
Replies to Referee #1 Comments on Manuscript bg-2017-41 

We would like to express our sincere gratitude to Prof. Jasper Vrugt for his insightful 
and constructive comments and suggestions. All comments have been addressed 
below and are going to be considered when we revise the manuscript. 

 

General Comment:   

This paper advocates the use of Bayesian inference to estimate the parameters of the 
data assimilation linked ecosystem carbon (DALEC) model. The proposed approach 
builds on the DREAM algorithm and uses a 14-year data record of daily net 
ecosystem exchange observations collected at the Harvard Forest Environmental 
Measurement Site. The DREAM parameter distributions are compared against those 
obtained using another MCMC method, namely the Adaptive Metropolis (AM) 
sampler. Results demonstrate a superior performance of DREAM with DALEC 
parameter estimates that outperform their AM derived counterparts during an 
independent evaluation period. 

The paper is generally well-written and discusses an important topic in ecosystem 
modeling. 

Response: 

We appreciate Dr. Vrugt for the concise and nice summary and positive assessment of 
the manuscript. 

 

Specific Comments: 

Comment 1:   

Can you not estimate C_0 from the prior parameter ranges? Just create some samples 
in this space, as DREAM does, and then compute C_0 = cov of these samples? Not to 
say that C_0 is correctly scaled this way. But it makes comparison with DREAM 
more fair. If you use prior information to construct C_0 then you should also use this 
for DREAM to sample the initial states of the chains. 

Response: 

We thank Dr. Vrugt for the constructive suggestions. We randomly drew 100,000 
samples from the parameter space based on which the initial covariance matrix C0 
was computed. According to the parameter ranges listed in Table 1 of the manuscript, 
the C0 has relatively large and heteroscedastic variances. For the relatively 
high-dimensional problem (21 parameters), the C0 can easily cause the proposed 
samples of AM outside the parameter space resulting in a low acceptance rate. We 
tried several independent AM runs, and they all ended up with a single location in the 
parameter space with little movement.  

Safta et al. (2015) applied AM to the similar DALEC model and got similar problems. 
Their strategy was applying the AM gradually, starting with a group of parameters 



(say 7 parameters) and setting the rest of parameters as constants at their nominal 
values. The initial proposal covariance for the small group of parameters had 
variances about 1/16 of the variances of the corresponding normal priors. After 
several MCMC iterations, the samples were used to compute the C0. Next, they 
moved to the second stage to additionally consider another group of parameters. Their 
iterative process broke the original high-dimensional problem into a sequence of steps 
of increasing dimensionality, with each intermediate step starting with a good 
proposal covariance, finally got AM converged in 6,000,000 MCMC iterations.   

We agree with Dr. Vrugt that choosing C0 specially does not make a fair comparison 
with DREAM. This has been pointed out in the revised manuscript as “this 
initialization of AM makes an unfair comparison with DREAM that launched chains 
blindly, but on the other hand, it suggests DREAM’s ease of use and setup, its 
robustness and efficiency.”   

       

Comment 2:   

No surprise that single-site Metropolis does not work well in case of correlated 
parameters - as correlated dimensions have to be updated together. These arguments 
have been made in previous DREAM related papers. 

Response:  

We appreciate and respect the significant efforts that Dr. Vrugt contributes to the 
development of DREAM algorithms. The related references have been added.   

   

Comment 3:   

Page 11: The authors refer to the univariate R_statistic to monitor convergence of the 
sampled chains. Indeed, this approach is often used in multi-chain methods such as 
DREAM. Nevertheless, I recommend the authors to look into the multivariate R_stat 
of Brooks and Gelman. This statistic does not compare parameters one at a time (their 
between and within-chain variance) but rather assesses the entire posterior distribution. 
This multivariate R_stat is a single convergence diagnostic and will suggest 
convergence of the sampled chains at a later time than the univariate R_stat of the 
parameters. The latest DREAM toolbox in MATLAB returns the multivariate R_stat. 

Response: 

We appreciate Dr. Vrugt for the suggestions and references. The multivariate 
R_statistic has been used for convergence diagnostic in the revised manuscript and 
copied below as Figure 1. As Dr. Vrugt pointed out and we observed in Figure 1, the 
multivariate R_statistic indeed suggested convergence of the chains at a later time 
than the univariate R_statistic. Both R statistics indicate that it is reasonable to use the 
last 50,000 samples of DREAM chains for estimating the posterior distribution. 



 

Figure 1. Univariate and multivariate Gelman Rubin   R̂  statistics (a) for the last 

1,000,000 iterations from ten independent AM runs and (b) for the last 100,000 
iterations from the DREAM simulation using ten chains. The values less than the 
threshold of 1.2 suggest chain convergence.   

 

Comment 4:   

Section 2.4: This section on DE-MC/DREAM has many similarities with published 
work; for instance, Vrugt (2016). Similar argumentation. I am not sure whether the 
authors should repeat all this or that a citation to this DREAM manual paper suffices 
at some places. 

Response: 

We thank Dr. Vrugt for the suggestions. Section 2.4 has been substantially reduced in 
the revised manuscript by providing related references.  

 

Comment 5:   

Case study 1: This study is a standard study that has been used in the DREAM 
literature. I think the authors should reflect this in their writing. They made some 
adaptations (50d, variance/covariance matrix of target), nevertheless, this type of 
study has been published before to illustrate DREAM and AM performance. I think 
the authors should properly discuss related examples in previous publications. As the 
authors seem to be very familiar with the DREAM body of work I do not think it is 
necessary that I provide references here. For example, Laloy and Vrugt (2012) do 
what the authors present in Figure 3 but then in substantially higher dimensions. 
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Response: 

We thank Dr. Vrugt for the suggestions and references. In the revised manuscript, the 
section presenting the three functional tests has been entirely deleted; instead, we 
wrote a new section called strategies and capabilities of AM and DREAM in sampling 
complex problems. In this new section, we summarized previous work of AM and 
DREAM performance. For example, we discussed the comparison results between 
AM and DREAM in Figure 5 of Vrugt (2016) and the capability of DREAM in 
sampling 25D trimodal distribution in Figure 3 of Laloy and Vrugt (2012).    

 

Comment 6:   

Overall the benchmark case studies illustrate performance of DREAM but similar 
studies have appeared in many other papers - not sure if they are needed in this work. 
Reference to those previous studies might suffice. This includes work in different 
fields, including the present field of application: biogeosciences. 

Response: 

We thank Dr. Vrugt for the suggestions. In the revised manuscript, the section 
presenting the three functional tests has been entirely deleted; instead, we wrote a new 
section to summarize previous work of AM and DREAM performance. Please see our 
response to above Comment 5.   

   

Comment 7:   

Make sure that the math notation in your figures (and labels) matches exactly symbols 
used in text. This is not the case presently, for instance, Figure 2, x_1 –> x should be 
italic. Fig. 4: R_statistic –> \hat{R} as in text, etc. 

Response: 

We thank Dr. Vrugt for the suggestions of rigorous notations. Now the math notations 
are consistent in the figures and texts. One example is the y-axis label of Figure 1 
shown above. 

 

Comment 8:   

The paper is technical - the main theme of this paper is a comparison of two different 
MCMC methods. This comparison is clear and results are fine. Yet, personally I 
would appreciate a little bit more focus on what we actually learn from using methods 
such as DREAM. For example a) the authors assume a Gaussian likelihood. We know 
that such likelihood function is often too simplistic, that is, the assumptions of 
normality, independence, and constant variance of the residuals can often not be 
justified. Indeed, a reader might wonder what the impact of these assumptions is on 
the final parameters and model behavior (behavior during evaluation period) b) The 
authors do not investigate the residual properties. Do they satisfy the residual 



assumptions made? For instance, a plot of residuals versus NEE (constant variance 
justified?), histogram of residuals (Gaussian?) and autocorrelation plot of residuals 
(no serial correlation?). c) Without an adequate check of the residuals we cannot 
conclude whether the parameters of DALEC are "correctly" estimated. Maybe a 
Gaussian likelihood is appropriate for the model and data at hand. I would suspect 
that a more flexible likelihood function, with nuisance variables, would be more 
appropriate. This would allow a better representation of the residual properties (tails, 
skew, nonnormality, heteroscedastic variance, etc.). d) With the use of a more 
complex likelihood function the bimodality of DALEC parameter tsmin might 
disappear. This is interesting by itself. I do suspect though that the performance of the 
AM algorithm will further deteriorate (in comparison to DREAM) if a likelihood 
function is used with nuisance variables; for example the generalized likelihood 
function of Schoups and Vrugt. This is part of the DREAM toolbox (MATLAB) and 
DREAM Suite (Windows). 

Response: 

These are excellent comments. We appreciate Dr. Vrugt for the suggestions. 

a) In the revised manuscript, we added a new section to justify the assumptions of the 
heteroscedastic, uncorrelated, Gaussian error model. In addition, we considered a 
more general likelihood function and discussed the influence of error model 
assumptions on parameter estimation and model performance.    

b) In the original manuscript, we assumed a heteroscedastic, uncorrelated, Gaussian 
error model. After model calibration, we analyzed the residuals and found that the 
residuals of the 5114 NEE data followed a Gaussian distribution but were correlated. 
As shown in Figure 2 below, the plot of residuals versus simulated NEE in Figure 2(a) 
justified the assumption of heteroscedastic variances; the density plot of residuals in 
Figure 2(b) justified the assumption of normality; but the autocorrelation plot of 
residuals in Figure 2(c) indicated that the residuals were correlated that violated the 
independence assumption. 

 

Figure 2. Residual analysis based on the heteroscedastic, uncorrelated, Gaussian error 
model.  

c) The residual analysis suggested that a heteroscedastic, correlated, Gaussian error 
model would be appropriate. In the revised manuscript, we considered this error 
model to construct the likelihood functions. Based on Schoups and Vrugt (2010), the 
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heteroscedasticity was explicitly accounted for using a linear model σt = σ0 + σ1Et, 
where σt represents the error standard deviation, σ0 and σ1 are parameters to be 
inferred from the data and Et is the mean value of NEE. The correlation was simulated 
by the pth order autoregressive model AR(p), and as suggested by Figure 2(c) the p 
can be up to 4. This new error model added 6 extra parameters besides the original 21 
TEM parameters, where σ0 and σ1 were related to the heteroscedastic error model and 
ϕ1, ϕ2, ϕ3, and ϕ4 were from the AR(4) correlation model. We set up a DREAM run to 
estimate the PPDFs of the 27 parameters and compared the results with those 
presented in the original manuscript using the uncorrelated error assumption. 

d) Figure 3 indicates that the six error model parameters were well identified. The 
heteroscedastic parameters σ0 and σ1 approach 1 and 0, respectively, which suggests 
that a constant variance may be reasonable. The nonzero ϕ1, ϕ2, ϕ3, and ϕ4 values 
indicate that a AR(4) correlation model is necessary. Figure 4 indicates that the new 
heteroscedastic, correlated, Gaussian error model is reasonable where all the a priori 
assumptions were justified. As it can be seen, the resulted residuals are randomly 
distributed around the zero line (Figure 4(a)), normally distributed as assumed (Figure 
4(b)), and no longer correlated after considering the AR(4) model.  

Figure 5 presents PPDFs of the 21 TEM parameters using the uncorrelated and 
correlated Gaussian likelihoods. We found that the two error model assumptions 
produced different PPDFs for most parameters. The most remarkable difference is 
that the bimodality of parameters tsmin and leaffall disappeared when using the 
correlated error assumption. As discussed in the original manuscript, the identified 
bimodality from the uncorrelated likelihood may be caused in part by the model 
structural error with an incomplete representation of the senescence process. The new 
likelihood function accounting for autocorrelation in the errors considers model error 
probabilistic structures (Lu et al., 2013), resulting in a flat PPDF of tsmin and 
uni-modal PPDF of leaffall. In addition, Figure 5 indicates that parameter uncertainty 
is larger in the correlated likelihood than the uncorrelated likelihood for most 
parameters. The reason can be that accounting for error correlation reduces the data 
information for calibrating parameters. Underestimation of parameter uncertainty 
using uncorrelated error model was also reported in Ricciuto et al., (2008), Schoups 
and Vrugt (2010), and Lu et al., (2013). 

The difference in the parameter PPDFs from the two likelihood functions results in 
different model performance as shown in Figure 6 where we took the simulations in 
October of 1995 as an example. Although the overall root mean squared errors were 
similar, but the simulations on a single day are different. This is not surprising, as 
MCMC is a Bayesian calibration and the calibration results depend on the choice of 
the likelihood function, mainly the assumptions of the error model. In this study, the 
heteroscedastic, correlated, Gaussian error model is more reasonable than the 
uncorrelated one.        

         



 
Figure 3. Estimated posterior probability density functions (PPDFs) of the six error 
model parameters.  

 

Figure 4. Residual analysis based on the heteroscedastic, correlated, Gaussian error 
model.  

 

Figure 5. Estimated marginal posterior probability density functions (PPDFs) of the 
21 TEM parameters using the uncorrelated and correlated Gaussian likelihoods. 
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Figure 6. Simulated NEE values based on the MAP estimates from the uncorrelated 
and correlated Gaussian likelihoods in October 1995. The Root Mean Square Error 
(RMSE) indicates that the two likelihood functions produced similar results. 

 

Comment 9:   

Indeed, I think some focus on the choice of likelihood function, and the properties of 
the residuals would significantly enhance this paper without too much additional work. 
Otherwise, the paper is merely an important demonstration for the need of robust 
MCMC methods in ecosystem modeling; simpler methods might get stuck in local 
minima. This is an important message for the ecosystem modeling community, yet 
similar studies/messages have appeared elsewhere, in other journals using different 
Earth system models. 

Response: 

We appreciate Dr. Vrugt for the suggestions. The residual analysis has been added in 
the revised manuscript. In addition, we considered a more general likelihood function 
and discussed its influence on parameter estimation and model performance. Please 
see our responses to the above Comment 8 for details.  

 

Comment 10:   

Note: Figure 8 is very nice. An excellent demonstration of the effect of inadequate 
inference of AM and consequence of bimodality. 

Response: 

We thank Dr. Vrugt for the positive assessment. 

 

Comment 11:   

A few editorial suggestions Line 143: ...at similar sites...? Line 144: In the absence of 
prior information, ... Equation (2) –> min should not be italicized. Line 180 –> many 
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studies have demonstrated this - way before Lu et al. (2014). In fact, this is 
justification why better MCMC methods have been developed in past two decades. 
Line 189 –> covariance matrix, C_t, should be bold. It is a matrix of size d x d, where 
d is number of elements of x, the parameters to be estimated Equation (3) –> C should 
be bold, and function Cov as well. Also no need to place s_d in front of e*I_d, as last 
term is just for small perturbation to avoid singularity of C_t Line 328: x_1 –> x 
should be italic. Please carefully check your math notation. scalars italic, vectors 
lower case bold, matrices, upper case bold. 

Response: 

We thank Dr. Vrugt for the suggestions. All the editorial typos have been corrected. 

 

Comment 12:   

Altogether, I would recommend a major revision. Comments should be relatively easy 
to address - but will require more work (investigate residual assumptions) and 
DALEC simulations (to test another likelihood function). 

Response: 

We appreciate Dr. Vrugt for the excellent suggestions and comments. The comments 
have been addressed item by item above in this response and all the suggestions have 
been considered in the revised manuscript.  

 


