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Abstract  
 
Heterotrophic respiration (RH) is a large component of the terrestrial carbon cycle, but 
one poorly simulated by Earth system models (ESMs), which diverge significantly in 
their historical and future RH projections.  There is little understanding, however, of the 15	
causes of this variability and its consequences for future model development and scenario 
evaluation, and examining the relationships between RH and key climate variables may 
help to understand where and why models are divergent. We quantified the statistical 
relationships between RH and other terrestrial/climate variables across a suite of 25 
ESMs from the Coupled Model Intercomparison Project phase 5 (CMIP5) for the 20th and 20	
21st centuries, comparing the models both to each other and to an observation-driven 
global RH dataset.   Compared to observations, ESMs consistency overestimate both the 
magnitude and climate sensitivity of global RH. The relationship between RH and 
surface air temperature (TAS) is strong, especially at high latitudes, and largely 
consistent across models.  The observed RH and precipitation (PR) relationship is strong 25	
and positive (r ≥ 0.5, P < 0.005), but few models consistently show this sensitivity of RH 
to PR. The RH-TAS relationship explored here, and more pattern scaling methods more 
generally, can be used to efficiently explore uncertainty and projected changes in RH 
under a wide range of future emission scenarios, and understand how models’ structural 
and parametric choices produce divergent results.  Because uncertainty in RH has large 30	
effects on ESM projections of future climate, this may help direct attention to 
relationships in the carbon cycle that contribute to this uncertainty. 
 
1 Introduction 
 35	
Soil heterotrophic respiration (RH), the soil-to-atmosphere CO2 flux derived from 
microorganisms’ metabolism of litter detritus and organic carbon, constitutes a large and 
highly uncertain component of the terrestrial carbon cycle (Hashimoto, 2012; Hashimoto 
et al., 2015; Luo and Zhou, 2006). This carbon flux may result in a significant climate 
feedback in the future, as mineralization of long-stored soil carbon releases C to the 40	
atmosphere (Bond-Lamberty and Thomson, 2010b; Friedlingstein et al., 2014). This will 
be dependent on how strongly large-scale processes, including RH, are affected by 
abiotic drivers such as temperature and precipitation (Bond-Lamberty and Thomson, 
2010b; Hursh et al., 2016; Sierra et al., 2015).  While both temperature and precipitation 
have a positive effect on the global terrestrial carbon flux (Li et al., 2017; Liu et al., 45	
2016), the effect of these drivers can change in complex ways depending on the spatial 
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scale being examined (Jung et al., 2017).  
 
Earth System Models (ESMs) generally project increases in the RH flux due to global 
climate change (Friedlingstein et al., 2014).  However, RH model structure and 
parameterizations are quite simple relative to many other processes (Wieder et al., 2013): 5	
RH is typically treated as a first-order decay process occurring in litter and distinct soil 
layers, with remaining leaf litter and woody debris ultimately transported to the 
belowground carbon pool after fire losses (Shao et al., 2013). As a result, ESMs generally 
do not accurately capture either the observed RH flux (Shao et al., 2013) or the spatial 
distribution of soil carbon (Todd-Brown et al., 2013).  At the global scale net primary 10	
production (NPP) and RH are of roughly equal magnitude (Hashimoto, 2012; Zhao and 
Running, 2010), and interestingly, ESMs appear to better capture the observed NPP flux 
(Todd-Brown et al., 2013).  This discrepancy between NPP and RH would suggest that 
there is large model uncertainty in RH quantification, and this uncertainty can have large 
effects on ESM predictions of the 21st century Earth system (Friedlingstein et al., 2014). 15	
 
Thus, it is important to understand and explore the uncertainty in RH quantification.  
Pattern scaling, one technique for doing so, can be used to examine key relationships 
between RH and abiotic drivers such as surface air temperature (TAS), as well as carbon 
fluxes such as NPP.  In pattern scaling, a ‘pattern’ is the relationship between a local and 20	
global variable, and is intended to provide a measure of local sensitivity to global change 
(Mitchell, 2003; Osborn, 2009; Santer et al., 1990).  These patterns can then be scaled in 
magnitude by a specified global mean RH, NPP, or TAS change obtained from a simple 
climate model (SCM). It is a simple, flexible approach that allows for a computationally 
efficient analysis of a wide range of future scenarios that have not been simulated by 25	
ESMs.  Pattern scaling may help to understand why certain models show a larger future 
trend than others by examining the relationships between RH and other variables, and 
comparing model output to observed data. 
 
In this study, we analyzed historical RH from an ensemble of ESMs and compared these 30	
outputs to an observation-based data product.  Then we examined the statistical 
uncertainty of projected RH across models and projections, and explored the spatial and 
temporal relationships between RH and other variables.  Finally, we investigated whether 
pattern scaling can be used to better quantify changes and uncertainty in projected RH, 
and understand the characteristics, strengths, and weaknesses of different ESMs with 35	
respect to RH and the terrestrial carbon cycle. 
 
2 Methods 
 
2.1 Datasets 40	
 
Table 1 lists the observed datasets used to evaluate ESM RH outputs.  The Hashimoto et 
al. (2015) soil respiration (RS) data include an annual gridded RH product created by 
assimilating observed RS into a statistical model to achieve continuous spatial and 
temporal coverage for the 20th and early 21st centuries (Hashimoto et al., 45	
2015);(Hashimoto et al., 2015)RH is then computed based on a simple empirical 
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relationship (Bond-Lamberty et al., 2004). RH changes over time in this dataset, but these 
changes are driven entirely by climate and do not include process- or land-use based 
changes in the carbon cycle.  Currently, because RH cannot be directly measured at 
scales larger than a few square meters (Bond-Lamberty et al., 2016), the Hashimoto et al. 
(2015) dataset is the best available estimate of both the spatial distribution and global 5	
total RH flux (Xu and Shang, 2016).   
 
Other observation/reanalysis datasets used include monthly NCEP TAS (Kalnay et al., 
1996) and NASA precipitation flux (PR; Adler et al., 2003) reanalysis products; and an 
annual NPP, satellite derived product (Zhao et al., 2005).   10	
 
We used model output from two sets of experiments from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). The ‘historical’ 
experiment was used to evaluate model performance metric as compared to observations. 
Model historical runs varied in length, so we used 1901 as the start of the historical 15	
period, and 2005 as the end. For future projections, we used the high-forcing RCP 8.5 
scenario, in which radiative forcing increases to 8.5 W/m2 in 2100 (Riahi et al., 2011).  
For the future simulations, the start year was 2006, and the end year was 2099. 
      
For the assessment of patterns, we used all available climate models, resulting in an 20	
ensemble of 25 ESMs (Table 2), and we only used the first realization (i.e., ensemble 
member) from each model.   No performance weights were constructed, and the 
assumption of model independence was implicit. 
 
Most of the analysis was limited to the area between 80°N and 60°S.  All observed and 25	
model output was regridded to the lowest spatial resolution (2.8° by 2.8°) of the multi-
model ensemble prior to the calculation of an ensemble mean. This was done for 
averaging purposes, as each model had a different spatial resolution. Regridding to the 
lowest resolution of the multi-model ensemble is a conservative assumption that avoids 
interpolation errors. 30	
 
2.1.1Pattern scaling 
     
Pattern scaling (Santer et al., 1990) was used to estimate statistical relationships between 
local (subscript L) and global mean/total (subscript G) climate variables.  Here, a least 35	
square regression (LSR) approach was used (Kravitz et al., 2017; Lynch et al., 2017) in 
which patterns were calculated from the RCP 8.5 future forcing scenario for all models 
as: 
      
YL =α +β ∗XG +ε 40	
      
In this equation, XG is the global annual mean (TAS) or total (RH, PR, NPP) climate 
predictor (one-dimensional, unsmoothed), and YL is the gridded local climate dependent 
variable (three dimensional). β is a two-dimensional field of regression slopes, and ε is a 
three-dimensional residual term (error) stemming from linearly fitting the dependent 45	
variable to the predictor. α is the y-intercept, which we take to be 0 by only computing 
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change, not absolute values.  Calculated patterns are described in terms of ‘sensitivity’, 
i.e. amount of local, grid-cell change per 1 unit global change.   
   
To evaluate pattern accuracy, we quantified the differences between the reconstruction 
𝐵and the actual model output B via the root mean square error (RMSE) over the area-5	
weighted difference at the end of the 21st century. In this instance RMSE is used to 
describe how well the predicted pattern emulates the actual model change, with lower 
RMSE indicating that the predicted pattern better captures the actual model change. 
      

 10	
 
where A(x) is the area of the grid box x and sums were calculated over all x. 
        
3 Results 
 15	
3.1 Observed trends and relationships 
 
Most models do not capture the magnitude or trend of observed annual global RH (Figure 
1, and Supplementary Figure 1).  The 25 CMIP5 models examined exhibited increasing 
RH throughout the historical and future periods, from a mean of 60 (range of 45-83) Pg C 20	
yr-1 in 1901 to 90 (range of 57-139) Pg C yr-1 by the end of the 21st century.   In contrast, 
observed data support a best estimate of 51 Pg C yr-1 in 1901 and only 52 Pg C yr-1 in 
2013. Most models thus overestimate, by about 8 Pg C yr-1, global RH as compared to 
our best statistical upscaling estimate of global RH.  In the observed period the 
observations do not have a statistically significant trend (0.005 Pg C yr-1 for 1901-2010), 25	
but the majority of the climate models have a slight positive trend (0.02 to 0.1 Pg C yr-1 
for 1901-2005).   
 
Under the RCP 8.5 forcing scenario, the projected trend is strongly positive (0.06 to 0.6 
Pg C yr-1 for the 21st century) and the model spread is larger than it is in the historical 30	
period.  The HadGEM models project the largest 21st century change in global RH, while 
the NorESM models project the smallest change (Supplementary Figure 1), which is 
consistent with NPP results from Todd-Brown et al (2014).   
 
Models vary in their estimation of interannual standard deviation (Figure 2).  Even 35	
though the historical interannual standard deviation is relatively large for some models, it 
stays constant for much of the 20th century.  Models from the same modeling center are 
very similar in their projected trends in standard deviation.  In the future, the interannual 
standard deviation of RH is projected to change from a mean of 0.98 Pg C in 1900 to 1.35 
Pg C in 2100 (Figure 2).  The majority (65%) of the models show an increase in 40	
interannual variability, but some project standard deviation to stay the same 
(CCSM4/CESM) or even decrease (GISS-E2 and NorESM) by the last half of the 21st 
century.  The models with the lowest (or decreasing) interannual standard deviation are 
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also the models with the smallest projected trend (Supplementary Figure 1).   
 
The individual models exhibit significant differences in correlation, bias, and error 
(Figure 3).  The majority of the models in the ensemble had a positive bias, and the 
average positive bias was larger than the negative bias.  The MPI models (22-23) had the 5	
largest positive bias and the CCSM4-CESM models (5-8) had the largest negative bias.  
The MIROC models (20-21) had the smallest bias overall.  The MPI models (22-23) had 
the largest spatial correlation values, and the IPSL models (17-19) had the smallest 
spatial correlation values.  The GISS-E2 models (11-14) had the lowest RMS differences, 
while the HadGEM models (15-16) had the highest RMS differences.  For both simple 10	
metrics of historical performance, models from the same modeling center had similar bias 
and spatial correlation magnitudes.   
 
The modeled and observed relationship between RH and surface temperature (TAS) 
exhibit latitudinal patterns (Figure 4a and Supplementary Figure 2a).  Correlation values 15	
are greater at high latitudes, presumably because the dominant control on RH is 
temperature in these cold biomes.  At lower latitudes, the relationship between RH and 
TAS is weaker, presumably due to other controls on RH such as precipitation and soil 
moisture.  In general, there are strong negative relationships between RH and TAS where 
soil-moisture and precipitation are limited (cf. Shao et al. 2013).  20	
 
Few models captured this observed spatial correlation (black line): the CCSM/CESM 
models (green lines) captured the temporal autocorrelation patterns the best and the MPI 
and BCC models (cyan and red lines, respectively) performed the worst. Most models 
tended to perform better in the Northern Hemisphere mid-latitudes, and less well in the 25	
Northern Hemisphere sub-tropics where the observed relationship is largely negative. In 
addition, the model spread of the RH-TAS relationship becomes progressively larger 
from the Northern Hemisphere to the Southern Hemisphere.  This is likely due to less 
land (and thus higher variability in the model averages) in the Southern Hemisphere, as 
well as generally fewer RH observations from the Southern Hemisphere more generally 30	
(Epule, 2015). 
  
We performed a parallel analysis for RH and PR. The observed r values are strong and 
positive (r ≥ 0.5, P < 0.005, Figure 4b and Supplementary Figure 2b), strongest at mid 
and high latitudes, and weakest in the tropics (20°N to 20°S) along subtropical dry zones.  35	
These are also regions where the direction of the relationship is spatially heterogeneous 
(Supplementary Figure 2b). The modeled relationship between historical RH-PR is 
stronger than the relationship between RH-TAS, but unlike the RH-TAS relationship, the 
RH-PR relationship do not exhibit consistent geographical patterns.  Interestingly, the 
models that overestimated the RH-TAS r values (Figure 4a), are the same models that 40	
underestimate the RH-PR r values (Figure 4b).   
 
The observed relationship between RH and NPP is weak (Figure 4c, Supplementary 
Figure 2c).  However, some models have a strong positive relationship (HadGEM 
models), while others have a strong negative relationship (CCSM4/CESM and NorESM 45	
models).  The observed strength and direction of the relationship between RH and NPP 
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also does not have any spatial heterogeneity.  
 
3.2 Projected relationships 
 
The projected strength of the local-global RH relationship is shown in Figure 5.  The 5	
diversity of histogram shapes highlights the ensemble spread, and models from the same 
modeling center have very similar shapes.  The models are grouped into strong (average 
R2 ≥ 0.75; bcc, CanESM2, and IPSL models), and weak (average R2 ≤ 0.25; 
CCSM4/CESM, MIROC, and NorESM models) RH local (RHL) and RH global (RHG) 
relationships.  The GISS-E2 models were separated and emphasized because the local-10	
global relationship diverged greatly from all other models.  
 
Models with a small R2 between RH local (RHL) and RH global (RHG) were generally the 
most sensitive to changes in RHG, particularly in the tropics and Southern Hemisphere 
(Figure 6a), but there was not a clear difference between the strong and weak R2 models.  15	
However, the models with a smaller R2 had the smallest 21st century trends 
(Supplementary Table 1), weak/decreasing year to year standard deviation (Figure 2), and 
an overestimation of the local-global patterns.  Patterns were the least sensitive, i.e. had 
comparatively small local-global change ratios, at high latitudes and in the tropics.   The 
groupings also emphasize the difference in projected trends for RH and NPP (Figure 6) 20	
and those with a small R2 have smaller projected trends than those with a large R2. 
 
The RHL-TASG relationship is different from the RHL-RHG relationship, as there are 
clearer differences between the stronger and weaker models (Figure 7, 6a-b). For the 
models with a stronger RHL-TASG relationship, RH is much more sensitive (i.e., the 25	
local-global change ratio is larger) to changes in global TAS everywhere (Figure 6b).   
The relationships and patterns between RHL-PRG (not shown) are very similar to the RHL-
TASG relationships.  The GISS-E2 models were generally similar to the models with a 
weak RHL-TASG relationship, but, like in Figure 6a, there are clear disparities at the 
equator and in the Southern Hemisphere (Figure 6b). 30	
 
The modeled R2 between NPPL-NPPG stronger and more consistent across models than it 
is for the RHL-RHG (Figure 8).  For some models (bcc, BNU, CanESM, GISS-E2, and 
HadGEM models), the NPPL-NPPG R2 are the inverse of the local-global R2 for RH.  The 
NPPL-NPPG spatial patterns are similar to the RHL-RHG, but the NPPL-NPPG sensitivity is 35	
stronger around the equator (Figure 6c).  Models with a weak RHL-RHG relationship are 
more sensitive to changes in global NPP.  Once again, the GISS-E2 models show very 
strong local sensitivity to global changes along the equator and in the Southern 
Hemisphere.  The relationships and patterns between local-global NPP are highly similar 
to NPPL-TASG (Figure 9, Figure 6d) and NPPL-PRG (not shown), but NPP in the GISS-E2 40	
models is highly sensitive to changes in global temperature.   
 
 
  
 45	
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For the future, the RHL-TASG pattern has the best fit as inferred from very low 
standardized error (Figure 10).  This is likely due to the clear and strong global mean 
temperature signal projected from the RCP 8.5 scenario.  The RHL-NPPG pattern standard 
error is also low, and similar spatial features of the pattern standard error are evident 
across all four patterns.  Larger errors are evident in the tropics and generally are larger 5	
along leeward/eastern coast of most continents.  
 
RMSE values between actual and pattern predicted RH were small, with the lowest 
RMSE when using the RHL-TASG (Table 3).  RMSE were smallest for models that had a 
weak RHL-TASG relationship, particularly the CCSM4/CESM, NorESM, and GISS-E2 10	
models.  Inversely, RMSE were largest for models with a strong RHL-TASG relationship.  
Low RMSE errors between the actual and predicted RH is likely due to clear and 
significant global trends (Supplementary Table 1) and the strongly linear local-global 
relationship between RH and RH/TAS/NPP, which was also shown in Figure 10.   
 15	
4 Discussion 
 
4.1 Observed trends and relationships, model comparison 
 
In the observed period, both the magnitude and change in global RH are overestimated by 20	
the ESMs examined here. Models in the ensemble do not capture the observed trends and 
magnitudes in RH well, and there is a large model spread in the observed and projected 
relationship.  On one hand, this is unsurprising, as ESMs tend to overestimate the effect 
strength of CO2 fertilization on other parts of the carbon cycle such as NPP (Smith et al., 
2015).  On the other, however, the observed RH dataset used in this study may 25	
underestimate the real trend due to the simple empirical relationship between soil 
respiration and RH used to construct the data (Hashimoto et al., 2015).  With these 
caveats in mind, the NorESM and CCSM4/CESM models generally performed best when 
comparing model performance to observations.  These models have identical number of 
litter and soil pools, temperature and moisture functions, and representation of nitrogen 30	
cycling (Todd-Brown et al. 2013, Table 3).  In addition, the NorESM and CCSM4/CESM 
models strongly underestimate total soil carbon, NPP flux, and soil carbon turnover time 
(Todd-Brown et al. 2013, Figure 2; Hashimoto et al. 2015, Figure 9).  
 
Despite a large spread in estimated annual RH, the CMIP5 models robustly project a 35	
statistically significant positive trend in global RH and increased interannual variability 
under RCP 8.5.  The notable exception to the projected increase in interannual variability 
are the GISS-E2 models, which have no carbon litter pools (Todd-Brown et al., 2013), 
but a large number (9) of soil pools.  Also, temperature and moisture functions of soil 
carbon estimates in the GISS-E2 models are strongly linear with no upper limit, and there 40	
is no nitrogen cycling.  For the future period, the GISS-E2 models were also notable in 
that they project large increases in NPP, but comparatively small trends in RH. The 
seemingly too-high sensitivity of model RH to changing climate is very tentative, given 
the limitations on RH observations and available upscaled products (Bond-Lamberty and 
Thomson, 2010a; Hashimoto et al., 2015; Shao et al., 2013), but if confirmed has 45	
significant implications for the assessment of these land models’ performance and ability 
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to predict future climate change (Friedlingstein et al., 2014; Sitch et al., 2015).  
 
Interestingly, model skill in simulating RH does not necessarily correspond to skill in 
other parts of the carbon cycle.  For example, the MIROC and MPI models generally 
performed the best in simulating RH, but these models largely overestimate soil carbon, 5	
NPP, and carbon soil turnover time (Figure 2 in Todd-Brown et al. 2013).  The NorESM 
models in Figure 3 (models 24/25) performed well compared to observations, but in 
Todd-Brown et al. (Table 3, 2013), the NorESM models had very low Taylor scores 
across empirical datasets.   The reverse is generally true with the HadGEM and IPSL 
models: Table 3 in Todd-Brown et al. (2013) suggests that the HadGEM2 and IPSL 10	
models performed well in capturing observed RH characteristics, given that they 
performed well with respect to soil C turnover time, but these models had large RMSE 
(error) values in our results (Figure 3).  These discrepancies could be due a number of 
reasons: (i) high and divergent spatial variability in certain models, and between models 
and observations, in the abiotic drivers of RH (ii) an underestimation of global annual RH 15	
values in the observed dataset (Hashimoto et al. 2015); and (iii) the fact that models can 
perform well in reproducing soil C pools without doing so for fluxes, or vice versa, due to 
the first-order input and output (i.e., RH) algorithms used (Carvalhais et al., 2010). 
Robustly constraining and evaluating the ability of ESMs to simulate soil processes will 
require jointly evaluating their pools as well as fluxes.  In this regard, our work extends 20	
and complements the results of Todd-Brown et al. (2013). 
 
4.2 Drivers of RH: observations and models 
 
Because respiration is strongly affected by climate, there is a strong zonal response in 25	
observed RH.  This is evident in observations, but not in the ESMs.  Robust agreement in 
strength and sign of the RH-TAS relationship is limited to Northern Hemisphere high 
latitude cold biomes, where TAS is generally considered the dominant control on the soil-
to-atmosphere CO2 flux (McGuire et al., 2009).  As noted in the results, the models that 
overestimate the RH-TAS relationship are also the models that underestimate the RH-PR 30	
relationship, and inversely those that underestimate RH-TAS overestimate RH-PR.  In 
general, there are strong negative relationships between RH and TAS where soil-moisture 
and precipitation are limited (cf. Shao et al. 2013).  This may be a reason why there is 
such a large spread values/trend in modeled RH.   
 35	
The observed RH-PR relationship is strong, but the models strongly underestimate the 
observed RH-PR relationship.  The observed zonal features of the RH-PR relationship are 
also not captured by the models. Given that the models do poorly in capturing the 
observed relationship, it is not surprising that Table 4 from Todd-Brown et al. 2013, 
indicates that by including a soil moisture term, the models do not perform better in 40	
capturing NPP (instead, they found that modeled NPP is largely constrained by TAS).  
Some of this discrepancy may be due to the complicated scaling dynamics that occur in 
carbon-cycle drivers (Jung et al., 2017).   Another reason for this inconsistency may in 
part be due to robust overestimation in seasonal and annual precipitation by the CMIP5 
models (Liu et al., 2014).  In semi-arid regions, high inter-model precipitation variability 45	
is also a problem. 
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The observed relationship between RH and NPP is not strong.  While at the global scale 
the NPP (Zhao and Running, 2010) and RH (Hashimoto et al., 2015) carbon fluxes are of 
similar magnitude, and in theory should be equal in steady-state ecosystems (Chapin et 
al., 2006), this was not true in either the models or observations examined here (Figure 5	
6). There are many possible reasons for this: lag effects between climate-driven NPP 
changes and RH equilibrium (Baldocchi et al., 2006; Zhou et al., 2010); lag effects from 
past disturbances (Harmon et al., 2011); and poorly measured storage terms.  The weak 
observed RH-NPP relationship may also be partially due to the short time span used 
(2000-2013) in calculating the observed relationship, which both increases error and is 10	
short relative to SOC turnover times (Todd-Brown et al., 2013).   Another potential 
problem with the observed datasets used may be that we are comparing a bottom-up 
statistical product (RH) with a top-down satellite/model one (NPP), with inevitable 
spatial and methodological mismatches.  Moreover, studies disagree in strength and 
direction of observed NPP trends.   From satellite based data the trend is slightly negative 15	
(Zhao and Running, 2010), but from modeled studies which assimilate observed data 
(Ahlström et al., 2012; Sitch et al., 2015), the trend is strongly positive. 
 
The modeled RH-NPP relationship is much stronger than the observed relationship.  The 
notable exception to this is the CCSM4/CESM models (green lines in Figures 4, 5, and 6) 20	
which have a negative RH-NPP relationship in the tropics and in the Southern 
Hemisphere.   However, the model spread is quite large, with no notable zonal features.  
This may indicate that the models are too closely coupled, i.e. that their production and 
decomposition functions are too tightly tied to each other (Hashimoto et al., 2015), or 
perhaps that the modeled parameterizations in RH/NPP quantification are too simple to 25	
capture necessary feedbacks in the carbon cycle.  Theoretically at least, an RH-NPP 
relationship is expected at some scale, so it is difficult to diagnose whether the issue is 
with the observations used or model parameterizations that couple the RH-NPP flux.  
Furthermore, most models overestimate observed NPP trends and values (Todd-Brown et 
al. 2013), which may contribute to stronger than observed RH-NPP r values. 30	
 
Overall, modeled RH sensitivity to climatic factors seems unlikely to be correct (Zhou et 
al. 2009; Shao et al. 2013; (Shao et al., 2013; Sierra et al., 2015; Smith et al., 2015)).  At 
high Northern latitudes, the models underestimate both the temperature and precipitation 
(as a proxy for soil moisture) relationships compared to the Hashimoto et al. (2015) 35	
observationally-based dataset.  This may be because it has been shown that carbon 
system model decomposition rates have a low sensitivity to climate factors in cold 
regions with limited moisture (Sierra et al., 2015).  The soil respiration temperature 
response (Q10) range in Earth system models is large, but is generally stronger than that 
derived from observational studies (Beer et al., 2010; Bond-Lamberty and Thomson, 40	
2010b; 2015), and ESMs in general exhibit strong carbon cycle responses to climate 
change (Anav et al., 2013, 2015; Ito et al., 2017).  This likely contributes to the large 
model spread in RH.  The common practice of using a global constant Q10 term rather 
than a spatially heterogeneous Q10 may also contribute to this over/underestimation (Zhou 
et al., 2009).   45	
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4.3 Evaluation and discussion of projected RH and pattern scaling 
 
Despite large differences in local-global RH R2 values, the local sensitivity to global 
change (“patterns”) is small and largely consistent across models. Given the large 
ensemble spread in projected global RH, it is interesting that the RH-RH patterns are so 5	
similar, with the largest differences at the equator.  Models with large RHL-RHG R2 
values are also more sensitive to global TAS change.  TAS (and NPP) is better 
parameterized in the ESM models than RH, and as such is likely to yield a more robust 
response in local RH with stronger confidence in the resulting pattern.  Todd-Brown et al. 
(2013 and 2014) found that NPP and soil carbon are strongly tied to temperature. This 10	
relationship is also evident in the observed data (Hashimoto et al. 2015) and has great 
potential for use in pattern scaling studies to examine alternative forcing scenarios.   
 
As shown in Table 3, the RHL-TASG, and to a lesser extent, the RHL-NPPG, relationship 
can be used to reproduce spatial RH features with comparatively low RMSE values. This 15	
raises the possibility that pattern scaling techniques, which are straightforward to 
implement and computationally inexpensive, could be used as a routine diagnostic for 
ESM outputs. In particular, these techniques may be valuable with respect to RH, a flux 
for which so few observational data exist and the model-measurement spatial mismatch is 
extremely large (Bond-Lamberty et al., 2016; Zhou et al., 2009).   20	
 
Model comparisons in the earth sciences need to be performed carefully with a full 
understanding of their limitations (Oreskes et al., 1994). Nonetheless, it is important to 
note that in this analysis the GISS-E2 models (Schmidt et al., 2014) are significant 
outliers in both their projected local-global RH relationships and temperature sensitivity.  25	
Todd-Brown et al (2013) noted that these models exhibited a noticeable discrepancy 
between NPP and soil carbon, which was partially attributed to the allocation of plant 
biomass in the litter model.  The GISS-E2 models also are characterized by very low 
equilibrium climate sensitivity, transient climate response, and GHG-attributable 
warming (Gillett et al., 2013), and projected changes in terrestrial carbon and surface 30	
temperature are not likely to be strongly coupled.  
 
Finally, it is important to note that like any analytical technique, pattern scaling has both 
strengths and weaknesses.  Patterns can be used to examine model differences in response 
to particular forcings or trends in global climate parameters, diagnose problem 35	
relationships, explore future emission sensitivity, and show where relationships are weak 
or non-linear.  However, pattern scaling, as a statistical emulation method, is strongly tied 
to the assumption of stationarity (Mitchell, 2003).  Patterns derived from emission 
scenarios with strong mitigation are less accurate and prone to large estimation errors 
(Tebaldi and Arblaster, 2014).  Finally, if the projected trend in RH and/or the predictor 40	
variable is weak, the pattern error term is relatively large, and pattern scaling should be 
used with caution.   
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7 Tables and Figures 
 
Table 1.  List of datasets and their attributes used in this analysis. 
 

Variable Spatial 
Resolution 

Temporal 
Resolution 

Source (version) 

Heterotrophic 
Respiration (RH) 

0.5° x 0.5° Annual, 1901-
2013 

Soil Respiration Database 
(SRDB), Department of Energy 
(DOE) Pacific Northwest 
National Laboratory (PNNL) 

Surface Air 
Temperature (TAS) 

2.5° x 2.5° Monthly, 
1948-2013 

National Centers for 
Environmental Prediction,  
National Center for Atmospheric 
Research (NCEP/NCAR) 
Reanalysis Project 1, National 
Oceanic and Atmospheric 
Administration (NOAA), Earth 
System Research Laboratory 
Physical Sciences Division  

Precipitation Flux 
(PR) 

2.5° x 2.5° Monthly, 
1979-2013 

Global Precipitation 
Climatology Project, National 
Aeronautics and Space 
Administration (NASA) 
Goddard Space Flight Center 

Net Primary 
Production (NPP) 

0.5° x 0.5° Annual, 2000-
2013 

NASA MODIS TERRA product 
ID: MOD17A3 

	5	
Table 2.  List of the CMIP5 models used in this analysis, with their respective spatial 
resolution and organization. 
	

Model Spatial 
Resolution 

Organization 

bcc-csm1-1 2.8° x 2.8° Beijing Climate Center, China Meteorological 
Administration, China 

bcc-csm1-1-m 1° x 1° 

BNU-ESM 2.8° x 2.8°  College of Global Change and Earth System 
Science, Beijing Normal University, China 

CanESM2 2.8° x 2.8°  Canadian Centre for Climate Modeling and 
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Analysis, Canada 

CCSM4 1° x 1.25° NCAR, University Corporation for Atmospheric 
Research, U.S.A. 

CESM1-BGC 1° x 1.25° National Science Foundation/DOE, NCAR, 
U.S.A.  

CESM1-CAM5 

CESM1-WACCM 1.8° x 2.5° 

GFDL-ESM2G 2° x 2.5° NOAA, Geophysical Fluid Dynamic 
Laboratory, U.S.A. 

GFDL-ESM2M 

GISS-E2-H 2° x 2.5° NASA, Goddard Institute for Space Studies, 
U.S.A. 

GISS-E2-H-CC 

GISS-E2-R 

GISS-E2-R-CC 

HadGEM2-CC 1.2° x 1.8° Meteorological Office Hadley Centre, U.K. 
 

HadGEM2-ES 

IPSL-CM5A-LR 1.8° x 3.75° Laboratoire de Meteorologique Dynamique, 
Institut Pierre-Simon Laplace, France 

IPSL-CM5A-MR 1.25° x 2.5°  

IPSL-CM5B-LR 1.8° x 3.75° 

MIROC-ESM 2.8° x 2.8° Atmosphere and Ocean Research Institute, 
National Institute for Environmental Studies, 
and Japan Agency for Marine-Earth Science and 
Technology, Japan 

MIROC-ESM-
CHEM 

MPI-ESM-LR 1.8° x 1.8° Max Planck Institute for Meteorology, Germany 
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MPI-ESM-MR  

NorESM1-M 1.8° x 1.8° Norwegian Climate Centre, Norway 
 

NorESM1-ME 

	
Table 3: Root mean square error between modeled heterotrophic respiration (RH) and 
pattern predicted RH at the end of the 21st century (averaged over 2070-2099) from the 
RCP 8.5 scenario in Pg C yr-1.  The patterns used are the RHL to RHG/TASG/NPPG.  
	5	

Model RHL-RHG  RHL-TASG  RHL-NPPG  

bcc-csm1-1 0.278 0.255 0.219 

bcc-csm1-1-m 0.319 0.260 0.259 

BNU-ESM 0.338 0.319 0.430 

CanESM2 0.179 0.114 0.370 

CCSM4 0.192 0.106 0.122 

CESM1-BGC 0.188 0.112 0.129 

CESM1-CAM5 0.228 0.097 0.160 

CESM1-WACCM 0.235 0.093 0.166 

GFDL-ESM2G 0.301 0.239 0.195 

GFDL-ESM2M 0.430 0.209 0.593 

GISS-E2-H 0.280 0.157 0.144 

GISS-E2-H-CC 0.265 0.159 0.189 

GISS-E2-R 0.135 0.127 0.091 

GISS-E2-R-CC 0.138 0.144 0.087 

HadGEM2-CC 0.607 0.907 0.489 

HadGEM2-ES 0.649 0.808 0.683 

IPSL-CM5A-LR 0.555 0.418 0.493 
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IPSL-CM5A-MR 0.457 0.326 0.435 

IPSL-CM5B-LR 0.239 0.369 0.186 

MIROC-ESM 0.624 0.650 0.511 

MIROC-ESM-
CHEM 0.708 0.666 1.012 

MPI-ESM-LR 0.240 0.375 0.178 

MPI-ESM-MR 0.377 0.234 0.421 

NorESM1-M 0.130 0.090 0.083 

NorESM1-ME 0.226 0.113 0.208 

Ensemble Average 0.220 0.188 0.236 

	
	

	
 
Figure 1: Annual global heterotrophic respiration (RH) for 25 CMIP5 models, 5	
combining the RCP 8.5 and historical outputs.  The green line is the ensemble mean; grey 
shading is ±1 σ of multi-model ensemble mean; red and blue lines show the ensemble 
maximum and minimum values, respectively.  Black line is the ‘observed’ global annual 
RH from 1901-2100 from Hashimoto et al. (2015). 
 10	
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Figure 2: Global heterotrophic respiration (RH) inter-annual standard deviation from 
each model in months since January 1900.  A 10-year (120 month) moving window was 
applied to monthly values from 1900 to 2100 from historical and RCP 8.5 scenarios.  5	
Line colors correspond to models from same modeling center. 
 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-405
Manuscript under review for journal Biogeosciences
Discussion started: 12 October 2017
c© Author(s) 2017. CC BY 4.0 License.



21	

 
 
Figure 3: Taylor plot of model heterotrophic respiration (RH) bias, normalized root-
mean-square (RMS) differences and global spatial correlation as compared to observed 
RH (Hashimoto et al. 2015).  Model data and observations were temporally averaged 5	
over the 1950-1999 period; a weighted area sum (80°N-60°S) was done for models and 
observations.   
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Figure 4.  Pearson correlation coefficient (r) between historical annual heterotrophic 
respiration (RH) and surface temperature (TAS, a), precipitation flux (PR, b), and net 
primary production (NPP, c) by latitude.   Correlation values were calculated at each grid 
cell from annual RH and TAS.  Black line is the observed RH and TAS (a, 1948-2010), 
PR (b, 1979-2010), and NPP (c, 2000-2013) r values.  Line colors correspond to models 5	
from same modeling center and are r values for the years 1900-2005.  Line colors are 
consistent with Figure 2. 
 

 
 10	
Figure 5: Histograms of grid cell R2 values for the relationship between local and global 
heterotrophic respiration for RCP 8.5 scenario (2006-2099).  Models were grouped by 
average R2 into strong relationship (average R2 ≥ 0.75, red triangles), weak relationship 
(average R2 ≤ 0.25, blue triangles), and the GISS-E2 models (dark purple stars).  Color of 
histograms correspond to models from same modeling center.  Only values between 80°N 15	
and 60°S are displayed.   
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Figure 6. Patterns of local-global heterotrophic respiration (RHL-RHG; a), RHL and global 
temperature (TASG; b), local-global net primary productivity (NPPL-NPPG; c), and NPPL -
TASG (d) for RCP 8.5 scenario (2006-2099).  Models were grouped by average R2 into 5	
strong relationship (average R2 ≥ 0.75, red line), weak relationship (average R2 ≤ 0.25, 
blue line), and the GISS-E2 models (dark purple line).  Gray dashed lines are the patterns 
from each ensemble member.  Only values between 80°N and 60°S are displayed.  
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Figure 7.  Histograms of grid cell R2 values for the relationship between local 
heterotrophic respiration and global surface temperature (RHL-TASG) for RCP 8.5 
scenario (2006-2099).  Histogram colors and groupings are the same as in Figure 5. 5	
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Figure 8: Histograms of grid cell R2 values for the relationship between local and global 
net primary production (NPPL-NPPG) for RCP 8.5 scenario (2006-2099).  Histogram 
colors and groupings are the same as Figure 5. 5	
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Figure 9: Histograms of grid cell R2 values for the relationship between local net primary 
production and global surface temperature (NPPL-TASG) for RCP 8.5 scenario (2006-
2099).  Histogram colors and groupings are the same as Figure 5. 5	
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Figure 10:  Multi-model ensemble average of the standard error of the estimated pattern 
for local-global heterotrophic respiration (RHL-RHG in g/m2 per Pg; a), local RH and 
global surface temperature (RHL-TASG in g/m2 per ℃; b), local RH and global net 5	
primary production (RHL-NPPG in g/m2 per Pg; c), and local-global net primary 
production (NPPL-NPPG in g/m2 per Pg; d) over 21st century from the RCP 8.5 scenario. 
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