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Abstract 21 

Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference 22 

implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive 23 

framework to estimate model parameters and associated uncertainties using their posterior 24 

distributions. The effectiveness and efficiency of the method strongly depend on the MCMC 25 

algorithm used. In this work, a Differential Evolution Adaptive Metropolis (DREAM) algorithm 26 

was used to estimate posterior distributions of 21 parameters for the data assimilation linked 27 

ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data 28 

collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The 29 

calibration of DREAM resulted in a better model fit and predictive performance compared to the 30 

popular Adaptive Metropolis (AM) scheme. Moreover, DREAM indicated that two parameters 31 

controlling autumn phenology have multiple modes in their posterior distributions while AM 32 

only identified one mode. The application suggests that DREAM is very suitable to calibrate 33 

complex terrestrial ecosystem models, where the uncertain parameter size is usually large and 34 

existence of local optima is always a concern. In addition, this effort justified the assumptions of 35 

the error model used in Bayesian calibration and investigated their influence on parameter 36 

estimation and model performance.  37 

Keywords: Bayesian calibration, MCMC sampling, AM algorithm, DREAM algorithm, DALEC 38 

model, multimodality, terrestrial ecosystem models.  39 
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1 Introduction 40 

Prediction of future climate heavily depends on accurate predictions of the concentration of 41 

carbon dioxide (CO2) in the atmosphere. Predictions of atmospheric CO2 concentrations rely on 42 

terrestrial ecosystem models (TEMs) to simulate the CO2 exchange between the land surface and 43 

the atmosphere. TEMs typically involve a large number of biogeophysical and biogeochemical 44 

processes, the representation of which requires knowledge of many process parameters. Some 45 

parameters can be determined directly from experimental and measurement data, but many are 46 

also estimated through model calibration. Estimating these parameters indirectly from 47 

measurements (such as the net ecosystem exchange (NEE) data) is a challenging inverse 48 

problem.  49 

Various parameter estimation methods have been applied to TEMs. For an overview, one 50 

can refer to the OptIC (Optimization InterComparison) project (Trudinger et al., 2007) and the 51 

REFLEX (REgional FLux Estimation eXperiment) project (Fox et al., 2009). In classical 52 

optimization based approaches, inverse problems with a large number of parameters can often be 53 

ill-posed in that the solution may not be unique or even may not exist (O’Sullivan, 1986). As an 54 

alternative approach, the Bayesian framework provides a comprehensive solution to this 55 

problem. In Bayesian methods, the model parameters are treated as random variables and their 56 

posterior probability density functions (PPDFs) represent the estimation results. The PPDF 57 

incorporates prior knowledge of the parameters, mismatch between model and observations, and 58 

observation uncertainty (Lu et al., 2012). Thus, compared to other approaches in inverse 59 

problems, Bayesian inference not only estimates model parameters, but also quantifies associated 60 

uncertainty using a full probabilistic description.   61 
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Two types of Bayesian methods are widely used in parameter estimation of TEMs, 62 

variational data assimilation (VAR) methods (Talagrand and Courtier, 1987) and Markov chain 63 

Monte Carlo (MCMC) sampling. VAR methods are computationally efficient, however, they 64 

assume that the prior parameter values and the observations follow a Gaussian distribution, and 65 

they require the model to be differentiable with respect to all parameters for optimization. In 66 

addition, VAR methods can only identify a local optimum and approximate the PPDF by a 67 

Gaussian function (Rayner et al, 2005; Ziehn et al., 2012). In contrast, MCMC sampling makes 68 

no assumptions about the structure of the prior and posterior distributions of model parameters or 69 

observation uncertainties. Moreover, the MCMC methods, in principle, can converge to the true 70 

PPDF with an identification of all possible optima. Although it is more computationally intensive 71 

than VAR approaches, MCMC sampling is being increasingly applied in the land surface 72 

modeling community (Dowd, 2007; Zobitz et al, 2011).  73 

One widely used MCMC algorithm is adaptive Metropolis (AM) (Haario et al. 2001). For 74 

example, Fox et al. (2009) applied the AM in their comparison of different algorithms for the 75 

inversion of a terrestrial ecosystem model; Järvinen et al. (2010) utilized the AM for estimation 76 

of ECHAM5 climate model closure parameters; Hararuk et al. (2014) employed the AM for 77 

improvement of a global land model against soil carbon data; and Safta et al. (2015) used the 78 

AM to estimate parameters in the data assimilation linked ecosystem carbon model. The AM 79 

algorithm uses a single Markov chain that continuously adapts the covariance matrix of a 80 

Gaussian proposal distribution using the information of all previous samples collected in the 81 

chain so far (Haario et al., 1999). As a single-chain method, AM has difficulty in traversing 82 

multi-dimensional parameter space efficiently when there are numerous significant local optima; 83 

and AM can be inefficient for estimating the PPDFs that exhibit strong correlations, as correlated 84 
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dimensions are better to be updated together (Vrugt, 2016). In addition, the AM algorithm uses a 85 

multivariate Gaussian distribution as the proposal to generate candidate samples and evolve the 86 

chain. AM, therefore, is particularly suitable for Gaussian shaped PPDFs, but it may not 87 

converge properly to the distributions with multiple modes. Moreover, AM suffers from 88 

uncertainty about how to initialize the covariance of the Gaussian proposal. Poor initialization of 89 

the proposal covariance matrix results in slow adaptation and inefficient convergence.   90 

The Gaussian proposal is also widely used in non-AM MCMC studies that involve TEMs. 91 

For example, Ziehn et al. (2012) used the Gaussian proposal for the MCMC simulation of the 92 

BETHY model (Knorr and Heimann, 2011) and Ricciuto et al. (2008, 2011) utilized the 93 

Gaussian proposal in their MCMC schemes to estimate parameters in a terrestrial carbon cycle 94 

model. The single-chain and Gaussian-proposal MCMC approaches have limitations in 95 

sufficiently exploring the full parameter space and share slow convergence in sampling the non-96 

Gaussian shaped PPDFs and thus may end up with a local optimum with inaccurate uncertainty 97 

representation of the parameters. Therefore, this poses a question on whether the AM and the 98 

widely used MCMC algorithms with Gaussian proposal generate a representing sample of the 99 

posterior distribution of the underlying model parameters. While we expect that computationally 100 

expensive sampling methods for parameter estimation yield a global optimum with an accurate 101 

probabilistic description, in reality, we may in many cases obtain a local optimum with an 102 

inaccurate PPDF due to the limitations of these algorithms.   103 

In this study, we employ the differential evolution adaptive Metropolis (DREAM) 104 

algorithm (Vrugt et al., 2008, 2009a; Lu et al., 2014) for an accurate Bayesian calibration of an 105 

ecosystem carbon model. The DREAM scheme runs multiple interacting chains simultaneously 106 

to explore the entire parameter space globally. During the search, DREAM does not rely on a 107 
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specific distribution, like the Gaussian distribution used in most MCMC schemes, to move the 108 

chains. Instead, it uses the differential evolution optimization method to generate the candidate 109 

samples from the collection of chains (Price et al., 2005). This feature of DREAM eliminates the 110 

problem of initializing the proposal covariance matrix and enables efficient handling of complex 111 

distributions with strong correlations. In addition, as a multi-chain method, DREAM can 112 

efficiently sample multimodal posterior distributions with numerous local optima. Thus, the 113 

DREAM scheme is particularly applicable to complex and multimodal optimization problems. 114 

Recently, Post et al. (2017) reported a successful application of DREAM in estimation of the 115 

complex Community Land Model (CLM) using one-year records of NEE observations. They 116 

found that the posterior parameter estimates were superior to their default values in the ability to 117 

track and explain the measured NEE data.  118 

While multimodality is a potential feature of parameters in complex models (Kinlan and 119 

Gaines, 2003; Stead et al., 2005; Thibault et al, 2011; Zhang et al., 2013), its existence has not 120 

been well documented in terrestrial ecosystem modeling due to the limitations of methods that 121 

have been applied in most previous studies. Here we apply DREAM and AM to a TEM to 122 

estimate the parameter distributions based on a set of synthetic data and real measurement data. 123 

In both cases, we estimate the PPDFs of 21 process parameters in the data assimilation linked 124 

ecosystem carbon (DALEC) model. The objectives of this study are to (1) present a statistically 125 

sound methodology to solve the parameter estimation problems in complex TEMs and to 126 

improve the model simulation; (2) characterize parameter uncertainty in detail using accurately 127 

sampled posterior distributions; (3) investigate the effects of model calibration methods on 128 

parameter estimation and model performance; and (4) explore the influence of the likelihood 129 
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function on the model calibration results. This work should provide ecological practitioners with 130 

valuable information on model calibration and understanding of the TEMs. 131 

In the following Section 2, we first briefly summarize the general idea of Bayesian 132 

calibration and describe the AM and DREAM algorithms. Then in Section 3, we apply both 133 

algorithms to the DALEC model in a synthetic and a real-data study. Next in Section 4, we 134 

discuss the influence of the likelihood function on parameter estimation and model performance. 135 

Finally in Section 5, we close this paper with our main conclusions.      136 

2 Bayesian calibration and MCMC simulation 137 

2.1 Bayesian calibration 138 

Bayesian calibration of a model states that the posterior distribution p(x|D) of the model 139 

parameters x, given observation data D, can be obtained from the prior distribution p(x) of x and 140 

the likelihood function L(x|D) using Bayes’ theorem (Box and Tiao, 1992) via, 141 

                                                p(x |D) = cL(x |D)p(x)                                                       (1) 142 

where c is a normalization constant. The prior distribution represents the prior knowledge about 143 

the parameters. It is usually inferred from information of previous studies at similar sites or from 144 

expert judgment. In the absence of prior information, a common practice is to use uninformative 145 

priors within relatively wide parameter ranges such that the prior distribution has little influence 146 

on the estimation of the posterior distribution.  147 

The likelihood function measures the model fits to the observations. Selecting a likelihood 148 

function suitable to a specific problem is still under study (Vrugt et al., 2009b). A commonly 149 

used likelihood function is based on the assumption that the differences between the model 150 

simulations and observations are multivariate normally distributed, leading to a Gaussian 151 

likelihood such as the work of Fox et al. (2009), Hararuk et al. (2014), and Ricciuto et al. (2008, 152 
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2011). In this work, we also use the Gaussian likelihood, with heteroscedastic and uncorrelated 153 

variances that are evaluated from the provided daily observation uncertainties. The assumptions 154 

of normality and independence are investigated by the residual analysis. In addition, we explore 155 

the influence of different choices of the likelihood function on the parameter estimation and 156 

model performance. The effect of data correlations on the inferred parameters was also assessed 157 

in our previous study (Safta et al., 2015).    158 

2.2 MCMC sampling 159 

In most environmental problems, the posterior distribution cannot be obtained with an 160 

analytical solution and is typically approximated by sampling methods such as MCMC. The 161 

MCMC method approximates the posterior distribution by constructing a Markov chain whose 162 

stationary distribution is the target distribution of interest. As the chain evolves and approaches 163 

the stationary, all the samples after chain convergence are used for posterior distribution 164 

approximation, and the samples before convergence, which are affected by the starting states of 165 

the chain, are discarded.  166 

The well-constructed MCMC schemes have been theoretically proven to converge to the 167 

appropriate target distribution p(x|D) under certain regularity conditions (Robert and Casella, 168 

2004, p.270). However, in practice the convergence rate is often impractically slow, which 169 

suggests that within a limited finite number of iterations, some inefficient schemes may result in 170 

an unrealistic distribution. The inefficiency is typically resulted from an inappropriate choice of 171 

the proposal distribution used to generate the candidates. Either wide or narrow proposal 172 

distribution can cause inefficient chain mixing and slow chain convergence (Geyer 1992; 173 

Tierney 1994). Hence, the definition of the proposal distribution is crucial and determines the 174 

efficiency and the practical applicability of the MCMC simulation. 175 
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2.3 AM algorithm 176 

The adaptive Metropolis (AM) algorithm is a modification to the standard Metropolis 177 

sampler (Haario et al., 2001). The key feature of the AM algorithm is that it uses a single 178 

Markov chain that continuously adapts to the target distribution via its calculation of the proposal 179 

covariance using all previous samples in the chain. The proposal distribution employed in the 180 

AM algorithm is a multivariate Gaussian distribution with means at the current iteration xt and a 181 

covariance matrix Ct that is updated along the chain evolution. To start the chain, the AM first 182 

selects an arbitrary, strictly positive definite initial covariance C0 according to the best prior 183 

knowledge that may be very poor. Then after a certain number of iterations T, the covariance is 184 

updated based on the samples gained so far. 185 

To apply the AM algorithm, an initial covariance C0 must be defined. The choice of C0 186 

critically determines the success of the algorithm. For example, in an extreme case where the 187 

variance of C0 is so large that no proposals are accepted within an iteration, and that the chain 188 

remains at the initial state without any movement. This situation continues as the chain evolves, 189 

and the use of updated Ct makes no difference because the variances of Ct are essentially zero 190 

since all the previous samples have the same values. Finally, the AM sampler would get stuck in 191 

its initial state without exploring the parameter space. To alleviate this problem and start the AM 192 

fairly efficiently, we can define C0 based on some prior knowledge about the target distribution. 193 

When such information is not available, which is usually the case for complex models, some test 194 

simulations are needed. For example, Hararuk et al. (2014) inferred C0 from a test run of 50,000 195 

community land model simulations in estimating the PPDFs of soil carbon related parameters.  196 

The construction of Ct is another critical influence on the AM performance. In practice, 197 

some adjustments on Ct are necessary to improve the AM efficiency. For example, when the 198 
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chain does not have enough movement after a large number of iterations, we can shrink Ct by 199 

some constant to increase acceptance of new samples, and vice versa. The techniques used in the 200 

formulation of C0 and Ct improve the AM efficiency in some degree for some problems. But, the 201 

computational cost spent on applying these techniques is not negligible (such as the test runs 202 

used for determining the C0) and some strategies require some artificial controls (such as manual 203 

adjustment of the scaling factor of Ct). Moreover, determining a reasonable C0 and Ct become 204 

difficult for high-dimensional problems.   205 

To improve efficiency in high-dimensional case, Haario et al. (2005) extended the standard 206 

AM method to componentwise adaptation. This strategy applies the AM on each parameter 207 

separately. The proposal distribution of each component is a 1D normal distribution, which is 208 

adapted in a similar manner as in the standard AM algorithm, but the componentwise adaptation 209 

does not work very well for distributions with a strong correlation. Safta et al. (2015) applied an 210 

iterative algorithm to break the original high-dimensional problem into a sequence of steps of 211 

increasing dimensionality, with each intermediate step starting with an appropriate proposal 212 

covariance based on a test run. This technique provided a rather reasonable proposal distribution, 213 

but the computational cost used to define the proposal was rather high.    214 

AM is a single-chain method. As a single chain, it may suffer from some difficulties in 215 

judging the convergence. Sometime the most powerful diagnostics cannot guarantee that the 216 

chain has converged to the target distribution (Gelman and Shirley, 2011). One solution to 217 

alleviate the problem is running multiple independent chains with widely dispersive starting 218 

points and then using the diagnostics for multi-chain schemes, such as the univariate  R̂  statistic 219 

(Gelman and Rubin, 1992) and the multivariate   R̂  statistic (Brooks and Gelman, 1998), to check 220 

convergence. When the chain has a good mixing and all the chains converge to the same PPDF, 221 



 11 

the   R̂  value is close to one, and in practice the threshold of 1.2 is usually used for convergence 222 

diagnosis. On the other hand, when the chain does not mix well and different chains converge to 223 

the different portion of the target distribution, it is unlikely that the   R̂  will reach the value of 1.2 224 

required to declare convergence. Generally, this situation suggests that multiple modes exist in 225 

the target PPDF and the MCMC algorithm is unable to identify all the modes.  226 

2.4 DREAM algorithm 227 

The DREAM algorithm is a multi-chain method (Vrugt, 2016). Multi-chain approaches use 228 

multiple chains running in parallel for global exploration of the posterior distribution, so they 229 

have several desirable advantages over the single-chain methods, particularly when addressing 230 

complex problems involving multimodality and having a large number of parameters with strong 231 

correlations. In addition, the application of multiple chains allows utilizing a large variety of 232 

statistical measures to diagnose the convergence including the   R̂  statistics mentioned above.   233 

DREAM uses the Differential Evolution Markov Chain (DE-MC) algorithm (ter Braak, 234 

2006) as its main building block. The key feature of the DE-MC scheme is that it does not 235 

specify a particular distribution as the proposal, but proposes the candidate points using the 236 

differential evolution method based on current samples collected in the multiple chains. Thus, 237 

DE-MC can apply to a wide range of problems whose distribution shapes are not necessarily 238 

similar to the proposal distribution, and it also removes the requirement of initializing the 239 

covariance matrix as in AM. In addition, the DE-MC can successfully simulate the multimodal 240 

distributions, because it directly uses the current location of the multiple chains to generate 241 

candidate points, allowing the possibility of direct jumps between different modes.  242 
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The DREAM algorithm maintains the nice features of the DE-MC, but greatly accelerates 243 

the chain convergence. More information about the DREAM algorithm was presented in Vrugt et 244 

al. (2008, 2009a), Laloy and Vrugt (2012), Lu et al. (2014), and Vrugt (2016). 245 

2.5 Strategies and capabilities of AM and DREAM in sampling complex problems 246 

Since multimodality is a potential feature of complex problems including terrestrial 247 

ecosystem models (Stead et al., 2005; Thibault et al, 2011), it is important to understand the 248 

strategies of AM and DREAM and to investigate their capabilities in sampling the multimodal 249 

distributions. 250 

The AM sampler is typically tuned for distributions with a single mode. For distributions 251 

with closely connected modes, AM can work well with suitable initial values. On the other hand, 252 

for distributions consisting of disconnected modes with between regions of low probability, even 253 

with a reasonably wide covariance matrix the AM could have a slow convergence and end up 254 

with only one mode (e.g., Figure 5 in Vrugt, 2016). To remedy this problem, AM needs an 255 

overly dispersed Gaussian proposal with large initial variances to allow it to transit between the 256 

different modes. But this may result in a very low acceptance rate as many of the jumps will fall 257 

outside the target distribution with nearly zero densities. To alleviate this problem, Haario et al. 258 

(2006) proposed the DRAM algorithm that combines the delayed rejection (DR) with the AM. 259 

The DR algorithm allows for a very expansive search at the beginning by using a large 260 

covariance matrix of the proposal, and then the proposal covariance is reduced by a freely chosen 261 

scale factor if the parameters do not have significant movement. By creating multiple proposal 262 

stages, the DRAM enables an extensive search and meanwhile alleviates the overshooting 263 

problem and improves the acceptance rate. However, as dimensionality increases, the 264 

multimodality becomes more difficult for the algorithms using the Gaussian proposal because it 265 
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is highly likely different dimensions have different variances and a constant scaling factor can 266 

only shrink the covariance simultaneously.  267 

In contrast, DREAM is designed for sampling high-dimensional and multimodal problems 268 

by running multiple different chains simultaneously for global exploration. It automatically tunes 269 

the scale and orientation of the proposal in randomized subspaces during the search (Vrugt et al., 270 

2009a). As DREAM directly uses the current location of the multiple chains, instead of the 271 

covariance of the Gaussian proposal, to generate candidate points, it enables direct jumps 272 

between different modes (including the relatively far disconnected modes) as long as the initial 273 

samples of the chains are widely distributed over the parameter space. Laloy and Vrugt (2012) 274 

demonstrated that DREAM can successfully sample a 25-dimensional trimodal distribution with 275 

equal separation of 10 units between modes. However, for the same problem with the same 276 

number of function evaluations, AM and DRAM converged to only one mode. Note that to 277 

sample a distribution with many modes, one needs to have some prior information about their 278 

rough locations; otherwise no methods can guarantee finding all the modes, especially when the 279 

distance between the modes is very large and not a constant. 280 

3 Application to a terrestrial ecosystem model 281 

In this section, we applied the DREAM algorithm to the data assimilation linked 282 

ecosystem carbon (DALEC) model to estimate the posterior distributions of its parameters. In 283 

comparison, the AM algorithm was also applied. DALEC is a relatively simple carbon pool and 284 

flux model designed specifically to enable parameter estimation in terrestrial ecosystems. We 285 

used DALEC to evaluate the performance of AM and DREAM in model calibration; we 286 

compared their accurate simulations of the parameter PPDFs, model’s goodness-of-fit, and 287 

predictive performance of the calibrated models. Previous studies based on MCMC methods that 288 
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used Gaussian proposals have not reported multimodality in the marginal PPDFs of the model 289 

parameters, so it is important to know whether the parameters have multimodality; if the 290 

multimodality exists, we assess whether or not DREAM can identify the multiple modes and 291 

improve the calibration results and thus the predictive performance.  292 

3.1 Description of the model and parameters for optimization 293 

The DALEC v1 model is used here (Williams et al., 2005; Fox et al., 2009) with some 294 

structural modifications (Safta et al., 2015). DALEC consists of six process-based submodels 295 

that simulate carbon fluxes between five major carbon pools: three vegetation carbon pools for 296 

leaf, stem, and root; and two soil carbon pools for soil organic matter and litter. The fluxes 297 

calculated on any given day impact carbon pools and processes in subsequent days. 298 

The six submodels in DALEC are photosynthesis, phenology, autotrophic respiration, 299 

allocation, litterfall and decomposition. Photosynthesis is driven by the aggregate canopy model 300 

(ACM) (Williams et al., 2005), which itself is calibrated against the soil-plant-atmosphere model 301 

(Williams et al., 1996). DALEC v1 was modified to incorporate the phenology submodel used in 302 

Ricciuto et al. (2011), driven by six parameters. This phenology submodel controls the current 303 

leaf area index (LAI) proportion of the seasonal maximum LAI (laimax).  Spring LAI growth is 304 

driven by a linear relationship to growing degree days (gdd), while senescence and LAI loss are 305 

driven by mean air temperature. To simplify our model structure, senescence and LAI loss are 306 

considered to occur simultaneously.  In reality, leaves may still be present on the trees but 307 

photosynthetically inactive due to the loss of chlorophyll.  Here, this inactive LAI is considered 308 

to have fallen and is added to the litter pool.  To further reduce model complexity, the plant 309 

labile pool in DALEC v1 was removed and a small portion of stem carbon is instead removed to 310 

support springtime leaf growth each year. The six phenology parameters are a threshold for leaf 311 
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out (gdd_min), a threshold for maximum leaf area index (gdd_max), the temperature for leaf fall 312 

(tsmin), seasonal maximum leaf area index (laimax), the rate of leaf fall (leaffall), and leaf mass 313 

per unit area (lma), respectively. Given the importance of maintenance respiration in other 314 

sensitivity analyses (Sargsyan et al., 2014), we expanded the autotrophic respiration submodel to 315 

explicitly represent growth respiration (as a fraction of carbon allocated to growth) and 316 

maintenance respiration with the base rate and temperature sensitivity parameters.  317 

So for the first three plant submodels, deciduous phenology has six parameters; ACM 318 

shares one parameter, lma, with the deciduous phenology and employs two additional 319 

parameters, leaf C:N ratio (which is fixed at a constant of 25 in the simulation) and 320 

photosynthetic nitrogen use efficiency (nue); the autotrophic respiration model computes the 321 

growth and maintenance respiration components and is controlled by three parameters, the 322 

growth respiration fraction (rg_frac), the base rate at 25◦C (br_mr), and temperature sensitivity 323 

for maintenance respiration (q10_mr).  324 

The allocation model partitions carbon to several vegetation carbon pools. Leaf allocation 325 

is first determined by the phenology model, and the remaining available carbon is allocated to 326 

the root and stem pools depending on the fractional stem allocation parameter (astem). The litter 327 

fall model redistributes the carbon content from vegetation pools to litter pools and is based on 328 

the turnover times for stem (tstem) and root (troot). The last submodel is a decomposition model 329 

that simulates heterotrophic respiration and the decomposition of litter into soil organic matter 330 

(SOM). This model is driven by the temperature sensitivity of heterotrophic respiration (q10_hr), 331 

the base turnover times for litter (br_lit) and SOM (br_som) at 25◦C, and by the decomposition 332 

rate (dr) from litter to SOM. 333 
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Model parameters are summarized in Table 1. These parameters were grouped according 334 

to the six submodels that employ them, except for lma that impacts both the deciduous leaf 335 

phenology and ACM. The nominal values and numerical ranges for these parameters were 336 

designed to reflect average values and broad uncertainties associated with the temperate 337 

deciduous forest plant functional type that includes Harvard Forest (Fox et al., 2009; White et al., 338 

2000; Ricciuto et al., 2011). Observed air temperature, solar radiation, vapor pressure deficit, and 339 

CO2 concentration were used as boundary conditions for the model. 340 

In order to reduce computational time, we employed transient assumptions for running 341 

DALEC. That is, for any given set of parameter values, DALEC was run one cycle only for 15 342 

years between 1992-2006 where observation data are available. Under this assumption, four 343 

additional parameters were used to describe the initial states of two vegetation carbon pools 344 

(stemc_init and rootc_init) and the two soil carbon pools (litc_init and somc_init), as also 345 

summarized in Table 1. Thus, a total of 21 parameters were considered and estimated in this 346 

study. To avoid the influence of prior distributions on the investigation of the posteriors 347 

estimated by AM and DREAM, uniform priors were used for all parameters with the ranges 348 

specified in Table 1. 349 

3.2 Calibration data 350 

The calibration data consist of the Harvard Forest daily net ecosystem exchange (NEE) 351 

values, which were processed for the NACP site synthesis study (Barr et al., 2013) based on flux 352 

data measured at the site (Urbanski et al., 2007). The daily observations cover a period of 15 353 

years starting with the year 1992 and part of the data in the year 2005 is missing. Hill et al. 354 

(2012) estimated that daily NEE values followed a normal distribution, with standard deviations 355 

estimated by bootstrapping half-hourly NEE data (Papale et al., 2006; Barr et al., 2009). These 356 
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standard deviations have values between 0.2 and 2.5, with the mean value about 0.7. Total 14 357 

years 5114 NEE data (years from 1992 to 2004 and year 2006) were considered here for model 358 

calibration and their corresponding standard deviations were used to construct the 359 

heteroscedastic, diagonal covariance matrix of the Gaussian likelihood function by assuming the 360 

data were uncorrelated. In Section 4, we examine the independent, Gaussian error assumption 361 

using residual analysis and investigate the influence of error models on parameter estimation and 362 

model performance. 363 

3.3 Synthetic study with pseudo data 364 

We first applied AM and DREAM to a synthetic case to evaluate their capability in 365 

parameter estimation. The same periods of daily NEE data were generated with the nominal 366 

parameter values in Table 1. This synthetic data for calibration was then corrupted with Gaussian 367 

errors having means at zero and the same standard deviations with the observed NEEs. 368 

DREAM launched ten parallel chains starting at values randomly drawn from the 369 

parameter prior distributions. AM used one chain and the chain has the same initialization with 370 

DREAM. In addition, AM also requires the initialization of the covariance matrix of its Gaussian 371 

proposal. We first drew some samples from the parameter space and computed the initial 372 

covariance. However, this initialization caused a slow convergence of AM with an extremely 373 

small acceptance rate (about 0.01% after 1×105 iterations). The reason could be that for this 374 

rather high-dimensional problem with very diverse parameter ranges, the candidate samples are 375 

easily outside the target distribution when they are drawn from the Gaussian proposal. To 376 

facilitate the AM convergence, we started the chain from the true parameter values and 377 

constructed the initial covariance from samples around the true values. This setup can only be 378 

done in a synthetic case with information of true parameters available; practically it needs some 379 
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test runs to get information about the underlying distributions. In addition, this initialization of 380 

AM makes an unfair comparison with DREAM that launched chains blindly, but on the other 381 

hand, it suggests DREAM’s ease of use and setup, its robustness and efficiency.  382 

Chain convergence was assessed via the Gelman Rubin   R̂  statistics. Figure 1 presents the 383 

estimated marginal PPDFs of the 21 parameters from both AM and DREAM samples after 384 

convergence along with their true values. The two algorithms produce very similar distributions 385 

that both enclose the true values very well. All the parameters show one mode in their PPDFs 386 

and the true values are located or close to the modes. The results indicate that for this uni-modal 387 

problem both algorithms can successfully infer the underlying parameter distributions, although 388 

AM needs a proper initialization for its convergence. To further evaluate the calibration 389 

accuracy, we investigate the sum of squared weighted residuals (SSWR) for the optimal 390 

parameters. If the parameter optimization is reasonable, the calculated SSWR should follow a 391 

chi-squared distribution with its mean equal to the k degrees of freedom, i.e., the number of 392 

calibration data minus the number of calibrated parameters, in this study k = 5114-21 = 5093. 393 

The resulted SSWR is 5044 close to the mean value 5093 of the chi-squared distribution. This 394 

once again suggests the accuracy and reasonability of our parameter estimation.  395 

In addition, Figure 1 indicates that about half of the parameters are well constrained, when 396 

we define a well-constrained parameter as its posterior distribution occupying at most half the 397 

range of the prior distribution (Keenan et al., 2013). This result is consistent with some of 398 

previous studies on DALEC calibration using NEE data alone. For example, in the synthetic 399 

study of Fox et al. (2009), their MCMC simulation (M1) showed that 16 of 17 parameters were 400 

well constrained. Similarly, the synthetic study in Hill et al. (2012) indicated that 20 of 23 401 

parameters had their 90% confidence intervals occupy less than half of the prior range.  402 
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Whether a parameter is identifiable depends on the model, model parameters, and the 403 

calibration data. When the parameter related processes are necessary to simulate the model 404 

outputs whose corresponding observation data are sensitive to the parameters, the parameters can 405 

usually be identified and sometimes well constrained. For example, Keenan et al. (2013) showed 406 

that in their FöBAAR model with 40 parameters, many parameters couldn’t be constrained even 407 

with the consideration of several data streams together. They found that these unidentifiable 408 

parameters might be redundant in the model structure representation. Roughly speaking, for a 409 

simple model with a few number of parameters, the parameters can be more identifiable than the 410 

complex models with a large parameter size (Richardson et al., 2010, Weng and Luo, 2011). On 411 

the other hand, if the calibration data are sensitive to the parameters, even a complex model can 412 

sometimes be well constrained by using a single type of observations. For example, Post et al. 413 

(2017) estimated eight CLM parameters using one year records of half-hourly NEE observations 414 

at four sites, and found that for most sites the CLM parameters can be well constrained with their 415 

95% confidence intervals close to the maximum a posteriori estimates. For the only site where 416 

the parameter uncertainties were relatively large, they concluded that the simulated NEE was less 417 

sensitive to these parameters. In our and those synthetic studies of Fox et al. (2009) and Hill et 418 

al. (2012), all the parameter related processes are necessary for DALEC simulation and most 419 

parameters were shown to be sensitive to the observation data (Safta et al., 2015), this explains to 420 

some extent that many DALEC parameters can be well constrained in these synthetic studies.  421 

3.4 Real data study 422 

In the real data study, the measured NEE data with given standard deviations were used for 423 

DALEC calibration. Both AM and DREAM algorithms were applied to infer the unknown 424 

parameters. Different from the synthetic case, the real data study involves model structural errors 425 
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besides the measurement errors. We again use the heteroscedastic, uncorrelcted, Gaussian 426 

likelihood function for calibration, and examine these error assumptions in Section 4 through 427 

residual analysis.  428 

DREAM launched ten parallel chains starting at values randomly drawn from the 429 

parameter prior distributions, and each chain evolved 300,000 iterations. Chain convergence was 430 

assessed via both the univariate and multivariate Gelman Rubin   R̂  statistics. Figure 2 (b) plots 431 

the   R̂  values of the 21 parameters for the last 100,000 iterations. The figure suggests that the last 432 

50,000 samples of each chain (i.e., total 500,000 samples from ten chains) can be used for the 433 

PPDF approximation as the   R̂  has values below the threshold of 1.2.  434 

AM used one chain and the chain has the same initialization of the first sample with 435 

DREAM. For the initialization of the Gaussian covariance in the AM proposal, we first drew 436 

some samples from the parameter space and constructed the covariance. However, this 437 

initialization caused a high rejection rate and ended up with essentially a single parameter state 438 

after hundred thousands of iterations. To facilitate the convergence of AM, we constructed the 439 

initial covariance based on the first 200,000 samples from the DREAM simulation. We 440 

conducted ten independent AM runs, so the same   R̂  statistics can be used for convergence 441 

diagnosis. Each AM chain simulated 3,000,000 samples, so that the number of function 442 

evaluations in one AM chain is the same with that of DREAM using ten chains. The   R̂  values of 443 

all parameters based on the ten AM runs for the last 1,000,000 iterations are shown in Figure 2 444 

(a). The figure indicates that AM has converged and the last 500,000 samples from one chain 445 

were used for the PPDF approximation.  446 

The estimated PPDFs from AM and DREAM are presented in Figure 3, and the optimal 447 

parameter estimates, as represented by the maximum a posteriori (MAP), are summarized in 448 



 21 

Table 1. Figure 2 shows that more than half of the parameters are constrained and some well-449 

constrained parameters are edge hitting, where the mode of these parameters occur near one of 450 

the edges of their allowable ranges and most of the parameter values are clustered near the edge 451 

such as stemc_init, rootc_init, and litc_init. As we can see in the synthetic case, these edge-452 

hitting parameters (e.g., tstem, stemc_init, rootc_init, and litc_init) have wide confidence 453 

intervals that almost occupy the entire allowable ranges, indicating that the NEE data should 454 

provide little information about these parameters. This edge-hitting behavior may be caused by a 455 

compensation for model structural errors and data biases (Braswell et al., 2005), and we do not 456 

consider these edge-hitting parameters to be well constrained despite small posterior 457 

uncertainties. The tight uncertainty bounds on these parameters are likely unrealistic and could 458 

contribute to overconfidence in model predictions. However, quantifying model structural error 459 

is an on-going research topic and no formal results have been published to our knowledge. We 460 

will investigate the influence of model structural errors on parameter estimation in future studies.  461 

In comparison of the results between AM and DREAM, Figure 3 indicates that they 462 

produce very similar PPDFs for many parameters, such as gdd_max, laimax, br_som, stemc_init, 463 

and rootc_init, however, for parameters tsmin and leaffall, their estimated PPDFs are 464 

substantially different. This also can be seen in Table 1 where the differences of MAP values for 465 

most parameters are relatively small between the two algorithms, the relative difference for tsmin 466 

and leaffall is 38% and 94%, respectively. The parameter tsmin represents the temperature 467 

triggering leaf fall and the leaffall represents the rate of leaf fall on days when the temperature is 468 

below tsmin. We further analyze the simulations of these two parameters from AM and DREAM 469 

in Figure 4. Figure 4 (a) and (b) illustrate two separated modes in the estimated marginal PPDFs 470 

of tsmin and leaffall obtained from DREAM, while AM only identifies one mode for both 471 
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parameters and they dramatically differ from any modes simulated by DREAM. For example, 472 

the single mode of tsmin identified by AM gives a lower temperature threshold (meaning a later 473 

initiation of senescence) that is compensated by a higher estimate of leaffall rate compared to 474 

DREAM. As shown in the trace plots of Figure 4 (c) and (d), all ten independent runs of AM 475 

converged to a single mode, with values of tsmin between 4.8 to 5.0 and values of leaffall 476 

between 0.06 and 0.075. In contrast, each of the ten parallel chains of DREAM, as exhibited in 477 

Figure 4 (e) and (f), jumps back and forth between two modes. And the two parameters 478 

compensate each other by jumping in opposite directions, where tsmin is more likely to be near 479 

the mode with a smaller value of 7.9 than that of 8.35 and leaffall is more likely to be near the 480 

mode of a larger value of 0.035 than that of 0.031.  481 

In addition, the simulated joint PPDFs of the two parameters, tsmin and leaffall, are 482 

different between AM and DREAM. As illustrated in Figure 5, AM results exhibit a negligible 483 

correlation between the two parameters with the correlation coefficient of -0.042, while DREAM 484 

results show that the two parameters are strongly negatively correlated with the correlation 485 

coefficient of -0.95. As demonstrated in Figure 5 (b), the samples of tsmin and leaffall from 486 

DREAM fall almost perfectly on the line with slope of -1, where the mode with smaller tsmin 487 

values corresponds to the mode of larger leaffall and the similar correspondence can be found for 488 

the other pair of modes.  489 

The existence of two modes for tsmin and leaffall and the negative correlation between the 490 

two parameters are not unreasonable as we used multiple years of observations for parameter 491 

estimation. It is possible that in some years the senescence is triggered later (i.e., a smaller tsmin) 492 

but proceeds at a faster rate (i.e., a larger leaffall), while in some other years the senescence is 493 

triggered earlier (i.e., a larger tsmin) but proceeds at a slower rate (i.e., a smaller leaffall).  Given 494 
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our model simplification of concurrent senescence and leaf fall and our use of NEE rather than 495 

LAI observations as a constraining variable, we note that these optimized parameters are more 496 

likely to reflect the process of chlorophyll loss than actual leaf loss.  Cool temperatures are a key 497 

driver of senescence at this site (Richardson et al., 2006).  498 

Figure 6 (a) highlights the years in red where the model based on the right mode of tsmin 499 

and the left mode of senescence rate (leaffall) has a better fit to the observed NEE, i.e., years 500 

1994, 1995, 1998, 1999, and 2006. The remaining years are highlighted in blue where the left 501 

mode of tsmin and the right mode of leaffall result in a better model fit. Taking years 1992 and 502 

1994 as an example, we examined the leaf area index (LAI) in the period of senescence. Figure 6 503 

(b) shows that at the first few days of September in both years, the values of LAI were the same 504 

around 2.0; after that the timing of senescence during the two years differs dramatically. In year 505 

1994, the value of LAI started decreasing on September 7th, and then decreased slowly over 506 

several distinct cool periods during the rest of September and early October until it hit zero in 507 

November 7th; the process took about 61 days. In contrast, in year 1992, the value of LAI 508 

remained near the maximum value during all of September, then dropped rapidly in October and 509 

hit zero also on November 7th; this process took about 40 days. The changes in the LAI between 510 

the two years reflect the variability in the time of year when the leaves start to drop and the rate 511 

of leaf drop. Although the leaf fall in 1992 was triggered later than in 1994, the leaves in 1992 512 

dropped at a faster rate, resulting in LAI approaching zero at the same time of the year.        513 

Figure 6 (c) depicts the recorded lowest temperature of the days between September 1st and 514 

November 20th for years 1992 and 1994, where the red line highlights the period between the 515 

first leaf and the last leaf drops in 1994.  The blue line highlights the corresponding period of 516 

leaf fall in 1992. Since the senescence was triggered in the early September of 1994, the 517 
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temperature of triggering leaf fall was relatively high, about 8.1oC (associated with the higher 518 

mode of tsmin) as shown in Figure 6 (c). In the rest days of September in 1994 following the 519 

senescence trigger, temperatures remained warm. The slower leaf fall rate associated with 520 

periodic warm conditions (temperatures above tsmin) and the lower mode of leaffall caused a 521 

slow leaf fall in September of 1994 as shown in Figure 6 (b). In comparison, in 1992, senescence 522 

was triggered at the end of September with a low temperature of 2.6oC. Then in October with 523 

colder temperatures, the leaves drop at a rapid rate associated with the consistent cold 524 

temperatures and higher mode of leaffall. Especially in late October, the temperatures are 525 

consistently below tsmin, causing a fast rate of leaf fall, as shown in Figure 6 (b) where the 526 

decreasing rate of the LAI in the late October of 1992 is very large. This indicates that a higher 527 

temperature trigger is usually associated with a lower leaf fall rate and vice versa.  528 

The bimodality identified in the DREAM simulation and examined in the scenarios above 529 

reflects the inability of the model structure to predict the observations consistently with a single 530 

set of parameters. This bimodality examined in DREAM may be caused in part by an incomplete 531 

representation of the senescence process. Using a temperature threshold (parameter tsmin) and a 532 

constant rate of leaf fall (parameter leaffall) to predict senescence is almost certainly an 533 

oversimplification. In reality, the process of senescence is also affected by day length. Longer 534 

days and warmer temperatures cause a relatively slow rate of leaf fall, whereas shorter days and 535 

cooler temperatures accelerate the rate that the leaves fall (Leigh et al, 2002; Saxena, 2010). The 536 

higher mode of tsmin means that senescence is initiated earlier, when day lengths are still 537 

relatively long. This may partially explain why this mode is associated with a lower mode of the 538 

leaffall parameter. Other factors not represented in DALEC are also likely to play a role such as 539 
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soil moisture, or a more complex relationship with spring phenology (Keenan et al., 2014; 540 

Keenan et al., 2015).   541 

The difference in estimated parameters between AM and DREAM causes different 542 

simulations of NEE, especially during the Autumn. As an example, Figure 7 illustrates the 543 

comparison of the simulated NEE to observations for a month in Autumn of the year 1995 based 544 

on MAP estimates obtained under AM and DREAM. Visual inspection indicates that the 545 

simulated NEE from the DREAM-calibrated parameters provides a better fit to the observations, 546 

as also indicated by the smaller root mean squared errors (RMSE). In addition, the maximum log 547 

likelihoods listed in Table 1 suggest that overall the DREAM-estimated parameters produce a 548 

better model fit to the observations, comparing -6578.3 with the smaller AM value of -6662.6. 549 

3.5 Assessment of predictive performance 550 

To further compare the calibration results between AM and DREAM, we explore their 551 

predictive skills based on the sampled PPDFs of model parameters. We employed the Bayesian 552 

posterior predictive distribution (Lynch and Western, 2004) to assess the adequacy of the 553 

calibrated models. Specifically, the posterior distribution for the predicted NEE data, p(y|D), is 554 

represented by marginalization of the likelihood over the posterior distribution of model 555 

parameters x as 556 

                                       
   
p(y | D) = p(y | x)∫ p(x | D)dx .                                        (2)  557 

In approximation of p(y|D), we used the converged MCMC samples from p(x|D). The last 500 558 

samples of each chain (total 500×10=5000 samples) were considered; for each parameter sample 559 

we drew 20 samples of the 14 years NEE data from their normal distributions, where the mean 560 

values are the model simulations. Then the total 100,000 prediction samples were used to 561 

approximate the posterior predictive density p(y|D).  562 
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From the estimated p(y|D), we extracted the 95% confidence intervals for daily NEE 563 

values in the year 1995 and presented the results in Figure 8. The top panel corresponds to the 564 

results of AM and the bottom panel to DREAM. Overall, the predictive intervals from both 565 

algorithms cover well the observed NEE for the entire time range with occasional spikes outside 566 

the intervals. Closer visual inspection indicates that DREAM produces better predictive 567 

performance than AM. As seen during the period in October, the predictive interval of DREAM 568 

can enclose most of the observed NEE while AM actually has under-prediction, causing the 569 

observations outside the intervals.  570 

In order to quantitatively compare the predictive performance of the calibrated models 571 

based on AM and DREAM, we defined two metrics, a probabilistic score called CRPS and 572 

predictive coverage. The CRPS (Gneiting and Raftery, 2007) measures the difference between 573 

the cumulative distribution function (CDF) of the observed data and that of the predicted data. 574 

The lower the value of the CRPS is, the better the predictive performance. The predictive 575 

coverage measures the percent of observations that fall within a given predictive interval. A 576 

larger value of the predictive coverage suggests better predictive performance. Figure 8 shows 577 

that AM gives a CRPS value of 0.48 while the value of DREAM is 0.43. The lower value of 578 

DREAM indicates that, on average, DREAM produces tighter marginal predictive CDF that are 579 

better centered around the NEE data, suggesting its superior predictive performance to AM in 580 

terms of both accuracy and precision. In addition, the predictive coverage of DREAM is larger 581 

than that of AM, attesting once again to its superior performance in prediction.   582 

3.6 Investigation of reliability of the algorithms 583 

Bayesian calibration of TEMs is challenging due to high model nonlinearity, high 584 

computational cost, a large number of model parameters, large observation uncertainties, and the 585 
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existence of local optima. Thus, a robust and efficient MCMC algorithm is desired to give 586 

reliable probabilistic descriptions of the TEM parameters.  587 

In this section, we investigate the influence of the proposal initialization on the 588 

computational efficiency and reliability of AM. In above analysis, the initial covariance matrix 589 

of AM was constructed based on DREAM samples before convergence. This setting facilitated 590 

the convergence of AM but resulted in AM false convergence to inaccurate PPDFs, leading to a 591 

relatively poor calibration and predictive performance. We implemented another AM simulation 592 

here for further examination. In this new simulation, we constructed two independent AM 593 

chains; both chains initialized C0 using the DREAM samples after convergence, but one chain 594 

only used tsmin samples around its left mode and leaffall samples around its right mode, and the 595 

other chain used tsmin samples around its right mode and leaffall samples around its left mode. 596 

Each chain evolved 3,000,000 iterations, and for the last 1,000,000 iterations the convergence 597 

diagnostic   R̂  values were calculated and shown in Figure 9 (a). The figure indicates that most 598 

parameters have   R̂  less than the threshold of 1.2 except parameters tsmin and leaffall whose 599 

values are far above 1.2 and no signs show that they are going significantly smaller in the 600 

following one million iterations. This suggests that the two chains converged to different optima 601 

for these two parameters. We then estimated PPDFs using the last 500,000 samples from each 602 

chain respectively. The results for tsmin and leaffall are shown in Figure 9 (b)-(e). The figures 603 

illustrate that the samples from one AM chain can only identify one mode, and this mode is 604 

consistent with the samples used to construct the initial covariance matrix C0.  605 

As a single-chain sampler, it is conceptually possible for AM to become trapped in a single 606 

mode (Jeremiah et al., 2009). Consider a distribution with two far-separated modes and assume 607 

that the chain is initialized near one of the two modes (both samples initialization and proposal 608 
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covariance initialization). At the beginning of the sampling, AM will explore the area around the 609 

mode where it is initialized and start identifying the first mode. Since the candidate samples 610 

generated by the Gaussian proposal have higher Metropolis ratios (Eq. (2)) in the nearby area 611 

than in the far-away regions of the identified mode, the chain is hardly to move to the other 612 

mode. When the Gaussian proposal covariance matrix Ct begins to update, the chance of the 613 

chain jumping to the other mode depends on the relative scale of the proposal covariance and the 614 

distance between the two modes. When the modes separation exceeds the range of the proposal, 615 

AM is less likely to escape the identified local mode.  616 

Although the two AM chains can only simulate one of the two modes for tsmin and 617 

leaffall, the estimated PPDFs for the other 19 parameters from the two chains are close to each 618 

other and both similar to the DREAM results. This finding once again shows the reasonable 619 

existence of the two separated modes and their equivalent importance. With an improved 620 

initialization of C0 in the new simulation, the performance of AM also improved as it can 621 

accurately simulate uni-modal PPDFs and capture one mode for the multi-modal PPDFs. This 622 

investigation suggests that for AM an appropriate initialization of its Gaussian proposal has a 623 

significant impact on its performance. We made several test runs of AM and only when we 624 

initialized C0 using the complete set of converged DREAM samples, was the AM able to 625 

produce PPDFs similar to the ones resulted from DREAM with identifying all the possible 626 

optima. However, the information of a reasonable C0 in practice is either unavailable or very 627 

computationally expensive to obtain. 628 

4 Discussion 629 

The choice of likelihood function plays an important role in the Bayesian parameter 630 

estimation, and the likelihood construction depends on the error model assumption. In this study, 631 
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we assumed a heteroscedastic, uncorrelated, Gaussian error model. However, this simplistic 632 

assumption may not be realistic for complex TEMs. In this section, we examine whether the 633 

assumed error model provides an accurate representation of residuals between the simulated and 634 

observed NEEs. If the assumptions are not satisfied, we consider a more flexible error model and 635 

investigate the influence of the corresponding likelihood function on parameter estimation and 636 

model performance.    637 

Figure 10 presents results of residual analysis based on the heteroscedastic, uncorrelated, 638 

Gaussian assumption. The plot of residuals versus simulated NEE in Figure 10(a) justifies the 639 

assumption of heteroscedastic variances; the density plot of residuals in Figure 10(b) justifies the 640 

assumption of normality; but the autocorrelation plot of residuals in Figure 10(c) indicates that 641 

the errors are significantly correlated at a lag of 4, which violates the independence assumption. 642 

This violation has been reported in several time-series data models, such as the TEM in Ricciuto 643 

et al. (2008), the rainfall-runoff model in Feyen et al. (2007), and the groundwater reactive 644 

transport model in Lu et al. (2013). The correlated errors are likely to be observed in models 645 

where systematic model errors exist like the DALEC model in this study.       646 

According to the residual analysis, we consider a heteroscedastic, correlated, Gaussian 647 

error model and construct the likelihood function correspondingly. Similar to Schoups and Vrugt 648 

(2010), the heteroscedasticity was explicitly accounted for using a linear model σt = σ0 + σ1Et, 649 

where σt represents the error standard deviation, σ0 and σ1 are parameters to be inferred from the 650 

data and Et is the mean value of NEE. The correlation was simulated by the pth order 651 

autoregressive model AR(p). This new error model adds six extra parameters besides the original 652 

21 TEM parameters, where parameters σ0 and σ1 are related to the heteroscedastic error model 653 

and ϕ1, ϕ2, ϕ3, and ϕ4 are from the AR(4) correlation model. We set up a DREAM simulation to 654 
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estimate the PPDFs of the 27 parameters and compared the results with those using the 655 

uncorrelated error assumption. 656 

Figure 11 indicates that the six error model parameters are well identified. The 657 

heteroscedastic parameters σ0 and σ1 approach 1 and 0, respectively, which suggests that a 658 

constant variance may be reasonable. The nonzero ϕ1, ϕ2, ϕ3, and ϕ4 values indicate that a AR(4) 659 

correlation model is necessary. This new heteroscedastic, correlated, Gaussian error model is 660 

appropriate as the resulted residuals demonstrate consistent features with the a priori 661 

assumptions. As it is shown in Figure 12, the residuals are randomly distributed around the zero 662 

line (Figure 12 (a)), normally distributed as assumed (Figure 12 (b)), and no longer correlated 663 

after considering the AR(4) model (Figure 12 (c)).  664 

The PPDFs of the 21 TEM parameters using the correlated Gaussian likelihood are 665 

presented in Figure 13, associated with the results from the uncorrelated Gaussian likelihood. In 666 

comparison, we found that the two error model assumptions produced different PPDFs for most 667 

parameters. The most remarkable difference is that the bimodality of parameters tsmin and 668 

leaffall disappeared when using the correlated error assumption. As discussed in Section 3.4, the 669 

identified bimodality from the uncorrelated likelihood may be caused in part by the model 670 

structural error with an incomplete representation of the senescence process. The new likelihood 671 

function considers model error probabilistic structures (Lu et al., 2013) and somehow alleviates 672 

the effect of model errors on the parameter estimation, resulting in a relatively flat PPDF of 673 

tsmin and uni-modal PPDF of leaffall. In addition, Figure 13 indicates that parameter uncertainty 674 

is larger in the correlated likelihood than the uncorrelated one for most parameters. The reason 675 

can be that consideration of the error correlation reduces the data information for calibrating 676 
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parameters. Underestimation of parameter uncertainty using uncorrelated error model was also 677 

reported in Ricciuto et al., (2008), Schoups and Vrugt (2010), and Lu et al., (2013). 678 

The difference in the parameter PPDFs from the two likelihood functions results in 679 

different model performance as shown in Figure 14 where we took the simulations in October of 680 

1995 as an example. Although the overall RMSEs are similar, the simulations on a single day are 681 

different. This is not surprising, as MCMC is a Bayesian calibration and the calibration results 682 

depend on the choice of the likelihood function, mainly the assumptions of the error model. In 683 

this study, the heteroscedastic, correlated, Gaussian error model is more reasonable than the 684 

uncorrelated one. 685 

5 Conclusions 686 

In this work, we apply two advanced MCMC algorithms, AM and DREAM, in the 687 

Bayesian calibration of the terrestrial ecosystem model DALEC. In both synthetic and real-data 688 

studies, we found that AM is sensitive to the algorithm initializations. When it starts with a 689 

proper initialization, through prior information or some test runs or even some dimension-690 

reduction strategies, AM can produce reasonable approximation of the parameter posterior 691 

distributions. However, AM still shows some difficulties in sampling multi-modal distributions 692 

with the Gaussian proposal. By comparison, DREAM’s performance does not depend on 693 

initialization of the algorithm and can fast converge to the high-dimensional and multi-modal 694 

distributions. Thus, DREAM is particularly suitable to calibrate complex terrestrial ecosystem 695 

models, where the uncertain parameter size is usually large and existence of local optima is 696 

always a concern. The application indicates that, compared to AM, DREAM can accurately 697 

simulate the posterior distributions of the model parameters, resulting in a better model fit, 698 
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superior predictive performance, and perhaps identifying structural errors or process differences 699 

between the model and ecosystem from which observations were used for calibration.  700 

In Bayesian calibration, the choice of likelihood function plays an important role in 701 

parameter estimation. In this effort, we justify the assumptions of error model used in 702 

constructing the likelihood function and find that a heteroscedastic, correlated, Gaussian error 703 

model is reasonable for this problem as supported by the residual analysis.  704 
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List of Tables 903 

Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model, 904 
and the maximum a posteriori (MAP) estimates based on the AM and DREAM samplers. 905 

 

ParName Nom. Val. Range 
MAP estimates 

AM 
LL=-6662.6 

DREAM 
LL=-6578.3 

D
ec

id
. P

he
n.

 

gdd_min 100 10–250 37.90 39.53 
gdd_max 200 50–500 203.44 201.77 

tsmin 5 0–10 4.88 7.87 
laimax 4 2–7 2.01 2.00 
leaffall 0.1 0.03–0.95 0.067 0.035 

lma 80 20–150 136.81 147.45 

A
C

M
 

nue 7 1–20 8.90 8.21 

A
. R

. q10_mr 2 1–4 1.00 1.00 
br_mr 10-4 10-5–10-2 7.39×10-3 6.35×10-3 
rg_frac 0.2 0.05–0.5 0.06 0.066 

A
. astem 0.7 0.1–0.95 0.75 0.74 

Li
t. 

Fa
l. tstem 1/(50×365) 1/(250×365) – 

1/(10×365) 1.98×10-5 1.63×10-5 

troot 1/(5×365) 1/(25×365) – 
1/365 8.55×10-4 7.88×10-4 

D
ec

om
p.

 

q10_hr 2 1–4 2.98 2.68 

br_lit 1/(2×365) 1/(5×365) – 
10/(5×365) 4.97×10-3 5.36×10-3 

br_som 1/(30×365) 1/(100×365) – 
1/(10×365) 2.79×10-5 2.88×10-5 

dr 10-3 10-4–10-2 2.46×10-3 3.39×10-3 

In
it.

 C
. 

stemc_init 5000 1000 – 15000 1070.9 1417.8 
rootc_init 500 100 – 3000 100.56 100.61 
litc_init 600 50 – 1000 60.74 66.77 

somc_init 7000 1000 – 25000 2029.1 4708.2 
Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood 906 
evaluated at the MAP parameter estimates; the larger the value is, the better the model fit.  907 



 42 

List of Figures 908 

 909 

Figure 1. Estimated marginal posterior probability density functions (PPDFs) of the 21 910 
parameters using the AM and DREAM algorithms, along with the true parameter values to 911 
generate the pseudo data in the synthetic case.  912 
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 913 

Figure 2. Univariate and multivariate Gelman Rubin   R̂  statistics (a) for the last 1,000,000 914 
iterations from ten independent AM runs and (b) for the last 100,000 iterations from the DREAM 915 
simulation using ten interacting chains. The values less than the threshold of 1.2 suggest chain 916 
convergence.  917 
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 918 

 919 

Figure 3. Estimated marginal posterior probability density functions (PPDFs) of the 21 920 
parameters using the AM and DREAM algorithms in the real data study.  921 
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 922 

Figure 4. AM and DREAM results for parameters tsmin and leaffall in the DALEC model. The 923 
estimated marginal posterior distributions of (a) tsmin and (b) leaffall; Trace plots of (c) sampled 924 
tsmin and (d) sampled leaffall with AM using ten independent chains; and trace plots of (e) 925 
sampled tsmin and (f) sampled leaffall with DREAM using ten interacting chains. The evolution 926 
of each chain is coded with a different color.    927 
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 928 

Figure 5. Posterior distributions of parameters tsmin and leaffall simulated by (a) AM and (b) 929 
DREAM. AM simulation results exhibit a negligible correlation coefficient (corr) between the 930 
two parameters with a value of -0.042, while DREAM results show that the two parameters are 931 
strongly correlated with the corr value of -0.95.  932 
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 933 

Figure 6. (a) Observed NEE with years highlighted in red where the left mode of tsmin has a 934 
better model fit and years hightlighted in blue where the right mode of tsmin has a better model 935 
fit; (b) the simulated leaf area index (LAI) of years 1992 and 1994; and (c) the recorded lowest 936 
temperature of years 1992 (blue) and 1994 (red). The blue and red lines in (c) highlight the 937 
corresponding periods of leaf fall until LAI becomes zero for 1992 and 1994, respectively. The 938 
color scheme is synchronized between (a), (b), and (c) frames. Note that decreases in LAI as 939 
predicted by our simplified version of DALEC reflect cholorphyll loss rather than leaf drop.  940 
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 941 

Figure 7. Simulated NEE values based on the optimal parameters (i.e., the MAP values listed in 942 
Tablel 1) estimated by the AM and DREAM algorithms in October 1995. The Root Mean Square 943 
Error (RMSE) indicates that DREAM produces a better model fit than AM.  944 
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 945 

Figure 8. 95% confidence intervals of the simulated NEE values in year 1995 based on the 946 
parameter samples from AM and DREAM. Two measures of predictive performance, CRPS 947 
statistic and predictive coverage, indicate that DREAM outperforms AM in prediction.   948 

−10

−5

0

5

10

NE
E

AM

J F M A M J J A S O N D

Predictive coverage is 73.4%; CRPS=0.48

 

 

95% confidence interval
Observation

−10

−5

0

5

10

Year 1995

NE
E

DREAM

J F M A M J J A S O N D

Predictive coverage is 75.5%; CRPS=0.43



 50 

 949 

Figure 9. Results of two independent chains of AM with the initial covariance matrix constructed 950 
using the converged DREAM samples. The   R̂  statistic in (a) suggests that different AM chains 951 
converged to different tsmin and leaffall values. One chain captures (b) the left mode of tsmin 952 
and (c) the corresponding right mode of leaffall; and the other chain identifies (d) the right mode 953 
of tsmin and (e) the corresponding left mode of leaffall. No single AM chain can capture all the 954 
modes of the two parameters within a reasonable number of MCMC iterations.   955 
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 957 

 958 

Figure 10. Residual analysis of the calibration using Gaussian likelihood with heteroscedastic 959 
and uncorrelated errors: (a) residuals Vs. simulated NEE; (b) assumed and actual probability 960 
density functions of residuals; and (c) partial autocorrelation coefficients of residuals with 95% 961 
significance levels (black dashed lines).  962 
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 963 

Figure 11. Estimated posterior probability density functions (PPDFs) of the six error model 964 
parameters.  965 
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 966 

Figure 12. Residual analysis of the calibration using Gaussian likelihood with heteroscedastic 967 
and correlated errors: (a) residuals Vs. simulated NEE; (b) assumed and actual probability 968 
density functions of residuals; and (c) partial autocorrelation coefficients of residuals with 95% 969 
significance levels (black dashed lines).  970 
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 971 

Figure 13. Estimated marginal posterior probability density functions (PPDFs) of the 21 TEM 972 
parameters using the uncorrelated and correlated Gaussian likelihoods.  973 
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 974 

Figure 14. Simulated NEE values based on the MAP estimates from the uncorrelated and 975 
correlated Gaussian likelihoods in October 1995.  976 
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