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Abstract 13	
  

Natural iron fertilization downstream of Southern Ocean island plateaus support large 14	
  

phytoplankton blooms and promote carbon export from the mixed layer.  In addition to 15	
  

sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) 16	
  

to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the 17	
  

energy input to the system, the chemical nature of OM is also of significance.  However, a 18	
  

quantitative framework linking ecological flux vectors to OM composition is currently 19	
  

lacking.  In the present study we report the lipid composition of export fluxes collected by 20	
  

five-moored sediment traps deployed in contrasting productivity regimes of Southern Ocean 21	
  

island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative 22	
  

data on diatom and fecal pellet fluxes. At the three naturally iron fertilized sites, the relative 23	
  

contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty 24	
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alcohols) is 2-4 times higher than at low productivity sites. There is a strong attenuation of 25	
  

labile components as a function of depth, irrespective of productivity.  The three island 26	
  

systems also display regional characteristics in lipid export.  The diversity of sterols is greater 27	
  

in the relatively warm waters of the Polar Frontal Zone when compared to the Antarctic zone, 28	
  

reflecting the transition from mixed phytoplankton communities to principally diatom-derived 29	
  

OM. An enrichment of zooplankton dietary sterols, such as C27Δ
5, at South Georgia is 30	
  

consistent with high zooplankton and krill biomass in the region and the importance of fecal 31	
  

pellets to POC flux. There is a strong association of diatom resting spore fluxes that dominate 32	
  

productive flux regimes with energy rich unsaturated fatty acids.  At the Kerguelen Plateau 33	
  

we provide a statistical framework to link seasonal variation in ecological flux vectors and 34	
  

lipid composition over a complete annual cycle. Our analyses demonstrate that ecological 35	
  

processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the 36	
  

magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the 37	
  

composition of exported OM and the nature of pelagic-benthic coupling. 38	
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1. Introduction 47	
  

The biological pump transfers organic carbon (OC) from photosynthetic production to 48	
  

the deep ocean (Volk and Hoffert, 1985) with important implications for the sequestration of 49	
  

atmospheric CO2 (Sarmiento et al., 1988; Kwon et al., 2009). Only a minor fraction of the 50	
  

carbon fixed in the sunlit ocean reaches the deep ocean and sediments (Martin et al., 1987; 51	
  

Honjo et al., 2008), but this carbon and energy supply is essential for the functioning of deep-52	
  

sea benthic ecosystems (Billett et al., 1983, 2001; Ruhl and Smith, 2004; Ruhl et al., 2008) . 53	
  

Commonly referred to as pelagic-benthic coupling (Graf, 1989), the composition, lability and 54	
  

timing of organic matter (OM) flux arriving at the seafloor can exert a large influence on 55	
  

benthic communities (Billett et al., 2001; Galeron et al., 2001; Mincks et al., 2005; Smith et 56	
  

al., 2006; Wolff et al, 2011). 57	
  

 Understanding the factors influencing the functioning of the biological pump remains 58	
  

a central question in biogeochemical oceanography (Boyd and Newton, 1995; Rivkin et al., 59	
  

1996; Boyd and Trull, 2007; Guidi et al., 2016). Many different approaches have been 60	
  

adopted to study the biological pump, including carbon budgets (Emerson et al. 1997, 61	
  

Emerson 2014), mixed layer nutrient inventories (Eppley and Peterson, 1979; Sarmiento et al. 62	
  

2004), radionuclide disequilibria (Buesseler et al., 1992; Savoye et al., 2006), optical methods 63	
  

(Gardner et al., 1990; Guidi et al. 2016), neutrally buoyant- (Buesseler et al. 2000; Salter et al. 64	
  

2007) and moored-sediment traps (Berger, 1971; Honjo, 1976). Although all of these methods 65	
  

have their own caveats, sediment traps offer the distinct advantage of collecting and 66	
  

preserving sinking particles for subsequent biological and chemical analysis. Moored 67	
  

sediment traps allow the direct quantification of sinking protists including dinoflagellates (e.g. 68	
  

Harland and Pudsey, 1999), diatoms (e.g. Salter et al. 2012), coccolithophores (e.g. Ziveri et 69	
  

al. 2007), radiolarians (e.g. Takahashi et al., 1991), silicoflagellates (Rigual-Hernández et al., 70	
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2010), foraminifera (Salter et al. 2014) and zooplankton faecal pellets (Wilson et al., 2008, 71	
  

2013).  Indirect approaches uses biomarkers such as lipids and amino acids to identify the 72	
  

source (algal, zooplanktonic, bacterial) and diagenetic status (lability, degree of preservation) 73	
  

of the exported OM  (Wakeham, 1982; Wakeham et al., 1980, 1984, 1997; Kiriakoulakis et 74	
  

al., 2001; Wakeham et al., 2009; Lee et al., 2009; Salter et al., 2010). Although it is generally 75	
  

well-acknowledged that ecological vectors of flux are linked to the geochemical composition, 76	
  

studies providing a coupled description of biological components and OM composition of 77	
  

export fluxes remain relatively scarce (e. g. Budge and Parrish, 1998). 78	
  

 Southern Ocean island plateaus such as Kerguelen (Blain et al., 2007), Crozet (Pollard 79	
  

et al., 2009) and South Georgia (Tarling et al., 2012) provide a natural source of iron to the 80	
  

iron-poor waters of the Antarctic Circumpolar Current (de Baar et al., 1990; Martin et al., 81	
  

1990). Currents and the topography of the sea floor lead to enrichment of iron in waters 82	
  

adjacent to the islands which supports large diatom-dominated phytoplankton blooms 83	
  

(Armand et al., 2008; Korb et al., 2008; Quéguiner, 2013) that contrast with the high nutrient, 84	
  

low chlorophyll (HNLC, Minas et al., 1986) regime that generally prevails in Antarctic 85	
  

waters. Previous studies of Southern Ocean island plateaus have identified the significance of 86	
  

resting spore formation by neritic diatom species (Eucampia antacrica var. antarctica, 87	
  

Chaetoceros Hyalochaete, Thalassiosira antarctica) in response to nutrient limitation in mid-88	
  

summer (Salter et al., 2012; Rembauville et al., 2015, 2016a). The export of resting spores 89	
  

generally occurs during short and intense events but they can account for a significant fraction 90	
  

(40-60 %) of annual carbon flux out of the mixed layer at these naturally fertilized sites. This 91	
  

process contributes to the ~2 fold increase in annual carbon export when compared to the 92	
  

HNLC sites (Salter et al., 2012; Rembauville et al., 2015, 2016a).  93	
  

Despite the general importance of resting spore ecology for POC export from naturally 94	
  

iron-fertilized systems in the Southern Ocean, there are some notable differences in the nature 95	
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of export fluxes from Crozet, Kerguelen and South Georgia. At Crozet, in the Polar Front 96	
  

Zone (PFZ), the abundance of foraminifers and pteropods leads to a high inorganic to organic 97	
  

carbon export ratio (1 mol:mol, Salter et al., 2014). At Kerguelen, south of the Polar Front in 98	
  

the Antarctic Zone (AAZ) the inorganic to organic carbon ratio is much lower (0.07) and 99	
  

CaCO3 flux is mainly attributed to coccoliths (Rembauville et al., 2016). At South Georgia 100	
  

(AAZ), the faecal pellet contribution to carbon export is higher (~60 % in summer-autumn 101	
  

Manno et al., 2015) when compared to Kerguelen (34 % of annual POC flux; Rembauville et 102	
  

al., 2015). The strong gradients in productivity and ecosystem structure that characterize these 103	
  

island systems offer a valuable framework to address the link between biological and 104	
  

geochemical composition of particle export. 105	
  

The impact of different carbon export vectors on the lability of the exported OM is 106	
  

necessary to understand the impact of upper ocean ecology for pelagic-benthic coupling (Ruhl 107	
  

and Smith, 2004; Ruhl et al., 2008). High biomass of meio-, micro- and macrofuna in abyssal 108	
  

sediments of the Southern Ocean (Brandt et al., 2007) suggests a transfer of OM originating 109	
  

from photosynthetic autotrophs down to the seafloor. This diversity and biomass is not 110	
  

geographically homogeneous, but rather constrained by the upper ocean productivity levels 111	
  

(Wolff et al., 2011; Lins et al., 2015). In this context, the comparison of lipid biomarkers in 112	
  

export fluxes originating from different sites in the Southern Ocean may help to understand 113	
  

how ecological processes at the origin of export flux also shape the magnitude and lability of 114	
  

OM supply to deep-sea benthic communities. 115	
  

This study compiles lipid biomarker data from five annual sediment trap deployments 116	
  

in the vicinity of Southern Ocean Island plateaus in order to (i) compare the composition of 117	
  

lipid biomarkers in export fluxes collected in sites of various productivity levels and across 118	
  

different depths, (ii) identify how ecological export vectors, in particular resting spores, shape 119	
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the lability of POC fluxes over a complete annual cycle and (iii) derive the potential 120	
  

implications of ecological flux vectors for pelagic-benthic coupling. 121	
  

 122	
  

2 Material and Methods 123	
  

 2.1 Trap deployments and sample processing  124	
  

We compile 5 long-term sediment trap deployments located in the vicinity of island plateaus 125	
  

in the Southern Ocean (Fig. 1, Table 1). Two sediment traps were located upstream of the 126	
  

islands in HNLC waters (M6 and P2 at Crozet and South Georgia, respectively) and three 127	
  

were located in naturally iron-fertilized and productive waters characterized by enhanced 128	
  

phytoplankton biomass (A3, M5 and P3 at Kerguelen, Crozet and South Georgia, 129	
  

respectively). The detailed hydrological settings of deployments and bulk chemical analyses 130	
  

of biogeochemical fluxes have been published previously (Table 1). After the retrieval of each 131	
  

sediment trap, swimmers (organisms actively entering the trap funnel) were manually 132	
  

removed from the samples and therefore do not contribute to the lipid fluxes we report. 133	
  

 2.2 Lipid analysis 134	
  

Lipid analyses were performed on 1/8 wet aliquots resulting from the splitting of original 135	
  

samples. Because of the low amount of material collected in some cups, 1/8 wet aliquots were 136	
  

combined prior to the lipid analyses (Supplementary Table 1). 137	
  

Lipids analyses of Crozet sediment trap samples were performed as described by 138	
  

Kiriakoulakis et al. (2001) and Wolff et al. (2011). For the Kerguelan and South Georgia 139	
  

samples a similar protocol was used. Briefly, separate 1/8 aliquots were spiked with an 140	
  

internal standard (5α(H)-cholestane), sonicated (filters; 3 x 15 min; 141	
  

dichloromethane:methanol 9:1), transmethylated (methanolic acetyl chloride) and silylated 142	
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(bistrimethylsilyltrifluoroacetamide; 1 % trimethylsilane chloride; 30–50 µL; 40°C; 0.5–1 h). 143	
  

GC-MS analyses were carried out using a GC Trace 1300 fitted with a split-splitless injector, 144	
  

using helium as a carrier gas (2 mL min-1) and column DB-5MS (60m x 0.25mm (i.d.), film 145	
  

thickness 0.1µm, non-polar solution of 5% phenyl and 95% methyl silicone). The GC oven 146	
  

was programmed after 1min from 60°C to 170°C at 6°C min-1, then from 170°C to 315°C at 147	
  

2.5 °C min-1 and held at 315 °C for 15 min. The eluent from the GC was transferred directly 148	
  

to the electron impact source of a Thermoquest ISQMS single quadrupole mass spectrometer. 149	
  

Typical operating conditions were: ionisation potential 70 eV; source temperature 215°C; trap 150	
  

current 300 µA. Mass data were collected at a resolution of 600, cycling every second from 151	
  

50–600 Thompsons and were processed using Xcalibur software. Compounds were identified 152	
  

either by comparison of their mass spectra and relative retention indices with those available 153	
  

in the literature and/or by comparison with authentic standards. Quantitative data were 154	
  

calculated by comparison of peak areas of the internal standard with those of the compounds 155	
  

of interest, using the total ion current (TIC) chromatogram. The relative response factors of 156	
  

the analytes were determined individually for 36 representative fatty acids, sterols and 157	
  

alkenones using authentic standards. Response factors for analytes where standards were 158	
  

unavailable were assumed to be identical to those of available compounds of the same class. 159	
  

 2.3 Statistical analyses 160	
  

The lipid composition of sediment trap samples from the five sites was investigated using 161	
  

principal component analysis (PCA) and the similarity of samples was studied using a 162	
  

clustering (Ward aggregation criteria) based on lipid classes. This methodology has been used 163	
  

previously to study the organic geochemistry of sinking particles in the ocean (Xue et al., 164	
  

2011). Prior to both PCA and clustering, raw lipid fluxes were transformed by calculating the 165	
  

square root of their relative abundance within each sample. This transformation followed by 166	
  

the calculation of the Euclidian distance is also known as the Hellinger distance, which 167	
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provides a good compromise between linearity and resolution in ordination analyses 168	
  

(Legendre and Legendre, 1998; Legendre and Gallagher, 2001).  169	
  

3 Results 170	
  

3.1 Lipid class distribution and seasonality 171	
  

The total lipid flux collected by sediment traps was five orders of magnitude higher in the 172	
  

shallow deployment at A3 (230 mg m-2 at 289 m), when compared to the deep sediment trap 173	
  

at M6 (44 µg m-2 at 3160 m, Fig. 2, Table 2). The contribution of labile lipids (unsaturated 174	
  

fatty acids and alcohols, Wolff et al., 2011, Table 2) to total lipid fluxes was 2-4 times higher 175	
  

in the naturally fertilized sites (20-40 % at A3, P3 and M5) when compared to the HNLC 176	
  

deployments (<10 % at P2 and M6). Unsaturated fatty acids were dominated (>75 %) by 177	
  

monounsaturated fatty acids (MUFA) at all sites. Semi-labile lipids (saturated fatty acids 178	
  

analysed as their methyl esters; FAMEs, and saturated fatty alkanols; Table 2) accounted for a 179	
  

small fraction (10-15 %) of total lipids at South Georgia, but a higher fraction (30-40 %) at 180	
  

Crozet. Semi-labile lipids were dominated by the FAME contributions (~70 %) at all sites. 181	
  

Sterols were the dominant lipids at South Georgia (65-85 %) and were less abundant (30-35 182	
  

%) at the other sites. 183	
  

 The total lipid flux normalized to OC decreased by four orders of magnitude between 184	
  

the shallowest (A3, 195.2 mg lipid g OC-1) and the deepest (M6, 0.3 mg lipid g OC-1) 185	
  

deployment (Table 2). OC-normalized lipid fluxes in the shallow deployment at Kerguelen 186	
  

(A3) displayed high contributions from MUFAs (57.7 mg lipid g OC-1), PUFAs (13.8 mg 187	
  

lipid g OC-1) and FAMEs (44.6 mg lipid g OC-1). All other deployments (P3, P2, M5 and M6) 188	
  

had much lower amounts of labile and semi-labile compounds and were dominated by sterols 189	
  

(89.5 – 5 111.5 µg lipid g OC-1). 190	
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Samples from Crozet (M5 and M6) were positively projected on the first axis of the 191	
  

PCA together with FAME, C28 and C29 sterols and long chain unsaturated fatty acids (C22, 192	
  

C24) (Fig. 3a). Samples from South Georgia (P3 and P2) were negatively projected on the first 193	
  

axis, close to C27 sterols. Samples from Kerguelen (A3) were positively projected on the 194	
  

second axis and mainly associated with C16-C20 unsaturated fatty acids.  195	
  

 Four main clusters of sediment trap samples could be identified based on the largest 196	
  

distance break after the first node of the dendrogram (Fig. 3b). Cluster A contained most of 197	
  

the spring and summer samples from the naturally-fertilized sites of Kerguelen and Crozet 198	
  

(A3 and M5) characterized by the highest relative abundance of labile lipids (PUFA and 199	
  

MUFA). Cluster B was composed of summer and winter samples from A3 displaying a high 200	
  

abundance of unsaturated alkenols. Cluster C contained spring and summer samples from the 201	
  

naturally-fertilized site of South Georgia (P3) and few samples from Kerguelen and Crozet 202	
  

and were characterized by a mixture of labile, semi-labile and refractory lipids (MUFA, 203	
  

FAME and sterols). Finally, cluster D was mostly composed of samples from the HNLC site 204	
  

of South Georgia (P2), displaying a large dominance of sterols. 205	
  

3.2 Seasonality at A3 206	
  

In spring, vegetative diatoms were the main contributors to the low POC flux, followed by 207	
  

cylindrical faecal pellets (Fig. 4a). Lipid fluxes were dominated by C16:1 (cis-9), hexadecanoic 208	
  

acid (C16 FAME), EPA, (Z)-octadec-9-enoic acid (C18:1 (cis-9)), and cholesterol (C27Δ5) that 209	
  

altogether contributed to >75% of the total lipids (Fig. 4b). In summer, diatom resting spores 210	
  

dominated the POC flux, followed by cylindrical and ovoid fecal pellets (Fig. 4c). C16:1 (cis-9) 211	
  

strongly dominated lipid export (47 %), followed by C18:1 (cis-9), C27Δ5 and C29Δ0 sterols and 212	
  

EPA (Fig. 4d). In autumn, when tabular faecal pellets dominated the export flux (Fig. 4e), 213	
  

C27Δ5 was the major lipid exported followed by C16 FAME, C18:1 (cis-9), (all Z)-eicosatri-214	
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11,14.17-enoic acid (C20:3 (cis-11) and n-hexadecanol (C16 OH), (Fig. 4f). In winter, large 215	
  

faecal pellets (tabular and ellipsoid shapes) dominated the carbon flux (Fig. 4g). Dominant 216	
  

lipids were eicosenol (C20:1 OH) and octadecenol (C18:1 OH), followed by C16 FAME, C27Δ5 217	
  

and C18:1 (cis-9)), (Fig. 4h). 218	
  

 219	
  

4 Discussion 220	
  

 4.1 Geographical differences in lipid export composition across the 221	
  

Southern Ocean island systems 222	
  

Annual lipid export at the naturally-fertilized sites of Crozet and South Georgia was 223	
  

characterized by relatively high fluxes of labile and semi-labile compounds compared to the 224	
  

HNLC sites. Similarly at the iron-fertilized productive site on the Kerguelen Plateau, labile 225	
  

and semi-labile lipid classes dominate the annual flux profile. The labile lipid class was 226	
  

dominated by MUFAs, and to a lesser extent, PUFAs.  In particular, two lipid compounds 227	
  

(C16:1 (cis-9) and EPA) commonly associated with diatoms (Kates and Volcani, 1966; Lee et 228	
  

al., 1971) were important components of the labile lipid class. These observations confirm 229	
  

that the large diatom-dominated phytoplankton blooms observed downstream of island 230	
  

plateaus (Armand et al., 2008; Korb et al., 2010; Quéguiner, 2013), which are supported by 231	
  

enhanced iron supply (Blain et al., 2008; Pollard et al., 2009 Nielsdóttir et al., 2012; Bowie et 232	
  

al., 2015), can result in significant export of labile OM out of the mixed layer.  233	
  

 The PCA and clustering analyses reveal a notable degree of regional structure and 234	
  

highlight the prevalence of specific lipid classes in the different island systems. The first axis 235	
  

of the PCA (23.7 % of variance) represents the location of the sediment trap deployments and 236	
  

the second axis corresponds to the deployment depth. The P3 and P2 sites at South Georgia 237	
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both display ~2 times higher relative abundance of sterols compared to the Kerguelen (A3) 238	
  

and Crozet (M5 and M6) sites. Sterols are important components of the plasma membrane 239	
  

found in almost all eukaryotic organisms (Dufourc, 2008). Zooplankton use dietary sterols of 240	
  

phytoplankton origin, preferentially assimilating C27Δ5, or converting phytosterols to C27Δ5 241	
  

(Volkman, 1986, 2003) that are ultimately egested in faecal pellets (Bradshaw and Eglinton, 242	
  

1993; Prahl et al., 1984). An enrichment in C27Δ5 (and other C27 sterols such as C27Δ5,22	
  and	
  243	
  

C27Δ22)	
  in sinking OM is thus considered indicative of a high contribution of faecal material 244	
  

(Ternois et al., 1998) to export flux. The relative abundance of C27Δ5, C27Δ22,	
   C27Δ5,22 245	
  

compounds is highest in the export fluxes around South Georgia, consistent with the higher 246	
  

contribution of faecal pellets to carbon export at South Georgia (Manno et al., 2015) 247	
  

compared to Kerguelen (Rembauville et al., 2015). The biomass of zooplankton groups such 248	
  

as copepods and pteropods reach some of their highest Southern Ocean abundances in the 249	
  

northern Scotia Sea, which is also inhabited by Antarctic krill (Ward et al. 2012, Mackey et 250	
  

al. 2012).  251	
  

The high contribution of C27Δ5 and C28Δ5,22 at South Georgia also reflects the dominance of 252	
  

diatoms at the base of the food web (Korb et al., 2010), whereas the higher contribution of 253	
  

C29Δ0 and C29Δ5,22 at Crozet suggests a more diversified phytoplankton community with 254	
  

possible contributions from Chlorophyceae, Haptophyceae and cyanobacteria (Volkman, 255	
  

2003; Hernandez-Sanchez et al., 2010, 2012). Warmer waters of the Polar Frontal Zone (PFZ) 256	
  

at Crozet are known to host a more diversified phytoplankton community compared to the 257	
  

diatom-dominated waters of the Antarctic one (AAZ) at Kerguelen and South Georgia 258	
  

(Wright et al., 1996; Fiala et al., 2004; Poulton et al., 2007; Korb et al., 2012; Armand et al., 259	
  

2008). 260	
  

4.2 Depth-related trends in lipid composition 261	
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The decrease in the total lipid flux of five orders of magnitude between the shallowest 262	
  

(289 m) and the deepest (>3000 m) deployment is consistent with the trend generally 263	
  

observed in the global ocean (Wakeham and Lee, 1993; Wakeham et al., 1997, 2009). 264	
  

Moreover, the strong decrease in OC-normalized lipid flux, particularly in the case of labile 265	
  

MUFA and PUFA compounds, suggests that lipids are selectively degraded/remineralized 266	
  

during the sinking of the OM. In the shallowest trap (A3, 289 m), the high OC-normalized 267	
  

MUFA flux and the abundance of diatom-derived essential PUFA (C16:3, C18:6, C20:4, C20:5 and 268	
  

C22:6) reflects the export of fresh and highly labile diatom-derived OM (Dunstan et al., 1993). 269	
  

By contrast, the presence of branched iso- and anteiso- C15 and C17 compounds in the deeper 270	
  

trap samples may be attributed to the activity of bacterial reworking of the particulate OM in 271	
  

the deep ocean (Kaneda, 1991; Wakeham et al., 1997). 272	
  

4.3 A quantitative framework linking ecological flux vectors to the 273	
  

geochemical composition of particles  274	
  

In order to advance our understanding of the role of ecosystem structure in driving the 275	
  

composition of particle export, quantitative datasets on both compound and organism fluxes 276	
  

are required. The dataset from the Kerguelen Plateau was selected as a basis for constructing a 277	
  

quantitative framework linking ecological flux vectors to the lipid composition of exported 278	
  

particles.  This choice was made primarily on the basis of the high-quality quantitative data on 279	
  

diatom and fecal pellet fluxes (Rembauville et al. 2015), but also reflects the shifts in 280	
  

seasonality between dominant flux vectors and highest overall lipid fluxes and concentrations 281	
  

(Table 2). 282	
  

4.3.1 Spring 283	
  

During spring, the lipid flux is low (0.3 mg m-2 d-1), as is the corresponding POC flux 284	
  

(~0.15 mmol m-2 d-1), which is mainly driven by vegetative diatoms belonging to the genera 285	
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Fragilariopsis, Pseudo-nitzschia and Thalassionema, as well as small faecal pellets 286	
  

(Rembauville et al., 2015). Diatoms are known to predominantly accumulate unsaturated fatty 287	
  

acids such as C16:1 (cis-9), EPA, and to a less extent C18:1 (cis-9), (Kates and Volcani, 1966; 288	
  

Opute, 1974; Chen, 2012; Levitan et al., 2014). Diatoms also produce FAMEs, mainly the C16 289	
  

homologue (Lee et al., 1971; Matsumoto et al., 2009; Liang et al., 2014). Although the lipid 290	
  

flux is low, the lipid composition we report in spring (C16:1 (cis-9), C16 FAME, EPA and C18:1 291	
  

(cis-9)) is consistent with a diatom-dominated export assemblage. 292	
  

4.3.2 Summer 293	
  

Summer at the Kerguelen Plateau is characterized by intense export of diatom resting 294	
  

spores (Chaetoceros Hyalochaete spp. and to a lesser extent Thalassiosira antarctica) that 295	
  

contribute 60% of the annual POC flux (Rembauville et al. 2015) and is associated with the 296	
  

highest export of total lipids (2.5 mg m-2 d-1, Supplementary Table 1).  The summer lipid 297	
  

profile is dominated by C16:1 (cis-9)  and C18:1 (cis-9), with a marked contribution of EPA. 298	
  

Higher total lipid contents have been documented in resting spores of Chaetoceros 299	
  

Hyalochaete and Thalassiosira antarctica when compared to vegetative cells (Doucette and 300	
  

Fryxell, 1983; Kuwata et al., 1993). Moreover, our results are consistent with the 8-12 fold 301	
  

increase in the content of C16:1 (cis-9) and C18:1 (cis-9) in Chaetoceros pseudocurvisetus 302	
  

resting spores when compared to the vegetative stages (Kuwata et al., 1993). An increase in 303	
  

the cell content of EPA during the formation of resting spores has also been reported for 304	
  

Chaetoceros salsugineus (Zhukova and Aizdaicher, 2001).  305	
  

Resting spore formation is an ecological strategy utilized by certain diatom species to 306	
  

persist in environments where unfavorable conditions (e.g. light or nutrient limitation) occur 307	
  

(Smetacek, 1985; French and Hargraves, 1985; McQuoid and Hobson, 1996). Lipids produce 308	
  

more energy per unit mass than polysaccharides and are stored in concentrated forms by 309	
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diatoms (Obata et al., 2013). The accumulation of energy-rich unsaturated fatty acids in the 310	
  

resting spore, associated with a reduced metabolism (Oku and Kamatani, 1999) and sinking to 311	
  

deeper waters (Smetacek, 1985) act in concert to increase the survival rate of the cells. In 312	
  

order for this ecological strategy to work the cells must be reintroduced to the surface mixed 313	
  

layer during a period favorable for growth.  Nevertheless, sediment trap studies from Southern 314	
  

Ocean island systems clearly document that a significant portion of resting spores settle to 315	
  

depth (Salter et al. 2012, Rembauville et al. 2015, 2016).  Consequently, this ecological 316	
  

survival strategy of diatoms results in large fluxes of labile lipid compounds arriving at the 317	
  

seafloor.  318	
  

Cholesterol (C27Δ5) was measured (>10 % of total lipids) in settling particles 319	
  

throughout the year and showed the highest contribution (18 %) in autumn when the 320	
  

contribution of faecal pellets to POC flux increased. Unlike many eukaryotes, crustaceans are 321	
  

incapable of de novo biosynthesis of sterols and show a simple sterol composition dominated 322	
  

by C27Δ5 (Goad, 1981; Baker and Kerr, 1993; Kanazawa, 2001). Its presence throughout the 323	
  

year can be explained by the continuous export of spherical, ovoid and cylindrical faecal 324	
  

pellets (Figure 4) which are typically attributed to copepods, amphipods and euphausiids 325	
  

(Wilson et al., 2008, 2013). Notably we observed the presence of a C29Δ0 sterol during 326	
  

summer. C29 sterols are abundant in diatoms (Volkman, 2003), and can account for 60 % and 327	
  

80 % of total lipids of Navicula sp., and Eucampia antarctica var antarctica, respectively 328	
  

(Rampen et al., 2010), both of which showed a clear seasonality with a marked summer 329	
  

maximum (Rembauville et al., 2015). 330	
  

4.3.3 Winter 331	
  

In winter, the lowest lipid fluxes were recorded and in contrast with other samples was 332	
  

dominated by mono-unsaturated alkenols (C18:1 OH and C20:1 OH). These compounds are 333	
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generally absent in phytoplankton lipids but are an abundant component in zooplankton wax 334	
  

ester (Lee et al., 1971), and are often utilized as a marker for zooplankton-derived OM 335	
  

(Wakeham et al., 1997). More specifically, salp faecal pellets (tabular shape) have been 336	
  

shown to contain important amounts of C18:1 OH and C20:1 OH (Matsueda et al., 1986). This is 337	
  

in good agreement with the dominance of tabular faecal pellets in the winter POC flux at 338	
  

Kerguelen. Tabular faecal material is present in the export flux during autumn but fatty 339	
  

alkenols represent a minor constituent of the lipid flux. We expect this difference is primarily 340	
  

related to the larger contribution of diatoms to export flux (as both single cells or present in 341	
  

faecal pellets), but it may also reflect changes in zooplankton lipid composition across the 342	
  

season (Lee et al., 2006). Wax esters are used as energy reserve (Lee et al., 1970) but also 343	
  

contribute to adjust buoyancy in cold and deep waters in winter (Pond and Tarling, 2011). The 344	
  

abundance of wax ester-derived compounds we report in winter is also consistent with 345	
  

observations from neritic areas of the Kerguelen Islands (Mayzaud et al., 2011). Another 346	
  

indicator of a seasonal shift from diatom (spring) to faecal pellet-dominated export system 347	
  

(autumn and winter) is the absence of long chain PUFAs in autumn and winter. It has been 348	
  

previously reported that this energy-rich compound is preferentially assimilated by 349	
  

zooplankton and is absent in faecal pellets (Stübing et al., 2003). 350	
  

4.4 Implications for pelagic-benthic coupling 351	
  

Diatom resting spores have been shown to dominate POC flux to the deep ocean in the three 352	
  

major naturally iron-fertilized island systems of the Southern Ocean (Salter et al., 2012; 353	
  

Rembauville et al., 2015, 2016a).  The present study demonstrates that resting spore flux from 354	
  

the iron fertilized productive areas around Kerguelen and South Georgia are associated with 355	
  

higher fluxes of labile MUFA and PUFA lipid classes when compared to nearby HNLC 356	
  

regimes, comparable to previous findings from the Crozet Plateau (Wolff et al. 2011).. The 357	
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oxidation of unsaturated MUFA and PUFA classes produces more energy than their saturated 358	
  

fatty acid counterparts (Levitan et al., 2014). An energy-rich food supply associated with the 359	
  

resting spore flux appears to have an important impact on benthic systems. For example, the 360	
  

decoupling of abundance between megafaunal invertebrates and OM input at Crozet appears 361	
  

in part to be related to enhanced labile lipid and pigment fluxes supporting higher fecundity of 362	
  

the dominant megafaunal invertebrate Peniagone crozeti (Wolff et al. 2011). At South 363	
  

Georgia nematode biomass is 10 times higher in deep-sea sediments (>3000m) underlying 364	
  

iron-fertilized productivity regimes (Lins et al. 2015) whilst OM input varies by considerably 365	
  

less (Rembauville et al. 2016).  Nematode fatty acids were significantly enriched C16:1 (cis-9) 366	
  

and EPA, two major lipid compounds we have shown to be statistically associated with 367	
  

summer export events dominated by diatom resting spores.  A resistance to grazing (Kuwata 368	
  

and Tsuda, 2005) and enhanced sinking velocities or resting spores compared to vegetative 369	
  

cells (McQuoid and Hobson, 1996) result in their effective transfer to the seafloor 370	
  

(Rembauville et al. 2016) consistent with the fact they are a common feature of sediments 371	
  

underlying productive regimes (Crosta et al. 1997; Armand et al. 2008; Tsukazaki et al. 372	
  

2013). The ecology of resting spore formation therefore acts as an efficient conduit to transfer 373	
  

energy rich storage lipids to the sediment to such that they play a particularly important role 374	
  

in pelagic-benthic coupling. 375	
  

 Deep-sea ecosystems are strongly dependent on OM food supply originating from 376	
  

photosynthesis in the surface ocean (Billett et al., 1983, 2001; Ruhl and Smith, 2004; Ruhl et 377	
  

al., 2008). In the Southern Ocean, it has been demonstrated that the composition of the upper 378	
  

ocean plankton community and associated ecological strategies influence the intensity of the 379	
  

biological carbon pump (Smetacek et al., 2004; Salter et al., 2012; Assmy et al., 2013; 380	
  

Rembauville et al., 2015) and the carbonate counter pump (Salter et al. 2014).  The present 381	
  

study demonstrates how changes in major ecological flux vectors, e.g. resting spores versus 382	
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fecal pellets, can be linked to the lipid composition of settling particles, with implications for 383	
  

energy supply to benthic communities.  384	
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Tables 742	
  

Table 1: Information on sediment trap deployments and total fluxes of particulate organic 743	
  

carbon (POC) and biogenic silica (BSi) collected. 744	
  

Location and reference Sediment trap 
model Collection period 

Total fluxes 
(mmol m-2) 

POC BSi 

Kerguelen (Rembauville et al., 2015b)     

A3 
50°38.30’ S – 72°02.60’ E 
289 m 

Technicap 
PPS3/3 

0.125 m2 

21/10/2011 – 07/09/2012 
No sample lost 
Total: 322 days 

98 114 

South Georgia (Rembauville et al., 2016a)     

P3 
52°43.40’ S - 40°08.83’ W 
2000 m Mclane 

PARFLUX 
0.5 m2 

15/01/2012 – 01/12/2012 
1 sample lost 

Total: 291 days 
41 46 

P2 
55°11.99’ S - 41°07.42’ W 
1500 m 

15/01/2012 – 01/12/2012 
3 samples lost 

Total: 231 days 
26 39 

Crozet (Salter et al., 2012)     

M5 
46°00.00’ S – 56°05.00’ E 
3195 m Mclane 

PARFLUX 
0.5 m2 

28/12/2005 – 29/12/2005 
No sample lost 
Total 360 days 

40 165 

M6 
49°00.03’ S – 51°30.59’ E 
3160 m 

05/01/2005 – 03/01/2006 
No sample lost 
Total 359 days 

14 97 
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Table 2: Total annual lipid flux, relative composition of lipid classes and lipid flux 747	
  

normalized to POC flux for the five sediment trap deployments. Labile - MUFA, PUFA and 748	
  

Unsat. OH; Semi-labile – FAME, Br. FAME, OH; Refractory – Sterols, Other (Wolff et al., 749	
  

2011). 750	
  

Site A3 P3 P2 M5 M6 
Total lipid flux 
(mg m-2 y-1) 230.01 3.84 2.65 1.20 0.04 

Relative contribution (%)      

MUFA 29.6 18.1 8.2 17.5 4.5 

PUFA 7.1 1.3 0.2 3.8 0.0 

Unsat. OH 2.3 1.1 0.6 2.1 2.2 

FAME 22.9 9.7 5.9 25.9 24.7 

Br. FAME 1.4 0.2 0.3 1.0 1.1 

OH 8.4 2.3 1.3 13.8 15.7 

Sterols 25.9 64.9 82.3 34.7 33.7 

Other 2.4 2.5 1.3 1.3 18.0 

Normalized total lipid flux  
(mg lipid g OC-1) 195.2 7.9 8.4 2.5 0.3 

Normalized lipid flux 
(µg lipid g OC-1)      

MUFA 57758.2 1422.8 689.6 437.5 11.9 

PUFA 13783.6 99.7 13.0 93.8 0.0 

Unsat. OH 4431.7 83.8 47.5 52.1 6.0 

FAME 44640.5 766.6 495.0 645.8 65.5 

Br. FAME 2807.7 18.9 23.1 25.0 3.0 

OH 16416.9 178.9 104.8 343.8 41.7 

Sterols 50580.6 5111.5 6878.4 864.6 89.3 

Other 4769.6 199.2 107.8 31.3 47.6 
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Figures captions. 753	
  

Figure 1: Location of the five annual sediment trap deployments in the Southern Ocean. 754	
  

Color refers to surface satellite-derived chlorophyll a climatology (MODIS 2002-2016 full 755	
  

mission product accessed at http://oceancolor.gsfc.nasa.gov/cms/). Dashed and continuous 756	
  

lines represent respectively the Subantarctic Front (SAF) and Polar Front (PF) from Sallée et 757	
  

al., 2008. SAZ: Subantarctic Zone, PFZ: Polar Frontal Zone, AAZ: Antarctic Zone. 758	
  

Figure 2: Annual total lipid fluxes (grey bars, left axis) and relative contribution of lipid 759	
  

classes (coloured bars, right axis) to the total flux from five moored sediment trap 760	
  

deployments in the Southern Ocean. 761	
  

Figure 3: Association of lipid compounds with sediment trap samples. a) Principal 762	
  

component analysis of the relative abundance of lipids (n = 121). Black and white symbols 763	
  

represent respectively the naturally-fertilized and the low productivity sites. b) Clustering of 764	
  

the sediment trap samples based on the relative abundance of lipid classes (Euclidian distance, 765	
  

Ward aggregation criteria). Clusters A, B, C and D were defined based on the highest distance 766	
  

break after the first node. In a) and b), color refers to the lability of lipids according to (Wolff 767	
  

et al., 2011). 768	
  

Figure 4: Seasonal evolution of carbon export vectors and associated lipid composition over 769	
  

the central Kerguelen Plateau (A3, 289 m). Left panels: carbon export vectors from 770	
  

Rembauville et al., 2015. Right panels: sorted relative abundance (coloured bars) and 771	
  

cumulated relative abundance (dots) of major lipids. a) and b) cups 1-3, c) and d) cup 9, e) 772	
  

and f) cup 11, g) and h) cup 12. 773	
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Figure 1 777	
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Figure 2 789	
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Figure 3 800	
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