
Replies to Comments on the AM method of Manuscript bg-2017-41 

I would like to express my sincere gratitude to Marko Laine, Jouni Susiluoto, Johanna 
Tamminen, and Heikki Haario for their insightful and constructive comments and suggestions. 
These are very useful comments to enhance the manuscript, and I will revise the manuscript 
accordingly. Below are my responses. 

 

Comment 1:   

In this comment we show that the authors may not have understood the AM algorithm 
properly or are using very non-optimal initial values and tuning parameters. In our tests, all 
the examples work without problems and out-of-the-box by the AM algorithm, and with only 
10% of the simulations performed in the article. We do not claim any superiority of AM 
compared to other methods, but just want to point out that there might be some problems in 
the authors code. The DREAM algorithm may be very good algorithm for the purpose stated, 
but this demonstration does not necessarily have to depend on implementing some other 
method quite poorly. 

Response: 

I appreciate the reviewers’ comments and suggestions. The AM code I used was downloaded 
from Dr. Heikki Haario’s website about two years ago named mcmcrun.zip. When using the 
AM and DREAM algorithms to simulate the numerical examples in the manuscript, I 
initialized both algorithms in the same way, except that AM also needs the initialization of 
the Gaussian proposal distribution besides the initialization of the first point in the chain. 
More details please see the test examples below.   

Comment 2:   

The authors claim, that "AM can be unreliable for estimating the PDFs of the parameters that 
exhibit strong correlation". We have not seen such behavior, and would be happy to see test 
cases to support the claim. The authors may be mixing SCAM algorithm with AM, of which 
the first one as a single component method does indeed have a well-documented problem 
with strong correlations. 

Response: 

I had the claim based on the results of Case study I in the manuscript. The test function is a 
50D Gaussian distribution function with correlation coefficients of 0.5, not very strong 
correlations between the parameters. But based on my test results, the standard deviations of 
and the covariance between some parameters were not able to converge to the correct values 
in 1e5 iterations as shown in the manuscript and the following Figure 1. In the test, the initial 
state of the chain was drawn from a uniform distribution with range [-50, 50]. When I started 
the chain from value of zero, the AM algorithm can converge to the correct statistics, as the 
reviewers presented in their comment file. On the other hand, I initialized DREAM algorithm 
from the same uniform distribution U[-50, 50], the DREAM can converge to the correct 
values within the same number of function evaluations.       

 



Comment 3:   

It seems, that the authors were not able to perform the relatively simple test cases with the 
AM algorithm properly. Because of this, there is no reason to believe that the results from the 
simulations with the DALEC model would appropriately portray the capabilities of AM. 
While the DREAM algorithm may be superior to AM/DRAM in some settings, we believe 
that the work presented here does not support such a claim. 

Response: 

I am not sure what the reviewers exactly meant of the word “properly”. If the reviewers 
meant that we did not use a correct AM code, I would say that the AM code used for the 
manuscript was downloaded from Dr. Heikki Haario’s website and it seems now it has an 
updated version. In the following I presented the AM results by using the AM code provided 
by the reviewers and the results were similar as those in the manuscript. If the reviewers 
meant that we did not implement the AM algorithm with suitable initialization of the start 
point and proposal distribution, I would say that in reality with little information about the 
underlying target distributions, it is very difficult to choose suitable initializations. In the 
numerical examples of the manuscript, both AM and DREAM algorithms used the same 
initialization of the start points.  

Comment 4: 

The presented examples are chosen to imitate the test cases in the manuscript. However, as 
the authors for some reason do not describe them fully, the functions are only our best 
guesses. In the manuscript, 106 MCMC iterations are used. Below, we use only 105, as we get 
convergence with it in all the test cases. We list the complete Matlab commands to generate 
the chains. A full code, including the plotting commands to generate the figures is included in 
the MCMC matlab toolbox cited above. 

Response: 

We used the MATLAB code provided by the reviewers at 
http://helios.fmi.fi/~lainema/mcmc/ to implement the three test cases and presented the 
results below along with the complete Matlab commands. 

Test I: 50 dimensional Gaussian 

In the manuscript, we explicitly described the 50D Gaussian function as follows: “The test 
function is a 50 dimensional (50 parameters) multivariate Gaussian distribution with the 
mean at the zeros. The covariance matrix was constructed such that the variance of the ith 
dimension is equal to 0.1×i×i and the covariance of ith and jth variables is calculated as 
0.05×i ×j. Both the AM and DREAM located the initial states of the chains from a uniform 
distribution x0∈U[−50, 50]50.”  

We used the following implementation and got the Figure 1.   

############## Implementation of Test I ############## 

nsimu	=	100000;	 	 %	number	of	simulations	
npar	=	50;	 	
% Construct the covariance matrix 



A	=	0.5	*	eye(npar)	+	0.5	*	ones(npar);	
for	i	=	1:npar	
	 	 	 	 for	j	=	1:npar	
	 	 	 	 	 	 	 	 Sig(i,j)	=	A(i,j)	*	(0.1*i	*	j);	
	 	 	 	 end	
end	
ci	=	inv(Sig);	
model.ssfun	=	@(x,d)	x(:)'*ci*x(:);	
% Initial value is from U[-50, 50] 

a=-50;	b=50;	
par0	=	a	+	(b-a).*rand(1,npar);	
options.nsimu	=	nsimu;	
options.method	=	'am';	
options.qcov	=	eye(npar)/npar*2.4^2.;	
options.adaptint	=	1000;	
for	i=1:npar,	params{i}	=	{sprintf('x_{%d}',i),	par0(i)};	end	
[results,chain]	=	mcmcrun(model,[],params,options);	

 

Figure 1: Convergence of 50D Gaussian distribution based on the AM algorithm. The true 
values of the four statistics are indicated at the right hand side of the figure. 

The results in Figure 1 were similar to those presented in the manuscript. Please note that 
when I used the same Matlab commands in the reviewers’ comment file, I can get the similar 
figure as the one of the reviewers. But the different results between the reviewers and the 
manuscript were from different AM implementations of a different test function: (1) the 
reviewers used a different Gaussian distribution; and (2) the reviewers initialized the AM 
algorithm from a different start point.   
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Test II: 10 dimensional Cauchy distribution 

I was afraid that the 10D Cauchy function implemented in the reviewers MCMC simulation 
was not right (could be a typo). Based on Wikipedia, the -2*log of the 10D Cauchy function 
is proportional to (1+10)*log(1+(x-u)TE-1(x-u)), here we took the mean u=0, and the 
covariance matrix E as the identity matrix, so it can be simplified as 
(1+10)*log(1+sum(x.^2)), not the 2*sum(log(1+x.^2) in the reviewers’ comment file.    

We used the following implementation and got the Figure 2.   

############## Implementation of Test II ############## 

nsimu	=	100000;	 	 %	number	of	simulations	
npar	=	10;	
model.ssfun	=	@(x,d)	(1+10)*log(1+sum(x.^2));	
a=-10;	b=10;	
par0	=	a	+	(b-a).*rand(1,npar);	
options.nsimu	=	nsimu;	
options.method	=	'am';	
for	i=1:npar,	params{i}	=	{sprintf('x_{%d}',i),	par0(i)};	end	
[results,chain]	=	mcmcrun(model,[],params,options);	
 

 

Figure 2: Approximated (histogram) and actual (red curve) marginal posterior distributions of 
one dimension (x1) of the 10D Cauchy function based on three AM independent runs. 

I implemented three AM runs using the above same Matlab commands and got three different 
results as presented in Figure 2, where the first plot was similar to the one in the manuscript, 
and the third plot was similar to the one in the reviewers’ comment file. Base on the test 
results, it seems that AM can sample the 10D Cauchy function, but not always, as sometimes 
it may produce the incorrect results as shown in the first two plots in Figure 2.  

Test III: 3 modes 4 dimensional mixed Gaussian 

I agree with the reviewers that no method will find all the modes if they are too distant and 
there is no prior information about the locations. And I also agree with the reviewers that 
DRAM and AM can be made to sample multi-modal distributions with suitable initial values. 
The incorrect sampling results of AM in the manuscript may be caused by the unsuitable 
initialization, but in reality we have little information about the suitable initialization for a 
specific problem, as discussed in the manuscript.   
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I agree with Dr. Jasper Vrugt in his comment that AM algorithm may have difficulty in 
sampling multimodal distributions with far-disconnected modes and the problem could 
become more difficult with increasing dimensionality. Dr. Vrugt gave a one-dimensional, 
two-modal distribution example from Figure 5 of Vrugt (2016). Below I showed a 
10-dimensional, three-modal example. The example is the same with the case study III in the 
manuscript but has 10 dimensions. The AM was implemented with the following commands: 

############## Implementation of Test III ############## 

nsimu	=	100000;	 	 %	number	of	simulations	
npar	=	10;	
mu1	=	-8*ones(1,npar);	
mu2	=	zeros(1,npar);	
mu3	=	8*ones(1,npar);	
sigs	=	ones(1,npar);	
w	=	[0.1,	0.3,	0.6];	 	
model.ssfun=	@(x,d)	-2*log(w(1)*mvnorpf(x,mu1,sigs)	+	w(2)*mvnorpf(x,mu2,sigs)	+	...	
w(3)*mvnorpf(x,mu3,sigs));	
options.nsimu	=	nsimu;	
options.method	=	'dram';	
options.qcov	=	eye(npar)*5^2;	
options.adascale	=	2.4	/	sqrt(npar)	*	5;	
options.drscale	=	5;	
% 3 AM runs with initial value of -5,0,5, respectively 
for	i=1:npar,	params{i}	=	{sprintf('x_{%d}',i),	0};	end	
[results,chain]	=	mcmcrun(model,[],params,options);	

 

Figure 3. Approximated (histogram) and actual (red curve) marginal posterior distributions of 
one dimension (x1) of the 10D, three-modal Gaussian function based on three AM runs. 

I implemented three AM runs with initial values of -5, 0, 5, respectively and got three 
different results as presented in Figure 3. The results indicated that AM may have some 
difficulties in sampling the multi-modes for a relatively high-dimensional problem. On the 
other hand, Laloy and Vrugt (2012) demonstrated that DREAM can successfully sample the 
25-dimensional, three-modal Gaussian function with the two neighboring modes having a 
separation of 10 units. 
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Comment 5: 

We also noticed that in the manuscript there are some mix-ups with the references related to 
various versions of adaptive MCMC algorithms. Below are the correct references and other 
potentially interesting references. 

Response: 

I appreciate the reviewers for providing the very useful and helpful references. The provided 
references will be added in the revised manuscript and given the right citations. 

 

Laloy, E., and J.A. Vrugt: High-dimensional posterior exploration of hudrologic models 
using multiply-try DREAM(zs) and high-performance computing, Water resour. Res., 48, 
W01526, 2012. 

Vrugt, J.A.: Markov chain Monte Carlo simulation using the DREAM software package: 
Theory, concepts, and MATLAB implementation, Environmental modeling & Software, 75, 
273-316, 2016. 
 
Once again, I appreciate the reviewers for the excellent comments and suggestions to 
improve the manuscript; I will revise the manuscript accordingly based on the suggestions. 
 

Sincerely yours, 
Dan Lu 

 


