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Abstract: Natural iron fertilization downstream of Southern Ocean island plateaus support large 
phytoplankton blooms and promote carbon export from the mixed layer.  In addition to sequestering 
atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. 15 
Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature 
of OM is also of significance.  However, a quantitative framework linking ecological flux vectors to OM 
composition is currently lacking.  In the present study we report the lipid composition of export fluxes 
collected by five-moored sediment traps deployed in contrasting productivity regimes of Southern Ocean 
island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and 20 
faecal pellet fluxes. At the three naturally iron fertilized sites, the relative contribution of labile lipids (mono- 
and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2-4 times higher than at low productivity sites. 
There is a strong attenuation of labile components as a function of depth, irrespective of productivity.  The 
three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary 
sterols, such as C27Δ

5, at South Georgia is consistent with high zooplankton and krill biomass in the region and 25 
the importance of faecal pellets to POC flux. There is a strong association of diatom resting spore fluxes that 
dominate productive flux regimes with energy rich unsaturated fatty acids.  At the Kerguelen Plateau we 
provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over 
a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting 
spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean 30 
biological pump, but also regulate the composition of exported OM and the nature of pelagic-benthic coupling. 

1 Introduction 

The biological pump transfers organic carbon (OC) from photosynthetic production to the deep ocean (Volk 

and Hoffert, 1985) with important implications for the sequestration of atmospheric CO2 (Sarmiento et al., 

1988; Kwon et al., 2009). Only a minor fraction of the carbon fixed in the sunlit ocean reaches the deep ocean 35 

and sediments (Martin et al., 1987; Honjo et al., 2008), but this carbon and energy supply is essential for the 

functioning of deep-sea benthic ecosystems (Billett et al., 1983, 2001; Ruhl and Smith, 2004; Ruhl et al., 2008) 

. Commonly referred to as pelagic-benthic coupling (Graf, 1989), the composition, lability and timing of 

organic matter (OM) flux arriving at the seafloor can exert a large influence on benthic communities (Billett et 

al., 2001; Galeron et al., 2001; Mincks et al., 2005; Smith et al., 2006; Wolff et al, 2011). 40 
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Understanding the factors influencing the functioning of the biological pump remains a central question in 

biogeochemical oceanography (Boyd and Newton, 1995; Rivkin et al., 1996; Boyd and Trull, 2007; Guidi et 

al., 2016). Many different approaches have been adopted to study the biological pump, including carbon 

budgets (Emerson et al. 1997, Emerson 2014), mixed layer nutrient inventories (Eppley and Peterson, 1979; 45 

Sarmiento et al. 2004), radionuclide disequilibria (Buesseler et al., 1992; Savoye et al., 2006), optical methods 

(Gardner et al., 1990; Guidi et al. 2016), neutrally buoyant- (Buesseler et al. 2000; Salter et al. 2007) and 

moored-sediment traps (Berger, 1971; Honjo, 1976). Although all of these methods have their own caveats, 

sediment traps offer the distinct advantage of collecting and preserving sinking particles for subsequent 

biological and chemical analysis. Moored sediment traps allow the direct quantification of sinking protists 50 

including dinoflagellates (e.g. Harland and Pudsey, 1999), diatoms (e.g. Salter et al. 2012), coccolithophores 

(e.g. Ziveri et al. 2007), radiolarians (e.g. Takahashi et al., 1991), silicoflagellates (Rigual-Hernández et al., 

2010), foraminifera (Salter et al. 2014) and zooplankton faecal pellets (Wilson et al., 2008, 2013).  Indirect 

approaches use biomarkers such as lipids and amino acids to identify the source (algal, zooplanktonic, 

bacterial) and diagenetic status (lability, degree of preservation) of the exported OM  (Wakeham, 1982; 55 

Wakeham et al., 1980, 1984, 1997; Kiriakoulakis et al., 2001; Wakeham et al., 2009; Lee et al., 2009; Salter et 

al., 2010). Although it is generally well-acknowledged that ecological vectors of flux are linked to the 

geochemical composition, studies providing a coupled description of biological components and OM 

composition of export fluxes remain relatively scarce (e. g. Budge and Parrish, 1998). 

 60 

Southern Ocean island plateaus such as Kerguelen (Blain et al., 2007), Crozet (Pollard et al., 2009) and South 

Georgia (Tarling et al., 2012) provide a natural source of iron to the iron-poor waters of the Antarctic 

Circumpolar Current (de Baar et al., 1990; Martin et al., 1990). Currents and the topography of the sea floor 

lead to enrichment of iron in waters adjacent to the islands which supports large diatom-dominated 

phytoplankton blooms (Armand et al., 2008; Korb et al., 2008; Quéguiner, 2013) that contrast with the high 65 

nutrient, low chlorophyll (HNLC, Minas et al., 1986) regime that generally prevails in Antarctic waters. 

Previous studies of Southern Ocean island plateaus have identified the significance of resting spore formation 

by neritic diatom species (Eucampia antarctica var. antarctica, Chaetoceros Hyalochaete, Thalassiosira 

antarctica) in response to nutrient limitation in mid-summer (Salter et al., 2012; Rembauville et al., 2015, 

2016a). The export of resting spores generally occurs during short and intense events but they can account for a 70 

significant fraction (40-60 %) of annual carbon flux out of the mixed layer at these naturally fertilized sites. 

This process contributes to the ~2 fold increase in annual carbon export when compared to the HNLC sites 

(Salter et al., 2012; Rembauville et al., 2015, 2016a). 

  

Despite the general importance of resting spore ecology for POC export from naturally iron-fertilized systems 75 

in the Southern Ocean, there are some notable differences in the nature of export fluxes from Crozet, 

Kerguelen and South Georgia. At Crozet, in the Polar Front Zone (PFZ), the abundance of foraminifers and 

pteropods leads to a high inorganic to organic carbon export ratio (1 mol:mol, Salter et al., 2014). At 

Kerguelen, south of the Polar Front in the Antarctic Zone (AAZ) the inorganic to organic carbon ratio is much 

lower (0.07) and CaCO3 flux is mainly attributed to coccoliths (Rembauville et al., 2016). At South Georgia 80 

(AAZ), the faecal pellet contribution to carbon export is higher (~60 % in summer-autumn Manno et al., 2015) 
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when compared to Kerguelen (34 % of annual POC flux; Rembauville et al., 2015). The strong gradients in 

productivity and ecosystem structure that characterize these island systems offer a valuable framework to 

address the link between biological and geochemical composition of particle export. 

 85 

The impact of different carbon export vectors on the lability of the exported OM is necessary to understand the 

impact of upper ocean ecology for pelagic-benthic coupling (Ruhl and Smith, 2004; Ruhl et al., 2008). High 

biomass of meio-, micro- and macrofuna in abyssal sediments of the Southern Ocean (Brandt et al., 2007) 

suggests a transfer of OM originating from photosynthetic autotrophs down to the seafloor. This diversity and 

biomass is not geographically homogeneous, but rather constrained by upper ocean productivity levels (Wolff 90 

et al., 2011; Lins et al., 2015). In this context, the comparison of lipid biomarkers in export fluxes originating 

from different sites in the Southern Ocean may help to understand how ecological processes at the origin of 

export flux also shape the magnitude and lability of OM supply to deep-sea benthic communities. 

 

This study compiles lipid biomarker data from five annual sediment trap deployments in the vicinity of 95 

Southern Ocean Island plateaus in order to (i) compare the composition of lipid biomarkers in export fluxes 

collected in sites of various productivity levels and across different depths, (ii) identify how ecological export 

vectors, in particular resting spores, shape the lability of POC fluxes over a complete annual cycle and (iii) 

derive the potential implications of ecological flux vectors for pelagic-benthic coupling. 

2 Material and Methods 100 

2.1 Trap deployments and sample processing  

We compile 5 long-term sediment trap deployments located in the vicinity of island plateaus in the Southern 

Ocean (Fig. 1, Table 1). Two sediment traps were located upstream of the islands in HNLC waters (M6 and P2 

at Crozet and South Georgia, respectively) and three were located in naturally iron-fertilized and productive 

waters characterized by enhanced phytoplankton biomass (A3, M5 and P3 at Kerguelen, Crozet and South 105 

Georgia, respectively). The detailed hydrological settings of deployments, preservative conditions of samples 

and bulk chemical analyses of biogeochemical fluxes have been published previously (Table 1). After the 

retrieval of each sediment trap, swimmers (organisms actively entering the trap funnel) were manually 

removed from the samples and therefore do not contribute to the lipid fluxes we report. 

2.2 Lipid analysis 110 

Lipid analyses were performed on 1/8 wet aliquots resulting from the splitting of original samples. Because of 

the low amount of material collected in some cups, 1/8 wet aliquots were combined prior to the lipid analyses 

(supplementary information). Some samples were lost upon recovery of sediment traps and two were 

contaminated with fish debris and therefore not included in lipid analyses.  Full details of all sediment trap 

samples and those included in lipid analyses is summarized in Supplementary Tables 1-5. 115 

 

Lipids analyses of Crozet sediment trap samples were performed as described by Kiriakoulakis et al. (2001) 

and Wolff et al. (2011). For the Kerguelen and South Georgia samples a similar protocol was used. Briefly, 
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separate 1/8 aliquots were spiked with an internal standard (5α(H)-cholestane), sonicated (filters; 3 x 15 min; 

dichloromethane:methanol 9:1), transmethylated (methanolic acetyl chloride) and silylated 120 

(bistrimethylsilyltrifluoroacetamide; 1 % trimethylsilane chloride; 30–50 µL; 40°C; 0.5–1 h). GC-MS analyses 

were carried out using a GC Trace 1300 fitted with a split-splitless injector, using helium as a carrier gas (2 mL 

min-1) and column DB-5MS (60m x 0.25mm (i.d.), film thickness 0.1µm, non-polar solution of 5% phenyl and 

95% methyl silicone). The GC oven was programmed after 1min from 60°C to 170°C at 6°C min-1, then from 

170°C to 315°C at 2.5 °C min-1 and held at 315 °C for 15 min. The eluent from the GC was transferred directly 125 

to the electron impact source of a Thermoquest ISQMS single quadrupole mass spectrometer. Typical 

operating conditions were: ionisation potential 70 eV; source temperature 215°C; trap current 300 µA. Mass 

data were collected at a resolution of 600, cycling every second from 50–600 Thompsons and were processed 

using Xcalibur software. Compounds were identified either by comparison of their mass spectra and relative 

retention indices with those available in the literature and/or by comparison with authentic standards. 130 

Quantitative data were calculated by comparison of peak areas of the internal standard with those of the 

compounds of interest, using the total ion current (TIC) chromatogram. The relative response factors of the 

analytes were determined individually for 36 representative fatty acids, sterols and alkenones using authentic 

standards. Response factors for analytes where standards were unavailable were assumed to be identical to 

those of available compounds of the same class. 135 

2.3 Statistical analyses 

The lipid composition of sediment trap samples from the five sites was investigated using principal component 

analysis (PCA) and the similarity of samples was studied using clustering (Ward aggregation criteria) based on 

lipid classes. This methodology has been used previously to study the organic geochemistry of sinking 

particles in the ocean (Xue et al., 2011). Prior to both PCA and clustering, raw lipid fluxes were transformed 140 

by calculating the square root of their relative abundance within each sample. This transformation followed by 

the calculation of the Euclidian distance is also known as the Hellinger distance, which provides a good 

compromise between linearity and resolution in ordination analyses (Legendre and Legendre, 1998; Legendre 

and Gallagher, 2001).  

3 Results 145 

3.1 Lipid class distribution and seasonality 

Total lipid fluxes integrated over the sediment trap deployment period (Table 1.) were five orders of magnitude 

higher in the shallow deployment at A3 (229 mg m-2 at 289 m) compared to the deep sediment trap at M6 (0.08 

mg m-2 at 3160 m, Fig. 2, Table 2). The contribution of labile lipid compounds (defined as unsaturated fatty 

acids and alkenols, Wolff et al., 2011, Table 2) to total lipid fluxes was 2-4 times higher in the naturally 150 

fertilized sites (20 -39 % at A3, P3 and M5) relative to the HNLC deployments (<10 % at P2 and M6) (Table 

2.). Unsaturated fatty acids were dominated (>80 %) by monounsaturated fatty acids (MUFA) at all sites. 

Semi-labile lipids (saturated fatty acids analysed as their methyl esters; FAMEs, branched fatty acids and 

alkanols (saturated alcohols); Table 2) accounted for a small fraction (8-12 %) of total lipids at South Georgia, 

but a higher fraction (40-46 %) at Crozet. Semi-labile lipids were dominated by saturated fatty acid 155 
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contributions at all sites (64-80 %). Sterols were the dominant lipids at South Georgia (65-82 %) and were less 

abundant (26-35 %) at the other sites. 

 

The concentration total lipids, expressed as total lipid flux normalized to organic carbon flux, decreased by 

four orders of magnitude between the shallowest (A3, 193.1 mg lipid g OC-1) and the deepest (M6, 0.9 mg 160 

lipid g OC-1) deployment (Table 2). In the shallow deployment at Kerguelen (A3) high concentrations of 

MUFAs (57.4 mg lipid g OC-1), PUFAs (13.7 mg lipid g OC-1) and saturated fatty acids (44.4 mg lipid g OC-1) 

were observed. All other deployments (P3, P2, M5 and M6) had much lower concentrations of labile and semi-

labile compounds and were dominated by more refractory sterols (0.3 – 6.9 mg lipid g OC-1).  

 165 

Samples from Crozet (M5 and M6) were positively projected on the first axis of the PCA together with 

saturated fatty acids, C28-C29 sterols and long chain unsaturated fatty acids (C22, C24) (Fig. 3a). Samples from 

South Georgia (P3 and P2) were negatively projected on the first axis, close to C27 sterols. Samples from 

Kerguelen (A3) were positively projected on the second axis and mainly associated with C16-C20 unsaturated 

fatty acids.  170 

 

Using the lipid composition, four main clusters of sediment trap samples could be identified based on the 

largest distance break after the first node of the dendrogram (Fig. 3b). Cluster A contained most of the spring 

and summer samples from the naturally-fertilized sites of Kerguelen and Crozet (A3 and M5) characterized by 

the highest relative abundance of labile lipids (PUFA and MUFA). Cluster B was composed of summer and 175 

winter samples from A3 displaying a high abundance of alkenols. Cluster C contained spring and summer 

samples from the naturally fertilized site of South Georgia (P3), several samples from Kerguelen and Crozet 

and was characterized by a mixture of labile, semi-labile and refractory lipids (MUFA, saturated fatty acids 

and sterols). Finally, cluster D was composed mostly of samples from the HNLC site of South Georgia (P2) 

and displayed a large dominance of sterols. 180 

3.2 Seasonality at A3 

In spring, vegetative diatoms were the most important constituents of relatively low POC fluxes, followed by 

cylindrical faecal pellets (Fig. 4a). Lipid fluxes were dominated by 9Z-hexadecenoic acid (C16:1 (cis-9); 

palmitoleic acid), hexadecanoic acid (C16), eicosapentaenoic acid; EPA (C20:5 (cis-5,8,11,14,17)), 9Z-

octadecenoic acid (C18:1 (cis-9)), and cholesterol (C27Δ5) that altogether contributed >75% of total lipids (Fig. 185 

4b).  

 

Diatom resting spores dominated the enhanced POC fluxes during summer with a notable contribution of 

cylindrical and ovoid faecal pellets (Fig. 4c). MUFA and PUFA classes were the most significant components 

of lipid export. The principal compounds in these classes were C16:1 (cis-9) (47% of total lipids), C18:1 (cis-9) 190 

(10%) and C20:5 (cis-8) (5.3%).  Sterols accounted for 21% of total lipids and were primarily comprised of 

C27Δ5 (cholesterol) and C29Δ0 (Fig. 4d).  
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In autumn, tabular faecal pellets are the major vectors for POC flux (Fig. 4e), accompanied by a shift to more 

significant contributions of refractory sterols to the lipid composition, notably C27Δ5.  The C16 fatty acid and 195 

C18:1 (cis-9), 11Z, 14Z, 17Z-eicosatrienoic acid (C20:3 (cis-11) and n-hexadecanol (C16 OH) were also important 

components of the lipid composition in Autumn (Fig. 4f).  During winter POC flux is mediated almost entirely 

by large faecal pellets (tabular and ellipsoid shapes) (Fig. 4g) and the unsaturated alcohols eicosenol (C20:1 OH) 

and octadecenol (C18:1 OH) were the major constituent of lipids, with smaller contributions from C16 fatty 

acids, C27Δ5 and C18:1 (cis-9)), (Fig. 4h). 200 

4 Discussion 

4.1 Geographical differences in lipid export composition across the Southern Ocean island systems 

Annual lipid export at the naturally fertilized sites of Crozet and South Georgia was characterized by relatively 

high fluxes of labile and semi-labile compounds compared to the HNLC sites. Similarly, at the iron-fertilized 

productive site on the Kerguelen Plateau, labile and semi-labile lipid classes dominate the annual flux profile. 205 

The labile lipid class was dominated by MUFAs, and to a lesser extent, PUFAs.  In particular, two lipid 

compounds (C16:1 (cis-9) and EPA) commonly associated with diatoms (Kates and Volcani, 1966; Lee et al., 

1971) were important components of the labile lipid class. These observations confirm that the large diatom-

dominated phytoplankton blooms observed downstream of island plateaus (Armand et al., 2008; Korb et al., 

2010; Quéguiner, 2013), which are supported by enhanced iron supply (Blain et al., 2008; Pollard et al., 2009 210 

Nielsdóttir et al., 2012; Bowie et al., 2015), result in significant export of diatom-derived labile OM out of the 

mixed layer.  

 

The PCA and clustering analyses reveal a notable degree of regional structure and highlight the prevalence of 

specific lipid classes in the different island systems. The first axis of the PCA (23.7 % of variance) represents 215 

the location of the sediment trap deployments and the second axis corresponds to the deployment depth. The 

P3 and P2 sites at South Georgia both display ~2 times higher relative abundance of sterols compared to the 

Kerguelen (A3) and Crozet (M5 and M6) sites. Sterols are important components of the plasma membrane 

found in almost all eukaryotic organisms (Dufourc, 2008). Zooplankton use dietary sterols of phytoplankton 

origin, preferentially assimilating C27Δ5, or converting phytosterols to C27Δ5 (Volkman, 1986, 2003) that are 220 

ultimately egested in faecal pellets (Bradshaw and Eglinton, 1993; Prahl et al., 1984). An enrichment in C27Δ5 

(and other C27 sterols such as C27Δ5,22 and C27Δ22) in sinking OM is thus considered indicative of a high 

contribution of faecal material (Ternois et al., 1998) to export flux. The relative abundance of C27Δ5, C27Δ22, 

C27Δ5,22 compounds is highest in the export fluxes around South Georgia, consistent with the higher 

contribution of faecal pellets to carbon export at South Georgia (Manno et al., 2015) compared to Kerguelen 225 

(Rembauville et al., 2015). The biomass of zooplankton groups such as copepods and pteropods reach some of 

their highest Southern Ocean abundances in the northern Scotia Sea, which is also inhabited by Antarctic krill 

(Ward et al. 2012, Mackey et al. 2012).  

4.2 Depth-related trends in lipid composition 
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The decrease in the total lipid flux of five orders of magnitude between the shallowest (289 m) and the deepest 230 

(>3000 m) deployment is consistent with the trend generally observed in the global ocean (Wakeham and Lee, 

1993; Wakeham et al., 1997, 2009). Moreover, the strong decrease in OC-normalized lipid flux, particularly in 

the case of MUFA and PUFA compounds, suggests that these labile lipid classes are selectively remineralized 

during the sinking of the OM. It is possible that some of the differences observed over depth may be related to 

the initial lipid composition of organic material produced in the photic zone by different phytoplankton taxa. In 235 

the shallowest trap (A3, 289 m), the high OC-normalized MUFA flux and the abundance of diatom-derived 

essential PUFAs (C16:3, C18:6, C20:4, C20:5 and C22:6) reflects the export of fresh and highly labile diatom-derived 

OM (Dunstan et al., 1993). By contrast, the presence of branched iso- and anteiso- C15 and C17 compounds in 

the deeper trap samples may be attributed to the activity of bacterial reworking of the particulate OM during 

settling (Kaneda, 1991; Wakeham et al., 1997). 240 

4.3 A quantitative framework linking seasonal variations in ecological flux vectors to particulate lipid 
composition  

In order to advance our understanding of the role of ecosystem structure in driving the composition of particle 

export, quantitative datasets characterizing both the chemical and biological nature of fluxes are required. The 

dataset from the Kerguelen Plateau was selected as a basis for constructing a quantitative framework linking 245 

dominant ecological flux vectors the particulate lipid composition of exported particles.  Kerguelen was 

selected as a case study as we have previously reported detailed quantitative partitioning of POC fluxes 

between diatom and faecal pellet fluxes that reveal major seasonal shifts in the importance of different 

ecological flux vectors (Rembauville et al. 2015). The trap at Kerguelen was deployed 100 m beneath the 

mixed layer, and is therefore also characterized by the highest concentrations and fluxes of lipids (Table 2), 250 

thus providing the best possible resolution to examine seasonal changes in lipid composition in relation to 

ecological flux vectors. 

4.3.1 Spring 

During spring on the Kerguelen Plateau the lipid flux is low (0.3 mg m-2 d-1), as is the corresponding POC flux 

(~0.15 mmol m-2 d-1), which is mainly driven by vegetative diatoms belonging to the genera Fragilariopsis, 255 

Pseudo-nitzschia and Thalassionema, as well as small faecal pellets (Rembauville et al., 2015). Diatoms are 

known predominantly to accumulate unsaturated fatty acids such as C16:1 (cis-9), EPA and C18:1 (cis-9) (Kates 

and Volcani, 1966; Opute, 1974; Chen, 2012; Levitan et al., 2014). Diatoms also produce saturated fatty acids, 

mainly the C16 homologue (Lee et al., 1971; Matsumoto et al., 2009; Liang et al., 2014). Thus, although the 

spring lipid flux is quite low, the major compounds (C16:1 (cis-9), C16, EPA and C18:1 (cis-9)) represent an 260 

export assemblage dominated by vegetative diatoms. 

4.3.2 Summer 

During summer POC fluxes are enhanced by an order of magnitude and are characterized by intense export of 

diatom resting spores (Chaetoceros Hyalochaete spp. and to a lesser extent Thalassiosira antarctica) that 

contribute 60% of the annual POC flux (Rembauville et al. 2015).  This resting spore flux event is associated 265 

with the highest export of total lipids (2.4 mg m-2 d-1, supplementary Table 1).  The summer lipid profile is 

dominated by C16:1 (cis-9) and C18:1 (cis-9), with a marked contribution of EPA. Higher total lipid contents have 
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been documented in resting spores of Chaetoceros Hyalochaete and Thalassiosira antarctica when compared 

to vegetative cells (Doucette and Fryxell, 1983; Kuwata et al., 1993). More specifically, our results are 

consistent with the 8-12 fold increase in the content of C16:1 (cis-9) and C18:1 (cis-9) in Chaetoceros 270 

pseudocurvisetus resting spores when compared to the vegetative stages (Kuwata et al., 1993). An increase in 

the cell content of EPA during the formation of resting spores has also been reported for Chaetoceros 

salsugineus (Zhukova and Aizdaicher, 2001). 

  

Resting spore formation is an ecological strategy utilized by certain diatom species to persist in environments 275 

where unfavorable conditions (e.g. light or nutrient limitation) occur (Smetacek, 1985; French and Hargraves, 

1985; McQuoid and Hobson, 1996). Lipids produce more energy per unit mass than polysaccharides and can 

be stored in concentrated forms by diatoms (Obata et al., 2013). The accumulation of energy-rich unsaturated 

fatty acids in the resting spore, associated with a reduced metabolism (Oku and Kamatani, 1999) and sinking to 

deeper waters (Smetacek, 1985) act in concert to increase the survival rate of the cells. In order for this 280 

ecological strategy to work the cells must be reintroduced to the surface mixed layer during a period favorable 

for growth.  Nevertheless, sediment trap studies from Southern Ocean island systems clearly document that a 

significant portion of the resting spores formed in the surface are exported out of the mixed layer and reach 

bathypelagic depths (Salter et al. 2012, Rembauville et al. 2015, 2016).  Consequently, the ecological survival 

strategy of resting spore formation in diatoms can mediate large fluxes of labile lipid compounds to the 285 

seafloor. 

Cholesterol (C27Δ5) was a significant component (>10 %) of particulate lipid composition throughout the year.  

However, it reached its highest highest contribution (18 %) in autumn when the contribution of faecal pellets to 

POC flux increased. Unlike many eukaryotes, crustaceans are incapable of de novo biosynthesis of sterols and 

show a simple sterol composition dominated by C27Δ5 (Goad, 1981; Baker and Kerr, 1993; Kanazawa, 2001). 290 

Its presence throughout the year may thus be explained by the continuous export of spherical, ovoid and 

cylindrical faecal pellets (Figure 4) which are typically attributed to copepods, amphipods and euphausiids 

(Wilson et al., 2008, 2013). Notably we observed the presence of a C29Δ0 sterol during summer. C29 sterols are 

abundant in diatoms (Volkman, 2003), and can account for 60 % and 80 % of total lipids of Navicula sp., and 

Eucampia antarctica var antarctica, respectively (Rampen et al., 2010), both of which showed a clear 295 

seasonality with a marked summer maximum (Rembauville et al., 2015). 

4.3.3 Winter 

In winter, the lowest lipid fluxes were recorded and in contrast with other samples were dominated by mono-

unsaturated alkenols (C18:1 OH and C20:1 OH). These compounds are generally absent in phytoplankton lipids 

but are an abundant component in zooplankton wax ester (Lee et al., 1971), and are often utilized as a marker 300 

for zooplankton-derived OM (Wakeham et al., 1997). More specifically, salp faecal pellets (tabular shape) 

have been shown to contain important amounts of C18:1 OH and C20:1 OH (Matsueda et al., 1986). This is in 

good agreement with the dominance of tabular faecal pellets in the winter POC flux at Kerguelen. Tabular 

faecal material is present in the export flux during autumn but alkenols represent a minor constituent of the 

lipid flux. We expect this difference is primarily related to the larger contribution of diatoms to export flux (as 305 

both single cells or present in faecal pellets), but it may also reflect changes in zooplankton lipid composition 
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across the season (Lee et al., 2006). Wax esters are used as energy reserve (Lee et al., 1970) but also contribute 

to adjust buoyancy in cold and deep waters in winter (Pond and Tarling, 2011). The abundance of wax ester-

derived compounds we report in winter is also consistent with observations from neritic areas of the Kerguelen 

Islands (Mayzaud et al., 2011). Another indicator of a seasonal shift from diatom (spring) to faecal pellet-310 

dominated export system (autumn and winter) is the absence of long chain PUFAs in autumn and winter. It has 

been previously reported that this energy-rich compound is preferentially assimilated by zooplankton and is 

therefore typically absent in faecal pellets (Stübing et al., 2003). 

4.4 Implications for pelagic-benthic coupling 

Diatom-resting spores account for 60% of annual particulate organic carbon (POC) export at 300m from the 315 

iron-fertilized bloom on the Kerguelen plateau (Rembauville et al. 2015).  Similar patterns are observed in 

deeper trap samples (>2000m) from the productive regime at South Georgia (P3), whereby 42% of annual POC 

export can be attributed to resting spores (Rembauville et al. 2016a). At the productive Crozet site (M5), 

Eucampia antarctica winter growth stages dominate flux at 3000m and are strongly correlated with total POC 

flux (Salter et al. 2012). These findings are in contrast to sediment trap diatom assemblages from the low 320 

productivity/HNLC sites upstream of Kerguelen, Crozet and South Georgia that contain much lower quantities 

of resting spores (<5%) with a negligible contribution to POC (Salter et al. 2012, Rembauville et al. 2016a, 

2017).  The consistent feature from Southern Ocean island systems is that the flux of diatom resting spores, in 

particular those of Chaetoceros spp. and E. antarctica, are important vectors of POC transport to the 

bathypelagic (>1500m).  In the bathypelagic ocean (>1500m), concentrations of MUFAs and PUFAs are 2-25 325 

times higher in particulate flux originating from the productive regimes of these iron-fertilized systems (Table 

1; Wolff et al. 2011). These data demonstrate that resting spore flux also mediates enhanced fluxes of freshly 

labile organic matter, in the form of unsaturated fatty acids, to the bathypelagic ocean. 

 

The oxidation of unsaturated fatty acids (MUFA and PUFA) classes produces more energy than their saturated 330 

fatty acid counterparts (Levitan et al., 2014). An energy-rich food supply associated with the resting spore flux 

appears to have an important impact on benthic systems. For example, the decoupling of abundance between 

mega-faunal invertebrates and OM input at Crozet appears in part to be related to enhanced labile lipid and 

pigment fluxes supporting higher fecundity of the dominant mega-faunal invertebrate, Peniagone crozeti 

(Wolff et al. 2011). At South Georgia, nematode biomass is 10 times higher in deep-sea sediments (>3000m) 335 

underlying iron-fertilized productivity regimes (Lins et al. 2015) whilst OM input varies by considerably less 

(Rembauville et al. 2016).  Nematode fatty acids are significantly enriched C16:1 (cis-9) and EPA, two major 

lipid compounds we have shown to be statistically associated with summer export events dominated by diatom 

resting spores.  A resistance to grazing (Kuwata and Tsuda, 2005) and enhanced sinking velocities of resting 

spores compared to vegetative cells (McQuoid and Hobson, 1996) result in their effective transfer to the 340 

seafloor (Rembauville et al. 2016), consistent with the fact they are a common feature of sediments underlying 

productive regimes (Crosta et al. 1997; Armand et al. 2008; Tsukazaki et al. 2013). The ecology of resting 

spore formation therefore acts as an efficient conduit to transfer energy rich storage lipids to the sediment and 

they may thus play a particularly important role in pelagic-benthic coupling. 

 345 
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Deep-sea ecosystems are strongly dependent on OM food supply originating from photosynthesis in the 

surface ocean (Billett et al., 1983, 2001; Ruhl and Smith, 2004; Ruhl et al., 2008). In the Southern Ocean, it 

has been demonstrated how the composition of the upper ocean plankton community, and their associated 

ecological strategies, can influence the biological carbon pump (Smetacek at al. 2004; Salter et al., 2012; 

Assmy et al., 2013; Salter et al. 2014 Rembauville et al., 2015) The present study reveals how changes in 350 

major ecological flux vectors, and in particular the process of diatom resting spore formation, can also 

influence pelagic-benthic coupling by moderating the supply of energy rich storage lipids to deep-sea 

communities. 
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Table 1: Information on sediment trap deployments and fluxes of particulate organic carbon (POC) integrated 

over the deployment period. 660 

Table 2: Total annual lipid flux, relative contribution of lipid classes and lipid concentrations for the five 

sediment trap deployments. Labile – MUFA (monounsaturated fatty acids), PUFA (polyunsaturated fatty 

acids) and unsaturated alcohols; Semi-labile – saturated fatty acids, branched fatty acids and saturated alcohols; 

Refractory – Sterols, Other (Wolff et al., 2011). Sediment trap deployment periods are presented in Table 1. 

Individual compound fluxes, concentrations and relative contributions are included in Supplementary Tables 1-665 

5. A full list of the compounds categorized as others can also be found in the supplementary tables. 

Figure Captions 

Figure 1: Location of the five annual sediment trap deployments in the Southern Ocean. Color refers to annual 

surface satellite-derived chlorophyll a climatology (MODIS 2002-2016 full mission product accessed at 

http://oceancolor.gsfc.nasa.gov/cms/). Dashed and continuous lines represent respectively the Subantarctic 670 

Front (SAF) and Polar Front (PF) from Sallée et al., 2008. SAZ: Subantarctic Zone, PFZ: Polar Frontal Zone, 

AAZ: Antarctic Zone. 

Figure 2: Total lipid fluxes (grey bars, left axis) integrated over the sediment trap deployment periods (Table 

1) and the relative contribution of lipid classes (coloured bars, right axis) to this total flux from five moored 

sediment trap deployments in the Southern Ocean. Individual compound fluxes, concentrations and relative 675 

contributions are included in Supplementary Tables 1-5. A full list of the compounds categorized as others can 

also be found in the supplementary tables. 

Figure 3: Association of lipid compounds with sediment trap samples. a) Principal component analysis of the 

relative abundance of lipids (n = 121). Black and white symbols represent respectively the naturally-fertilized 

and the low productivity sites. b) Clustering of the sediment trap samples based on the relative abundance of 680 

lipid classes (Euclidian distance, Ward aggregation criteria). Clusters A, B, C and D were defined based on the 

highest distance break after the first node. In a) and b), color refers to the lability of lipids according to (Wolff 

et al., 2011). 

Figure 4: Seasonal evolution of carbon export vectors and associated lipid composition over the central 

Kerguelen Plateau (A3, 289 m). Left panels: carbon export vectors from Rembauville et al., 2015. Right 685 

panels: sorted relative abundance (coloured bars) and cumulated relative abundance (dots) of major lipids. a) 

and b) cups 1-3, c) and d) cup 9, e) and f) cup 11, g) and h) cup 12. 
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Table 1 

Location and reference Trap model Collection period 
Total POC flux 

(mmol m-2) 

  

Kerguelen  
(Rembauville et al., 2015b)    

A3 
50°38.30’ S – 72°02.60’ E 
289 m 

Technicap 
PPS3/3 

0.125 m2 

21/10/2011 - 07/09/2012 
No sample lost 
Total: 322 days 

     98 

South Georgia  
(Rembauville et al., 2016a)    

P3 
52°43.40’ S - 40°08.83’ W 
2000 m McLane 

PARFLUX 
0.5 m2 

15/01/2012 - 01/12/2012 
1 sample lost 

Total: 291 days 
     41 

P2 
55°11.99’ S - 41°07.42’ W 
1500 m 

15/01/2012 – 01/12/2012 
3 samples lost 

Total: 231 days 
     26 

Crozet  
(Salter et al., 2012)    

M5 
46°00.00’ S – 56°05.00’ E 
3195 m McLane 

PARFLUX 
0.5 m2 

28/12/2005 - 29/12/2005 
No sample lost 
Total 360 days 

     40 

M6 
49°00.03’ S – 51°30.59’ E 
3160 m 

05/01/2005 - 03/01/2006 
No sample lost 
Total 359 days 

     14 
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Table 2 

Site A3 P3 P2 M5 M6 
Integrated lipid flux 
(mg m-2) 228.8 3.83 2.67 1.20 0.08 

Relative contribution (%)      

MUFA 29.7 18.0 8.1 18.1 5.2 

PUFA 7.1 1.3 0.2 3.1 0.3 
Unsaturated alcohols 
(alkenols) 2.3 1.1 0.6 2.2 0.5 

Saturated fatty acids 23.0 9.7 5.9 26.0 30.5 

Branched fatty acids 1.4 0.2 0.3 1.3 0.8 

Saturated alcohols (alkanols) 8.5 2.3 1.7 13.2 14.5 

Sterols 26.0 64.8 81.9 34.6 35.0 

Other 2.0 2.5 1.3 1.5 13.3 

Total lipid concentration  
(mg lipid g OC-1) 193.1 7.8 8.4 3.1 0.9 

Lipid concentration 
(µg lipid g OC-1)      

MUFA 57403.2 1397.6 687.6 565.8 49.1 

PUFA 13736.4 102.3 18.4 97.7 2.7 
Unsaturated alcohols 
(alkenols) 4403.6 82.5 47.7 68.2 5.1 

Saturated fatty acids 44359.3 755.2 497.5 810.7 289.0 

Branched fatty acids 2792.1 18.7 24.5 39.6 7.4 

Saturated alcohols (alkanols) 16325.6 176.2 145.2 411.7 137.0 

Sterols 50261.1 5021.9 6911.4 1077.7 331.6 

Other 3777.8 196.3 108.3 47.0 126.0 

 700 
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