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Abstract
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference
implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive
framework to estimate model parameters and associated uncertainties using their posterior
distributions. The effectiveness and efficiency of the method strongly depend on the MCMC
algorithm used. In this work, a Differential Evolution Adaptive Metropolis (DREAM) algorithm
was used to estimate posterior distributions of 21 parameters for the data assimilation linked
ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data
collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The
calibration of DREAM resulted in a better model fit and predictive performance compared to the
popular Adaptive Metropolis (AM) scheme. Moreover, DREAM indicated that two parameters
controlling autumn phenology have multiple modes in their posterior distributions while AM
only identified one mode. The application suggests that DREAM is very suitable to calibrate
complex terrestrial ecosystem models, where the uncertain parameter size is usually large and
existence of local optima is always a concern. In addition, this effort justified the assumptions of
the error model used in Bayesian calibration and investigated their influence on parameter
estimation and model performance.
Keywords: Bayesian calibration, MCMC sampling, AM algorithm, DREAM algorithm, DALEC

model, multimodality, terrestrial ecosystem models.
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1 Introduction

Prediction of future climate heavily depends on accurate predictions of the concentration of
carbon dioxide (CO) in the atmosphere. Predictions of atmospheric CO, concentrations rely on
terrestrial ecosystem models (TEMs) to simulate the CO, exchange between the land surface and
the atmosphere. TEMs typically involve a large number of biogeophysical and biogeochemical
processes, the representation of which requires knowledge of many process parameters. Some
parameters can be determined directly from experimental and measurement data, but many are
also estimated through model calibration. Estimating these parameters indirectly from
measurements (such as the net ecosystem exchange (NEE) data) is a challenging inverse
problem.

Various parameter estimation methods have been applied to TEMs. For an overview, one
can refer to the OptIC (Optimization InterComparison) project (Trudinger et al., 2007) and the
REFLEX (REgional FLux Estimation eXperiment) project (Fox et al., 2009). In classical
optimization based approaches, inverse problems with a large number of parameters can often be
ill-posed in that the solution may not be unique or even may not exist (O’Sullivan, 1986). As an
alternative approach, the Bayesian framework provides a comprehensive solution to this
problem. In Bayesian methods, the model parameters are treated as random variables and their
posterior probability density functions (PPDFs) represent the estimation results. The PPDF
incorporates prior knowledge of the parameters, mismatch between model and observations, and
observation uncertainty (Lu et al., 2012). Thus, compared to other approaches in inverse
problems, Bayesian inference not only estimates model parameters, but also quantifies associated

uncertainty using a full probabilistic description.
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Two types of Bayesian methods are widely used in parameter estimation of TEMs,
variational data assimilation (VAR) methods (Talagrand and Courtier, 1987) and Markov chain
Monte Carlo (MCMC) sampling. VAR methods are computationally efficient, however, they
assume that the prior parameter values and the observations follow a Gaussian distribution, and
they require the model to be differentiable with respect to all parameters for optimization. In
addition, VAR methods can only identify a local optimum and approximate the PPDF by a
Gaussian function (Rayner et al, 2005; Ziehn et al., 2012). In contrast, MCMC sampling makes
no assumptions about the structure of the prior and posterior distributions of model parameters or
observation uncertainties. Moreover, the MCMC methods, in principle, can converge to the true
PPDF with an identification of all possible optima. Although it is more computationally intensive
than VAR approaches, MCMC sampling is being increasingly applied in the land surface
modeling community (Dowd, 2007; Zobitz et al, 2011).

One widely used MCMC algorithm is adaptive Metropolis (AM) (Haario et al. 2001). For
example, Fox et al. (2009) applied the AM in their comparison of different algorithms for the
inversion of a terrestrial ecosystem model; Jarvinen et al. (2010) utilized the AM for estimation
of ECHAMS climate model closure parameters; Hararuk et al. (2014) employed the AM for
improvement of a global land model against soil carbon data; and Safta et al. (2015) used the
AM to estimate parameters in the data assimilation linked ecosystem carbon model. The AM
algorithm uses a single Markov chain that continuously adapts the covariance matrix of a
Gaussian proposal distribution using the information of all previous samples collected in the
chain so far (Haario et al., 1999). As a single-chain method, AM has difficulty in traversing
multi-dimensional parameter space efficiently when there are numerous significant local optima;

and AM can be inefficient for estimating the PPDFs that exhibit strong correlations, as correlated
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dimensions are better to be updated together (Vrugt, 2016). In addition, the AM algorithm uses a
multivariate Gaussian distribution as the proposal to generate candidate samples and evolve the
chain. AM, therefore, is particularly suitable for Gaussian shaped PPDFs, but it may not
converge properly to the distributions with multiple modes. Moreover, AM suffers from
uncertainty about how to initialize the covariance of the Gaussian proposal. Poor initialization of
the proposal covariance matrix results in slow adaptation and inefficient convergence.

The Gaussian proposal is also widely used in non-AM MCMC studies that involve TEMs.
For example, Ziehn et al. (2012) used the Gaussian proposal for the MCMC simulation of the
BETHY model (Knorr and Heimann, 2011) and Ricciuto et al. (2008, 2011) utilized the
Gaussian proposal in their MCMC schemes to estimate parameters in a terrestrial carbon cycle
model. The single-chain and Gaussian-proposal MCMC approaches have limitations in
sufficiently exploring the full parameter space and share slow convergence in sampling the non-
Gaussian shaped PPDFs and thus may end up with a local optimum with inaccurate uncertainty
representation of the parameters. Therefore, this poses a question on whether the AM and the
widely used MCMC algorithms with Gaussian proposal generate a representing sample of the
posterior distribution of the underlying model parameters. While we expect that computationally
expensive sampling methods for parameter estimation yield a global optimum with an accurate
probabilistic description, in reality, we may in many cases obtain a local optimum with an
inaccurate PPDF due to the limitations of these algorithms.

In this study, we employ the differential evolution adaptive Metropolis (DREAM)
algorithm (Vrugt et al., 2008, 2009a; Lu et al., 2014) for an accurate Bayesian calibration of an
ecosystem carbon model. The DREAM scheme runs multiple interacting chains simultaneously

to explore the entire parameter space globally. During the search, DREAM does not rely on a
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specific distribution, like the Gaussian distribution used in most MCMC schemes, to move the
chains. Instead, it uses the differential evolution optimization method to generate the candidate
samples from the collection of chains (Price et al., 2005). This feature of DREAM eliminates the
problem of initializing the proposal covariance matrix and enables efficient handling of complex
distributions with strong correlations. In addition, as a multi-chain method, DREAM can
efficiently sample multimodal posterior distributions with numerous local optima. Thus, the
DREAM scheme is particularly applicable to complex and multimodal optimization problems.
Recently, Post et al. (2017) reported a successful application of DREAM in estimation of the
complex Community Land Model (CLM) using one-year records of NEE observations. They
found that the posterior parameter estimates were superior to their default values in the ability to
track and explain the measured NEE data.

While multimodality is a potential feature of parameters in complex models (Kinlan and
Gaines, 2003; Stead et al., 2005; Thibault et al, 2011; Zhang et al., 2013), its existence has not
been well documented in terrestrial ecosystem modeling due to the limitations of methods that
have been applied in most previous studies. Here we apply DREAM and AM to a TEM to
estimate the parameter distributions based on a set of synthetic data and real measurement data.
In both cases, we estimate the PPDFs of 21 process parameters in the data assimilation linked
ecosystem carbon (DALEC) model. The objectives of this study are to (1) present a statistically
sound methodology to solve the parameter estimation problems in complex TEMs and to
improve the model simulation; (2) characterize parameter uncertainty in detail using accurately
sampled posterior distributions; (3) investigate the effects of model calibration methods on

parameter estimation and model performance; and (4) explore the influence of the likelihood
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function on the model calibration results. This work should provide ecological practitioners with
valuable information on model calibration and understanding of the TEMs.

In the following Section 2, we first briefly summarize the general idea of Bayesian
calibration and describe the AM and DREAM algorithms. Then in Section 3, we apply both
algorithms to the DALEC model in a synthetic and a real-data study. Next in Section 4, we
discuss the influence of the likelihood function on parameter estimation and model performance.
Finally in Section 5, we close this paper with our main conclusions.

2 Bayesian calibration and MCMC simulation
2.1 Bayesian calibration

Bayesian calibration of a model states that the posterior distribution p(x/D) of the model
parameters X, given observation data D, can be obtained from the prior distribution p(x) of x and
the likelihood function L(x|D) using Bayes’ theorem (Box and Tiao, 1992) via,

p(x|D) =cL(x|D)p(x) (D
where c is a normalization constant. The prior distribution represents the prior knowledge about
the parameters. It is usually inferred from information of previous studies at similar sites or from
expert judgment. In the absence of prior information, a common practice is to use uninformative
priors within relatively wide parameter ranges such that the prior distribution has little influence
on the estimation of the posterior distribution.

The likelihood function measures the model fits to the observations. Selecting a likelihood
function suitable to a specific problem is still under study (Vrugt et al., 2009b). A commonly
used likelihood function is based on the assumption that the differences between the model
simulations and observations are multivariate normally distributed, leading to a Gaussian

likelihood such as the work of Fox et al. (2009), Hararuk et al. (2014), and Ricciuto et al. (2008,
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2011). In this work, we also use the Gaussian likelihood, with heteroscedastic and uncorrelated
variances that are evaluated from the provided daily observation uncertainties. The assumptions
of normality and independence are investigated by the residual analysis. In addition, we explore
the influence of different choices of the likelihood function on the parameter estimation and
model performance. The effect of data correlations on the inferred parameters was also assessed
in our previous study (Safta et al., 2015).

2.2 MCMC sampling

In most environmental problems, the posterior distribution cannot be obtained with an
analytical solution and is typically approximated by sampling methods such as MCMC. The
MCMC method approximates the posterior distribution by constructing a Markov chain whose
stationary distribution is the target distribution of interest. As the chain evolves and approaches
the stationary, all the samples after chain convergence are used for posterior distribution
approximation, and the samples before convergence, which are affected by the starting states of
the chain, are discarded.

The well-constructed MCMC schemes have been theoretically proven to converge to the
appropriate target distribution p(x|D) under certain regularity conditions (Robert and Casella,
2004, p.270). However, in practice the convergence rate is often impractically slow, which
suggests that within a limited finite number of iterations, some inefficient schemes may result in
an unrealistic distribution. The inefficiency is typically resulted from an inappropriate choice of
the proposal distribution used to generate the candidates. Either wide or narrow proposal
distribution can cause inefficient chain mixing and slow chain convergence (Geyer 1992;
Tierney 1994). Hence, the definition of the proposal distribution is crucial and determines the

efficiency and the practical applicability of the MCMC simulation.
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2.3 AM algorithm

The adaptive Metropolis (AM) algorithm is a modification to the standard Metropolis
sampler (Haario et al., 2001). The key feature of the AM algorithm is that it uses a single
Markov chain that continuously adapts to the target distribution via its calculation of the proposal
covariance using all previous samples in the chain. The proposal distribution employed in the
AM algorithm is a multivariate Gaussian distribution with means at the current iteration x; and a
covariance matrix C, that is updated along the chain evolution. To start the chain, the AM first
selects an arbitrary, strictly positive definite initial covariance Cy according to the best prior
knowledge that may be very poor. Then after a certain number of iterations 7, the covariance is
updated based on the samples gained so far.

To apply the AM algorithm, an initial covariance Cy must be defined. The choice of Cy
critically determines the success of the algorithm. For example, in an extreme case where the
variance of Cy is so large that no proposals are accepted within an iteration, and that the chain
remains at the initial state without any movement. This situation continues as the chain evolves,
and the use of updated C; makes no difference because the variances of C,are essentially zero
since all the previous samples have the same values. Finally, the AM sampler would get stuck in
its initial state without exploring the parameter space. To alleviate this problem and start the AM
fairly efficiently, we can define Cy based on some prior knowledge about the target distribution.
When such information is not available, which is usually the case for complex models, some test
simulations are needed. For example, Hararuk et al. (2014) inferred C from a test run of 50,000
community land model simulations in estimating the PPDFs of soil carbon related parameters.

The construction of C; is another critical influence on the AM performance. In practice,

some adjustments on C;are necessary to improve the AM efficiency. For example, when the
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chain does not have enough movement after a large number of iterations, we can shrink C, by
some constant to increase acceptance of new samples, and vice versa. The techniques used in the
formulation of Cypand C,improve the AM efficiency in some degree for some problems. But, the
computational cost spent on applying these techniques is not negligible (such as the test runs
used for determining the Cy) and some strategies require some artificial controls (such as manual
adjustment of the scaling factor of C,;). Moreover, determining a reasonable Cyand C; become
difficult for high-dimensional problems.

To improve efficiency in high-dimensional case, Haario et al. (2005) extended the standard
AM method to componentwise adaptation. This strategy applies the AM on each parameter
separately. The proposal distribution of each component is a 1D normal distribution, which is
adapted in a similar manner as in the standard AM algorithm, but the componentwise adaptation
does not work very well for distributions with a strong correlation. Safta et al. (2015) applied an
iterative algorithm to break the original high-dimensional problem into a sequence of steps of
increasing dimensionality, with each intermediate step starting with an appropriate proposal
covariance based on a test run. This technique provided a rather reasonable proposal distribution,
but the computational cost used to define the proposal was rather high.

AM is a single-chain method. As a single chain, it may suffer from some difficulties in
judging the convergence. Sometime the most powerful diagnostics cannot guarantee that the
chain has converged to the target distribution (Gelman and Shirley, 2011). One solution to

alleviate the problem is running multiple independent chains with widely dispersive starting
points and then using the diagnostics for multi-chain schemes, such as the univariate R statistic

(Gelman and Rubin, 1992) and the multivariate R statistic (Brooks and Gelman, 1998), to check

convergence. When the chain has a good mixing and all the chains converge to the same PPDF,

10



222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

the R value is close to one, and in practice the threshold of 1.2 is usually used for convergence

diagnosis. On the other hand, when the chain does not mix well and different chains converge to

the different portion of the target distribution, it is unlikely that the R will reach the value of 1.2
required to declare convergence. Generally, this situation suggests that multiple modes exist in
the target PPDF and the MCMC algorithm is unable to identify all the modes.
2.4 DREAM algorithm

The DREAM algorithm is a multi-chain method (Vrugt, 2016). Multi-chain approaches use
multiple chains running in parallel for global exploration of the posterior distribution, so they
have several desirable advantages over the single-chain methods, particularly when addressing
complex problems involving multimodality and having a large number of parameters with strong

correlations. In addition, the application of multiple chains allows utilizing a large variety of

statistical measures to diagnose the convergence including the R statistics mentioned above.
DREAM uses the Differential Evolution Markov Chain (DE-MC) algorithm (ter Braak,
2006) as its main building block. The key feature of the DE-MC scheme is that it does not
specify a particular distribution as the proposal, but proposes the candidate points using the
differential evolution method based on current samples collected in the multiple chains. Thus,
DE-MC can apply to a wide range of problems whose distribution shapes are not necessarily
similar to the proposal distribution, and it also removes the requirement of initializing the
covariance matrix as in AM. In addition, the DE-MC can successfully simulate the multimodal
distributions, because it directly uses the current location of the multiple chains to generate

candidate points, allowing the possibility of direct jumps between different modes.

11
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The DREAM algorithm maintains the nice features of the DE-MC, but greatly accelerates
the chain convergence. More information about the DREAM algorithm was presented in Vrugt et
al. (2008, 2009a), Laloy and Vrugt (2012), Lu et al. (2014), and Vrugt (2016).

2.5 Strategies and capabilities of AM and DREAM in sampling complex problems

Since multimodality is a potential feature of complex problems including terrestrial
ecosystem models (Stead et al., 2005; Thibault et al, 2011), it is important to understand the
strategies of AM and DREAM and to investigate their capabilities in sampling the multimodal
distributions.

The AM sampler is typically tuned for distributions with a single mode. For distributions
with closely connected modes, AM can work well with suitable initial values. On the other hand,
for distributions consisting of disconnected modes with between regions of low probability, even
with a reasonably wide covariance matrix the AM could have a slow convergence and end up
with only one mode (e.g., Figure 5 in Vrugt, 2016). To remedy this problem, AM needs an
overly dispersed Gaussian proposal with large initial variances to allow it to transit between the
different modes. But this may result in a very low acceptance rate as many of the jumps will fall
outside the target distribution with nearly zero densities. To alleviate this problem, Haario et al.
(2006) proposed the DRAM algorithm that combines the delayed rejection (DR) with the AM.
The DR algorithm allows for a very expansive search at the beginning by using a large
covariance matrix of the proposal, and then the proposal covariance is reduced by a freely chosen
scale factor if the parameters do not have significant movement. By creating multiple proposal
stages, the DRAM enables an extensive search and meanwhile alleviates the overshooting
problem and improves the acceptance rate. However, as dimensionality increases, the

multimodality becomes more difficult for the algorithms using the Gaussian proposal because it

12



266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

is highly likely different dimensions have different variances and a constant scaling factor can
only shrink the covariance simultaneously.

In contrast, DREAM is designed for sampling high-dimensional and multimodal problems
by running multiple different chains simultaneously for global exploration. It automatically tunes
the scale and orientation of the proposal in randomized subspaces during the search (Vrugt et al.,
2009a). As DREAM directly uses the current location of the multiple chains, instead of the
covariance of the Gaussian proposal, to generate candidate points, it enables direct jumps
between different modes (including the relatively far disconnected modes) as long as the initial
samples of the chains are widely distributed over the parameter space. Laloy and Vrugt (2012)
demonstrated that DREAM can successfully sample a 25-dimensional trimodal distribution with
equal separation of 10 units between modes. However, for the same problem with the same
number of function evaluations, AM and DRAM converged to only one mode. Note that to
sample a distribution with many modes, one needs to have some prior information about their
rough locations; otherwise no methods can guarantee finding all the modes, especially when the
distance between the modes is very large and not a constant.

3 Application to a terrestrial ecosystem model

In this section, we applied the DREAM algorithm to the data assimilation linked
ecosystem carbon (DALEC) model to estimate the posterior distributions of its parameters. In
comparison, the AM algorithm was also applied. DALEC is a relatively simple carbon pool and
flux model designed specifically to enable parameter estimation in terrestrial ecosystems. We
used DALEC to evaluate the performance of AM and DREAM in model calibration; we
compared their accurate simulations of the parameter PPDFs, model’s goodness-of-fit, and

predictive performance of the calibrated models. Previous studies based on MCMC methods that
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used Gaussian proposals have not reported multimodality in the marginal PPDFs of the model
parameters, so it is important to know whether the parameters have multimodality; if the
multimodality exists, we assess whether or not DREAM can identify the multiple modes and
improve the calibration results and thus the predictive performance.

3.1 Description of the model and parameters for optimization

The DALEC v1 model is used here (Williams et al., 2005; Fox et al., 2009) with some
structural modifications (Safta et al., 2015). DALEC consists of six process-based submodels
that simulate carbon fluxes between five major carbon pools: three vegetation carbon pools for
leaf, stem, and root; and two soil carbon pools for soil organic matter and litter. The fluxes
calculated on any given day impact carbon pools and processes in subsequent days.

The six submodels in DALEC are photosynthesis, phenology, autotrophic respiration,
allocation, litterfall and decomposition. Photosynthesis is driven by the aggregate canopy model
(ACM) (Williams et al., 2005), which itself is calibrated against the soil-plant-atmosphere model
(Williams et al., 1996). DALEC v1 was modified to incorporate the phenology submodel used in
Ricciuto et al. (2011), driven by six parameters. This phenology submodel controls the current
leaf area index (LAI) proportion of the seasonal maximum LAI (laimax). Spring LAI growth is
driven by a linear relationship to growing degree days (gdd), while senescence and LAI loss are
driven by mean air temperature. To simplify our model structure, senescence and LAI loss are
considered to occur simultaneously. In reality, leaves may still be present on the trees but
photosynthetically inactive due to the loss of chlorophyll. Here, this inactive LAI is considered
to have fallen and is added to the litter pool. To further reduce model complexity, the plant
labile pool in DALEC v1 was removed and a small portion of stem carbon is instead removed to

support springtime leaf growth each year. The six phenology parameters are a threshold for leaf
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out (gdd_min), a threshold for maximum leaf area index (gdd max), the temperature for leaf fall
(tsmin), seasonal maximum leaf area index (/aimax), the rate of leaf fall (leaffall), and leaf mass
per unit area (/ma), respectively. Given the importance of maintenance respiration in other
sensitivity analyses (Sargsyan et al., 2014), we expanded the autotrophic respiration submodel to
explicitly represent growth respiration (as a fraction of carbon allocated to growth) and
maintenance respiration with the base rate and temperature sensitivity parameters.

So for the first three plant submodels, deciduous phenology has six parameters; ACM
shares one parameter, /ma, with the deciduous phenology and employs two additional
parameters, leaf C:N ratio (which is fixed at a constant of 25 in the simulation) and
photosynthetic nitrogen use efficiency (nue); the autotrophic respiration model computes the

growth and maintenance respiration components and is controlled by three parameters, the

growth respiration fraction (rg_frac), the base rate at 25°C (br_mr), and temperature sensitivity
for maintenance respiration (¢g/0_mr).

The allocation model partitions carbon to several vegetation carbon pools. Leaf allocation
is first determined by the phenology model, and the remaining available carbon is allocated to
the root and stem pools depending on the fractional stem allocation parameter (astem). The litter
fall model redistributes the carbon content from vegetation pools to litter pools and is based on
the turnover times for stem (zstem) and root (¢troot). The last submodel is a decomposition model
that simulates heterotrophic respiration and the decomposition of litter into soil organic matter

(SOM). This model is driven by the temperature sensitivity of heterotrophic respiration (g0 _hr),

the base turnover times for litter (br_lif) and SOM (br_som) at 25°C, and by the decomposition

rate (dr) from litter to SOM.
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Model parameters are summarized in Table 1. These parameters were grouped according
to the six submodels that employ them, except for /ma that impacts both the deciduous leaf
phenology and ACM. The nominal values and numerical ranges for these parameters were
designed to reflect average values and broad uncertainties associated with the temperate
deciduous forest plant functional type that includes Harvard Forest (Fox et al., 2009; White et al.,
2000; Ricciuto et al., 2011). Observed air temperature, solar radiation, vapor pressure deficit, and
CO2 concentration were used as boundary conditions for the model.

In order to reduce computational time, we employed transient assumptions for running
DALEC. That is, for any given set of parameter values, DALEC was run one cycle only for 15
years between 1992-2006 where observation data are available. Under this assumption, four
additional parameters were used to describe the initial states of two vegetation carbon pools
(stemc_init and rootc_init) and the two soil carbon pools (/itc_init and somc_init), as also
summarized in Table 1. Thus, a total of 21 parameters were considered and estimated in this
study. To avoid the influence of prior distributions on the investigation of the posteriors
estimated by AM and DREAM, uniform priors were used for all parameters with the ranges
specified in Table 1.

3.2 Calibration data

The calibration data consist of the Harvard Forest daily net ecosystem exchange (NEE)
values, which were processed for the NACP site synthesis study (Barr et al., 2013) based on flux
data measured at the site (Urbanski et al., 2007). The daily observations cover a period of 15
years starting with the year 1992 and part of the data in the year 2005 is missing. Hill et al.
(2012) estimated that daily NEE values followed a normal distribution, with standard deviations

estimated by bootstrapping half-hourly NEE data (Papale et al., 2006; Barr et al., 2009). These
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standard deviations have values between 0.2 and 2.5, with the mean value about 0.7. Total 14
years 5114 NEE data (years from 1992 to 2004 and year 2006) were considered here for model
calibration and their corresponding standard deviations were used to construct the
heteroscedastic, diagonal covariance matrix of the Gaussian likelihood function by assuming the
data were uncorrelated. In Section 4, we examine the independent, Gaussian error assumption
using residual analysis and investigate the influence of error models on parameter estimation and
model performance.

3.3 Synthetic study with pseudo data

We first applied AM and DREAM to a synthetic case to evaluate their capability in
parameter estimation. The same periods of daily NEE data were generated with the nominal
parameter values in Table 1. This synthetic data for calibration was then corrupted with Gaussian
errors having means at zero and the same standard deviations with the observed NEEs.

DREAM launched ten parallel chains starting at values randomly drawn from the
parameter prior distributions. AM used one chain and the chain has the same initialization with
DREAM. In addition, AM also requires the initialization of the covariance matrix of its Gaussian
proposal. We first drew some samples from the parameter space and computed the initial
covariance. However, this initialization caused a slow convergence of AM with an extremely
small acceptance rate (about 0.01% after 1x10° iterations). The reason could be that for this
rather high-dimensional problem with very diverse parameter ranges, the candidate samples are
easily outside the target distribution when they are drawn from the Gaussian proposal. To
facilitate the AM convergence, we started the chain from the true parameter values and
constructed the initial covariance from samples around the true values. This setup can only be

done in a synthetic case with information of true parameters available; practically it needs some
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test runs to get information about the underlying distributions. In addition, this initialization of
AM makes an unfair comparison with DREAM that launched chains blindly, but on the other

hand, it suggests DREAM’s ease of use and setup, its robustness and efficiency.

Chain convergence was assessed via the Gelman Rubin R statistics. Figure 1 presents the
estimated marginal PPDFs of the 21 parameters from both AM and DREAM samples after
convergence along with their true values. The two algorithms produce very similar distributions
that both enclose the true values very well. All the parameters show one mode in their PPDFs
and the true values are located or close to the modes. The results indicate that for this uni-modal
problem both algorithms can successfully infer the underlying parameter distributions, although
AM needs a proper initialization for its convergence. To further evaluate the calibration
accuracy, we investigate the sum of squared weighted residuals (SSWR) for the optimal
parameters. If the parameter optimization is reasonable, the calculated SSWR should follow a
chi-squared distribution with its mean equal to the k£ degrees of freedom, i.e., the number of
calibration data minus the number of calibrated parameters, in this study £ = 5114-21 = 5093.
The resulted SSWR is 5044 close to the mean value 5093 of the chi-squared distribution. This
once again suggests the accuracy and reasonability of our parameter estimation.

In addition, Figure 1 indicates that about half of the parameters are well constrained, when
we define a well-constrained parameter as its posterior distribution occupying at most half the
range of the prior distribution (Keenan et al., 2013). This result is consistent with some of
previous studies on DALEC calibration using NEE data alone. For example, in the synthetic
study of Fox et al. (2009), their MCMC simulation (M1) showed that 16 of 17 parameters were
well constrained. Similarly, the synthetic study in Hill et al. (2012) indicated that 20 of 23

parameters had their 90% confidence intervals occupy less than half of the prior range.
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Whether a parameter is identifiable depends on the model, model parameters, and the
calibration data. When the parameter related processes are necessary to simulate the model
outputs whose corresponding observation data are sensitive to the parameters, the parameters can
usually be identified and sometimes well constrained. For example, Keenan et al. (2013) showed
that in their FOBAAR model with 40 parameters, many parameters couldn’t be constrained even
with the consideration of several data streams together. They found that these unidentifiable
parameters might be redundant in the model structure representation. Roughly speaking, for a
simple model with a few number of parameters, the parameters can be more identifiable than the
complex models with a large parameter size (Richardson et al., 2010, Weng and Luo, 2011). On
the other hand, if the calibration data are sensitive to the parameters, even a complex model can
sometimes be well constrained by using a single type of observations. For example, Post et al.
(2017) estimated eight CLM parameters using one year records of half-hourly NEE observations
at four sites, and found that for most sites the CLM parameters can be well constrained with their
95% confidence intervals close to the maximum a posteriori estimates. For the only site where
the parameter uncertainties were relatively large, they concluded that the simulated NEE was less
sensitive to these parameters. In our and those synthetic studies of Fox et al. (2009) and Hill et
al. (2012), all the parameter related processes are necessary for DALEC simulation and most
parameters were shown to be sensitive to the observation data (Safta et al., 2015), this explains to
some extent that many DALEC parameters can be well constrained in these synthetic studies.

3.4 Real data study
In the real data study, the measured NEE data with given standard deviations were used for
DALEC calibration. Both AM and DREAM algorithms were applied to infer the unknown

parameters. Different from the synthetic case, the real data study involves model structural errors
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besides the measurement errors. We again use the heteroscedastic, uncorrelcted, Gaussian
likelihood function for calibration, and examine these error assumptions in Section 4 through
residual analysis.

DREAM launched ten parallel chains starting at values randomly drawn from the

parameter prior distributions, and each chain evolved 300,000 iterations. Chain convergence was
assessed via both the univariate and multivariate Gelman Rubin R statistics. Figure 2 (b) plots

the R values of the 21 parameters for the last 100,000 iterations. The figure suggests that the last

50,000 samples of each chain (i.e., total 500,000 samples from ten chains) can be used for the

PPDF approximation as the R has values below the threshold of 1.2.

AM used one chain and the chain has the same initialization of the first sample with
DREAM. For the initialization of the Gaussian covariance in the AM proposal, we first drew
some samples from the parameter space and constructed the covariance. However, this
initialization caused a high rejection rate and ended up with essentially a single parameter state
after hundred thousands of iterations. To facilitate the convergence of AM, we constructed the

initial covariance based on the first 200,000 samples from the DREAM simulation. We

conducted ten independent AM runs, so the same R statistics can be used for convergence

diagnosis. Each AM chain simulated 3,000,000 samples, so that the number of function

evaluations in one AM chain is the same with that of DREAM using ten chains. The R values of
all parameters based on the ten AM runs for the last 1,000,000 iterations are shown in Figure 2
(a). The figure indicates that AM has converged and the last 500,000 samples from one chain
were used for the PPDF approximation.

The estimated PPDFs from AM and DREAM are presented in Figure 3, and the optimal

parameter estimates, as represented by the maximum a posteriori (MAP), are summarized in
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Table 1. Figure 2 shows that more than half of the parameters are constrained and some well-
constrained parameters are edge hitting, where the mode of these parameters occur near one of
the edges of their allowable ranges and most of the parameter values are clustered near the edge
such as stemc_init, rootc_init, and litc_init. As we can see in the synthetic case, these edge-
hitting parameters (e.g., tstem, stemc_init, rootc_init, and litc_init) have wide confidence
intervals that almost occupy the entire allowable ranges, indicating that the NEE data should
provide little information about these parameters. This edge-hitting behavior may be caused by a
compensation for model structural errors and data biases (Braswell et al., 2005), and we do not
consider these edge-hitting parameters to be well constrained despite small posterior
uncertainties. The tight uncertainty bounds on these parameters are likely unrealistic and could
contribute to overconfidence in model predictions. However, quantifying model structural error
is an on-going research topic and no formal results have been published to our knowledge. We
will investigate the influence of model structural errors on parameter estimation in future studies.
In comparison of the results between AM and DREAM, Figure 3 indicates that they
produce very similar PPDFs for many parameters, such as gdd max, laimax, br_som, stemc_init,
and rootc_init, however, for parameters tsmin and leaffall, their estimated PPDFs are
substantially different. This also can be seen in Table 1 where the differences of MAP values for
most parameters are relatively small between the two algorithms, the relative difference for tsmin
and leaffall is 38% and 94%, respectively. The parameter tsmin represents the temperature
triggering leaf fall and the leaffall represents the rate of leaf fall on days when the temperature is
below tsmin. We further analyze the simulations of these two parameters from AM and DREAM
in Figure 4. Figure 4 (a) and (b) illustrate two separated modes in the estimated marginal PPDFs

of tsmin and leaffall obtained from DREAM, while AM only identifies one mode for both
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parameters and they dramatically differ from any modes simulated by DREAM. For example,
the single mode of tsmin identified by AM gives a lower temperature threshold (meaning a later
initiation of senescence) that is compensated by a higher estimate of leaffall rate compared to
DREAM. As shown in the trace plots of Figure 4 (¢) and (d), all ten independent runs of AM
converged to a single mode, with values of tsmin between 4.8 to 5.0 and values of /eaffall
between 0.06 and 0.075. In contrast, each of the ten parallel chains of DREAM, as exhibited in
Figure 4 (e) and (f), jumps back and forth between two modes. And the two parameters
compensate each other by jumping in opposite directions, where zsmin is more likely to be near
the mode with a smaller value of 7.9 than that of 8.35 and leaffall is more likely to be near the
mode of a larger value of 0.035 than that of 0.031.

In addition, the simulated joint PPDFs of the two parameters, tsmin and leaffall, are
different between AM and DREAM. As illustrated in Figure 5, AM results exhibit a negligible
correlation between the two parameters with the correlation coefficient of -0.042, while DREAM
results show that the two parameters are strongly negatively correlated with the correlation
coefficient of -0.95. As demonstrated in Figure 5 (b), the samples of #smin and leaffall from
DREAM fall almost perfectly on the line with slope of -1, where the mode with smaller tsmin
values corresponds to the mode of larger leaffall and the similar correspondence can be found for
the other pair of modes.

The existence of two modes for zsmin and leaffall and the negative correlation between the
two parameters are not unreasonable as we used multiple years of observations for parameter
estimation. It is possible that in some years the senescence is triggered later (i.e., a smaller tsmin)
but proceeds at a faster rate (i.e., a larger leaffall), while in some other years the senescence is

triggered earlier (i.e., a larger tsmin) but proceeds at a slower rate (i.e., a smaller leaffall). Given
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our model simplification of concurrent senescence and leaf fall and our use of NEE rather than
LAI observations as a constraining variable, we note that these optimized parameters are more
likely to reflect the process of chlorophyll loss than actual leaf loss. Cool temperatures are a key
driver of senescence at this site (Richardson et al., 2006).

Figure 6 (a) highlights the years in red where the model based on the right mode of #smin
and the left mode of senescence rate (leaffall) has a better fit to the observed NEE, i.e., years
1994, 1995, 1998, 1999, and 2006. The remaining years are highlighted in blue where the left
mode of tsmin and the right mode of leaffall result in a better model fit. Taking years 1992 and
1994 as an example, we examined the leaf area index (LAI) in the period of senescence. Figure 6
(b) shows that at the first few days of September in both years, the values of LAI were the same
around 2.0; after that the timing of senescence during the two years differs dramatically. In year
1994, the value of LAI started decreasing on September 7, and then decreased slowly over
several distinct cool periods during the rest of September and early October until it hit zero in
November 7"; the process took about 61 days. In contrast, in year 1992, the value of LAI
remained near the maximum value during all of September, then dropped rapidly in October and
hit zero also on November 7™; this process took about 40 days. The changes in the LAI between
the two years reflect the variability in the time of year when the leaves start to drop and the rate
of leaf drop. Although the leaf fall in 1992 was triggered later than in 1994, the leaves in 1992
dropped at a faster rate, resulting in LAI approaching zero at the same time of the year.

Figure 6 (c) depicts the recorded lowest temperature of the days between September 1* and
November 20" for years 1992 and 1994, where the red line highlights the period between the
first leaf and the last leaf drops in 1994. The blue line highlights the corresponding period of

leaf fall in 1992. Since the senescence was triggered in the early September of 1994, the
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temperature of triggering leaf fall was relatively high, about 8.1°C (associated with the higher
mode of tsmin) as shown in Figure 6 (c). In the rest days of September in 1994 following the
senescence trigger, temperatures remained warm. The slower leaf fall rate associated with
periodic warm conditions (temperatures above tsmin) and the lower mode of leaffall caused a
slow leaf fall in September of 1994 as shown in Figure 6 (b). In comparison, in 1992, senescence
was triggered at the end of September with a low temperature of 2.6°C. Then in October with
colder temperatures, the leaves drop at a rapid rate associated with the consistent cold
temperatures and higher mode of leaffall. Especially in late October, the temperatures are
consistently below #smin, causing a fast rate of leaf fall, as shown in Figure 6 (b) where the
decreasing rate of the LAI in the late October of 1992 is very large. This indicates that a higher
temperature trigger is usually associated with a lower leaf fall rate and vice versa.

The bimodality identified in the DREAM simulation and examined in the scenarios above
reflects the inability of the model structure to predict the observations consistently with a single
set of parameters. This bimodality examined in DREAM may be caused in part by an incomplete
representation of the senescence process. Using a temperature threshold (parameter zsmin) and a
constant rate of leaf fall (parameter /eaffall) to predict senescence is almost certainly an
oversimplification. In reality, the process of senescence is also affected by day length. Longer
days and warmer temperatures cause a relatively slow rate of leaf fall, whereas shorter days and
cooler temperatures accelerate the rate that the leaves fall (Leigh et al, 2002; Saxena, 2010). The
higher mode of zsmin means that senescence is initiated earlier, when day lengths are still
relatively long. This may partially explain why this mode is associated with a lower mode of the

leaffall parameter. Other factors not represented in DALEC are also likely to play a role such as
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soil moisture, or a more complex relationship with spring phenology (Keenan et al., 2014;
Keenan et al., 2015).

The difference in estimated parameters between AM and DREAM causes different
simulations of NEE, especially during the Autumn. As an example, Figure 7 illustrates the
comparison of the simulated NEE to observations for a month in Autumn of the year 1995 based
on MAP estimates obtained under AM and DREAM. Visual inspection indicates that the
simulated NEE from the DREAM-calibrated parameters provides a better fit to the observations,
as also indicated by the smaller root mean squared errors (RMSE). In addition, the maximum log
likelihoods listed in Table 1 suggest that overall the DREAM-estimated parameters produce a
better model fit to the observations, comparing -6578.3 with the smaller AM value of -6662.6.
3.5 Assessment of predictive performance

To further compare the calibration results between AM and DREAM, we explore their
predictive skills based on the sampled PPDFs of model parameters. We employed the Bayesian
posterior predictive distribution (Lynch and Western, 2004) to assess the adequacy of the
calibrated models. Specifically, the posterior distribution for the predicted NEE data, p(y|D), is
represented by marginalization of the likelihood over the posterior distribution of model

parameters X as
p(y|D)= [ p(y [x)p(x | D)dx. )

In approximation of p(y|D), we used the converged MCMC samples from p(x|D). The last 500
samples of each chain (total 500x10=5000 samples) were considered; for each parameter sample
we drew 20 samples of the 14 years NEE data from their normal distributions, where the mean
values are the model simulations. Then the total 100,000 prediction samples were used to

approximate the posterior predictive density p(y|D).
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From the estimated p(y|D), we extracted the 95% confidence intervals for daily NEE
values in the year 1995 and presented the results in Figure 8. The top panel corresponds to the
results of AM and the bottom panel to DREAM. Overall, the predictive intervals from both
algorithms cover well the observed NEE for the entire time range with occasional spikes outside
the intervals. Closer visual inspection indicates that DREAM produces better predictive
performance than AM. As seen during the period in October, the predictive interval of DREAM
can enclose most of the observed NEE while AM actually has under-prediction, causing the
observations outside the intervals.

In order to quantitatively compare the predictive performance of the calibrated models
based on AM and DREAM, we defined two metrics, a probabilistic score called CRPS and
predictive coverage. The CRPS (Gneiting and Raftery, 2007) measures the difference between
the cumulative distribution function (CDF) of the observed data and that of the predicted data.
The lower the value of the CRPS is, the better the predictive performance. The predictive
coverage measures the percent of observations that fall within a given predictive interval. A
larger value of the predictive coverage suggests better predictive performance. Figure 8 shows
that AM gives a CRPS value of 0.48 while the value of DREAM is 0.43. The lower value of
DREAM indicates that, on average, DREAM produces tighter marginal predictive CDF that are
better centered around the NEE data, suggesting its superior predictive performance to AM in
terms of both accuracy and precision. In addition, the predictive coverage of DREAM is larger
than that of AM, attesting once again to its superior performance in prediction.

3.6 Investigation of reliability of the algorithms
Bayesian calibration of TEMs is challenging due to high model nonlinearity, high

computational cost, a large number of model parameters, large observation uncertainties, and the
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existence of local optima. Thus, a robust and efficient MCMC algorithm is desired to give
reliable probabilistic descriptions of the TEM parameters.

In this section, we investigate the influence of the proposal initialization on the
computational efficiency and reliability of AM. In above analysis, the initial covariance matrix
of AM was constructed based on DREAM samples before convergence. This setting facilitated
the convergence of AM but resulted in AM false convergence to inaccurate PPDFs, leading to a
relatively poor calibration and predictive performance. We implemented another AM simulation
here for further examination. In this new simulation, we constructed two independent AM
chains; both chains initialized Cy using the DREAM samples affer convergence, but one chain
only used tsmin samples around its left mode and leaffall samples around its right mode, and the
other chain used zsmin samples around its right mode and /eaffall samples around its left mode.

Each chain evolved 3,000,000 iterations, and for the last 1,000,000 iterations the convergence
diagnostic R values were calculated and shown in Figure 9 (a). The figure indicates that most

parameters have R less than the threshold of 1.2 except parameters tsmin and leaffall whose
values are far above 1.2 and no signs show that they are going significantly smaller in the
following one million iterations. This suggests that the two chains converged to different optima
for these two parameters. We then estimated PPDFs using the last 500,000 samples from each
chain respectively. The results for zsmin and leaffall are shown in Figure 9 (b)-(e). The figures
illustrate that the samples from one AM chain can only identify one mode, and this mode is
consistent with the samples used to construct the initial covariance matrix Cy.

As a single-chain sampler, it is conceptually possible for AM to become trapped in a single
mode (Jeremiah et al., 2009). Consider a distribution with two far-separated modes and assume

that the chain is initialized near one of the two modes (both samples initialization and proposal
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covariance initialization). At the beginning of the sampling, AM will explore the area around the
mode where it is initialized and start identifying the first mode. Since the candidate samples
generated by the Gaussian proposal have higher Metropolis ratios (Eq. (2)) in the nearby area
than in the far-away regions of the identified mode, the chain is hardly to move to the other
mode. When the Gaussian proposal covariance matrix C; begins to update, the chance of the
chain jumping to the other mode depends on the relative scale of the proposal covariance and the
distance between the two modes. When the modes separation exceeds the range of the proposal,
AM is less likely to escape the identified local mode.

Although the two AM chains can only simulate one of the two modes for #smin and
leaffall, the estimated PPDFs for the other 19 parameters from the two chains are close to each
other and both similar to the DREAM results. This finding once again shows the reasonable
existence of the two separated modes and their equivalent importance. With an improved
initialization of Cy in the new simulation, the performance of AM also improved as it can
accurately simulate uni-modal PPDFs and capture one mode for the multi-modal PPDFs. This
investigation suggests that for AM an appropriate initialization of its Gaussian proposal has a
significant impact on its performance. We made several test runs of AM and only when we
initialized Cy using the complete set of converged DREAM samples, was the AM able to
produce PPDFs similar to the ones resulted from DREAM with identifying all the possible
optima. However, the information of a reasonable Cy in practice is either unavailable or very
computationally expensive to obtain.

4 Discussion
The choice of likelihood function plays an important role in the Bayesian parameter

estimation, and the likelihood construction depends on the error model assumption. In this study,
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we assumed a heteroscedastic, uncorrelated, Gaussian error model. However, this simplistic
assumption may not be realistic for complex TEMs. In this section, we examine whether the
assumed error model provides an accurate representation of residuals between the simulated and
observed NEEs. If the assumptions are not satisfied, we consider a more flexible error model and
investigate the influence of the corresponding likelihood function on parameter estimation and
model performance.

Figure 10 presents results of residual analysis based on the heteroscedastic, uncorrelated,
Gaussian assumption. The plot of residuals versus simulated NEE in Figure 10(a) justifies the
assumption of heteroscedastic variances; the density plot of residuals in Figure 10(b) justifies the
assumption of normality; but the autocorrelation plot of residuals in Figure 10(c) indicates that
the errors are significantly correlated at a lag of 4, which violates the independence assumption.
This violation has been reported in several time-series data models, such as the TEM in Ricciuto
et al. (2008), the rainfall-runoff model in Feyen et al. (2007), and the groundwater reactive
transport model in Lu et al. (2013). The correlated errors are likely to be observed in models
where systematic model errors exist like the DALEC model in this study.

According to the residual analysis, we consider a heteroscedastic, correlated, Gaussian
error model and construct the likelihood function correspondingly. Similar to Schoups and Vrugt
(2010), the heteroscedasticity was explicitly accounted for using a linear model o; = oy + o/E,,
where o; represents the error standard deviation, oy and ¢, are parameters to be inferred from the
data and E, is the mean value of NEE. The correlation was simulated by the pth order
autoregressive model AR(p). This new error model adds six extra parameters besides the original
21 TEM parameters, where parameters oy and o; are related to the heteroscedastic error model

and ¢, @2, ¢3, and ¢4 are from the AR(4) correlation model. We set up a DREAM simulation to
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estimate the PPDFs of the 27 parameters and compared the results with those using the
uncorrelated error assumption.

Figure 11 indicates that the six error model parameters are well identified. The
heteroscedastic parameters gy and o; approach 1 and 0, respectively, which suggests that a
constant variance may be reasonable. The nonzero ¢, ¢», ¢3, and ¢4 values indicate that a AR(4)
correlation model is necessary. This new heteroscedastic, correlated, Gaussian error model is
appropriate as the resulted residuals demonstrate consistent features with the a priori
assumptions. As it is shown in Figure 12, the residuals are randomly distributed around the zero
line (Figure 12 (a)), normally distributed as assumed (Figure 12 (b)), and no longer correlated
after considering the AR(4) model (Figure 12 (c)).

The PPDFs of the 21 TEM parameters using the correlated Gaussian likelihood are
presented in Figure 13, associated with the results from the uncorrelated Gaussian likelihood. In
comparison, we found that the two error model assumptions produced different PPDFs for most
parameters. The most remarkable difference is that the bimodality of parameters zsmin and
leaffall disappeared when using the correlated error assumption. As discussed in Section 3.4, the
identified bimodality from the uncorrelated likelihood may be caused in part by the model
structural error with an incomplete representation of the senescence process. The new likelihood
function considers model error probabilistic structures (Lu et al., 2013) and somehow alleviates
the effect of model errors on the parameter estimation, resulting in a relatively flat PPDF of
tsmin and uni-modal PPDF of leaffall. In addition, Figure 13 indicates that parameter uncertainty
is larger in the correlated likelihood than the uncorrelated one for most parameters. The reason

can be that consideration of the error correlation reduces the data information for calibrating
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parameters. Underestimation of parameter uncertainty using uncorrelated error model was also
reported in Ricciuto et al., (2008), Schoups and Vrugt (2010), and Lu et al., (2013).

The difference in the parameter PPDFs from the two likelihood functions results in
different model performance as shown in Figure 14 where we took the simulations in October of
1995 as an example. Although the overall RMSEs are similar, the simulations on a single day are
different. This is not surprising, as MCMC is a Bayesian calibration and the calibration results
depend on the choice of the likelihood function, mainly the assumptions of the error model. In
this study, the heteroscedastic, correlated, Gaussian error model is more reasonable than the
uncorrelated one.

5 Conclusions

In this work, we apply two advanced MCMC algorithms, AM and DREAM, in the
Bayesian calibration of the terrestrial ecosystem model DALEC. In both synthetic and real-data
studies, we found that AM is sensitive to the algorithm initializations. When it starts with a
proper initialization, through prior information or some test runs or even some dimension-
reduction strategies, AM can produce reasonable approximation of the parameter posterior
distributions. However, AM still shows some difficulties in sampling multi-modal distributions
with the Gaussian proposal. By comparison, DREAM’s performance does not depend on
initialization of the algorithm and can fast converge to the high-dimensional and multi-modal
distributions. Thus, DREAM is particularly suitable to calibrate complex terrestrial ecosystem
models, where the uncertain parameter size is usually large and existence of local optima is
always a concern. The application indicates that, compared to AM, DREAM can accurately

simulate the posterior distributions of the model parameters, resulting in a better model fit,
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superior predictive performance, and perhaps identifying structural errors or process differences
between the model and ecosystem from which observations were used for calibration.

In Bayesian calibration, the choice of likelihood function plays an important role in
parameter estimation. In this effort, we justify the assumptions of error model used in
constructing the likelihood function and find that a heteroscedastic, correlated, Gaussian error
model is reasonable for this problem as supported by the residual analysis.
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903 List of Tables

904  Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model,
905  and the maximum a posteriori (MAP) estimates based on the AM and DREAM samplers.

MAP estimates
ParName | Nom. Val. Range AM DREAM
LL=-6662.6 | LL=-6578.3
gdd_min 100 10-250 37.90 39.53
& | gdd_max 200 50-500 203.44 201.77
&= | tsmin 5 0-10 4.88 7.87
T | laimax 4 2-7 2.01 2.00
()
A | leaffall 0.1 0.03-0.95 0.067 0.035
Ima 80 20-150 136.81 147.45
§ nue 7 1-20 8.90 8.21
| qlO_mr 2 14 1.00 1.00
j:. br_mr 10 10°-107 7.39x107 6.35x107
rg_frac 0.2 0.05-0.5 0.06 0.066
< astem 0.7 0.1-0.95 0.75 0.74
. 1/(250x365) — s s
s | tstem 1/(50x365) 1/(10%363) 1.98x10 1.63x10
£ 1/(25%365) — 4 4
3 troot 1/(5%365) 11365 8.55x10 7.88x10
ql0_hr 2 1-4 2.98 2.68
: . 1/(5%365) — 3 3
(o8
: br lit 1/(2%365) 10/(5%365) 4.97x10 5.36x10
Q —
& | brsom | 1/(30x365) 1/1(/18%36655)) 2.79%10° 2.88%10°
dr 107 1010 2.46x107 3.39x107
stemc_init | 5000 1000 — 15000 1070.9 1417.8
U | rootc_init 500 100 — 3000 100.56 100.61
| lite_init 600 50 — 1000 60.74 66.77
somc_init 7000 1000 — 25000 2029.1 4708.2

906  Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood
907  evaluated at the MAP parameter estimates; the larger the value is, the better the model fit.
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910  Figure 1. Estimated marginal posterior probability density functions (PPDFs) of the 21

911  parameters using the AM and DREAM algorithms, along with the true parameter values to
912 generate the pseudo data in the synthetic case.
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iterations from ten independent AM runs and (b) for the last 100,000 iterations from the DREAM
simulation using ten interacting chains. The values less than the threshold of 1.2 suggest chain

convergence.
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Figure 4. AM and DREAM results for parameters tsmin and leaffall in the DALEC model. The
estimated marginal posterior distributions of (a) zsmin and (b) leaffall; Trace plots of (¢) sampled
tsmin and (d) sampled leaffall with AM using ten independent chains; and trace plots of (e)

sampled zsmin and (f) sampled /eaffall with DREAM using ten interacting chains. The evolution
of each chain is coded with a different color.
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929  Figure 5. Posterior distributions of parameters zsmin and leaffall simulated by (a) AM and (b)
930 DREAM. AM simulation results exhibit a negligible correlation coefficient (corr) between the
931  two parameters with a value of -0.042, while DREAM results show that the two parameters are
932  strongly correlated with the corr value of -0.95.
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Figure 6. (a) Observed NEE with years highlighted in red where the left mode of #smin has a
better model fit and years hightlighted in blue where the right mode of #smin has a better model
fit; (b) the simulated leaf area index (LAI) of years 1992 and 1994; and (c) the recorded lowest
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corresponding periods of leaf fall until LAI becomes zero for 1992 and 1994, respectively. The
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predicted by our simplified version of DALEC reflect cholorphyll loss rather than leaf drop.
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943  Tablel 1) estimated by the AM and DREAM algorithms in October 1995. The Root Mean Square
944  Error (RMSE) indicates that DREAM produces a better model fit than AM.
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49



949

950

951
952
953
954
955

956

20
[ AM (@)
15/ VT ———— 1
I S—
[3) ~
k7 ——tsmin
T 10 — leaffall b
7]
it other parameters
5
| E——— oo - Y
2e6 2.2e6 2.4e6 2.6e6 2.8e6 3e6
Iteration
25 800
by ! ---AM ---AM c
20 () :'. —— DREAM —— DREAM . (©)
w n w 600 n
2 by 2 '
& 15 Iy & 1
© © 1
g \ g 400 I\
210 o < I
@© ©
= 5 = 200
0 0
7.7 7.9 8.1 8.3 8.5 0.025 0.03 0.035 0.04
tsmin leaffall
25 800
ooll—™ DREAM 4 —— DREAM
w w 600 )
=} a Y
& 15 % " \
E T 400 r
10 1~ © !
5 i g !
= Do = 200
1 \
1 “
0] 0
7.7 7.9 8.1 8.3 8.5 0.025 0.03 0.035 0.04

tsmin leaffall

Figure 9. Results of two independent chains of AM with the initial covariance matrix constructed

using the converged DREAM samples. The R statistic in (a) suggests that different AM chains
converged to different #smin and leaffall values. One chain captures (b) the left mode of tsmin
and (c) the corresponding right mode of leaffall; and the other chain identifies (d) the right mode
of tsmin and (e) the corresponding left mode of leaffall. No single AM chain can capture all the
modes of the two parameters within a reasonable number of MCMC iterations.
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Figure 12. Residual analysis of the calibration using Gaussian likelihood with heteroscedastic
and correlated errors: (a) residuals Vs. simulated NEE; (b) assumed and actual probability
density functions of residuals; and (c) partial autocorrelation coefficients of residuals with 95%
significance levels (black dashed lines).
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972  Figure 13. Estimated marginal posterior probability density functions (PPDFs) of the 21 TEM
973  parameters using the uncorrelated and correlated Gaussian likelihoods.
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975  Figure 14. Simulated NEE values based on the MAP estimates from the uncorrelated and
976  correlated Gaussian likelihoods in October 1995.
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