of interest for AOA and AOB with the 233	

TOPO TA Cloning Kit (Invitrogen, USA), inserting it into a competent cell plasmid (One Shot 234	

E. coli cells, Invitrogen, USA), and isolating the plasmid containing the amoA gene using the 235	

UltraClean Standard Mini Plasmid Prep Kit (Mo Bio Laboratories Inc., Carlsbad, CA, USA).  236	

 AOA and AOB qPCR assays were conducted within a single 96 well plate for each year 237	

(2014, 2015, and 2016). Each run included three negative controls (no template), five standards 238	

from serial dilution in triplicates, and the environmental DNA samples in triplicate. Each sample 239	

and standard received 12.5 µl of SYBR green Fast Mastermix (Qiagen Inc., USA), 0.5 µl of each 240	

100 µM primer, and 2–15 ng of template DNA.  241	
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All PCR work was performed in a PCR fume hood after cleaning the surface with 242	

DNAaway (ThermoScientific, USA) and engaging the UV light (20 min) to prevent 243	

contamination. qPCR protocol followed the method of Bollmann et al. (2014) for AOA (95 °C 244	

initial denaturation for 5 min, 95 °C denaturation for 30 sec, 53 °C annealing for 45 sec, and 72 245	

°C extension for 1 min; 45 cycles) and AOB (95 °C initial denaturation for 5 min, 95 °C 246	

denaturation for 30 sec, 56 °C annealing for 45 sec, 72 °C extension for 1 min; 45 cycles), 247	

followed by the melting curve. Automatic settings for the thermocycler (Realplex, Eppendorf) 248	

were used to determine threshold cycle (Ct values), efficiency (85–95%), and a standard curve 249	

with R2 values above 0.9. Gene copy number was calculated as (ng * number mol -1)/ (bp * ng g-250	

1 * g mol-1 of bp) and is reported in gene copies/ml of sample water. The detection limit was 980 251	

copies/ml for AOB and 4807 copies/ml for AOA. These calculated detection limits do not 252	

represent the greatest sensitivity possible with our method, as the standard concentrations were 253	

selected to bracket the expected environmental concentrations. Indeed, our reported values are 254	

above the detection limit for both AOA (by two orders of magnitude) and AOB. 255	

 256	

2.5 Statistical analysis  257	

All statistical analyses were performed using RStudio software (R Version 3.3.1). Prior to 258	

statistical analysis, data were checked for normality using the Shapiro–Wilk normality test. The 259	

only variables that were normally distributed were DO, pH, and TDS. To explore potential 260	

environmental drivers of the rates, a multivariate correlation analysis was performed using the 261	

Kendall correlation method for nonparametric data. A p-value of <0.05 was considered 262	

statistically significant. Additionally, stepwise multiple regression models were run using the 263	

MASS package (R Version 7.3). The best fitting model was selected based on the minimum 264	
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Akaike’s Information Criteria (AIC; Akaike 1974). To normalize data for parametric analysis, all 265	

non-normally distributed variables were log(x+1) transformed prior running the model.  266	

3. Results  267	

3.1 Lake ambient conditions 268	

Physicochemical parameters in Taihu varied seasonally and spatially (Table 1). The most 269	

pronounced seasonal variations were observed in temperature and DO, with highest water 270	

temperature recorded in August. DO varied significantly, with highest values in March and 271	

lowest in August (p < 0.01). pH varied significantly with season, with lowest values in March 272	

and highest in August (p < 0.01). TDS values were highest in July 2016 and lowest in August 273	

2013 (p < 0.001). Chlorophyll a concentrations were lowest in March 2015 (mean = 11.1 µg L-1), 274	

but bloom conditions (> 20 µg L-1; Xu et al., 2015) were observed at some locations (e.g., 20.3 275	

µg L-1 at Station 3, and visual confirmation at Stations 1, 3, and several other areas of the lake). 276	

Bloom conditions were also present and observed at all sites in June 2014 (mean = 36.6 µg L-1), 277	

July 2016 (mean = 58.1 µg L-1), and August 2013 (43.7 µg L-1). 278	

Ammonium concentrations remained high throughout all sampling events, with highest 279	

values in March 2015 and lowest values in August 2013, but differences were not statistically 280	

significant (p = 0.125). Nitrite concentrations were not different between seasons, although they 281	

were significantly higher at Station 10 than other stations (p < 0.001). Nitrate concentrations 282	

followed the pattern of NH4
+ concentrations and were highest in March 2015 and lowest in 283	

August 2013 (p < 0.001). Orthophosphate concentrations followed a seasonal pattern with lowest 284	

concentrations in March and highest in August (p < 0.005), and o-PO4
3- concentrations at Station 285	

10 were significantly higher than at any other station (p < 0.001). 286	

3.2 Potential NH4
+ uptake 287	
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In August 2013, light uptake rates (all NH4
+ uptake are potential rates) were uniform 288	

across sites (mean = 0.40 ± 0.04 µmol L-1 h-1) and did not vary between surface and bottom 289	

waters (Fig. 2a). In June 2014, light uptake rates in surface waters at Stations 1, 7, and 10 (mean 290	

= 0.80 ± 0.06 µmol L-1 h-1) were significantly higher than deep rates (mean = 0.31 ± 0.08 µmol 291	

L-1 h-1; p < 0.001). However, light uptake rates at Station 3 did not differ from zero at either 292	

depth (Fig. 2a). Mean surface and deep uptake rates in the dark in August 2013 (0.25 ± 0.01 293	

µmol L-1 h-1) and June 2014 (0.13 ± 0.05 µmol L-1 h-1) were significantly lower than light uptake 294	

rates (Fig. 2b; p < 0.05). In March 2015, light uptake rates at Stations 1–7 (mean = 0.12 ± 0.04 295	

µmol L-1 h-1) were lower than those during August 2013 and June 2014 (mean = 0.43 ± 0.41 296	

µmol L-1 h-1) except for Station 10, where the rates were significantly higher (mean = 1.36 ± 0.20 297	

µmol L-1 h-1; p < 0.001). In contrast to summer, dark uptake rates in March 2015 were not 298	

significantly different than light rates (Fig. 2b). In July 2016, light uptake rates were highest at 299	

Stations 1, 7, and 10 (1.31 – 6.82 µmol L-1 h-1). Stations 3 and 7 rates were highest in bottom 300	

waters (0.80 ± 0.16 µmol L-1 h-1 and 2.55 ± 0.14 µmol L-1 h-1, respectively). In July 2016, light 301	

and dark uptake rates did not differ significantly (p = 0.15); highest dark uptake rates were 302	

observed at Station 1 in surface water (3.33 ± 0.67 µmol L-1 h-1). Light uptake rates, across all 303	

stations and seasons, correlated positively with TDS and NH4
+:NO3

- and negatively with pH, 304	

while dark uptake rates correlated positively with TDS, NH4
+, and NH4

+:NO3
-, and negatively 305	

with pH (Table 2). 306	

3.3 Regeneration of NH4
+ 307	

Regeneration rates in the light and dark (all NH4
+ regeneration rates are actual rates, not 308	

potential) were not significantly different from each other across all years and seasons; therefore, 309	

light and dark rates were averaged together (Fig. 2c). Regeneration rates did not differ 310	
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significantly between the summer bloom sampling events in August 2013 and June 2014 (mean 311	

= 0.22 ± 0.03 µmol L-1 h-1), but July 2016 regeneration rates (mean = 0.75 ± 0.16 µmol L-1 h-1) 312	

were significantly higher than in August and June (p = 0.004), with exceptionally high 313	

regeneration rates occurring in surface waters in July at Station 1 (mean = 2.37 ± 0.16 µmol L-1 314	

h-1). In March 2015, mean surface and deep regeneration rates decreased from the river mouth 315	

(Station 10; 0.88 ± 0.15 µmol L-1 h-1) towards the center of the lake, with significantly higher 316	

regeneration rates at 10 than Stations 1–7 (mean = 0.10 ± 0.03 µmol L-1 h-1; p < 0.01). 317	

Regeneration rates were positively correlated with TDS, NH4
+, and o-PO4

3- concentrations, and 318	

NH4
+:NO3

- (Table 2). 319	

3.4 Nitrification (2014-2016) 320	

Note that nitrification rates are presented in nmol L-1 d-1 for consistency with literature 321	

reported values (Fig 3). At stations 1, 3, and 7 15NH4
+ additions, 91.8 % of the label was detected 322	

as 15NO3
- and only 8.2 % as 15NO2

- (Fig 3a). Total nitrification rates at Station 3 did not vary 323	

across seasons. At Station 7 in the central lake, highest total nitrification rates were observed in 324	

March 2015 (mean = 663 ± 69.4 nmol L-1 d-1) in both surface and deep waters compared to the 325	

lowest rates in July 2016 (mean = 1.58 ± 0.78 nmol L-1 d-1). At Station 1, the highest rates were 326	

measured in surface waters in July 2016 (mean = 773 ± 50.7 nmol L-1 d-1), but the rates at depth 327	

followed a seasonal pattern from high in the spring (mean = 646 ± 158 nmol L-1 d-1) to an order 328	

of magnitude lower in the summer (mean = 9.86 ± 3.28 nmol L-1 d-1).  329	

Total nitrification rates at Station 10 were significantly higher than other stations (Fig. 330	

3b; p < 0.001). Rates were, at times, orders of magnitude higher, and total nitrification ranged 331	

from 148 – 3750 nmol L-1 d-1 (mean = 1590 ± 1390 nmol L-1 d-1), compared to Stations 1–7 332	
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ranging from 2.00 – 771 nmol L-1 d-1 (mean = 270 ± 277 nmol L-1 d-1). At Station 10 in July 333	

2016, 80% of the 15NH4
- addition was detected as 15NO2

-. 334	

3.5 Ammonia oxidizer abundance  335	

Abundance of the bacterial amoA gene for all years (2014–2016) varied from 336	

undetectable to 2.85 x 105 ± 5.20 x 104 copies ml-1. Archaeal amoA abundance ranged from 337	

undetectable to 1.03 x 107 ± 3.37 x 106 copies ml-1 (Fig. 4a). Neither AOB nor AOA amoA gene 338	

copy abundances were statistically different between the three seasons. The highest ratio of 339	

AOB:AOA gene abundance (1.81) was reported at Station 3 in Meiliang Bay (Fig. 4b), and the 340	

lowest ratio (0.01) was observed at Station 7. AOB gene abundance was positively correlated 341	

with NH4
+, NO2

-, and o-PO4
3- concentrations, and NH4

+:NO3
-, while AOA gene abundance was 342	

not significantly correlated to any environmental variable (Table 2).  343	

4. Discussion 344	

4.1 Ammonium regeneration and potential uptake 345	

Ammonium uptake rates (0.02 – 6.82 µmol L-1 h-1) reported here were within the range of or 346	

slightly higher than rates reported in other studies (Table 3). Rates were higher than uptake rates 347	

reported previously in Meiliang Bay (0.11 – 1.54 µmol L-1 h-1) and the central lake (0.03 – 0.32 348	

µmol L-1 h-1) but within the range of rates reported in the Liangxihe River (0.70 – 4.19 µmol L-1 349	

h-1; McCarthy et al., 2007). Light uptake rates in March, June, and August resembled rates in 350	

eutrophic Lake Okeechobee but were higher than rates in Missisquoi Bay, Lake Champlain, 351	

Lake Michigan, and eutrophic New Zealand lakes Rotorua and Rotoiti (Table 3 and references 352	

therein). Higher light uptake rates were reported only in hypereutrophic Lake Maracaibo, 353	

Venezuela (Table 3) and in Maumee Bay, Lake Erie during a summer cynaoHAB bloom 354	

(Gardner et al. 2017). Potential NH4
+ uptake rates in these systems, evaluated using the same 355	
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methods, increase with chlorophyll a (p < 0.05), but the proportion of community uptake that can 356	

be supported by regeneration remains relatively consistent (Table 3). 357	

Light uptake rates in Taihu were marginally higher (p = 0.08) than dark uptake rates, 358	

presumably due to reduced photosynthetic phytoplankton activity. Photoautotrophs may continue 359	

to assimilate nutrients in the dark under nutrient limitation (Cochlan et al., 1991), but Taihu is 360	

generally nutrient replete, so we assume that dark uptake rates can be attributed mostly to 361	

heterotrophic or chemolithoautotrophic organisms. Uptake rates were significantly higher in July 362	

2016 than at other times, which may have been due to higher precipitation and subsequent 363	

runoff; during summer 2016, average rainfall in June and July was about 305 mm compared to 364	

106 mm in June 2014, 105 mm in August 2013, and 54 mm in March 2015 365	

(WorldWeatherOnline.com; accessed on <08/02/2017>) however, it is within the range of typical 366	

summer rainfall (185–320 mm; WorldWeatherOnline.com). Dark uptake rates in Taihu exceeded 367	

dark rates reported in Lake Okeechobee (0.02 – 0.04 µmol L-1 h-1; James et al. 2011), Missisquoi 368	

Bay, Lake Champlain (0.10 µmol L-1 h-1; McCarthy et al., 2013), and Lake Michigan (7 nmol L-1 369	

h-1; Gardner et al., 2004) suggesting high activity of both heterotrophs and chemolithoautotrophs 370	

in Taihu. A previous metagenomics study of the bloom composition in Taihu revealed an 371	

overlooked contribution of heterotrophic bacteria to N assimilation processes by Microcystis, 372	

which could be important in driving toxic blooms (Steffen et al., 2012). 373	

Internal NH4
+ cycling via regeneration is important in Taihu and varies seasonally (McCarthy 374	

et al., 2007; Paerl et al., 2011). In March 2015, about 38% of light uptake for all sites and depths 375	

was supported by regeneration (Fig. 2d). This proportion increased in June 2014 and July 2016 376	

to 58% and 42%, respectively, and was highest in August 2013 (109%). The importance of 377	

regeneration corresponded to decreasing in situ NH4
+ concentrations (Fig. 2D). These results 378	
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suggest that, in March and June, regeneration supplemented ambient NH4
+ in the water column 379	

to support algal production, whereas cyanobacteria relied more heavily on NH4
+ from 380	

regeneration to sustain blooms in July and August. Water column regeneration may supply more 381	

NH4
+ for blooms than sediment NH4

+ regeneration in Taihu due to combined spatial, 382	

temperature, and biogeochemical factors (McCarthy et al., 2007; Gardner et al., 2017). Rapid 383	

decomposition of cyanoHAB biomass may provide NH4
+ for nitrification, which provides 384	

substrate for denitrification. High rates of sediment denitrification (McCarthy et al., 2007) also 385	

may drive N limitation in late summer and fall (Paerl et al., 2011; Xu et al., 2010)  386	

To calculate whole-lake, water column NH4
+ regeneration and uptake rates, we divided the 387	

lake (2,338 km2; Qin et al., 2007) into four different sections based on geochemical and 388	

ecological properties (Qin, 2008): (1) three northern bays (361.8 km2; depth = 1.9 m) most 389	

affected by the blooms; (2) the main lake (1,523.9 km2; depth = 1.9 m); (3) the East Taihu 390	

region, dominated by rooted and floating macrophytes (357.5 km2; depth = 1.4 m); and (4) 391	

shorelines <1 m deep (94.8 km2). We considered regeneration and uptake rates from Stations 1 392	

and 3 to represent the northern bays area, Station 7 as the main lake, Station 10 as shoreline, and 393	

regeneration rates previously reported for East Taihu (McCarthy et al., 2007; Paerl et al., 2011). 394	

When extrapolated to the volume of these four zones in Taihu, regeneration returned about 3.04 395	

x 107 kg of NH4
+ annually in the three northern bays, 6.71 x 107 kg of NH4

+ in the main lake, 396	

8.87 x 106 kg of NH4
+ along the shorelines, and 2.88 x 106 kg of NH4

+ in East Taihu Lake. These 397	

values sum to 1.09 x 108 kg of NH4
+recycled in the water column, approximately two times 398	

higher than reported external N loadings, which range from 5.11 x 107 to 7.00 x 107 kg annually 399	

(Chen et al., 2012; Yan et al., 2011). The same procedure for extrapolation of whole-lake uptake 400	

rates yields 3.5 x 108 kg of NH4
+, which is 4–6 times higher than external N loads. The 401	
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combination of external loads and regeneration cannot support the demand for NH4
+, suggesting 402	

that the remaining NH4
+ demand must be satisfied by internal loads from sediments or some 403	

other unknown source, or that reported TN loads are underestimated. These rough estimates of 404	

lake-wide regeneration and uptake are based on rates measured at specific stations at discreet 405	

times; improved spatial and temporal resolution of measurements are needed to improve these 406	

estimates. Additionally, these calculated values are probably an overestimate given that most of 407	

the rates measured and reported in this study are during spring and summer months, not fall and 408	

winter, when we might expect lower rates. Taihu is a complex ecosystem with 172 rivers and 409	

channels connected to the lake (Qin et al., 2007), making any estimations of total N loadings 410	

challenging. As such, we believe that the reported total N loads to Taihu are likely an 411	

underestimate. However, our results show that these external N loads lead to higher biomass and 412	

fuel high regeneration rates. Combined with high ambient nutrient concentrations, these data 413	

suggest that microbial denitrification cannot remove N fast enough to keep pace with external N 414	

loading. Increasing nutrient loads can result in decreasing efficiency of denitrification (Gardner 415	

and McCarthy, 2009; Mulholland et al., 2008), which will limit the ability of a system to self-416	

mitigate excess N loads. 417	

4.2 Nitrification 418	

Total nitrification rates reported in this study exceeded previously reported rates in most 419	

oligotrophic and mesotrophic freshwater systems. Published nitrification rates in lakes include 420	

the water columns of saline Lake Mono, CA (60–480 nmol L-1 d-1; Carini and Joye, 2008) and 421	

Lake Superior, USA (0–51 nmol L-1 d-1; Small et al., 2013), both measured via 15NH4
+ tracer 422	

additions, and Lake Okeechobee, FL (67–97 nmol L-1 h-1; James et al., 2011), measured via the 423	

15NO3
- pool dilution method (Carini et al., 2010). Rates on this scale were previously reported 424	
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only in eutrophic Lake Mendota (WI; 1700 – 26000 nmol L-1 h-1; Hall, 1986) and the Paerl River 425	

Estuary (China; 2100 – 65100 µmol L-1 d-1; Dai et al., 2008). However, these rates were 426	

measured from accumulation of NO2
- and NO3

- , not stable isotope additions. High total 427	

nitrification rates in Taihu can be attributed to high ambient NH4
+ concentrations, up to 40 µM at 428	

Station 1 in 2016 and 135 µM at Station 10 in 2014. These high concentrations of NH4
+ are due 429	

to high external N loadings, including N in organic matter, into the lake, of which ~1.32 x 107 kg 430	

were loaded as NH4
+ in 2009 (Yan et al., 2011). The significant relationships between 431	

nitrification and NH4
+, NO2

-, and NO3
- concentrations (p < 0.05; Table 2) support these 432	

observations. 433	

Substrate concentrations drive NH4
+ oxidation rates and, therefore, end-product pools, 434	

since it is the rate limiting step of nitrification (i.e., completion of nitrification is dependent on 435	

the first step). Accumulation of 15NO3
- exceeded accumulation of 15NO2

- by a factor of 9 at 436	

Stations 1, 3, and 7 across all sampling events (Fig. 3a), indicating that NO2
- oxidation is keeping 437	

pace with or exceeding NH4
+ oxidation. Higher accumulation of 15NO3

- was expected, since 438	

NO3
- is the final product of total nitrification.  439	

At Station 10, accumulation of 15NO3
- exceeded 15NO2

- in March 2015 and June 2014. In 440	

July 2016, however, accumulation of 15NO2
- was three times higher in surface water and 441	

comparable at depth (Fig. 3b). Ambient NO2
- concentration at Station 10 in July 2016 was 9.6 442	

µM in surface water and 8.4 µM at depth (Table 1). This accumulation of NO2
- suggests that 443	

NO2
- oxidizers were saturated, consistent with Km values reported for NO2

- oxidation in the 444	

oligotrophic open ocean were 0.25 ± 0.16 µM (Sun et al., 2017). However, culture experiments 445	

report Km values ranging from 6–544 µM for Nitrospira, Nitrobacter, and Nitrotoga spp. 446	

(Blackburne et al., 2007; Nowka et al., 2015; Ushiki et al., 2017).  447	
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At most stations, nitrification rates in Taihu were highest in March, lower in June, and lowest 448	

in July. During the spring sampling, nitrification accounted for about 8% of light uptake and 449	

15% of dark uptake at Stations 1 – 7. In June, nitrification accounted for 2.6% of light uptake 450	

and 9.6% of dark uptake, and in July only 0.2% and 0.3% of light and dark uptake, respectively. 451	

These results show a seasonal trend of decreasing contribution of nitrification to total uptake 452	

rates and higher contribution of nitrifiers to dark uptake. As stated above, chemolithoautotrophs 453	

(including nitrifiers) do not rely on light for energy and continue to assimilate NH4
+ in dark 454	

conditions, while photoautotrophic cyanobacteria can assimilated NH4
+ in the dark only when 455	

nutrient limited (Cochlan et al., 1991). However, the presence of high dissolved inorganic N 456	

concentrations in ambient water samples suggests that the observed dark uptake was likely 457	

performed primarily by non-photoautotrophs, including nitrifiers. 458	

We observed no significant seasonal change in nitrification across all stations and no 459	

consistent pattern between temperature and nitrification. While the lack of relationship of 460	

nitrification with temperature agrees with nitrification studies in the ocean (Ward, 2008), other 461	

studies have reported temperature as a potential driver of nitrification in coastal waters (Heiss 462	

and Fulweiler, 2016). Although not statistically linked to changes in temperature, the 463	

contribution of nitrification to total uptake rates decreased in summer months, likely as a result 464	

of competition with the Microcystis bloom and associated heterotrophic bacteria. Non-N2 fixing 465	

cyanobacteria, including Microcystis, are exceptional competitors for NH4
+ in high nutrient 466	

environments (Blomqvist et al., 1994). With a high saturation threshold and reported Km values 467	

from 26.5 µM to 37 µM (Baldia et al., 2007; Nicklisch and Kohl 1983) in culture, and up to 468	

112.9 µM in Taihu populations (Yang et al., 2017), Microcystis should be able to outcompete 469	

nitrifiers at the high ambient NH4
+ concentrations in Taihu as nitrifiers may become saturated as 470	
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much lower concentrations. Additionally, Microcystis can regulate its buoyancy and scavenge 471	

nutrients throughout the water column to effectively compete for light with other phytoplankton 472	

(Brookes and Ganf, 2001).  473	

Nitrification at Station 10 differed dramatically from other stations. Total nitrification rates 474	

were, at times, orders of magnitude higher than at other stations. Also, Station 10 did not follow 475	

the trend of decreasing nitrification contribution with the bloom. Nitrification accounted for 19% 476	

of light uptake and 64.8% of dark uptake in June and only 1.7% and 2%, respectively, in March. 477	

We speculate that Station 10 differs from other stations because of the large nutrient and 478	

suspended particle loads from the Dapugang River, the second largest inflow into the lake (Yan 479	

et al., 2011). Suspended particles from sediments could trigger heterotrophic and anaerobic 480	

processes at Station 10, including reduction of NO3
- to NO2

- (Krausfeldt et al., 2017; Yao et al. 481	

2016). In fact, denitrification and anammox gene transcripts were observed recently in the water 482	

column at Station 10 (Krausfeldt et al., 2017). These authors also speculated that the discharge of 483	

suspended sediments from the river might play a role in coupling anaerobic and aerobic 484	

processes in the turbid water column, resulting in rapid cycling of reduced and oxidized forms of 485	

N. Nitrification is the link between introduction of reduced N into the system and the removal of 486	

N through denitrification. Therefore, the efficiency of nitrification is crucial to the removal of N 487	

from this hypereutrophic lake. 488	

4.3 Ammonia oxidizer abundance 489	

AOB and AOA coexist in the environment, and environmental variables shape the 490	

community structure. AOA often dominate in environments with low substrate concentrations, 491	

such as the open ocean or oligotrophic lakes (Beman et al., 2008; Bollmann et al., 2014; Newell 492	

et al., 2011), while AOB are often more abundant in nutrient rich waters and soils (Hou et al., 493	
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2013; Jia and Conrad, 2009; Kowalchuk and Stephen, 2001; Verhamme et al., 2011). This 494	

substrate concentration adaptation is dictated by different physiological abilities to assimilate 495	

NH4
+. Culture studies show that AOA have a very high affinity (low half saturation constant; 496	

Km) for NH4
+, and in general are saturated faster than AOB (Martens-Habbena et al., 2009). The 497	

low half saturation constant (Km = 0.132 µM; Martens-Habbena et al., 2009) of AOA gives them 498	

a competitive advantage in low NH4
+

 conditions. In contrast, the high Km of AOB (10–1000 µM) 499	

allows them to assimilate more NH4
+

 before becoming fully saturated, an advantage for higher 500	

NH4
+

 concentration conditions. Although oligotrophic AOA appear to proliferate in the 501	

environment (Francis et al., 2005), some species adapt to higher substrate concentrations (Jung et 502	

al., 2011; Tourna et al., 2011).  503	

 Results from the amoA gene copy abundance analysis show that AOA were more abundant 504	

than AOB across all stations and seasons in Taihu. Although this result does not support our 505	

original hypothesis, the results agree with previous studies in the water column and sediments in 506	

Taihu (Zeng et al., 2012), which reported higher AOA abundance (4.91 x 105 – 8.65 x 106 copies 507	

g-1 sediment) than AOB (3.74 x 104 – 3.86 x 105 copies g-1 sediment) in Meiliang Bay. Similarly, 508	

another Taihu sediment study showed more AOA than AOB in sediments at all 20 investigated 509	

stations (Wu et al., 2010). 510	

The differences in abundance of AOO between stations, represented as AOB:AOA, show 511	

spatial variability between the more nearshore and central lake stations (Fig. 4b). In this study, 512	

AOA were more abundant in the central lake (Station 7), whereas AOB were more abundant 513	

closer to shore. Due to a higher affinity for substrate (lower Km), AOA are likely more 514	

competitive when nutrient concentrations are lower, such as in the open lake (mean offshore 515	

NH4
+ concentration = 3.69 µM). In contrast, AOB, with higher Km, thrive at higher NH4

+ 516	
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concentrations at nearshore locations (mean nearshore NH4
+ concentration = 31.3 µM). These 517	

results agree with previous research in Taihu, where AOA outnumbered AOB in sediments at 518	

mesotrophic sites, and AOB were more abundant at hypereutrophic locations (Hou et al., 2013). 519	

Another study in Taihu sediments also reported that both AOA abundance and AOA:AOB were 520	

negatively correlated with ambient NH4
+ concentration (Wu et al., 2010). However, the data 521	

reported in this study show no significant relationship between AOA abundance and NH4
+, NO2

-, 522	

and NO3
- concentrations (Table 2). 523	

Despite AOA outnumbering AOB, AOB abundance was correlated with total nitrification 524	

rates for all stations and all seasons (p < 0.005), but AOA abundance was not. This result agrees 525	

with a previous study in Taihu sediments, where AOA were negatively correlated (r = 0.53, p < 526	

0.05) with potential nitrification rates (0 – 3.0 µg NO3
—N g-1 dry sediment; Hou et al., 2013). We 527	

speculate that AOA oxidized NH4
+ at lower rates due to oversaturation and inhibition and may 528	

not have contributed as much as AOB to nitrification rates in our study. This conclusion was also 529	

reached in Plum Island Sound (MA, USA), where abundance of archaeal amoA was higher than 530	

bacterial, but potential nitrification rates did not correlate with AOA (Bernhard et al., 2010). The 531	

authors hypothesized various scenarios, including inhibition of AOA due to high substrate 532	

concentrations, competition for NH4
+ with AOB, or AOA using an alternative energy source 533	

(Bernhard et al., 2010). Our results support the interpretation that AOA are at a disadvantage 534	

when competing with AOB for NH4
+ in a hypereutrophic system and most likely did not play a 535	

major role in observed nitrification in Taihu. Recent studies show that AOA can oxidize cyanate 536	

(Palatinszky et al., 2015) and urea (Tolar et al., 2016), although growth and oxidation rates may 537	

be slow. Therefore, AOA may play an expanded role in Taihu, beyond just NH4
+ oxidation. 538	

4.4 Multiple regression model 539	
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The best-fitting multiple regression models for N dynamics in Taihu (Table 4) supported 540	

the Kendall non-parametric analysis (Table 2). Ammonium uptake and regeneration rates and 541	

nitrification were correlated with ambient NH4
+, NO2

-, and NO3
- concentrations. Additionally, 542	

the best-fitting models revealed that variables changing with season had major influences on the 543	

models (Table 4). For example, uptake in the light and dark and regeneration rates were 544	

positively influenced by temperature and DO and negatively by pH. However, the model for 545	

nitrification rates did not reveal that the seasonal variables, such as temperature, played a major 546	

role in the model.  547	

5. Conclusions 548	

This study highlights the importance of water column NH4
+ regeneration in providing a 549	

large proportion of the substrate necessary to sustain cyanoHABs. The results also show that 550	

nitrification does not account for a large proportion of NH4
+ demand during cyanoHABs in 551	

Taihu. We showed that nitrification rates were detectable during the bloom but decreased as the 552	

bloom progressed, suggesting that nitrifiers are weaker competitors for substrate than 553	

Microcystis. Also, seasonal changes in light and dark NH4
+ uptake and nitrification rates showed 554	

that AOO are outcompeted by Microcystis. Extremely high nitrification rates at	the river mouth 555	

(Station 10) differed from rates at other stations, suggesting that other processes, such as coupled 556	

nitrification/denitrification, might be important in suspended sediments. Previous studies 557	

reported coupled denitrification with nitrification in sediments (McCarthy et al., 2007). 558	

Functional gene analysis suggested that gene abundance does not necessarily reflect performance 559	

of the function in eutrophic lakes. We speculate that AOA are present in the lake but do not 560	

contribute proportionately to nitrification, suggesting that AOA might play another role in the 561	

lake.  562	
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Ammonium inflow into the lake is a large source of reduced N, but external inputs are 563	

not the sole source. Extrapolated whole-lake regeneration rates in the water column were twice 564	

as high as external N loadings into the lake. To mitigate harmful algal blooms, N loadings into 565	

the lake must be reduced so that N can be efficiently removed through denitrification, instead of 566	

being recycled in the water column. Our results support the recent calls for dual nutrient (N + P) 567	

management strategies (Paerl et al., 2011) and highlight the importance of (chemically) reduced 568	

N removal through nitrification and denitrification.   569	
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Figure list 951	
 952	
Figure 1. Map of sampling stations in Taihu (modified from Paerl et al. 2011). 953	
 954	
Figure 2. Ammonium dynamics in Taihu. (a) potential light uptake rates ± one standard error. (b) 955	
potential dark uptake rates ± one standard error. (c) Mean light and dark regeneration rates ± one 956	
standard error. (d) Seasonal averaged percent of light uptake supported by regeneration ± one 957	
standard error and averaged in situ NH4

+ concentrations.  958	
 959	
 960	
Figure 3. Total nitrification rates calculated from accumulation of 15NO2

- (grey) and 15NO3
- 961	

(black) ± one standard deviation. (a) Stations 1–7. (b) Station 10. The two axis show different 962	
units for total nitrification rates: nmol L-1 d-1 (left) and µmol L-1 h-1 (right). 963	
 964	
 965	
Figure 4. Ammonia oxidizing organism population characteristics. (a) Ammonia oxidizer 966	
abundance (DNA) ± one standard deviation. (b) Ratio of abundance of AOB to AOA.  967	
	968	
	969	
	970	
	971	
   972	
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Table 1.  973	
Environmental characteristics during sampling events for each station/depth: temperature, 974	
dissolved oxygen (DO), pH, chlorophyll a (chl a; surface only), total dissolved solids (TDS), and 975	
in situ nutrient concentrations. S in station name = surface water (0.2 m), and D = deep, near-976	
bottom water (~2 m). 977	

Year/ 
Month 

Station 
 

Temp 
(°C) 

DO 
 (mg L-1) 

 pH 
 

Chl a 
(µg L-1) 

TDS 
 

[NH4
+] 

(µM) 
[NO2

-] 
(µM) 

[NO3
-] 

(µM) 
[PO4

3-] 
(µM) 

2013 1S 30.9 3.53 8.11 53.9 377 1.37 0.28 2.09 2.51 
 1D 30.8 4.24 8.05  377 1.79 0.23 2.17 2.96 
 3S  32.5 9.07 9.02 57.6 390 0.51 0.23 1.84 1.64 
 3D  31.9 7.40 8.97  390 0.56 0.25 0.60 1.62 
 7S 30.4 3.40 8.05 22.2 357 0.26 0.21 2.20 0.41 
 7D 30.4 3.40 8.18  357 0.32 0.14 0.90 2.73 
 10S 32.1 8.60 9.33 40.8 375 0.61 1.90 7.74 4.83 
 10D 32.0 8.00 9.43  375 0.29 1.04 3.76 5.69 
2014 1S 23.9 8.50 8.11 13.7 436 6.16 3.33 87.5 1.75 
 1D 22.7 5.10 8.07  437 8.34 3.36 87.1 0.69 
 3S  27.2 8.60 8.73 11.1 419 1.09 1.72 58.3 0.24 
 3D  25.4 7.30 8.71  411 1.20 2.61 57.4 0.35 
 7S 22.8 9.70 7.85 42.4 383 1.55 0.83 66.3 0.39 
 7D 22.5 8.60 7.69  384 1.59 0.74 61.6 2.13 
 10S 26.3 5.60 8.89 79.5 424 35.4 14.9 70.0 2.43 
 10D 26.4 5.50 8.60  424 35.7 15.1 68.9 2.52 
2015 1S 11.6 10.1 8.34 7.5 393 2.49 0.55 53.9 0.20 
 1D 11.7 3.40 6.67  393 2.49 0.58 54.7 0.04 
 3S  9.4 12.8 7.74 20.4 414 BDL* 0.82 119.4 0.03 
 3D  8.2 12.9 7.52  414 0.83 0.86 117.6 0.05 
 7S 10.8 11.3 8.40 10.5 416 5.93 1.95 172.2 0.02 
 7D 10.7 10.7 8.01  416 5.93 1.44 136.2 0.12 
 10S 9.6 8.90 7.94 6.0 422 131 7.05 270.6 1.41 
 10D 9.4 8.71 7.73  421 132 6.97 269.5 1.36 
2016 1S 26.7 11.3 7.89 96.8 445 43.3 8.86 79.7 1.95 
 1D 25.5 7.55 7.67  458 20.0 6.71 58.8 1.31 
 3S  26.1 7.00 8.50 101.0 410 17.6 0.86 3.81 1.05 
 3D  26.3 7.30 8.50  410 21.1 0.72 3.87 1.16 
 7S 25.8 10.0 7.95 13.2 465 0.33 0.08 16.4 0.03 
 7D 25.1 8.88 7.88  466 0.25 0.11 16.5 0.05 
 10S 25.6 4.10 7.75 21.3 470 13.4 9.66 94.0 2.43 
 10D 23.4 4.10 7.62  470 65.3 8.45 66.8 3.18 

*Nutrient analysis detection limits: NH4+ = 0.04 µM; NOx = 0.04 µM; OP = 0.008 µM.   
978	
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Table 2.  
Details of non-parametric Kendall’s correlation analysis. Statistically significant (p < 0.05) Kendall’s Tau coefficients are bold. 
    Temp  DO pH Chl a TDS NH4

+ NO2
- NO3

- PO4
3- NH4

+:NO3
- 

Uptake L Kendall's T -0.010 -0.061 -0.326 0.133 0.321 0.230 0.020 0.048 0.081 0.301 
 p value 0.935 0.626 0.009 0.471 0.010 0.064 0.871 0.697 0.517 0.016 

Uptake D Kendall's T -0.014 -0.041 -0.293 0.117 0.337 0.295 0.000 0.069 0.069 0.369 
 p value 0.910 0.745 0.019 0.529 0.007 0.018 1.000 0.581 0.581 0.003 

Regeneration Kendall's T  0.095 -0.110 -0.103 0.300 0.301 0.344 0.149 0.012 0.259 0.487 
 p value 0.446 0.381 0.408 0.105 0.016 0.006 0.230 0.923 0.038   <0.001 

Nitrification Kendall's T -0.138 -0.128 -0.214 0.242 -0.058 0.385 0.341 0.377 0.341 0.272 
 p value 0.346 0.385 0.143 0.273 0.691 0.009 0.020 0.010 0.020 0.063 

AOA Kendall's T 0.109 0.179 0.083 0.273 0.161 0.015 -0.014 -0.051 0.043   -0.004 
 p value 0.457 0.224 0.568 0.217 0.275 0.921 0.921 0.728 0.766 0.980 

AOB Kendall's T 0.175 -0.157 -0.149 0.273 0.175 0.458 0.341 0.130 0.500 0.425 
 p value 0.234 0.286 0.309 0.217 0.233 0.002 0.020 0.372 0.001 0.004 
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Table 3.      
Comparison of ammonium dynamics (in µmol L-1 hr-1) and chlorophyll a concentrations among different 
freshwater studies. 
  Uptake (Light) Uptake (Dark) Regeneration Chl a (µg L-1) Reference  
Lake Lugano 0.017 ± 0.001 0.008 ± 0.003 0.010 ± 0.002    < 2.00 McCarthy unpublished 
Lake Michigan 0.019 ± 0.004 0.01 ± 0.002 0.008 ± 0.001    2.44 Gardner et al., 2004 
Lake Rotorua 0.114 ± 0.008 0.021 ± 0.005 0.047 ± 0.007    23.3 Gardner et al., 2017 
Lake Rotoiti  0.132 ± 0.033 0.08 ± 0.019 0.063 ± 0.018     7.66 Gardner et al., 2017 
Missisquoi Bay  0.205 ± 0.022 0.104 ± 0.015 0.085 ± 0.013     16.2 McCarthy et al., 2013 
Lake Erie  0.258 ± 0.128 0.036 ± 0.009 0.124 ± 0.052     19.9 McCarthy unpublished 
Lake Okeechobee 0.577 ± 0.006 0.029 ± 0.01 0.160 ± 0.021     16.8 James et al. 2011 
Taihu Lake  0.655 ± 0.285 0.271 ± 0.111 0.325 ± 0.144     11.5 McCarthy et al.2007 
Taihu Lake   0.886 ± 0.09 0.399 ± 0.121 0.368 ± 0.071     37.4 This study 
Lake Maracaibo  3.35 ± 0.795 2.73± 0.643 0.389 ± 0.175     22.0 Gardner et al. 1998 
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Table 4. 
Details of best-fitting multiple regression models determined by stepwise regression. All rates, 
temperature, and ambient nutrient concentrations were log-transformed prior to analysis.  

Process Variable   Parameter     Model   

  Estimate 
Std.       

estimate P 
   Adj.   

R2 F P 
Uptake Light T 1.048 0.216 0.0001 0.643 10.3 9.14x10-6 

 DO 0.053 0.012 0.0002    
 pH -0.320 0.054 0.0000    
 NH4

+ 0.669 0.272 0.0213    

Uptake Dark T 0.488 0.121 0.0005 
          

0.745 16.1 1.66x10-7 

 DO 0.034 0.007 0.0000    
 pH -0.187 0.031 0.0000    
 NH4

+ 0.579 0.153 0.0008    
 NO2

- -1.619 0.660 0.0215    
 NO3

- -0.098 0.034 0.0086    
 
Regeneration T 0.321 0.098 0.0031 0.695 12.8 1.42x10-6 

 DO 0.025 0.005 0.0003    
 pH -0.092 0.024 0.0008    
 NH4

+ 0.386 0.126 0.0053    
 NO3

- -0.061 0.027 0.0340    
 
Nitrification NO2

- 3.262 1.226 0.0165 0.498 4.80 0.004 
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