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Abstract. Rocky desertification is a major ecological problem of land degradation in karst areas. In these areas, the high soil 10 

calcium (Ca) content has become an important environmental factor that can affect the restoration of vegetation. Consequently, 

the screening of plant species that can adapt to high Ca soil environments is a critical step in vegetation restoration. In this 

study, three grades of rocky desertification sample areas were selected in karst areas of southwestern Hunan, China (LRD: 

light rocky desertification; MRD: moderate rocky desertification; and IRD: intense rocky desertification). Each grade of these 

sample areas had 3 sample plots in different slope positions, each of which had 4 small quadrats (1 in rocky-side areas, 3 in 15 

non-rocky-side areas). We measured the Ca content of leaves, branches and roots from 41 plant species, as well as soil total 

Ca (TCa) and exchangeable Ca (ECa) at depths of 0–15, 15–30 and 30–45 cm in each small quadrat. The results showed that 

the soil Ca2+ content in rocky-side areas was significantly higher than that in non-rocky-side areas (p<0.05). The mean soil 

TCa and ECa content increased gradually along with the grade of rocky desertification, in the order IRD > MRD > LRD. For 

all plant functional groups, the plant Ca content of aboveground parts was significantly higher than that of the belowground 20 

parts (p<0.05). The soil ECa content had significant effects on plant Ca content of the belowground parts but had no significant 

effects on plant Ca content of the aboveground parts. Of the 41 plant species that were sampled, 17 were found to be dominant 

(important value >1). The differences in Ca2+ content between the aboveground and belowground parts of the 17 dominant 

species were calculated, and their correlations with soil ECa content were analyzed. The results showed that these 17 species 
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can be divided into three categories: Ca-indifferent plants, high-Ca plants, and low-Ca plants. These findings provide a vital 

theoretical basis and practical guide for vegetation restoration and ecosystem reconstruction in rocky desertification areas. 

Keywords: Rocky desertification; High Ca adaptation; Plant functional groups; Plant Ca content; Soil Ca content. 

1 Introduction 

Karst is a calcium-rich environment and a unique ecological system. This type of ecosystem is widely distributed, accounting 5 

for 12% of the world’s total land area (Zeng et al., 2007; Zhou et al., 2009; Luo et al., 2012). Karst landforms in China are 

mainly distributed in southwestern areas. The Hunan Province of China has been ranked fourth in the severity degree of rocky 

desertification (Li et al., 2016). Rocky desertification could lead to frequent natural disasters, reduce human survival and 

development space, threaten local people's production, life and life safety, cause ecological deterioration, reduce arable land 

resources, aggravate poverty, and affect sustainable economic and social development (Jing et al., 2016). In other words, Rocky 10 

desertification is an extreme form of land degradation in karst areas, and it has become a major social problem in terms of 

China’s economic and social development (Sheng et al., 2015). Soil with high calcium (Ca) content in rock desertification 

areas has become one of the most important environmental factors affecting the local plant physiological characteristics and 

distribution in these areas (Ji et al., 2009). Given the origin of rocky desertification, the main factors that lead to rocky 

desertification are unreasonable human activities (reclamation on steep slope), causing damage to vegetation and exacerbating 15 

rocky desertification; its remediation should focus on vegetation restoration (Wang et al., 2004). Consequently, the screening 

of plant species that can grow successfully in high-Ca environments in rocky desertification areas is an extremely critical step. 

Role of Ca2+ in plant physiology: Over recent decades, progress has been made in identifying the cellular compartments 

(e.g., endoplasmic reticulum, chloroplasts and mitochondria) that regulate Ca balance and signal transduction in plants (Müller 

et al., 2015). Ca2+ is an essential nutrients for plant growth and also participate to signal transduction (Poovaiah and Reddy, 20 

1993; Hepler, 2005; Hong-Bo and Ming, 2008; Batistič and Kudla, 2012). And Ca2+ is a very important signal component in 

plants responsive to environmental stresses. Ca2+ signal takes the influential role as a second messenger in hormone signal 

transduction, particularly in the abscisic acid signal transduction process (Hetherington, et al, 2004). Plants can adapt to high 
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salt, drought and high temperature environments by activating the Ca2+ signal transduction pathway (Bressan et al., 1998). Ca2+ 

is also involved in nutrient cycling coupling process, for example, in the absence of nutrients (such as phosphorus), plants will 

inhibit the activity of nitrate reductase, thereby inhibiting the absorption of nitrate nitrogen, and ultimately inhibiting the 

absorption of Ca2+ (Reuveni et al., 2000). Ca2+ combines with pectin in the cell walls of plants to form pectin Ca, which is a 

vital component of the intercellular layer in cell wall, and can buffer the compression between cells without hindering the 5 

expansion of cell surface area (Kinzel, 1989). Ca also has the function of maintaining the structure and function of cell 

membranes, regulating the activity of biological enzymes, and maintaining the anion-cation balance in vacuoles (Marschner, 

2011). 

Mechanisms of plant defense to high soil Ca2+ concentrations: Ca2+ is an essential macronutrient, but low Ca2+ concentrations 

must be maintained within the plant cytoplasm to avoid toxicity (Larkindale and Knight, 2002; Borer et al., 2012). The plant 10 

cell not only rapidly increases the free Ca2+ concentration of the cytoplasm to adapt to environmental changes, but also 

maintains a low Ca concentration to prevent harm caused by high Ca. This fine regulatory mechanism is mainly achieved by 

Ca2+ channels (Shang et al., 2003; Hetherington and Brownlee, 2004; Wang et al., 2005). The vacuoles may account for 95% 

of the plant cell volume and are able to store Ca2+ within the cell. Thus, empty vacuoles represent an efficient means of Ca 

storage (Ranjev et al., 1993). Some plants fix excess Ca2+ by forming calcified deposits in root tissue in order to limit the 15 

upward transport of Ca2+ (Musetti and Favali, 2003). In addition, Ca oxalate crystals in the plant cells play a role in regulating 

plant Ca content (Ilarslan et al., 2001; Pennisi and McConnell, 2001; Volk et al., 2002), and some plants will form Ca oxalate 

crystal cells in order to fix excess Ca2+ (Moore et al., 2002). Furthermore, an active Ca efflux system plays an important role 

in the adaptation of plants to high-Ca environments (Bose et al., 2011). For example, when the leaves matured, excess Ca2+ in 

plants is excreted via stomata on the back of the leaves, thereby maintaining a lower concentration of leaf Ca (Musetti and 20 

Favali, 2003). The regulation of internal Ca storage depends predominantly on plasma membrane Ca transport and intracellular 

Ca storage; collectively these processes can regulate the intracellular Ca2+ concentration to a lower level (Bowler and Fluhr, 

2000). Plants that adapt to high-Ca environments promote excess Ca2+ flow through the cytoplasm or store Ca2+ in vacuoles 

via the cytoplasmic Ca2+ outflow and influx system (Shang et al., 2003; Hetherington and Brownlee, 2004; Wang et al., 2006). 
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Specific variability in plant Ca2+ content and tolerance: The concentration of free Ca2+ in vacuoles varies with plant species, 

cell type and environment, which may also affect the release of Ca2+ in vacuoles (Peiter, 2011). There are Ca2+ channels Ca2+ 

pump and Ca2+/H+ reverse conveyor on tonoplast. The former controls Ca2+ outflow, and the latter two pump cytoplasmic Ca2+ 

into vacuole (Wu, 2008). Cytoplasmic Ca2+ is mainly combined with proteins and other macromolecules. The concentration 

of free Ca2+ is generally only 20–200 nmol·L-1 and is stored in cell gaps and organelles such as vacuoles, endoplasmic reticulum, 5 

mitochondria and chloroplasts (Wu, 2008). However, excess free Ca2+ in the cytoplasm combines with phosphate to form a 

precipitate, which interferes with the physiological processes associated with the phosphorus metabolism, thus hindering 

normal signal transduction and causing significant detriment to plant growth (White and Broadley, 2003; Hirschi, 2004). Plants 

maintain low calcium content in aboveground part by reducing calcium uptake and transporting from underground part to 

aboveground part.This type of plant has Nephrolepis auriculata,Parathelypteris glanduligera,Cyrtomium fortunei，Pteris 10 

vittata，and so on. In contrast, other plants have a higher demand for calcium. For example, Cayratia japonica and 

Corchoropsis tomentosa. these plants maintain high calcium content by enhancing calcium uptake and transporting from 

underground to aboveground (Ji et al., 2009). 

  The mean soil exchangeable Ca (ECa) was 3.61 g·kg-1 in the Puding, Huajing, Libo and Luodian Counties of Guizhou 

Province, which is several times that of non-limestone areas in China (Ji et al., 2009). Wang et al. (2011) found that plant 15 

rhizosphere soil total Ca (TCa) content in calcareous soil areas was above 14.0 mg·g-1. Zhang (2005) studied the growth 

conditions of Eurycorymbus caraleriel and Rhododendron decorum under different concentrations of Ca2+ and found that a 

high Ca2+ concentration (50 mmol·L-1) could promote growth in Eurycorymbus caraleriel but inhibit growth in Rhododendron 

decorum. Luo et al. (2013) showed that Ca2+ concentrations affected plant photosynthesis. When the daily net photosynthetic 

rate of Cyrtogonellum Ching and Diplazium pinfaense Ching reached the highest value, the concentrations of Ca2+ were 30 20 

mmol·L-1 and 4 mmol·L-1, respectively. Qi et al. (2013) found that a significant difference in calcium content among Primulina 

species (P. linearifolia, P. medica, P. swinglei, P. verecunda, P. obtusidentata, P. heterotricha, and so on) from different soil 

types, and the average Ca content (2,285.6 mg/kg) in Primulina from calcareous soil was higher than the average Ca content 

of Primulina from both acid soil (1,379.3 mg/kg) and Danxia red soil (1,329.1 mg/kg). There are variations in soil Ca content 
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among different areas. And there are differences between calcareous and non-calcareous plants in terms of Ca absorption, 

transport, storage and other physiological processes. These differences need to be taken into account in order to identify the 

variety of plants able to adapt to high Ca environments. However, to date, the mechanisms by which plants adapt to high Ca 

conditions, particularly in karst areas, and the Ca dynamics of plants and soil are not well understood. 

In this study, we investigated plant Ca content, soil exchangeable Ca (ECa) and total Ca (TCa) contents on the rocky and 5 

non-rocky sides of three different grades of rocky desertification areas in southwestern China. Specifically, we hypothesized 

that the dynamics of Ca content in plants and soil would be significantly affected by the grade of rocky desertification. To test 

this hypothesis, the following investigations were explored: (i) to measure the soil ECa and TCa contents in rocky-side and 

non-rocky-side areas; (ii) to investigate and compare the Ca content of aboveground and belowground parts among of plants 

from different functional groups; and (iii) to reveal correlation between plant Ca content and soil ECa content. 10 

2 Materials and methods 

2.1 Site description 

The study site was located in LijiaPing town in Shaoyang County, Hunan Province, China (latitude 27°0' N; longitude 113°36' 

E; elevation 400–585 m above sea level), as shown in Fig.1. This region experiences a humid mid-subtropical monsoon climate. 

Mean annual air temperature is 16.9°C, and maximum and minimum temperatures are 41.0°C and −10.1°C, respectively. Mean 15 

annual precipitation is 1399 mm, mostly occurring between April and August, and the frost-free period is 288 days. The study 

site mainly consists of black and yellow lime soil, and vegetation is scarce. Groundwater level is low and groundwater storage 

is poor (see Table. 1). 

2.2 Experimental design and data collection 

Rocky desertification was graded by using the sum of four index scores: bedrock exposure rate, vegetation type, vegetation 20 

coverage and soil thickness. These index were quantified according to the State Forestry Administration of the People's 

Republic of China industrial standard ‘LY/T 1840—2009’ (China, 2009). Three 1 hm2 sample areas were selected which were 
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representative of the three different grades of rocky desertification: light rocky desertification (LRD); moderate rocky 

desertification (MRD); and intense rocky desertification (IRD). Within each sample area, we recorded environmental factors 

which included longitude, latitude, altitude, topography, vegetation type, degree of bare bedrock, and other conditions. The 

collection of samples in these three sample areas was conducted in October 2016. 

Within each of the three sample areas, four (2×2) small quadrats in different slope positions (upper, middle, and lower slope) 5 

were set up. In total, we assigned 36 small quadrats (3×4×3) for analysis. The common plant species of the region were gathered 

using the whole plant harvest method in each small quadrat, as well as shrubs and herbs were collected. Shrubs were divided 

into three parts: branches, leaves and roots. Herbs were divided into two parts: aboveground and belowground. Plant samples 

were taken back to the laboratory, rinsed with distilled water before being oven dried at 105°C for 15 min to de-enzyme, and 

then dried to a constant weight at 80°C about 480 minutes, crushed and passed through a 0.149 mm sieve for later chemical 10 

analysis. For the soil samples, we measured the soil TCa and ECa content of each quadrat (top soil: 0-15 cm; middle soil: 15-

30 cm; bottom soil, 30-45 cm). Soil TCa, ECa content and plant Ca content were measured using an Atomic Absorption 

Spectrophotometer (3510, Shanghai, China). 

2.3 Data analysis 

All plant species were divided into different functional groups: (1) nitrogen-fixing plant and non-nitrogen-fixing plant groups 15 

according to nitrogen-fixing function; (2) dicotyledons and monocotyledons groups according to system development type; (3) 

C3 and C4 plant groups according to photosynthetic pathway; and (4) deciduous shrubs, evergreen shrubs, annual herbs and 

perennial herbs according to life form. Biennial herbs were gathered to the ‘annual herbs’. Deciduous trees with a height less 

than 2 m or a ground diameter less than 3 cm were gathered to the ‘deciduous shrubs’. Branches and leaves were treated 

together as the aboveground part, while the belowground part only included roots. We carried out two-way analysis of variance 20 

(ANOVA) for both species and soil for 17 widespread plants to determine differences in plant Ca content. One-way ANOVA 

was used to analyze the Ca content of soil and plants between different grades of rocky desertification. Pearson correlation 

analysis (α = 0.05) was used to analyze the correlation between plant Ca and soil ECa content. All statistical analyses were 
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performed using R 3.3.3 (R Development Core Team, 2017). 

3 Results 

3.1 The properties of soil in different grades of rocky desertification 

The mean TCa content in soil was 2.40 g·kg-1 (range: 0.10–8.09 g·kg−1) while the mean ECa content was 1.46 g·kg-1 (range: 

0.02–3.92 g·kg-1). Differences between different sample locations (non-rocky side and rocky side) were significant (p<0.05) 5 

for both TCa and ECa. The mean soil TCa and ECa content were found to be highest in areas of IRD, followed by MRD, then 

LRD. However, only the mean soil ECa content showed significant differences (p<0.05) across the three different grades of 

rocky desertification. Regarding the availability of Ca, the average availability of Ca was 59.75%, with the MRD showing the 

highest value at 72.55%, followed by IRD at 58.98%, and LRD showing the lowest value at 47.72 % (Table. 2). 

3.2 The Ca content of plants 10 

3.2.1 The Ca content of plants in different grades of rocky desertification areas 

A total of 41 plant species were collected from the three different grades of rocky desertification. The mean Ca content of the 

aboveground parts of these plants was 19.67 g·kg-1 (range: 4.34–40.24 g·kg-1). The mean Ca content of the belowground parts 

was 10.79 g·kg-1 (range: 4.41–33.62 g·kg-1). The Ca content of the aboveground parts was significantly higher than that of the 

belowground parts (p<0.05) throughout the same grades of rocky desertification, but the Ca content of aboveground and 15 

belowground parts showed no significant differences (p>0.05) among the three different grades of rocky desertification (Fig. 

2). 

3.2.2 Ca content in different plant functional groups 

The 41 plant species were identified and divided into different functional groups in the 36 small quadrats. The Ca content of 

the aboveground parts was significantly higher than that of the belowground parts in each group (p<0.05). Nitrogen-fixing 20 
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plants (22.48 g·kg-1) showed a slightly higher Ca content in the aboveground parts compared to non-nitrogen-fixing plants 

(19.39 g·kg-1; p>0.05), although Ca content in the belowground parts of nitrogen-fixing plants (6.76 g·kg-1) was lower than 

that of non-nitrogen-fixing plants (11.12 g·kg-1; p>0.05). For C3 plants, Ca content in the aboveground and belowground parts 

were 21.08 g·kg-1 and 13.18 g·kg-1, respectively, and were both significantly higher than that of C4 plants (aboveground: 15.68 

g·kg-1; belowground: 6.42 g·kg-1; p<0.05). In the life form functional groups, shrubs showed a significantly higher in Ca 5 

content than herbs in both aboveground and belowground parts (p<0.05), although there were no significant differences 

(p>0.05) between deciduous and evergreen shrubs (p>0.05). There was no statistical difference in this respect between annual 

herbs and perennial herbs (p>0.05). The Ca content of dicotyledons in aboveground and belowground parts were 21.39 g·kg-

1 and 12.19 g·kg-1, respectively, and were significantly higher than that of monocotyledons (9.63 g·kg-1 and 4.79 g·kg-1, 

respectively; p<0.05) (Fig. 3). To monocotyledons and dicotyledons, there were no significant differences in the plant Ca 10 

content of the aboveground parts among the different grades of rocky desertification; this was also true for the plant Ca content 

of the belowground parts. The Ca content of dicotyledons was significantly higher than that of monocotyledons in both 

aboveground and belowground parts throughout the three grades of rocky desertification (p<0.05) (Fig. 4). 

Within the total of 41 common plant species, 17 plant species were found in each sample plot and were widespread 

throughout the southwestern rocky desertification areas of Hunan. These 17 species were calculated their important values (IV) 15 

(Table. 3). Data showed that the differences of Ca content in the aboveground parts of the 17 plant species were highly 

significant (p<0.01) among species, although these differences were not related to grades of rocky desertification. Differences 

in the Ca content of the belowground parts were highly significant not only among species, but throughout all the grades of 

rocky desertification (p<0.01). 

3.3 Correlation between plant Ca content and soil ECa content 20 

Of these 17 plant species, the Ca content in the aboveground and belowground parts of Sanguisorba officinalis had a significant 

positive correlation (p<0.01) with soil ECa content. The Ca content in the belowground parts of Dendranthema indicum 

(p<0.05) and Castanea henryi (p<0.01) also showed a significant positive correlation (p<0.01) with soil ECa content. The Ca 
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content in the aboveground parts of Themeda japonica also showed a significant positive correlation (p<0.01) with soil ECa 

content. With regard to the other plants, the Ca content in the aboveground and belowground parts did not show a significant 

positive correlation (p>0.05) with soil ECa content (Table. 4). 

3.4 Capacity of plants adapting to high Ca soil environments 

The above 17 plants were dominant and common species in rocky desertification areas. These species appear to have a strong 5 

capacity to adapt to high-Ca environments in rocky desertification areas. The aboveground parts of plants play an important 

role in physiological metabolism, and their elemental content reflects the physiological and ecological characteristics of plants. 

The Ca-indifferent plants included Sanguisorba officinalis, Castanea henryi, Dendranthema indicum and Themeda japonica. 

For these plants, there was a significant positive correlation between Ca content in the aboveground or belowground parts and 

the soil ECa content. These plants did not exercise a strict control over the absorption and transport of Ca and may be insensitive 10 

to changes in their own Ca content. Moreover, their growth was less affected by soil Ca content. As for the other plants, the 

relationship between Ca content in the aboveground and belowground parts and soil ECa content did not show a positive 

correlation. These plants were then divided into high-Ca plants and low-Ca plants, based on the differences in Ca content in 

the aboveground parts of these plants. High-Ca plants included Pyracantha fortuneana, Rhus chinensis, Loropetalum chinense, 

Serissa japonica, Glochidion puberum, Indigofera tinctoria and Aster baccharoides. The aboveground parts of these plants 15 

could maintain a high Ca content (more than 19 g·kg-1) under conditions of varying ECa content in the soil. Low-Ca plants 

included Abelia chinensis, Vitex negundo, Smilax china, Miscanthus sinensis, Artemisia carvifolia and Digitaria sanguinalis. 

The aboveground parts of these plants could maintain a low Ca content (less than 19 g·kg-1) under conditions of varying ECa 

content in the soil (Table. 5). 

4 Discussion 20 

4.1 Dynamics of Ca content in plants and soil 

With the grades of rocky desertification increased, the Ca content of soil also increased. This indicates that soil Ca content was 
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affected by the grade of rocky desertification. The mean soil ECa content was 1.46 g·kg-1 in three rocky desertification areas, 

which was lower than the average ECa content in tobacco-planting soil in Hunan (3.548 g·kg-1) (Xu et al., 2007). The average 

ECa content in IRD areas was 3.09 g·kg-1, which was several times higher than the previously reported ECa for non-limestone 

regions in China (Xu et al., 2007). The range of soil ECa content in the study area is from (LRD) 0.02 to (IRD) 3.92 g·kg-1, 

with the maximum and minimum being lower than that of soil on Barro Colorado Island, Panama by Messmer et al. (2014). 5 

Tanikawa et al. (2017) revealed that concentrations of TCa and ECa were also low at the deeper horizons in low-acid buffering 

capacity (ABC) soils, and differences in both organic layer thickness and soil chemistry could be a reason  for the different of 

Ca accumulation in low- and high-ABC stands. Our research showed that the mean soil TCa and ECa contents were the lowest 

in LRD areas, and the difference in soil TCa and ECa may be caused by bedrock exposure rate (the main chemical 

composition: CaCO3) (Ji et al., 2009). 10 

There was no significant difference in plant Ca content between aboveground or belowground parts (p>0.05) across the 

different grades of rocky desertification. This indicates that the grade of rocky desertification had no obvious effect on the Ca 

content of the aboveground and belowground parts of the plants studied herein. However, the average Ca content of the 

aboveground parts of plants (19.67 g·kg-1) was lower than that of Hunan flue-cured tobacco (21.93 g·kg-1) (Xu et al., 2007). 

The maximum and minimum Ca content of plant aboveground parts were 41.79 g·kg-1 and 2.15 g·kg-1 respectively, and the 15 

maximum and minimum Ca content of plant belowground parts were 40.14 g·kg-1 and 0.42 g·kg-1 respectively. The maximum 

Ca content of plants (41.79 g·kg-1) was found in the leaves, which was lower than the Ca content of calcareous plant leaves 

with the maximum value of 85.13 g·kg-1 detected by Luo et al. (2014). For most plants, the Ca content in the aboveground part 

was higher than in the belowground part, but for a few plants the Ca content in the aboveground part was lower than in the 

belowground part (such as Sanguisorba officinalis, Pyracantha fortuneana and Castanea henryi), which was consistent with 20 

the findings of Wang et al. (2014). 

4.2 Correlation between plant Ca content and soil ECa content 

Our results showed that most plants had no correlation relationship between soil ECa and plant Ca except for several plants 
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(Sanguisorba officinalis, Dendranthema indicum, Castanea henryi and Themeda japonica) which showed a positive 

correlation between soil ECa and plant Ca content (Table. 4). But some study showed that Ca-rich soils caused cells to absorb 

more Ca than the cells themselves require (White and Broadley, 2003). Additionally, soil ECa content and leaf Ca content 

(Flue-cured Tobacco) had a significant positive correlation in a pot experiment (Zou et al., 2010). The difference between the 

findings of these studies and ours may be caused by species factors. The correlation between plant Ca content and soil ECa 5 

content reflects what extent soil Ca content influences plant Ca content, and may also reflect how different plants respond to 

differences in soil ECa content (Ji et al., 2009). The Ca content of Sanguisorba officinalis in the aboveground and belowground 

parts had a significant positive correlation (p<0.01) with soil ECa content, which indicates that Sanguisorba officinalis was 

affected greatly by soil ECa content. The Ca content of Dendranthema indicum (p<0.05) and Castanea henryi (p<0.01) in the 

belowground parts also showed a significant positive correlation (p<0.01) with soil ECa content, indicating that the 10 

belowground parts of these species were also greatly affected by soil ECa content. The Ca content of Themeda japonica in the 

aboveground parts showed a significant positive correlation (p<0.01) with soil ECa content, which indicates that the 

aboveground parts of Themeda japonica were also greatly affected by soil ECa content. 

Two-way ANOVA of species and soil showed that the Ca content of the aboveground parts of the 17 plant species was 

mainly affected by species factors, while the Ca content of the belowground parts was affected by both species factors and the 15 

grade of rocky desertification. This finding is supported by data reported by Ji et al. (2009). The Ca content in the aboveground 

parts of nitrogen-fixing plants was significantly higher than that of the belowground parts, and this result indicates that 

nitrogen-fixing plants were the most efficient in Ca upward transport. In contrast, Ji et al. (2009) found that dicotyledons were 

the most efficient in the upward transport of Ca. They used only three types of plants (pteridophytes, dicotyledons, and 

monocotyledons) without researching nitrogen-fixing plants in their study, which may have produced a conflicting result 20 

compared with our current findings. We found significant differences (p<0.01) between the aboveground and belowground 

parts in the Ca content of monocotyledons in our study. However, Ji et al. (2009) revealed that there were no significant 

differences between the aboveground and belowground parts in the Ca content of monocotyledons. This phenomenon could 

be due to the most of the monocotyledons sample plants were low-Ca plants. In our study, a significant difference was found 
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between the aboveground and belowground parts in monocotyledons, which may be because low-Ca plants maintain a lower 

Ca content in different grades of rocky desertification. In addition, the Ca content of monocotyledons was lower than that 

reported for monocotyledons by Ji et al. (2009), indicating that different monocotyledons showed differing abilities to absorb 

soil Ca. 

4.3 High Ca adaptation of plants 5 

The different plant functional groups revealed differences in Ca content (Fig. 3). In some cases, even within the same plant, 

there was an inconsistent correlation between Ca content in the aboveground and belowground parts and the soil ECa content. 

Collectively, these findings show that not all plants adapted to high Ca soil environments in the same way, but rather exhibited 

a variety of adaptive mechanisms. 

The aboveground parts of a plant represent the main site of its physiological activity. Thus, the Ca content in the aboveground 10 

part reflects the Ca demand of the plant’s physiological activity (Grubb and Edwards, 1982). The capacity of those plants that 

are able to adapt to high Ca soil environments can be reflected by two indicators: (i) the correlation between Ca content in the 

aboveground parts of the plants and soil ECa content; and (ii) the species differences in terms of the Ca content of the 

aboveground parts of plants. Thus, based on these two indicators, plants can be placed into the following groups: Ca-indifferent 

plants, high-Ca plants, and low-Ca plants (Ji et al., 2009). In the present paper, we used this classification method to categorize 15 

the 17 plant species that were widely distributed across our study environment, thus providing theoretical guidance for 

vegetation restoration in rocky desertification areas. In both high-Ca and low-Ca soil environments, the Ca-indifferent plants 

can survive normally, and their Ca content changes correspondingly with changes in soil ECa content. The physiological 

activities of high-Ca plants have a higher demand for Ca and may have a strong ability to enrich soil Ca. The physiological 

activities of low-Ca plants have a lower demand for Ca and can alleviate high Ca stress by inhibiting the absorption of Ca 20 

through the root system and its upward transport. 

These results are of great significance for vegetation restoration in karst areas. High-Ca plants should be selected 

preferentially (such as Pyracantha fortuneana, Rhus chinensis, and Loropetalum chinense, Serissa japonica), followed by Ca-
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indifferent plants (such as Sanguisorba officinalis, Castanea henryi, and Dendranthema indicum). Low-Ca plants also have a 

strong ability to adapt to high calcium environments, and they can be used as an alternative species to increase species diversity 

during the process of ecological restoration. Our findings not only have important significance for guiding solutions to the 

problem of rocky desertification in China, but also provide species screening ideas for ecosystem restoration in rocky 

desertification areas in other parts of the world. Rocky desertification is a major ecological problem in karst areas, and further 5 

explorations are required to solve this problem. It is necessary to further explore other nutrient elements in soil during 

vegetation restoration, and long-term positioning observation is crucial for understanding this issue. 

5 Conclusions 

Our results indicate that the mean soil TCa and ECa content were highest in areas of IRD, followed by MRD, then LRD. The 

Ca content in the aboveground parts of plants was significantly higher than that in the belowground parts for the three grades 10 

of rocky desertification sites in our study. Significant differences in Ca content were found between the aboveground and 

belowground parts of plants in each plant functional group. The soil ECa content had a significant effect on the Ca content of 

the belowground parts of plants but no significant effect on the Ca content of the aboveground parts. Ca-indifferent plants, 

which included Sanguisorba officinalis, Castanea henryi, Dendranthema indicum and Themeda japonica, showed a significant 

positive correlation between the Ca content in the aboveground or belowground parts and the soil ECa content. High-Ca plants 15 

were Pyracantha fortuneana, Rhus chinensis, Loropetalum chinense, Serissa japonica, Glochidion puberum, Indigofera 

tinctoria and Aster baccharoides. The aboveground parts of these plants were able to absorb a lot of Ca from soils with varying 

ECa content. Finally, low-Ca plants included Abelia chinensis, Vitex negundo, Smilax china, Miscanthus sinensis, Artemisia 

carvifolia and Digitaria sanguinalis. The aboveground parts of low-Ca plants were able to maintain a lower Ca content from 

soils with varying ECa content. 20 
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Table 1. Basic description for different grades of rocky desertification sites 

Sample 

areas 

Score of rocky 

desertification  
Aspect 

soil 

pH 

Gradient 

(°) 

Altitude 

(m)  

Bedrock 

exposure 

rate 

Vegetation 

coverage 
Disturbance regimes 

LRD 34(≤45) South 5.56 20° 500 35% 80% 
Slight human disturbance, 

rarely grazed 

MRD 48(46~60) Northeast 5.57 18° 500 57% 75% 

Abandoned farmland, no 

disturbance after 

abandoning cultivation 

IRD 67(61~75) Southwest 5.59 17° 480 73% 40% 
Slight human disturbance, 

rarely grazed 

LRD: light rocky desertification; MRD: moderate rocky desertification; IRD: intense rocky desertification. 
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Table 2. Soil TCa and ECa content from different grades of rocky desertification 

Ca typical (g·kg-1) Sample location  LRD MRD IRD 

TCa Non-rocky side 1.19±0.45Aa 2.33±0.53Ba 2.62±0.97Ba 

Rocky side 1.68±0.53Ab 2.97±0.29Bb 5.66±1.37Cb 

Average 1.31±0.51A  2.53±0.56B 3.38±1.71B 

ECa Non-rocky side 0.51±0.26Aa 1.68±0.37Ba 1.63±0.88Ba 

Rocky side 0.97±0.39Ab 2.20±0.39Bb 3.09±0.58Cb 

Average 0.63±0.36A 1.83±0.44B 2.00±1.03C 

Ca effectiveness ECa/TCa (%) 47.72 72.55  58.98  

The data represent mean ± standard deviation. Different lower-case letters in each column represent significant differences in 

different sample points within the same grade of rocky desertification. Different upper-case letters in each row represent 

significant differences between different grades of rocky desertification (p <0.05). 
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Table 3. The main species of plant identified during this study and their important value in different grades of rocky 

desertification 

Vegetable 

layer 
Species 

Important Value 

LRD（%） MRD（%） IRD（%） 

Shrubs 

Abelia chinensis 18.56  6.91  21.65  

Castanea henryi 22.33  1.35  5.32  

Indigofera tinctoria 5.10  16.64  4.30  

Pyracantha fortuneana 5.26  4.83  1.63  

Loropetalum chinense - 1.00  10.45  

Serissa japonica 4.13  5.80  7.45  

Vitex negundo 4.85  11.38  19.07  

Rhus chinensis 0.84  7.11  2.24  

Smilax china - 1.23  1.02  

Glochidion puberum 11.36  4.81 4.19  

Ilex chinensis 2.25  - - 

Ilex cornuta - - 1.32  

Elaeagnus pungens - 1.70  - 

Lespedeza bicolor 3.01  0.58  - 

Symplocos chinensis 2.07  - 1.57  

Broussonetia kaempferi - 0.79  - 

Populus adenopoda 1.06  - - 

Herbs 

Miscanthus sinensis 36.54  5.82  36.36  

Artemisia carvifolia 17.38  9.04  14.02  

Sanguisorba officinalis 1.41  1.01  2.14  

Themeda japonica 1.85 18.23 5.03 

Dendranthema indicum 3.82  16.94  6.55  

Digitaria sanguinalis 6.83 3.95 10.57 

Aster baccharoides 2.40  - 4.30  

Imperata cylindrica - 3.30  - 

Salvia plebeia - - 0.81  

Patrinia scabiosaefolia 0.29  - - 

Sonchus arvensis - - 0.51  

"-" indicates that the important value of these species is less than 1. 

  



 

22 

 

Table 4. Correlations between the Ca content of 17 plant species and the soil ECa content of different rocky 

desertification areas 

Species 

Ca content in aboveground parts Ca content in belowground parts 

Range 

(g·kg-1) 

Mean±SE 

（g·kg-1） 

Correlation 

coefficient 

Range 

(g·kg-1) 

Mean±SE 

（g·kg-1） 

Correlation 

coefficient 

Smilax china 5.77~36.35 18.5±12.24 0.302 3.11~8.61 5.89±2.75 0.931 

Aster baccharoides 16.16~24.03 20.00±3.60 0.418 6.20~12.02 8.91±2.58 0.315 

Vitex negundo 5.53~26.31 18.03±7.44 0.198 2.83~8.17 5.59±2.02 −0.116 

Sanguisorba officinalis 17.68~27.77 24.01±4.47 0.995** 13.41~40.14 32.25±12.71 0.996** 

Themeda japonica 2.15~9.23 5.51±2.45 0.963** 0.42~7.91 3.88±2.70 0.488 

Pyracantha fortuneana 9.16~29.84 19.61±8.46 0.240 17.08~31.86 21.43±7.02 −0.189 

Loropetalum chinense 10.33~33.44 27.25±7.29 −0.203 13.62~27.69 19.69±7.09 0.542 

Serissa japonica 9.69~33.66 23.26±9.90 −0.027 4.27~20.51 12.01±7.81 0.838 

Indigofera tinctoria 10.18~40.24 24.17±11.49 0.215 3.39~9.83 5.98±2.33 −0.289 

Digitaria sanguinalis 4.75~9.80 6.67±2.73 0.257 1.36~5.33 3.37±1.98 −0.915 

Abelia chinensis 5.07~29.64 18.08±10.12 −0.163 0.87~7.12 4.10±2.16 0.070 

Artemisia carvifolia 15.34~19.39 17.37±1.42 0.400 6.39~14.07 9.18±3.07 0.028 

Glochidion puberum 11.13~26.99 20.49±7.04 0.357 5.33~13.64 10.45±4.48 0.775 

Miscanthus sinensis 4.34~7.60 5.61±1.44 0.000 2.88~13.10 5.82±4.87 0.118 

Rhus chinensis 10.52~28.16 19.93±6.43 0.076 8.92~20.38 14.13±4.13 0.336 

Dendranthema indicum 20.97~24.96 22.54±1.86 0.666 2.97~7.39 5.39±1.70 0.877* 

Castanea henryi 12.99~38.74 22.4±8.17 0.151 20.52~31.37 25.28±3.92 0.963** 

Coefficients are significant at p < 0.05 (*) and < 0.01 (**). 
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Table 5. Adaptation of plants to high Ca environments in rocky desertification areas 

Types of 

adaptation 
Species 

Characteristics of Ca content in 

plants 

Strategies of plant adaptation to 

high Ca environments 

Ca-indifferent 

plants 

Sanguisorba officinalis 

Castanea henryi 

Dendranthema indicum 

Themeda japonica 

There is significant positive 

correlation between the Ca 

content in the 

aboveground/belowground parts 

of plants and the soil ECa 

content. The coefficient of 

variation for Ca content in plants 

has a wide range. 

Plants adapt to different Ca 

contents in soil through high Ca2+ 

buffering capacity. By regulating 

Ca2+ binding in Ca stores, the Ca2+ 

concentration in cytoplasm is 

maintained at a stable level. 

High-Ca 

plants 

Loropetalum chinense 

Serissa japonica 

Indigofera tinctoria 

Glochidion puberum 

Aster baccharoides 

Pyracantha fortuneana 

Rhus chinensis 

There is no significant positive 

correlation between the Ca 

content in the aboveground parts 

of plants and the soil ECa 

content. The aboveground part 

has a high level of Ca content and 

the coefficient of variation falls 

within a narrow range. 

Plants maintain high Ca content by 

enhancing Ca uptake and 

transporting it from belowground 

to aboveground parts. High Ca is 

needed or tolerated in these plants. 

Low-Ca 

plants 

Vitex negundo 

Abelia chinensis 

Smilax china 

Miscanthus sinensis 

Artemisia carvifolia 

Digitaria sanguinalis 

There is no significant positive 

correlation between the Ca 

content in the aboveground parts 

of plants and the soil ECa 

content. The aboveground part 

has a low level of Ca content and 

the coefficient of variation falls 

within a narrow range. 

Plants maintain low Ca content in 

the aboveground parts by reducing 

Ca uptake and transporting it from 

belowground to aboveground 

parts. 
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Figure captions 

Fig. 1 Geographical locations of the study sites 

Fig. 2 Characteristics of plant Ca content in different grades of rocky desertification 

LRD: light rocky desertification; MRD: moderate rocky desertification; IRD: intense rocky desertification. Different lower-

case letters represent significant differences in the Ca content between the aboveground and belowground parts of the plants 5 

in the same grade of rocky desertification; different upper-case letters represent significant differences in the Ca content of the 

plants among the different grades of rocky desertification (p<0.05). 

Fig. 3 Ca content in the aboveground and belowground parts of plants in different functional groups 

Different lower-case letters represent significant differences between the Ca content of the aboveground and belowground 

parts for the same functional groups (p<0.05); different upper-case letters represent significant differences among different 10 

functional groups (p<0.05). 

Fig. 4 Ca content in the aboveground and belowground parts of different plant types from three different rocky 

desertification sample areas 

LRD: light rocky desertification; MRD: moderate rocky desertification; IRD: intense rocky desertification. Values with the 

same letters were not significantly different (p>0.05). 15 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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