

1 Final manuscript corrections

2

3 We thank you for acceptance of our manuscript and we have made the changes to the final
4 uploaded word document of the text (added the links to the Dryad repository and the Daycent
5 documentation).

6 Thank you!

7 Tara Hudiburg, Philip Higuera, and Jeff Hicke

8

9 Relevant changes made in the manuscript per the reviews:

- 10 1. Climate scenario has been removed as a primary objective/hypothesis. The objectives of
11 the study have been clarified and the modeling goals. We also discuss the modeling
12 limitations given the lack of paleoclimate data.
- 13 2. Many portions of the text regarding methods, the site description, the model description,
14 and the vegetation history has been revised and clarified (see specific comments).
- 15 3. The figures have been revised per the recommendations.
- 16 4. Many other changes regarding typos, citations, and wording have also been made per the
17 recommendations.

18 Response to Editor comments

19 Editor comment 1 (rev 1 comment): I ask you to consider using existing AR4 or AR5 climate
20 change scenarios to apply them to DayCent for your study region because these climate scenarios
21 provide physically consistent climate variables for a 2-degree warming. Otherwise, the error
22 propagation is too high and your results can be biased.

23 Editor Comment: Please make sure that this approach is thoroughly explained in the methods
24 section. Also explain, why you cannot derive such type of information from your climate forcing
25 data.

26 Author response: We agree that using climate forcing data that includes the other variables (like
27 precipitation) would be a better way to test the impact of climate (rather than just warming).
28 However, because our prescribed fire events are decoupled from climate in the model
29 simulations, we chose not to pursue downscaled climate datasets with more physically constant
30 variables as they would not influence the fire events (in the model). Finally, as requested by the
31 editor, we have decided to go with option (2) advised by Rev 1 and eliminate the climate
32 warming scenario from our hypotheses.

33 In terms of other abiotic influences (precipitation and radiation), we agree they are
34 important, but again, we do not and cannot easily acquire paleoclimate data for this watershed,
35 making these impacts beyond the capability of the current study. Per the request, we have
36 clarified this in the manuscript and discussed the limitations of the climate forcing data.

37 3. Net ecosystem responses cannot be derived from simulating fire pattern alone. Please re-
38 consider your response and revise your manuscript as demanded by reviewer 1.

39 Author response: We agree that net ecosystem response cannot be derived from simulating fire
40 pattern alone. We utilize a comprehensive, mechanistic, biogeochemical model (DayCent) that
41 includes the important processes that affect ecosystem response (vegetation, climate,
42 disturbance, plant growth, decomposition, etc) because of this reason. Per option 2 suggested by
43 Rev 1, we will "...explicitly present this study as a first-step modelling approach integrating only
44 the fire regime information and therefore only testing it" and remove the third hypothesis related
45 to climate. We will also discuss the limitations of the study regarding the climate forcing data.

46 4. Reviewer 1 has offered you two options for improving your manuscript. Please reconsider to
47 take one of the options to allow this manuscript getting published.

48 Author Response: As suggested by the editor, we are choosing option 2 (remove climate
49 scenario) as suggested by the reviewer and including text about the limitations of our climate
50 forcing data. In the discussion, we note the impact that 2 °C of warming in the model has on
51 plant growth and decomposition, relative to the changes from fire themselves. This sensitivity
52 analysis provides some coarse context for interpreting the magnitude of change from fire
53 activity, without implying that we have simulated past climate or coupled climate-fire-ecosystem
54 dynamics.

55 Editor comment 2: Reviewer 2:

56 1. Provide the information demanded by the reviewer in the manuscript text, accordingly.

57 Cf. Reviewer 2: Materials and Methods: L165 What exactly is the size of the simulated area?
58 Are fires spatially-explicit? Or just based on random selection of cells? Perhaps a few word on
59 this.

60 Response: We have edited the text per Rev 2's requests, specifically where more information is
61 necessary.

62 2. Explore all available options for validating also vegetation composition or productivity as
63 demanded by reviewer 2: "This removes the necessity to do the paleo-informed, but nevertheless
64 paleodata comparison is necessary as a validation step" and describe it in the manuscript.

65 Author response: We have addressed this issue in the text. Specifically, we have clarified that the
66 vegetation composition has not changed and cited this information. There has not been any
67 dominant vegetation changes at this site for the study record. Also, we compare/evaluate our
68 productivity numbers with the only values available to us. We have also clarified this in the text.

69 Editor comment: In addition to these changes that need to be taken into account in the revision of
70 the current manuscript, all other changes demanded by the reviewers need to be considered. You
71 have announced that these changes were or will be conducted in the revised manuscript. These
72 changes will be essential.

73 Author response: We have edited the text and made the changes as requested and outlined in our
74 response.

75

76

77 Response to SC1

78 We thank the reviewer for thoughtful and helpful comments and have addressed many of the
79 suggestions (see specific replies below).

80 - Page 2, line 48: we suggest changing the word “great” to “greater” since it is followed
81 by the word “than” and in comparison, certain adjectives such as great should get an “er” or “est”
82 at the end.

83 Response: This sentence has been removed.

84 - Page 4, line 83: we would change “significance influence of fire” to significant influence since
85 it makes more sense

86 Response: We have chosen to keep “of fire” as it more explicitly defines what we are referring to
87 (rather than climate).

88 For a better understanding and conception, we suggest the following: - Page 2, line 40: we would
89 find a definition of “C trajectories” helpful

90 Response: We have added the following clarification: “(i.e. future states or directions)” - Page 3,
91 line 61: it is somewhat unclear what the authors mean by pool sizes, we suggest that they
92 indicate which elements pool sizes they specifically mean (e.g. carbon or nitrogen or etc.,)

93 Response: Done.

94 - Page 3, line 71: it is not clear what is meant by Net Ecosystem Carbon Balance (NECB)

95 Response: Yes, this was unclear until the methods. Thank you for pointing this out. We have
96 now added text describing NECB (the balance between net forest carbon uptake and forest losses
97 through fire emissions).

98 - Page 4, line 86: the term “spin up” is confusing. We suggest that the authors try to explain and
99 clarify this term in a more understandable wording perhaps by defining this term with a simple
100 example before using it.

101 Response: We added the following sentence for clarification: "To initiate the model, C and N
102 pools need to develop, as they start from 'bare soil' with no vegetation; as vegetation grows the
103 modeled soil pools increase, and it takes hundreds to thousands of simulation years during this
104 "spin-up" period for the C and N pools to equilibrate.

105 - Page 5, line 139-141: “Day Cent” Is well described but already mentioned in section 2.1,
106 therefore we suggest the description should come earlier

107 Response: We switched the order of the sections so that the Model Description is now Methods
108 section 2.1 and the study site is section 2.2.

109 - Page 6, line 151-152: is L:N and lignin to nitrogen the same? It is not mentioned in the text

110 Response: Yes, we changed the L:N to lignin to nitrogen for consistency.

111 - Page 7, line 182: from our point of view, the “key difference” between the two fire types should
112 come at the beginning of the paragraph

113 Response: We moved “The key difference between the two fire types simulated is the associated
114 soil erosion” to the beginning (second sentence; line 181 now) of the paragraph.

115 - Page 8, line 208: timeframe CE, is that defined as common era?

116 Response: Yes, we added “common era” in parentheses.

117

118 - Page 8, lines 211-219: we think the explanation of different scenarios can be expressed in a
119 more precise and separated way. The description of additional scenarios make it difficult to
120 understand and follow the subject since they’re told altogether. Perhaps by separating the
121 scenarios and explaining each of them on an independent paragraph, the concept can be easier to
122 follow. The use of that many brackets makes it more confusing than helping anything.

123 Response: We agree the descriptions were confusing. The text has been separated in to distinct
124 paragraphs with more explanation of each scenario.

125 - Page 9, line 248: isn’t the data fitted? Not surprising that it is “broadly in agreement”

126 Response: Fire occurrence is “fitted”, but not C losses. We include the comparison to indicate
127 that DayCent is capable (some models are not) of replicating the expected C emissions from fire
128 in this region.

129 - Page 13, line 360-365: very long and complicated sentence. We would suggest making more
130 than one sentence out of it for a better understanding

131 Response: This text has been changed (and edited).

132 - Page 13, line 369: the word “woody pool” should be clarified

133 Response: Done.

134 - Page 14, line 383 & 388: are “ecosystem states” and “biogeochemical states” the same? Here
135 we would need simplification or a better definition

136 Response: We are using them interchangeably, but decided to just use biogeochemical states.

137 Concerning the figures: - Implement results in Table 1

138 Response: We think providing the results in Table 1 would be repetitive, and thus unnecessary.

139 - Figure 1: For a better visual understanding, it would be nice to have at least two different colors
140 for the different types of fire. Also, different symbols could be used. The spacing between the
141 line is very big and could be better used. It would be sufficient to have only one legend as it is
142 the same, and we can read the word “high severity fire” four times in a small figure. That could
143 be simplified.

144 Response: We changed the fire severities to two different symbols (open vs closed) and now use
145 only one legend as well as making the symbols larger.

146 - Figure 2: It is too confusing that the grey Equilibrium line and the yellow Equilibrium + 2
147 degrees have the same value on the y-axis but it's not shown.

148 Response: We have removed the warming scenario from the figure.

149 - Figure 1, 2 and 4: In the text the time data is in CE. In the Figures time data Cal BP is used. We
150 would suggest to only use one time specification.

151 Response: Generally, tree-ring records that extend back several centuries (e.g., the tree-ring
152 inferred fire date at Chickaree Lake), are reported in years CE, while lake-sediment records,
153 which extend back thousands of years, are reported in years BP (to avoid negative values, prior
154 to 0 CE). We understand how this can be confusing, so we added years BP to the few places in
155 the text where we refer to year CE.

156

157 Reviewer 1 comment

158 First of all, even though the authors refer to past published studies, they should present or
159 document the reconstructed response of vegetation (changes or not) the site recorded at least with
160 the same level of information as for the fire reconstruction they provide.

161 Response: The pollen record at this site indicates the dominance of subalpine forest taxa
162 (lodgepole pine) for the duration of the record presented here, which is consistent with other
163 regional records (and therefore we do not vary the vegetation over time). We have clarified this
164 in the text. To support this statement, we provide the citation to the original paper with the pollen
165 record, as well as other studies from the region: Caffrey and Doerner 2012, Dunnette et al. 2014,
166 Higuera et al. 2014.

167 Secondly, and most importantly, I wonder why authors have used only the same fixed 30-year
168 time series for climate data whatever the time frame simulated over the last 4500 years BP
169 instead of using past climate simulations from GCM or ESM whose many have Holocene
170 climate as well as Future climate runs.... whereas several studies have documented and
171 discussed about the potential counter-effect of precipitation increase in compensating the effect
172 of temperature increase on fire occurrences and spread....

173 Response: We agree that using paleo and/or future climate scenarios would be very interesting
174 and useful. However, in this paper we are purposefully isolating the potential impacts of fire-
175 regime variability. Our intent is not to replicate the exact dynamics that occurred at Chickaree
176 Lake; rather, we are using DayCent as a tool to test alternative hypotheses and using the fire
177 history of Chickaree Lake as an example of realistic variability in fire activity. In DayCent, we
178 thus prescribe when fire events occur, which automatically decouples the fire events from
179 climate from a modeling point of view. Even if we had a perfect paleoclimate data, few (if any)
180 models would be capable of replicating the Chickaree Lake record, which would turn the paper
181 into a model development project. Additionally, we also prescribe the erosion events associated
182 with fires, again decoupling them from precipitation events.

183 This would prevent authors from saying that fires and climate are disconnected which is
184 absolutely not true, or at least need to be tested for each ecosystem studied. Moreover, instead of
185 just increasing the 30-year time series temperature by 2°C, they could have used the full climate
186 time series for the 21st century simulated by the same climate or earth models that provided the
187 Holocene runs. They even could have tested different IPCC scenarios and their impact of the
188 NECB. The use of climate model data would have provided precipitation time series as well,
189 whose changes could also have impacted soil nutrient (and C) leaching. Indeed, it is easy to show
190 that fire regime change outweighs climate change when such climate change may be unrealistic
191 or only taken into account through temperature increase whereas several studies have
192 documented and discussed about the potential counter-effect of precipitation increase in
193 compensating the effect of temperature increase on fire occurrences and spread.

194 Response: We certainly do not believe that climate and fire are disconnected, and much of our
195 own work explores fire-climate relationships in these and other ecosystems. To clarify this, we
196 added a note in the study area description, briefly specifying the nature of fire-climate

197 relationships in regional subalpine forests and citing a key reference. In DayCent, the only
198 impact of using forced climate (with the forced fire and erosion events) would be the feedbacks
199 to plant growth, which would increase or decrease the biomass available to burn given certain
200 climate conditions. This is why we implemented the simple warming scenario: to see if/how our
201 results would differ when biomass accumulation rates were higher (due to warmer temperatures).
202 Our results indicate that the impacts of climate, as reflected by plant growth, is insignificant
203 compared to the disturbance impacts in the model. However, we agree that this is not a good way
204 to test the impact of climate on C cycling over time at this site and because this was not our
205 intent, we have removed the warming scenario from study design in manuscript. We refer to the
206 impacts of a 2 °C warming simply as a sensitivity analysis within the context of the DayCent
207 model only, and not as a scenario representing coupled climate-fire-ecosystem dynamics.

208 Finally, because the charcoal record indicates when fire events occur, incorporating a
209 paleoclimate record at the daily timestep and for a single location in the Rocky Mountains would
210 likely add significant uncertainty, in both the precipitation regime and certainly if fire was
211 "dynamic" and occurred in response to simulated climate.

212 Reviewer: It is even more important in the studied system as authors suggested and used two
213 types of high severity fires: those with and those without erosion. Stand-replacing fires (95%
214 mortality) are not really severe fire if post-fire regeneration is occurring in the next following
215 years from naturally adapted species. Fire severity would rather refer to the difficulty of post-
216 regeneration encountered in special cases. Stand-replacing fires are usually very intense and fuel
217 consumption includes all the litter and humus layers, leaving the mineral soil exposed. So, if
218 erosion in the burned watershed occurs (towards the lacustrine receptacle), it is performed during
219 (heavy) rainfall events. Therefore, this is another argument to show that it would have been
220 valuable to use past simulated precipitation over the last 4500 years BP, in order to test if rainfall
221 (even as mean annual rainfall) changes could have occurred contemporaneously to erosive events
222 just after some fires as compared to others.

223 Response: In western North America, subalpine forests like our study area are classified as
224 "high-severity fire regimes," where "severity" refers to the immediate impacts of a fire on the
225 ecosystem, often measured (directly or indirectly) by the amount of vegetation killed. In most
226 cases, post-fire regeneration in subalpine forests does indeed start in the year immediately
227 following fire, but we consider this an ecosystem response. While we appreciate the
228 shortcomings of the concept of "fire severity," this is the standard terminology used, and we have
229 added some references to support this use (i.e., Keeley 2009, Int. Journal of Wildland Fire). We
230 simulated consumption of litter and humus layers in DayCent. In fact, the fires were
231 parameterized to consume (combust) the forest biomass pools given known combustion
232 coefficients for these types of forests (which includes 99% removal of the litter layer). With
233 respect to climate forcing, again, we are forcing the erosion events to occur regardless of
234 precipitation, based on the reconstructed fire history record. It would be ideal to test if the
235 erosion events occurred with large precipitation events/years, but this is beyond the scope of this
236 study.

237 Moreover, authors provide no information on the vegetation compartment modeled except the
238 Net Ecosystem

239 Production for outputs, so we have no idea about which plant types are used for this site nor why
240 30cm deep was chosen as the targeted depth to analyze the site response. Finally, in the current
241 version, except from NEP, we have not idea about the effect of vegetation change in terms of
242 composition nor structure through time, we cannot see the direct as well as indirect effects of
243 climate change on vegetation nor climate on fire as climate dataset was fixed and repeated along
244 the 4500 years BP, even though fire ignition and fire spread conditions may have been more or
245 less favorable.

246 Response: Our purpose in this study is not to predict the effects of climate (or fire) on vegetation
247 change over time (or the effects of CO₂ or nitrogen deposition, etc). The study site description
248 includes a description of the known vegetation cover and based on the previously published
249 pollen record from this site and others, we are confident that this general forest type did not
250 change over the duration of our record (as noted above). DayCent (and most biogeochemical
251 models) can only model soil C dynamics to a depth of 30 cm, primarily because this is the most
252 active zone. The vegetation history has been more thoroughly described in the text, with
253 additional references for support.

254 For all these reasons I see two options that require to modify the manuscript:

255 Option 1: to do the modelling experiment exercise once again but using climate data that
256 represent the studied Holocene period for the first part and the 21st century for the second part.
257 Even though climate data come from GCM and are not perfect, they will still be better than
258 present-day ones applied to past and/or future periods, especially if climate is tested and its
259 relative impact compared to that of fire regime variability. In parallel to temperature and
260 precipitation datasets, authors should explain how they deal with air CO₂ concentration as it
261 should have been modified from 280 ppmv until 1750 to the historical recorded concentration
262 until nowadays, and for the Future, at least a mean CO₂ increase should be used if authors do not
263 want to test several RCP scenarios. By keeping the CO₂ at a fixed concentration could still be
264 acceptable but once more, as they are tracking C pools, I think that the atmospheric C input
265 should be taken into account.

266 Response: This is beyond the scope of this study and we are concerned that this activity would
267 introduce large amounts of uncertainty (given modeling limitations) rather than actually
268 clarifying our results. Again, our purpose here was not replicate the exact Holocene dynamics of
269 this site (although we agree this is an important next step/project).

270 Option 2: keep the modelling experiment in the current version but authors need at least to
271 remove the third objective as climate has not been properly taken into account as compared to
272 the fire regime factor. In such case, they should explicitly present this study as a first-step
273 modelling approach integrating only the fire regime information and therefore only testing it. All
274 sentences related to climate effect should be modified in order to rather present or discuss limit
275 of non-using proper climate data. This would better fit with the balanced way results must be
276 discussed. In such a case, the first two objectives are still OK. Results and conclusions should be

277 fairly presented without omitting that the climate data used may be a limit to the interpretations
278 done.

279 Response: We agree the climate objective should not be a ‘main focus’ or main objective of the
280 paper. We have removed the third climate objective.

281 Otherwise, I found pertinent the improvements suggested in the M.W.I. Schmidt’s comment
282 posted for improvement definitions, more detailed explanations and improvement in figure
283 quality so I encourage the authors to take them into account. They will facilitate the reading of
284 the manuscript for people not fully familiar with model requirements and functioning such as the
285 need of a spinup period, the use of several pools or compartments... If supplementary material is
286 allowed I suggest to add such information there, even with a scheme presenting how the
287 DayCent model works.

288 Response: We have addressed and utilized many of the comments from Schmidt. DayCent has
289 excellent documentation online (powerpoints, step by step instructions, publication lists;
290 <http://www.nrel.colostate.edu/projects/daycent-downloads.html>). If allowed we will include the
291 link in the manuscript. We will also post our model input and output on the Dryad repository (not
292 allowed until manuscript is published).

293

294 Response to Rev 2

295 Also, aside from discussing the biogeochemical elements, it could be interesting to also compare
296 some of the ecological attributes like age distribution of forest stands between the paleo-informed
297 and equilibrium approaches. Clearly the distribution of ages will be quite different, which could
298 have implications if eventually model simulations become a tool for forest management
299 guidelines aiming at sustainability of ecological services.

300 Response: We agree examining other ecological attributes would be interesting. The reviewer
301 has hit on a frustrating problem in the ecosystem modeling world, especially as it pertains to
302 providing useful tools for management. Unfortunately, DayCent (and most BGC models) do not
303 model age distributions or forest structural changes, as there are no 'trees' explicitly modeled. To
304 model individual trees, one needs to use forest landscape/succession models, which either lack
305 the biogeochemistry or operate at spatial scales much too large for this project (like LPJ as
306 suggested below). We also believe the soil model in released/validated versions of LPJ is
307 insufficient for this project.

308 Specific comments

309 Introduction:

310 L87-93 Would this rather illustrate that many models that perform a spin-up period lack a
311 validation of their simulated biochemical cycle?

312 Response: Spin-up is a necessary step given the need to reach steady state (and have an
313 ecosystem with 'states' to model). We agree that it is/has been difficult to validate spin-up and
314 spin-up as rather been used to reflect realistic 'steady states'. With the advent of more paleo data,
315 more spin up validation could be done.

316 Typically, the period after spin-up (what we refer to as equilibrium in this study) is validated
317 against current ecosystem states, given information available. For DayCent, validation of the
318 biogeochemical cycling has been performed in 100s of studies for 1000s of data points,
319 originally published as the CENTURY model (Parton et al. 1983) with many publications in all
320 types of terrestrial ecosystems since then.

321 Materials and Methods:

322 L165 What exactly is the size of the simulated area? Are fires spatially-explicit? Or just based on
323 random selection of cells? Perhaps a few words on this.

324 Response: This was a 'point' simulation (size is not explicitly modeled) for a single study site.
325 The simulation represents the watershed (c. 30 hectares) that would be affected in a high-severity
326 fire with erosion. The fire is spatially-explicit to the single point, as there are no other
327 points/grids. We have clarified that this is a point simulation in the text.

328 L176 So climate and radiation are constant. This may be problematic because in the eventuality
329 that climate was different during the late-Holocene, as compared to the Anthropocene, likely the
330 simulation will be misleading the productivity levels. So I guess this is another argument for

331 doing the +2C and -2C simulation experiments (L217-224). Not using paleoclimatic simulation
332 is an important weakness of this study and I would recommend that authors put more emphasis
333 on the importance of this temperature sensitivity analysis. However, they should note that
334 temperature is not the only driver of NPP; radiation and precipitation are also important.

335 Response: As pointed out by Rev. 1, climate impacts are not (and should not be) a main focus of
336 the study. We agree that using paleo and/or future climate scenarios would be very interesting
337 and useful. However, in this paper we are purposefully isolating the potential impacts of fire-
338 regime variability. Our intent is not to replicate the exact dynamics that occurred at Chickaree
339 Lake; rather, we are using DayCent as a tool to test alternative hypotheses and using the fire
340 history of Chickaree Lake as an example of realistic variability in fire activity. In DayCent, we
341 thus prescribe when fire events occur, which automatically decouples the fire events from
342 climate from a modeling point of view. Even if we had a perfect paleoclimate data, few (if any)
343 models would be capable of replicating the Chickaree Lake record, which would turn the paper
344 into a model development project.

345 In terms of the temperature sensitivity, we show that net C balance is not sensitive to temperature
346 relative to the impacts of disturbance, and this was really just a check on what we already know
347 about climate vs. disturbance impacts (as pointed out by Rev. 3). In terms of other abiotic
348 influences (precipitation and radiation), we agree they are important but again, we do not and
349 cannot easily acquire paleoclimate data for this watershed, making these impacts beyond the
350 capability of the current study. We include the temperature sensitivity results as a simple test on
351 the model, although they are no longer a main focus.

352 L182-185 More details are needed in regard to the validation dataset. What kind of datasets are
353 these observations? How were they derived? Why select these over others? What do you mean
354 by 'similar-aged'?

355 Response: There are very few observations (carbon, nitrogen pools, NPP, etc) for old (200+ yr)
356 stands of lodgepole pine in the Rocky Mountains. The studies were chosen given that they had
357 reported variables the most similar to our model output, were for the same species or taxa, and
358 were in similar environmental/climate conditions. 'Similar-aged' means the same forest age. We
359 do not consider these comparisons with reported observations a robust validation dataset; rather,
360 this is the only means of validating some of the model output. We have clarified this in the
361 manuscript.

362 Results and Discussion:

363 L241 What are the plus and minus signs for? Standard deviation or confidence intervals? What is
364 the sample size? Area under analysis? Seems that crucial details are missing.

365 Response: The plus/minus signs are the standard deviation for the range of bulk density and soil
366 organic matter percent reported for the dominant soil type that occurs in the Chickaree
367 watershed. Soil carbon can be derived from STATSGO data (US federal database). This has also
368 been clarified in the manuscript.

369 L274-278 This statement about disturbance free or intensified disturbance periods is partly false,
370 because DGVMs now have the capacity to run fire dynamics using paleoclimate simulations that
371 feed into a dynamic fire behaviour and growth model (e.g., LPJ-LMfire). This removes the
372 necessity to do the paleo-informed, but nevertheless paleodata comparison is necessary as a
373 validation step.

374 Response: Yes, there are models (and not just DGVMs) with prognostic fire, so yes there could
375 be predictions of disturbance-free periods (and more intense ones). However, there are few
376 models that actually duplicate known records of ignitions, burn area, and most importantly for
377 this study, carbon combustion; we are unaware of any models with reasonable accuracy at the
378 point scale. We chose DayCent because of its proven ability to predict above and belowground C
379 dynamics at daily to millennial scales. We are also unaware of downscaled paleoclimate
380 simulations that are ‘readily available’ at high spatial resolutions for this region.

381 L294-298 This is not really new and has been known for decades. The impact of fire versus
382 vegetation is quite obvious considering that fire has the potential to exclude treed vegetation
383 from landscapes despite generally improving growth conditions with warming and CO₂

384 Response: Yes, we agree and have changed the wording to reflect that our results confirm what
385 has been known about the impacts of individual fire events, for decades. The ‘new’ information
386 has more to do with the impacts of the varying timing/sequence and severity of events over
387 centuries to millennia. Certainly, any given fire will outweigh climate impacts in early post-fire
388 recovery. Here, we show that the timing and severity of events over centennial and millennial
389 scales strongly influences the state and trajectory of biogeochemical properties.

390 L343 “the lack of paleoclimate data” : this is an important weakness of this study. A few
391 sentences about this is needed here to help readers unfamiliar with this issue to understand what
392 is meant by ‘paleoclimate data’.

393 Response: We agree that not using paleoclimate data is an important limitation of our study, and
394 our intention in this portion of the text is to clearly frame our results in this context. Although
395 paleoclimate proxies exist for other regions in Colorado, for example in the form of lake-level
396 reconstructions and oxygen isotope records, these records are far from the detailed climate
397 information needed to drive DayCent. Thus, utilizing paleoclimate proxies to develop climate
398 drivers for DayCent is a project in itself. For example, it involves developing methodologies to
399 downscale paleoclimate proxies in space (to the elevation and location of Chickaree Lake), in
400 time (to daily value), and to the specific metrics required by DayCent (e.g., from a relative
401 moisture proxy to daily precipitation). We added text to further clarify this limitation and why
402 this was not done in this study.

403 Figures: Figure 4 This figure is not obvious to read. Perhaps put on separate panels.

404 Response: Thank you for the comment. We have separated the panels.

405

406

407 Response to Rev. 3

408 General comments...Globally, the text is clearly written, the scientific context and knowledge
409 gaps are clearly exposed as the problematic and the general hypothesis. Also, the questions
410 addressed here are very pertinent. That said, I advise the authors to follow previous comments
411 and advises from SC1, RC1 and RC2. Moreover, a more deeper review of fire ecology with
412 respect to carbon cycling could: i) help to better understand the choice of DayCent for this study;
413 ii) bring a more critical interpretation/discussion of the processes you mentioned (line 99-100)
414 linked in DayCent model and improve the interpretation and discussion of the results.

415 Response: We thank you for the careful review and suggestions. Please see our specific
416 comments below for our planned improvements.

417 I also noted several improvement possibilities (see also Technical corrections): 1/ Structure:
418 Mixing results and discussion is sometimes confusing (especially for section 3.4). Because
419 section 3.1 to 3.3 are not full discussions but rather descriptions and comparisons between your
420 model estimates with values of other studies, it should not will be difficult to separate results and
421 discussion. For example, discussion could contain a section on the limits, a section with the
422 implications for projecting future ecosystem states and another for research development needs.

423 Response: We will consider revising the structure to separate the results and discussion based on
424 the final revised manuscript. Because of what we address from the first 3 reviewer comments,
425 the structure and text has changed enough that doing these structural improvements may no
426 longer be straight forward.

427 2/Hypotheses: Based on Kelly et al. (2016), the general hypothesis assuming forest carbon
428 budget modeling would be different between equilibrium runs and paleo-informed runs is
429 explicit. Nevertheless, the alternative hypotheses that you mentioned (line 103) and results that
430 were “expected” (line 301) are not explicitly described. You could add these hypotheses in the
431 introduction.

432 Response: Thank you for pointing this out. We have changed the introduction to more explicitly
433 state theses hypotheses.

434 3/ Model parameterization: According to SC1, DayCent is quite well described. Unfortunately, I
435 was not able to access the model input and parameterization file. While is it clear that you
436 informed the model with paleo-fire reconstruction from Dunette et al. (2014), it is less clear what
437 you do with the vegetation data. You wrote that you “pair a paleoecological record of vegetation
438 and wildfire activity” (line 98) and that DayCent requires input of vegetation cover (line 145),
439 but no information is provided on vegetation in section 2.3. It would be important to get more
440 details.

441 Response: The comments here is in agreement with Rev 2, and we realize details need to be
442 expanded regarding the simulations. We will add the details (note that the ‘vegetation’ did not
443 change at this site per the record). We plan to post the DayCent input files on Dryad, however,
444 this is not allowed until publication.

445 Specific comments

446 10. Is the overall presentation well structured and clear? Yes, but could be improved (see
447 General comments). 11. Is the language fluent and precise? Yes. 12. Are mathematical formulae,
448 symbols, abbreviations, and units correctly defined and used? Yes, but see SC1 comments for
449 [date] CE.

450 Response: We have clarified this.

451 13. Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined,
452 or eliminated? Yes. Values for equilibrium scenario should appear in Figure 3 or equilibrium
453 scenario should be removed in lines 301-305. As the Chickaree Lake watershed is the object of
454 this study, some characteristics such as the watershed size and topography (slope characteristics)
455 could be mentioned. Moreover, you defined 8 partial paleo-informed scenarios but only 4 are
456 represented in Figure 1. To facilitate the reading, I suggest to represent all partial paleo-informed
457 scenarios in Figure 1 or you can specify that you show only 4 on the 8 scenarios in the figure
458 caption.

459 Response: We improved the figures and text as suggested.

460 14. Are the number and quality of references appropriate? Yes.

461 Technical corrections Line48: should read “greater than simulated under an equilibrium and
462 climate warming scenarios”?

463 Response: This text has been removed from the abstract.

464 Line 71: NECB appears for the first time here but is defined at lines 162 163.

465 Response: This has been addressed.

466 Line 103: the “alternative hypotheses” are not clearly exposed and should appear here.

467 Response: As noted above, we have revised the hypotheses.

468 Line 112-114: should be in the Discussion or Conclusion section.

469 Response: This text has been removed (it was basically repeated in the discussion).

470 Line 117: same comment as SC1 Line 125: should read “Dunette et al. (2014)”

471 Line 125-127: the sample resolution of the core results from the chronology based on 14C dates.
472 I suggest to reorder the sentence.

473 Line 129: should read “Dunette et al. (2014)”

474 Line 160: autotrophic respiration is accounting in NPP yet.

475 Response: We have revised based on the suggestions above.

476 Line163: how fire emissions are calculated in the model?

477 Response: We added text to clarify this. Basically, the fire is parameterized by pool (woody,
478 litter, coarse wood, live or dead C) to combust a fraction of each pool based on the fire
479 ‘severity’.

480 Line234: what is STATSGO?

481 Response: The definition and a general description of the database will be added (USDA soils
482 database from the Natural Resource Conservation Service).

483 Line252: should read “Figure2” instead of “Figure1”.

484 Line275: should read “Kelly et al. (2016)”. Line275: should read “Together, this work and ours”.

485 Line 280: it is not clear what the equilibrium scenario is doing here.

486 Line 286: can you justify the threshold of 1 Mg C ha⁻¹?

487 Response: Again, thank you for the careful reading! We addressed the corrections, clarified what
488 equilibrium is doing and, yes, we can justify the threshold based on previous work and what we
489 consider to be stable soil C.

490 Line 296: should read “stand-replacing”.

491 Line 303: “lower” compared with equilibrium or paleo-informed scenario?

492 Line 301: “As expected” refers to a hypothesis? I think you should present this hypothesis in the
493 introduction.

494 Line 301-305: you mention the equilibrium scenario in your comparison and refer to the Figure
495 3, but values for the equilibrium scenario don’t appear in this figure.

496 Response: As noted above, we changed the introduction as suggested and the figure is comparing
497 the final values to equilibrium (they are deltas).

498 Finally, I recognize the great potential of this paper and the important gap it helps to fill in the
499 carbon cycling-related fire history knowledge. I am happy to see that such research is unfolding
500 and I advise the authors to consider previous comments to improve their manuscript.

501 Response: Thank you!

502

503

504 **Fire-regime variability impacts forest carbon dynamics for centuries to millennia**
505

506 **Tara W. Hudiburg¹, Philip E. Higuera², and Jeffrey A. Hicke³**

507 ¹Department of Forest, Rangeland, and Fire Sciences
508 University of Idaho
509 875 Perimeter Dr.
510 Moscow, ID 83844-1133

511
512 ²Department of Ecosystem and Conservation Sciences
513 University of Montana
514 32 Campus Dr.
515 Missoula, MT 59812

516
517 ³Department of Geography
518 University of Idaho
519 875 Perimeter Dr.
520 Moscow, ID 83844-3021

521 ***Corresponding Author(s)**

522 thudiburg@uidaho.edu
523 phone: 208-885-7044
524 fax: 208-885-5534

527 philip.higuera@umontana.edu

528 phone: 406-243-6337
529 fax: 406-243-4845

530
531 *Running header:*

532 Fire-regime variability impacts on forest carbon

533
534 *Keywords:*

535 Fire regimes, forest carbon, paleoecology, ecosystem modeling, Rocky Mountains, Rocky
536 Mountain National Park, lodgepole pine

537
538 *Type of paper:*

539 Primary research article

541 **Abstract**

542 Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical

543 processes including net carbon (C) balance. Long-term monitoring and chronosequence studies

544 highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire

545 events. In contrast, the consequences of repeated fires or temporal variability in a fire regime

546 (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that

547 such variability could strongly influence forest C trajectories (i.e. future states or directions) for

548 millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem

549 modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon

550 balance. We found that C trajectories in a paleo-informed scenario differed significantly from an

551 equilibrium scenario (with a constant fire return interval), largely due to variability in the timing

552 and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive

553 and negative net ecosystem C balance, with magnitudes significantly larger than observed under

554 the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted

555 for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in

556 stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend

557 strongly on the ability of ecosystem models to represent a realistic range of fire-regime

558 variability over the past several centuries to millennia.

559 **1. Introduction**

560 Wildfire is a pervasive disturbance agent in forest ecosystems, strongly shaping ecosystem
561 structure and function, including vegetation composition, nutrient cycling, and energy flow.
562 While the immediate impacts of disturbance can be dramatic, the longevity of these impacts is
563 less clear. In ecosystems where disturbance is historically prevalent, vegetation and
564 biogeochemical properties typically return to pre-disturbance conditions over years to decades
565 (Dunnette et al., 2014; McLauchlan et al., 2014), motivating the concept of “biogeochemical
566 resilience” (Smithwick, 2011). Characterizing biogeochemical resilience emphasizes
567 understanding pool sizes and changes to inputs or outputs of key elements (McLauchlan et al.,
568 2014; Smithwick, 2011). In the context of wildfire, biogeochemical resilience is determined by
569 pool sizes (e.g., carbon, nitrogen) prior to a fire event, elemental losses and transformations that
570 occur during and shortly after a fire event (e.g., from volatilization and erosion), and post-fire
571 changes in elemental pools, which in turn are determined by the rate and composition of post-fire
572 revegetation (McLauchlan et al., 2014; Schlesinger et al., 2015; Smithwick, 2011).

573 Changes in the characteristic frequency or severity of fire (i.e., the fire regime) are therefore
574 predicted to lead to compounding and potentially long-lasting changes or shifts in
575 biogeochemical states. For example, increased disturbance frequency can deplete key growth-
576 limiting nutrients (Yelenik et al., 2013), potentially influencing ecosystem trajectories for
577 decades to centuries (McLauchlan et al., 2014). Net ecosystem carbon balance (NECB; the
578 balance between net forest carbon uptake and forest losses through fire emissions; Chapin et al.,
579 2006) is also highly sensitive to disturbance (Hudiburg et al., 2011), and while NECB trends
580 towards 0 under a uniform disturbance regime, shifting disturbance regimes may alter NECB
581 over centuries to millennia (Goetz et al., 2012; Kelly et al., 2016). While these ideas have a
582 strong conceptual basis and empirical support on decadal timescales, we have lacked the data
583 needed to test them over longer timescales – and to consider their implications for future
584 projections – until only recently.

585 Coupling paleo observations (i.e. “paleo-informed”) with ecosystem modeling provides an
586 important tool for assessing the impacts of fire-regime variability on biogeochemical dynamics
587 by combining the mechanistic representation of ecosystem processes with actual patterns of fire
588 activity reconstructed from the past. For example, in Alaskan boreal forests paleo-informed

589 ecosystem modeling highlights fire as the dominant control on C cycling over the past
590 millennium, far outweighing the effects of climate variability (Kelly et al., 2016). Given the
591 significance influence of fire, estimates of modern C states (“initial conditions” for modeling
592 future C states) can be highly sensitive to assumptions about the past fire activity. Ecosystem
593 models typically require a 'spin up' period to equilibrate C and N pools and can include a fixed
594 disturbance interval (e.g., a constant fire return interval), resulting in ecosystem C and N
595 trajectories that are in 'equilibrium' with climate, ecosystem properties, and the disturbance
596 regime. To initiate the model, C and N pools need to develop, as they start from 'bare soil' with
597 no vegetation; as vegetation grows the modeled soil pools increase, and it takes hundreds to
598 thousands of simulation years during this "spin-up" period for the C and N pools to equilibrate.
599 Following centuries of equilibrium, known disturbance events from the historical record are
600 included, and the final results are used for initial conditions (baseline) for future scenarios.
601 However, paleo-informed disturbance histories spanning many centuries can result in initial
602 conditions that differ from equilibrium runs. In the boreal example, forests were a small net C
603 source over the past several decades in paleo-informed simulations, whereas forests were a small
604 net C sink when a constant fire return interval was assumed (Kelly et al., 2016). We would
605 expect a similar sensitivity of C dynamics to fire in other stand-replacing fire regimes, although
606 specific trajectories and impacts on modern states could vary widely, contingent on the specific
607 history of fire activity.

608 Here, we pair a paleoecological record of vegetation and wildfire activity in a subalpine forest
609 (Dunnette et al., 2014) with an ecosystem model to evaluate the sensitivity of forest ecosystem
610 processes to fire-regime variability over a 4500-year period. Our paleoecological record reveals
611 the timing and severity of past wildfire activity within a subalpine forest watershed that was
612 consistently dominated by lodgepole pine (*Pinus contorta*). We use this record to drive fire
613 disturbances in an ecosystem model and test alternative hypotheses that help reveal the potential
614 patterns and mechanisms causing past ecosystem change, focusing on a slowly varying carbon
615 pool (soil C) and net ecosystem carbon balance (NECB). The resulting trends provide theoretical
616 insight into how observed fire-regime variability can affect carbon trajectories from decadal to
617 millennial scales. Through a series of paleo-informed and control modeling scenarios, we
618 address two key questions about the biogeochemical impacts and legacies of wildfire activity: (1)
619 how does centennial-to-millennial-scale variability in fire activity impact biogeochemical

620 processes that regulate soil C and NECB, and (2) for how long does the legacy wildfire activity
621 impact current biogeochemical states? In addition to testing the general hypothesis that that
622 forest carbon storage will differ between equilibrium and paleo-informed simulations, we also
623 evaluate the impact of increasing or decreasing fire frequency, relative to that inferred from the
624 paleo record.

625 **2 Materials and Methods**

626 **2.1 Model description**

627 DayCent is the globally recognized daily timestep version of the biogeochemical model
628 CENTURY, widely used to simulate the effects of climate and disturbance on ecosystem
629 processes including forests worldwide (Bai and Houlton, 2009; Hartman et al., 2007; Savage et
630 al., 2013). DayCent is a logical choice for our purposes, because it includes soil C pools that
631 have long turnover times, spanning months to 4000 years, and thus can represent long-term
632 ecosystem change. As used here, DayCent is aspatial, representing our c. 30-ha study watershed
633 as a single ‘point.’ [Detailed model documentation and publication lists can be found on the](#)
634 [following website: <http://www.nrel.colostate.edu/projects/daycent-downloads.html>.](#)

635 Required inputs for the model include vegetation cover, daily precipitation and temperature, soil
636 texture, and disturbance histories. DayCent calculates potential plant growth as a function of
637 water, light, and soil temperature, and limits actual plant growth based on soil nutrient
638 availability. The model includes three soil organic matter (SOM) pools (active, slow, and
639 passive) with different decomposition rates, above and belowground litter pools, and a surface
640 microbial pool associated with the decomposing surface litter. Plant material is split into
641 structural and metabolic material as a function of the lignin to nitrogen ratio of the litter (more
642 structural with higher lignin to nitrogen ratios). The active pool (microbial) has short turnover
643 times (1-3 months) and the slow SOM pool (more resistant structural plant material) has turnover
644 times ranging from 10 to 50 years depending on the climate. The passive pool includes
645 physically and chemically stabilized SOM with turnover times ranging from 400 to 4000 years.
646 For this study, DayCent was parameterized to model soil organic carbon dynamics to a depth of
647 30 cm. Model outputs include soil C and N stocks, live and dead biomass, above- and below-
648 ground net primary productivity (NPP), heterotrophic respiration, fire emissions, and net

649 ecosystem production (NEP, defined as the difference between NPP and heterotrophic
650 respiration). We define net ecosystem carbon balance (NECB) as the difference between NEP
651 and fire emissions.

652 Disturbances in DayCent are prescribed and can be parameterized to reflect “severity” through
653 associated impacts to the ecosystem (e.g., biomass killed, nitrogen lost, soil eroded). The fire
654 model in DayCent is parameterized to include the combusted and/or mortality fraction of each
655 carbon pool (live and dead wood, foliage, coarse and fine roots, etc) that occurs with each fire
656 event. Erosion is also scheduled as an event in DayCent and was prescribed to occur in the same
657 month of the observed high-severity fire events. The erosion events are thus decoupled from
658 precipitation in the model.

659 **2.2 Study sites**

660 We studied the biogeochemical consequences of fire-regime variability by informing the
661 DayCent model with fire history data derived from sedimentary charcoal preserved in Chickaree
662 Lake, Colorado (Dunnette et al., 2014). Chickaree Lake (40.334 °N, 105.841 °W, 2796 m above
663 sea level) is a small, deep lake (c. 1.5 ha surface area; 7.9 m depth) in a lodgepole pine-
664 dominated subalpine forest in Rocky Mountain National Park. The even-aged forest surrounding
665 the lake regenerated after a high-severity (i.e., stand-replacing) fire in 1782 CE (common era)
666 (Sibold et al., 2007). The fire regime in subalpine forests of Rocky Mountain National Park is
667 characterized by infrequent, high-severity crown fires (c. 100-300 yr mean return intervals)
668 associated with severe seasonal drought (Sibold et al. 2006). Mean monthly temperature is -8.5
669 °C in January and 14 °C in July, and average total annual precipitation is 483 mm (Western
670 Regional Climate Center 1940-2013 observations, from Grand Lake, CO).

671 Detailed methods for the collection and analysis of the Chickaree Lake sediment record are
672 found in Dunnette et al. (2014). Briefly, the 4500-year record has an average sample resolution
673 of four years, and a chronology constrained by 13 ^{210}Pb dates spanning the upper 20 cm and 25
674 accelerator mass spectrometry ^{14}C dates for deeper sediments. Pollen analysis indicates that the
675 site was continuously dominated by lodgepole pine for the duration of the record presented here,
676 with successional changes following inferred fire events (Dunnette et al., 2014). The persistence
677 of subalpine forest over the past 4500 years is also supported by near-by pollen records in Rocky

678 Mountain National Park (Caffrey and Doerner, 2012; Higuera et al., 2014). Dunnette et al.
679 (2014) used macroscopic charcoal and magnetic susceptibility (a soil-erosion proxy) from
680 Chickaree Lake to infer the timing and severity of wildfires, identifying “high-severity
681 catchment fires” (those with associated erosion) and “lower severity/extralocal fires” (those
682 without associated soil erosion). Thus, while all fire events were likely stand-replacing, the
683 difference between these two fire types was the association with soil erosion. Here, we use the
684 Chickaree Lake fire history record to inform the disturbance component of the DayCent
685 ecosystem model by prescribing the timing and severity of past fire events within a simulated
686 lodgepole pine-dominated subalpine forest.

687 **2.3 Model parameterization**

688 DayCent submodels associated with tree physiological parameters, site characteristics, soil
689 parameters, and disturbance events were modified using available site-specific observations
690 (Dunnette et al., 2014; Sibold et al., 2007), values from the literature (Kashian et al., 2013;
691 Turner et al., 2004), and publically available climate and soils databases. Climate data required
692 for DayCent include daily minimum and maximum temperature and precipitation which were
693 obtained for a 30-yr period from DAYMET (Thornton, 2012). For all model runs, the 30-yr
694 climate dataset was “recycled” for the duration of the run; thus, climate was functionally non-
695 varying over the duration of the simulations (beyond the variability within the 30-yr dataset).
696 Soil texture and classification were identified using the NRCS SSURGO database (NRCS,
697 2010). Model input and parameterization files are available for download as supporting
698 information files.

699 We defined two types of stand-replacing fire to distinguish between the two types of fires
700 identified in the paleo record. The key difference between the two fire types simulated is the
701 associated soil erosion. High-severity catchment fires from the paleo record were simulated by
702 95% tree mortality and a soil erosion event with $\sim 1 \text{ Mg ha}^{-1}$ of soil loss from the watershed
703 (Miller et al., 2011); we refer to these as high-severity fires with erosion. Lower-severity/extralocal
704 fires from the paleo record were simulated by 95% tree mortality with no associated soil-
705 erosion event; we refer to these as high-severity fires without erosion. After parameterization, we
706 evaluated modern modeled aboveground NPP, soil C, total ecosystem carbon, and disturbance C

707 losses against observations of similar-aged lodgepole pine stands in the Central Rockies
708 ecoregion (Hansen et al., 2015; Kashian et al., 2013; Turner et al., 2004).

709 **2.4 Model experiments**

710 We performed a series of modeling experiments to address our questions using the Chickaree
711 Lake paleo-fire record, varied disturbance histories, and varied climate (Table 1). First, DayCent
712 was ‘spun up’ and equilibrated to soil C and NPP levels characteristic of mature lodgepole pine
713 stands in the region with a constant return interval of 145 years between high-severity fires with
714 erosion, replicating the estimated fire rotation period (and mean fire-return interval) for the
715 broader study area (Sibold et al., 2007). This spinup period lasted for 2000 years, and it
716 represents what would be done for model use, in the absence of the long-term fire history
717 information from the paleo record. All experimental simulations were extended from this spinup
718 equilibrium simulation starting 4500 years before present (BP, where “present” is 1950 CE) and
719 running through 2010 CE, for a total of 4561 simulation years. We defined our model simulation
720 that would normally be used in the absence of paleo-informed disturbance histories (“equilibrium
721 scenario”) as a continuation of the equilibrated spinup with the same climate and fire regime,
722 with only the last known fire event (1782 CE) explicitly simulated.

723 In addition to this equilibrium scenario, we implemented three additional scenarios that together
724 helped illustrate the duration, magnitude, and relative importance of fire-induced changes to
725 forest biogeochemistry. First, to test the impacts of variability in fire timing and severity on
726 important biogeochemical states, we compared the equilibrium scenario to a “paleo-informed
727 scenario,” which had a mean fire return interval of 120 years for all fires, and 334 years for the
728 high-severity fires with erosion. Climate was identical in each simulation (i.e., 30-yr recycled
729 modern climate), as we are not testing the influence of climate on the timing and severity of fire,
730 but rather the influence of the known timing and severity of fires (from the charcoal record)
731 versus a constant fire return interval.

732 Second, to identify the duration of a legacy effect from fire-regime variability, we constructed
733 eight “partially paleo-informed scenarios,” which included increasingly longer periods of
734 information from the paleo-fire record, spanning the past 500 to 4000 yr, in 500-yr increments
735 that ended in 2010 CE (“Paleo₅₀₀”, “Paleo₁₀₀₀”, ..., “Paleo₄₀₀₀”; Figure 1a). For example, the

736 Paleo₅₀₀ scenario includes the most recent 500 yr of fire history while the Paleo₄₀₀₀ scenario
737 includes the most recent 4000 yr of fire history.

738 Thirdly, to identify how a systematic shift in fire frequency would impact carbon balance, we
739 created two additional scenarios with shortened and lengthened fire return intervals. Beginning
740 with the observed paleo-fire record, we modified each interval between fires to be (a) shortened
741 by 25% (“Increased fire frequency”) or (b) lengthened (“Decreased fire frequency”) by 25%
742 (Figure 1b). The corresponding mean fire return intervals of these two additional runs were 90 yr
743 for the “Increased fire frequency” and 155 yr for the “Decreased fire frequency” scenarios.

744 Because fire events in DayCent are decoupled from climate, the climate data did not impact the
745 timing or severity of fires in the simulations. We evaluated the results from each scenario in
746 terms of modern end points of soil C, soil N, and NECB as well as total cumulative changes in
747 NECB over the entire record. We define cumulative NECB as a running total, such that the sum
748 at any given year represents the integrated impacts of past disturbance events. For example,
749 when return intervals between disturbance events are shorter than C recovery times, cumulative
750 NECB will remain negative. Finally, we considered uncertainty in our estimates based on the
751 uncertainty in the reconstructed fire history record, our assumptions about soil erosion, and our
752 use of recycled modern climate. While there is also uncertainty associated with modeled
753 estimates of soil C, NECB, and other C fluxes presented, we are not attempting to provide
754 estimates that are any more precise than measured modern states (e.g. STATSGO derived soil
755 C). Rather, we compare the variability in biogeochemical states arising from fire-regime
756 variability to the uncertainties in the model that are revealed when evaluated against modern
757 observations from the literature.

758 **3 Results and Discussion**

759 **3.1 Model parameterization and evaluation**

760 We compared our model results with reported values from ecological studies in the region that
761 examined some aspect of the carbon balance in the similar-aged subalpine forests in order to
762 evaluate our model estimates. We found few reported observations (e.g., for C, N pools, NPP)
763 for old (>200 yr) lodgepole pine stands in the Rocky Mountains in the literature. Therefore, we
764 also compare our results with results for the same genus (*Pinus*) and with the soil C content
765 reported by the United States National Resource Conservation Service (NRCS) as part of the
766 national soil survey. Our modeled estimates of modern soil C (to 30 cm) of 54 and 62 Mg C ha⁻¹,
767 for the equilibrium and paleo-informed scenario, respectively (Figure 2), compare well with the
768 NRCS-derived estimates (STATSGO2, NRCS, 2010) of 66 ± 16 Mg C ha⁻¹ for the Chickaree
769 Lake region, and with measurements of current soil C (to 30 cm) ranging from 51 to 73 Mg C ha⁻¹
770 in similarly aged (> 200 yr) Rocky Mountain *Pinus* stands (Bradford et al., 2008). Modeled
771 estimates of aboveground NPP were also in agreement with observations averaging 156 and 172
772 g C m⁻² for the equilibrium and paleo-informed simulations, respectively, compared to estimates
773 from the Northern or Central Rockies ranging from 100 to 200 g C m⁻² (Hansen et al., 2015).
774 Finally, fire emissions from our modeled estimates range from 20 to 30% loss of aboveground C,
775 broadly in agreement with other studies (Campbell et al., 2007; Smithwick et al., 2009).
776

777 **3.2 Fire-regime variability impacts soil C and NECB**

778 When DayCent was driven with the paleo-informed fire history, soil C accumulation was
779 8 Mg ha⁻¹ more at the end of the simulation than in the equilibrium scenario (Figure 2). Total
780 NEP summed over the 4561-year period was also higher in the paleo-informed scenario (1276
781 Mg C ha⁻¹) compared with the equilibrium scenario (1171 Mg C ha⁻¹), directly reflecting NPP
782 rates that were higher than heterotrophic respiration (Figure 3, black bar). In the paleo-informed
783 scenario, cumulative emissions due to combustion losses (i.e., “fire emissions”) were lower than
784 NEP over the entire record, resulting in a cumulative NECB of 27 Mg C ha⁻¹ more than the
785 equilibrium scenario (Figure 3; black bars).

786 The paleo-informed scenario showed substantial variability in soil C (Figure 2) and
787 NECB (Figure 4) trajectories, and higher total accumulations relative to the equilibrium scenario.
788 In fact, the range of variability in soil C over the paleo-informed simulation, from c. 45 to 65 Mg
789 C ha⁻¹, nearly spanned the range of observations of current soil C (to 30 cm) in similarly aged (>
790 200 yr) Rocky Mountain *Pinus* stands (Bradford et al., 2008). For the first ~2000 years of the

791 paleo-informed scenario, long-term mean soil C was similar to baseline levels of soil C in the
792 equilibrium scenario (Figure 2), averaging around 54 Mg C ha^{-1} , though with substantial
793 variability on centennial time scales. Following this period, the soil C trajectory increased
794 distinctly in the paleo-informed scenario during a 500-year period with only one high-severity
795 fire without erosion (c. 2500 cal yr BP). Despite a return to a mean fire return interval closer to
796 the equilibrium scenario, soil C persisted at this elevated level for the following 2000 years (c.
797 2000 cal yr BP to present), resulting in 8 Mg C ha^{-1} (15%) more than the equilibrium scenario at
798 the end of the simulation (2010 CE). A similar trend was observed for NECB (Figure 4), where
799 the paleo-informed scenario maintained a lower NECB in the first half of the record compared
800 the second half. In the latter half of the record, NECB was more consistently positive, ultimately
801 storing more ecosystem C than the equilibrium scenario. The dynamism in NECB over time is
802 consistent with the findings of Kelly et al. (2016). Together, this work and ours highlights the
803 value of examining the ecosystem impacts of past fire-regime variability, which may include
804 disturbance-free or intensified disturbance periods that are not currently represented in or
805 predicted by ecosystem models.

806 **3.3 Impacts of fire-regime variability last for millennia**

807 We compared the partially paleo-informed scenarios to the equilibrium scenario to
808 determine the length of time necessary to arrive at the same inferences about soil C and NECB as
809 in the full paleo-informed scenario. The CE 2010 endpoints for each partially informed scenario
810 were compared to the CE 2010 endpoint for the equilibrium scenario. We found that disturbance-
811 regime legacies lasted for millennia. The number of years needed to simulate the CE 2010 values
812 was between 2000 and 2500 years (Figure 5). Specifically, total NECB and soil C (endpoints that
813 serve as initial conditions for future modeled states) were nearly the same when using 2500 to
814 4500 years of the paleo-fire record, but differed by more than 1 Mg C ha^{-1} when using only 500
815 to 2000 years of the paleo-fire record. We used the 1 Mg C ha^{-1} as a significant threshold for
816 changes in ecosystem C flux (total or soils) both because changes less than this indicate the
817 ecosystem is stable and it is a standard amount of annual C flux into or out of an ecosystem that
818 is considered significant for carbon sequestration (mitigation) activities (Anderson-Teixeira et
819 al., 2009).

820 Differences between the paleo-informed and equilibrium scenario can be interpreted in
821 the context of other model parameters that are known to affect biogeochemical processes,
822 including plant productivity and decomposition rates. Chief among these is growing season
823 temperature, which strongly affects NPP and plant and microbial respiration in DayCent. In a
824 simple sensitivity analysis where we repeated the equilibrium scenario with a uniform 2 °C
825 warming during the growing season, we found that variability in the paleo-informed scenario
826 was an order of magnitude greater than in the scenario with warming. Specifically, warming
827 resulted in a small net decrease in soil C of 0.3 Mg C ha⁻¹, and a reduction in NECB by 0.2 Mg C
828 ha⁻¹ relative to equilibrium scenario. Our results imply that C dynamics in lodgepole pine forests
829 are far more sensitive to variability in the timing and severity of fire activity than to modeled
830 changes to plant growth and decomposition introduced by climate warming alone. This inference
831 is also consistent with findings from strand-replacing fire regimes in Alaskan boreal forests,
832 where C dynamics over the past 1200 years were more strongly shaped by fire activity than by
833 climate variability (Kelly et al., 2016).

834 **3.4 Implications for projecting future biogeochemical states**

835 To evaluate the effects of changing fire regimes on our results, we varied the paleo-
836 informed disturbance regimes by increasing and decreasing the frequency of events by 25%. As
837 expected, increased fire frequency (i.e., shorter return intervals) resulted in a cumulative loss of
838 ecosystem C compared to equilibrium and paleo-informed scenarios, with NECB 13 Mg C ha⁻¹
839 lower compared to equilibrium over the entire simulation period (Figure 3), and with periods of
840 net carbon loss lasting nearly 800 years (Figure 4; red line). The losses reflect large increases in
841 fire emissions, without concurrent proportional increases in NEP (Figure 3). In contrast, with
842 decreased fire frequency (i.e., longer return intervals), NECB increases by 67 Mg C ha⁻¹
843 compared to equilibrium, and by 40 Mg C ha⁻¹ compared to the original paleo-informed scenario.
844 Again, this is primarily due to an unbalanced increase in NEP compared to fire emissions (Figure
845 3).

846 While the differences in NECB (27 Mg C more) and soil C (8 Mg C more) between the
847 paleo-informed and equilibrium scenarios are ultimately small for this single watershed, the
848 impact of fire-regime variability will depend on the synchrony of events at the regional and sub-
849 continental scales (Kelly et al., 2016). This is especially important when considering the

850 trajectory of NECB compared to equilibrium simulations during the periods of the paleo record
851 when fire frequency or severity were higher than in the past few centuries. Cumulative NECB
852 was negative, serving as a net source of C to the atmosphere, for periods of up to 500 years in the
853 paleo-informed scenario and up to 1000 years under scenarios with increased fire frequencies.

854 Given the strong correspondence between observed and simulated modern C stocks, we have
855 high confidence that DayCent accurately simulated the key processes shaping biogeochemical
856 properties in our study area. Important sources of uncertainty in our estimates of past carbon
857 dynamics stem from uncertainty in the timing and severity of past fires. The fire history
858 reconstruction has an estimated temporal precision of several decades ($\pm 10\text{-}20$ years) (Dunnette
859 et al., 2014), but because C dynamics unfold over centuries to millennia, this level of uncertainty
860 has negligible effects on our inferences. Another important source of uncertainty is the potential
861 for false positives or false negatives in the fire history reconstruction: failing to detect a fire that
862 occurred in the past, or identifying a fire that did not affect the Chickaree Lake watershed. While
863 the Chickaree Lake record clearly identified the most recent high-severity fire in the watershed
864 (Dunnette et al., 2014), we cannot quantify accuracy over the past four millennia. However, the
865 range of variability in individual fire return intervals reconstructed at Chickaree Lake (20–330
866 year) is consistent with the range of intervals reconstructed from other lake-sediment records in
867 Colorado subalpine forests (Calder et al., 2015; 75–885, 45–750, 30–645, 30–1035 yr, Higuera et
868 al., 2014), suggesting that the C dynamics highlighted here are not unique to this single fire
869 history reconstruction.

870 In addition to fire timing, simulated C dynamics were also a function of variability in fire
871 severity, which in this study reflects the degree of soil erosion associated with stand-replacing
872 fire events. Watershed soil C losses were partially driven by the erosion events accompanying
873 the “high severity catchment fires” reconstructed in the paleo record. Because we have
874 prescribed both fire and erosion, we cannot predict the range of soil C loss that may occur due to
875 changes in precipitation regimes or if any erosion occurs with the lower severity events;
876 however, these results provide an estimate of expected changes in soil C for at least the higher
877 severity events. With expected changes to future precipitation regimes, including intensification
878 of rain events that could lead to increased erosion following fire (Larsen and MacDonald, 2007;

879 Miller et al., 2011), ecosystem model development should include prognostic erosion to account
880 for variability in this ecosystem process, especially at regional scales.

881 Finally, the most important limitation of our study is the fact that our modeling
882 framework does not integrate realistic paleoclimate variability, nor does it represent the
883 important coupling among climate, vegetation, and fire activity. Although paleoclimate proxies
884 exist for nearby regions in Colorado, for example in the form of lake-level reconstructions and
885 oxygen isotope records (Anderson 2011, 2012; Shuman et al. 2010), these records are far from
886 the detailed climate information needed to drive DayCent. Thus, utilizing paleoclimate proxies to
887 develop climate drivers for DayCent is an important next step, but beyond the scope of this
888 study. For example, it will involve developing methodologies to downscale paleoclimate proxies
889 in space (to the elevation and location of Chickaree Lake), in time (to daily value), and to the
890 specific metrics required by DayCent (e.g., from a relative moisture proxy to daily precipitation).
891 While our simulated past carbon dynamics are limited by the lack of available paleoclimate data
892 to drive DayCent, our temperature sensitivity analysis suggests that C dynamics are much more
893 sensitive to the timing and severity of fire events than to even relatively large changes in climate
894 (e.g., 2 °C warming). Further, because we have decoupled climate from fire by using prescribed
895 fire events, the lack of a paleoclimate does not affect our conclusions about the impacts of fire-
896 regime variability on C balance. While we used the paleo-informed modeling scenarios to test
897 general hypotheses about the impacts of fire-regime variability on biogeochemical dynamics,
898 future efforts to simulate the coupled climate-fire-ecosystem dynamics of the past clearly require
899 independent paleoclimate drivers.

900 **4 Summary and Conclusions**

901 Our simulations highlight fire-regime variability as a dominant driver of C dynamics in
902 lodgepole pine forests, with periods of unusually high or low fire activity creating legacies
903 lasting for centuries to millennia. Anticipating the impacts of future climate or disturbance-
904 regime change on forest carbon balance, therefore, should be done in the context of past
905 variability, with the duration dependent on the frequency and variability of relevant disturbance
906 processes. In the case of stand-replacing wildfires this requires information spanning at least
907 several centuries, and at Chickaree Lake this required several millennia, well beyond the length
908 of both observational and tree-ring records. Many studies have reported ecosystem impacts or

909 recovery times from individual fire events and then extrapolated to infer scenarios that would
910 lead to C gain or loss (Dunnette et al., 2014; Kashian et al., 2013; Mack et al., 2011; Smithwick
911 et al., 2009). In contrast, our paleo-informed scenario highlights the importance of variability in
912 fire timing and severity over multiple fire events for carbon cycling dynamics, independent of
913 complete shifts in a fire regime.

914 Our findings also have implications for ecosystem and Earth system model development,
915 which are increasingly including prognostic fire components (Lasslop et al., 2014), primarily
916 driven by climate and fuels. Some models are also representing post-fire C and N dynamics
917 beyond simple combustion of live and dead biomass or only the dead-wood pools (fuels).
918 Development of these modules depends on observations of fire and climate interactions, fuel
919 availability, and post-fire C and N dynamics. We suggest that this requires accurately accounting
920 for the (often high) variability inherent in stand-replacing fire regimes, independent from or in
921 response to climate variability. Our results indicate that even utilizing tree-ring record that span
922 several centuries may not be sufficient to capture this variability. Further development of
923 prognostic (predictive) fire processes in ecosystem models would benefit from the use of paleo-
924 fire records to evaluate fire occurrence and severity, and if combined with paleoclimate data,
925 model algorithms could be further improved to accurately reflect past variability.

926 The importance of fire-regime variability in determining ecosystem C dynamics implies
927 that equilibrium scenarios are a poor assumption for conceptualizing and simulating fire regimes
928 in ecosystem and Earth system models. Particularly at spatial scales larger than an individual
929 site, such a simplification may result in C-balance projections that are grossly inaccurate. We
930 demonstrate how variability in the timing and severity of disturbances can potentially have long-
931 lasting and compounding impacts on biogeochemical states, such that modern (or future) states
932 can reflect dynamics that have unfolded over centuries to millennia. For our modeling scenarios
933 in lodgepole-pine dominated forests, the effects lasted approximately 2500 years. The duration of
934 these legacies will depend on the ecosystem, and the degree of variability in disturbance
935 frequency and severity, relative to an equilibrium scenario. Ultimately, the implications of fire-
936 regime variability on biogeochemical states will depend strongly on the synchrony of fire
937 activity across spatial scales larger than a single watershed. If fire activity is synchronized at
938 landscape to regional scales, as in past (Calder et al., 2015; Marlon et al., 2012; Morgan et al.,

939 2008) and as anticipated for the future (Westerling et al., 2011) in Rocky Mountain forests, we
940 would expect to see similar centennial- to millennial-scale dynamics in biogeochemical states
941 revealed here, which would have important implications for carbon cycling, including potential
942 feedbacks to CO₂-induced warming.

943

944 **5 Data Availability**

945 The following datasets are available at Dryad.org (<http://dx.doi.org/10.5061/dryad.74b2c>): The
946 following datasets are available at Dryad.org <url TBD>: the fire history record generated from
947 the charcoal record, the relevant model output, and model input files and climate input file.

948

949 *Author Contributions.* T.W. Hudiburg and P.E. Higuera designed the study, analyzed the data,
950 and prepared the manuscript with contributions from J.A. Hicke.

951 *Competing interests.* The authors declare that they have no conflict of interest.

952 *Acknowledgments.* We thank K. McLauchlan and B. Shuman for valuable discussions on these
953 topics. T.H. was supported by the NSF Idaho EPSCoR Program and by the National Science
954 Foundation under award number IIA-1301792. P.E.H was supported by the National Science
955 Foundation under award number IIA-0966472 and EF-1241846, and JAH was supported by the
956 Agriculture and Food Research Initiative of the USDA National Institute of Food and
957 Agriculture (Grant 2013-67003-20652) and the National Science Foundation under award
958 number DMS-1520873. The authors declare no competing financial conflicts of interests or other
959 affiliations with conflicts of interest with respect to the results of the paper.

960 **References**

961 Anderson, L.: Holocene record of precipitation seasonality from lake calcite ^{18}O in the central
962 Rocky Mountains, United States. *Geology*, 39, 211–214, 2011.

963 Anderson, L.: Rocky Mountain hydroclimate: Holocene variability and the role of insolation,
964 ENSO, and the North American Monsoon. *Global and Planetary Change*, 92–93, 198–208, 2012.

965 Bai, E., and Houlton, B. Z.: Coupled isotopic and process-based modeling of gaseous nitrogen
966 losses from tropical rain forests, *Global Biogeochemical Cycles*, 23, 2009.

967 Anderson-Teixeira K.J., Davis S.C., Masters M.D., and Delucia E.H.: Changes in soil organic
968 carbon under biofuel crops. *Global Change Biology Bioenergy*, 1, 75 –96, 2009.

969 Bradford, J. B., Birdsey, R. A., Joyce, L. A., and Ryan, M. G.: Tree age, disturbance history, and
970 carbon stocks and fluxes in subalpine Rocky Mountain forests, *Global Change Biology*, 14,
971 2882-2897, 10.1111/j.1365-2486.2008.01686.x, 2008.

972 Caffrey, M. A., and J. P. Doerner.: A 7000-Year Record of Environmental Change, Bear Lake,
973 Rocky Mountain National Park, USA. *Physical Geography*, 33, 438-456, 2012.

974 Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G., and Shuman, B. N.: Medieval
975 warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains, *Proceedings of
976 the National Academy of Sciences*, 112, 13261-13266, 2015.

977 Campbell, J., Donato, D., Azuma, D., and Law, B.: Pyrogenic carbon emission from a large
978 wildfire in Oregon, United States, *Journal of Geophysical Research: Biogeosciences*, 112,
979 G04014, 10.1029/2007JG000451, 2007.

980 Chapin, F., Woodwell, G., Randerson, J., Rastetter, E., Lovett, G., Baldocchi, D., Clark, D.,
981 Harmon, M., Schimel, D., Valentini, R., Wirth, C., Aber, J., Cole, J., Goulden, M., Harden, J.,
982 Heimann, M., Howarth, R., Matson, P., McGuire, A., Melillo, J., Mooney, H., Neff, J.,
983 Houghton, R., Pace, M., Ryan, M., Running, S., Sala, O., Schlesinger, W., and Schulze, E. D.:
984 Reconciling carbon-cycle concepts, terminology, and methods, *Ecosystems*, 9, 1041-1050, 2006.

985 Dunnette, P. V., Higuera, P. E., McLaughlan, K. K., Derr, K. M., Briles, C. E., and Keefe, M. H.:
986 Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine
987 watershed, *New Phytologist*, 203, 900-912, 2014.

988 Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A.,
989 McNulty, S., O'Halloran, T., Harmon, M., Meddens, A. J. H., Pfeifer, E. M., Mildrexler, D., and
990 Kasischke, E. S.: Observations and assessment of forest carbon dynamics following disturbance
991 in North America, *Journal of Geophysical Research-Biogeosciences*, 117,
992 10.1029/2011jg001733, 2012.

993 Hansen, E. M., Amacher, M. C., Van Miegroet, H., Long, J. N., and Ryan, M. G.: Carbon
994 Dynamics in Central US Rockies Lodgepole Pine Type after Mountain Pine Beetle Outbreaks,
995 *Forest Science*, 61, 665-679, 2015.

996 Hartman, M. D., Baron, J. S., and Ojima, D. S.: Application of a coupled ecosystem-chemical
997 equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain
998 watershed, *ecological modelling*, 200, 493-510, 2007.

999 Higuera, P. E., Briles, C. E., and Whitlock, C.: Fire-regime complacency and sensitivity to
1000 centennial-through millennial-scale climate change in Rocky Mountain subalpine forests,
1001 Colorado, USA, *Journal of Ecology*, 102, 1429-1441, 2014.

1002 Hudiburg, T. W., Law, B. E., Wirth, C., and Luyssaert, S.: Regional carbon dioxide implications
1003 of forest bioenergy production, *Nature Climate Change*, 1, 419-423, 10.1038/nclimate1264,
1004 2011.

1005 Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., and Ryan, M. G.: Postfire changes
1006 in forest carbon storage over a 300-year chronosequence of *Pinus contorta*-dominated forests,
1007 *Ecological Monographs*, 83, 49-66, 10.1890/11-1454.1, 2013.

1008 Kelly, R., Genet, H., McGuire, A. D., and Hu, F. S.: Palaeodata-informed modelling of large
1009 carbon losses from recent burning of boreal forests, *Nature Climate Change*, 6, 79-82, 2016.

1010 Larsen, I. J., and MacDonald, L. H.: Predicting postfire sediment yields at the hillslope scale:
1011 Testing RUSLE and Disturbed WEPP, *Water Resources Research*, 43, n/a-n/a,
1012 10.1029/2006WR005560, 2007.

1013 Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system model:
1014 Model development and evaluation, *Journal of Advances in Modeling Earth Systems*, 6, 740-
1015 755, 10.1002/2013MS000284, 2014.

1016 Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A. G., Shaver, G.
1017 R., and Verbyla, D. L.: Carbon loss from an unprecedented Arctic tundra wildfire, *Nature*, 475,
1018 489-492, 2011.

1019 Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K.
1020 J., Colombaroli, D., Hallett, D. J., and Power, M. J.: Long-term perspective on wildfires in the
1021 western USA, *Proceedings of the National Academy of Sciences*, 109, E535-E543, 2012.

1022 McLaughlan, K. K., Higuera, P. E., Gavin, D. G., Perakis, S. S., Mack, M. C., Alexander, H.,
1023 Battles, J., Biondi, F., Buma, B., and Colombaroli, D.: Reconstructing disturbances and their
1024 biogeochemical consequences over multiple timescales, *BioScience*, bit017, 2014.

1025 Miller, M. E., MacDonald, L. H., Robichaud, P. R., and Elliot, W. J.: Predicting post-fire
1026 hillslope erosion in forest lands of the western United States, International Journal of Wildland
1027 Fire, 20, 982-999, 2011.

1028 Morgan, P., Heyerdahl, E. K., and Gibson, C. E.: Multi-season climate synchronized forest fires
1029 throughout the 20th century, northern Rockies, USA, Ecology, 89, 717-728, 2008.

1030 NRCS: Soil Survey Staff, Natural Resources Conservation Service, United States Department of
1031 Agriculture. Available online at <http://soildatamart.nrcs.usda.gov>. Soil Survey Geographic
1032 (SSURGO) Database for Eastern US, 2010.

1033 Savage, K. E., Parton, W. J., Davidson, E. A., Trumbore, S. E., and Frey, S. D.: Long-term
1034 changes in forest carbon under temperature and nitrogen amendments in a temperate northern
1035 hardwood forest, Global change biology, 19, 2389-2400, 2013.

1036 Schlesinger, W. H., Dietze, M. C., Jackson, R. B., Phillips, R. P., Rhoades, C. C., Rustad, L. E.,
1037 and Vose, J. M.: Forest biogeochemistry in response to drought, Global Change Biology, 2015.

1038 Shuman, B., Pribyl, P., Minckley, T.A. and Shinker, J.: Rapid hydrologic shifts and prolonged
1039 droughts in Rocky Mountain headwaters during the Holocene. Geophysical Research Letters, 37,
1040 L06701, 2010.

1041 Sibold, J. S., Veblen, T. T., Chipko, K., Lawson, L., Mathis, E., and Scott, J.: Influences of
1042 secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park,
1043 Ecological Applications, 17, 1638-1655, 2007.

1044 Sibold, J. S., T. T. Veblen, and M. E. Gonzalez.: Spatial and temporal variation in historic fire
1045 regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park,
1046 Colorado, USA. Journal of Biogeography, 33, 631-647, 2006.

1047 Smithwick, E. A. H., Ryan, M. G., Kashian, D. M., Romme, W. H., Tinker, D. B., and Turner,
1048 M. G.: Modeling the effects of fire and climate change on carbon and nitrogen storage in
1049 lodgepole pine (*Pinus contorta*) stands, Global Change Biology, 15, 535-548, 10.1111/j.1365-
1050 2486.2008.01659.x, 2009.

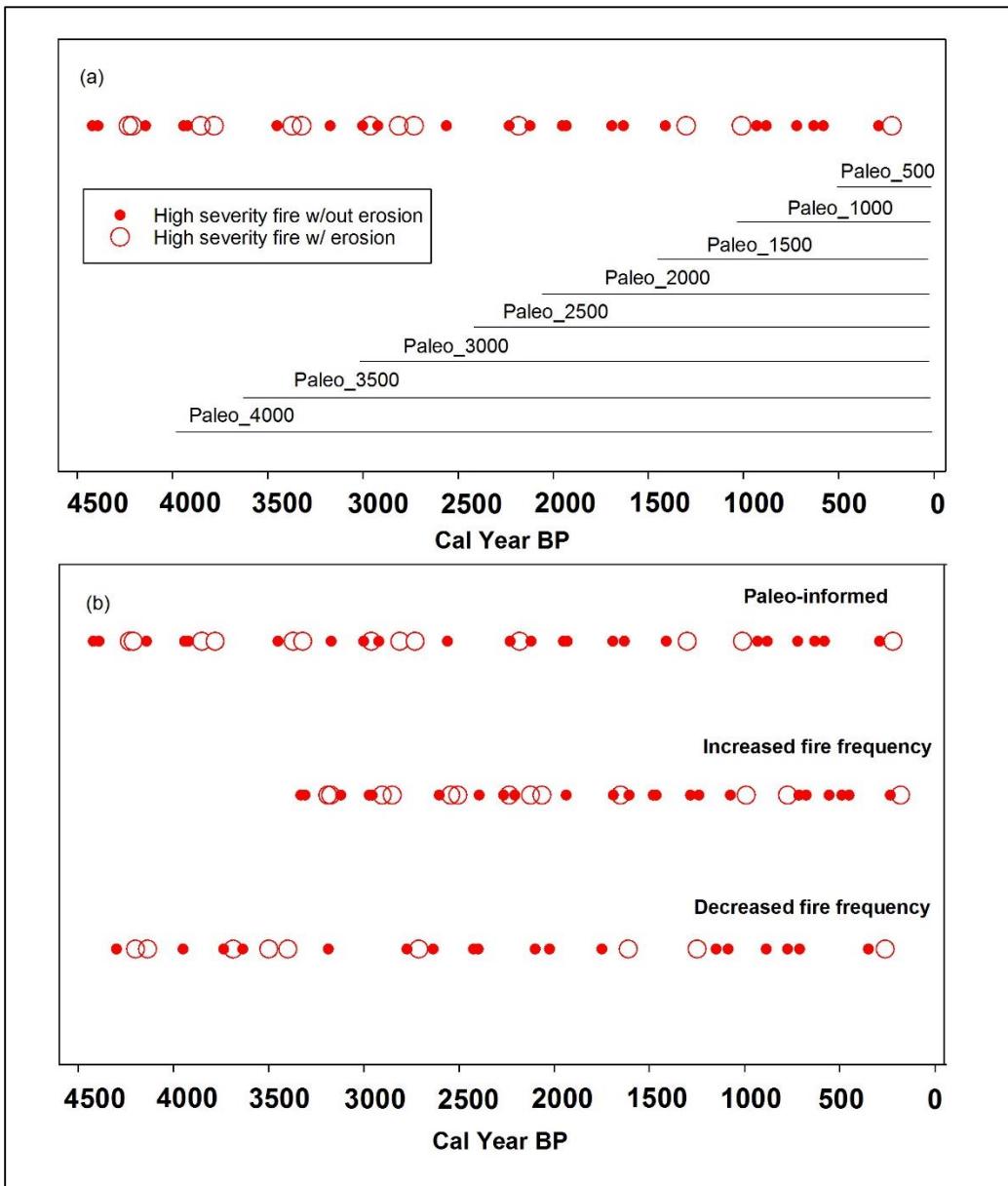
1051 Smithwick, E. A. H.: Pyrogeography and biogeochemical resilience, in: The Landscape Ecology
1052 of Fire, Springer, 143-163, 2011.

1053 Thornton, P., MM Thornton, BW Mayer, N Wilhelmi, Y Wei, RB Cook . : Daymet: Daily
1054 surface weather on a 1 km grid for North America, 1980 - 2008. In: Daymet: Daily surface
1055 weather on a 1 km grid for North America, 1980 - 2008., Acquired online

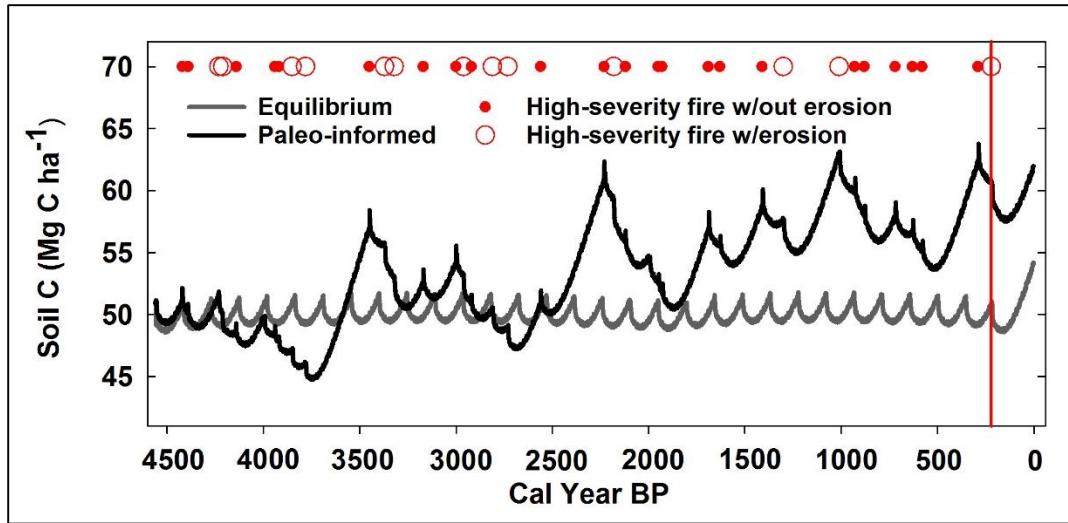
1056 (http://daymet.ornl.gov/) on 20/09/2012 from Oak Ridge National Laboratory Distributed Active
1057 Archive Center, O. R., Tennessee, U.S.A. doi:10.3334/ORNLDAA/C/Daymet_V2. (Ed.),
1058 Daymet: Daily surface weather on a 1 km grid for North America, 1980 - 2008., 2012.
1059 Turner, M. G., Tinker, D. B., Romme, W. H., Kashian, D. M., and Litton, C. M.: Landscape
1060 patterns of sapling density, leaf area, and aboveground net primary production in postfire
1061 lodgepole pine forests, Yellowstone National Park (USA), *Ecosystems*, 7, 751-775, 2004.
1062 Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan, M. G.:
1063 Continued warming could transform Greater Yellowstone fire regimes by mid-21st century,
1064 *Proceedings of the National Academy of Sciences*, 108, 13165-13170, 2011.
1065 Yelenik, S., Perakis, S., and Hibbs, D.: Regional constraints to biological nitrogen fixation in
1066 post-fire forest communities, *Ecology*, 94, 739-750, 2013.

1067

1068 **Tables**1069 **Table 1.** Model simulation scenarios, including climate, fire regime, duration, and summary
1070 description.


Scenario	Purpose	Climate*	Fire Regime	Duration (yr)	Description
Spinup	Spin up C, N pools to equilibrium conditions	Ambient	Fixed 145-yr return interval; high severity with erosion	2000	DayCent initialization run for NPP and C to reach equilibrium conditions.
Equilibrium	Run with fixed fire interval	Ambient	Fixed 145-yr return interval; high severity with erosion	4561	Equilibrium run extended from the spinup run for the length of the paleo-fire record.
Paleo-Informed	Run with observed paleo-fire intervals and severity	Ambient	Paleo-record; high severity with and without erosion	4561	A 4561-year simulation with fires matching the timing and severity from the paleo-fire record.
Increased fire frequency	Run with paleo-fire intervals decreased by 25%	Ambient	Modified Paleo-record; 90-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario decreased by 25%.
Decreased fire frequency	Run with paleo-fire intervals increased by 25%	Ambient	Modified Paleo-record ;155-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario increased by 25%.
Paleo500... Paleo4000	Test influence of length of paleo record on modern states	Ambient	Paleo-record; high severity with and without erosion	500 - 4000	Branches from the equilibrium scenario at varying points in time, in 500-yr increments**. All scenarios ends in CE 2010.

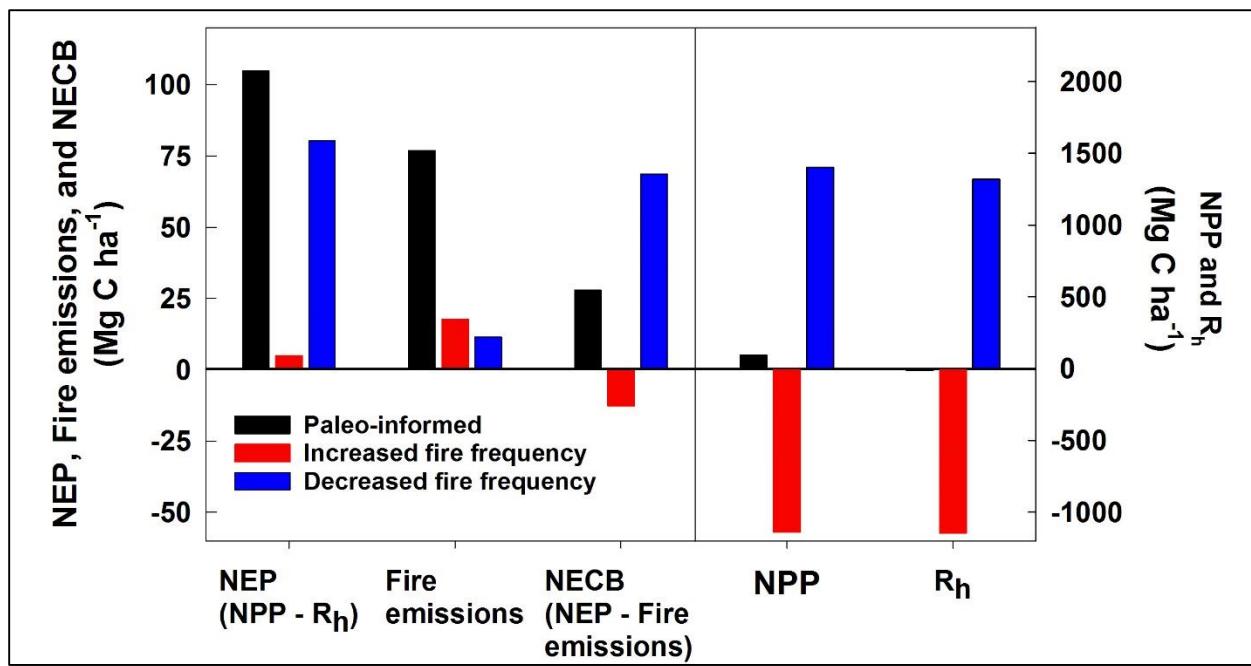
1071 * 30-year recycled historical record (DayMet)


1072 ** For example, the 500 year simulation starts in the year 1510 (CE) and runs until the end of 2009

1073

1074

1077
1078
1079 **Figure 1.** Paleo-informed fire history scenarios used to drive the DayCent model. (a) Fire history
1080 record form Chickaree Lake (red circles), with horizontal lines illustrating the duration of the
1081 record used in the incremental "partial paleo-informed" scenarios (Paleo_500...4000). (b) The
1082 same full Chickaree Lake fire history record used in the paleo-informed scenario (top), with the
1083 two additional scenarios representing a 25% increase and 25% decrease in fire frequency
1084 (bottom two scenarios).
1085



1086

1087 **Figure 2.** Model simulations of equilibrium (grey) and paleo-informed (black) total soil carbon
 1088 (C) in Mg C ha^{-1} . Each simulation branches from a 2000-year equilibrium spinup starting at the
 1089 same soil C baseline and runs for 4561 years (4500 BP to CE 2010). The large open circles
 1090 represent the years of the high-severity fires with erosion, and the small closed circles are high-
 1091 severity fires without erosion used to drive the paleo-informed model run. A constant 145-year
 1092 fire return interval was used for the equilibrium run. The vertical red line indicates the most
 1093 recent stand-replacing fire (1782 CE), reconstructed from the tree-ring record (Sibold et al.,
 1094 2007).

1095

1096

1097

1098 **Figure 3.** Accumulated anomalies in fluxes relative to equilibrium scenario, in Mg C ha^{-1} ,
 1099 summed over the entire 4561-year simulation period. NEP, fire emissions, and NECB (left y-
 1100 axis) and NPP and Rh (right y-axis) for the paleo-informed (black), increased fire frequency
 1101 (red; 155 year mean FRI), and decreased fire frequency (blue; 90 year mean FRI) scenarios.
 1102 Negative (positive) numbers indicate a decrease (increase) in total carbon flux compared to the
 1103 equilibrium scenario.

1104

1105

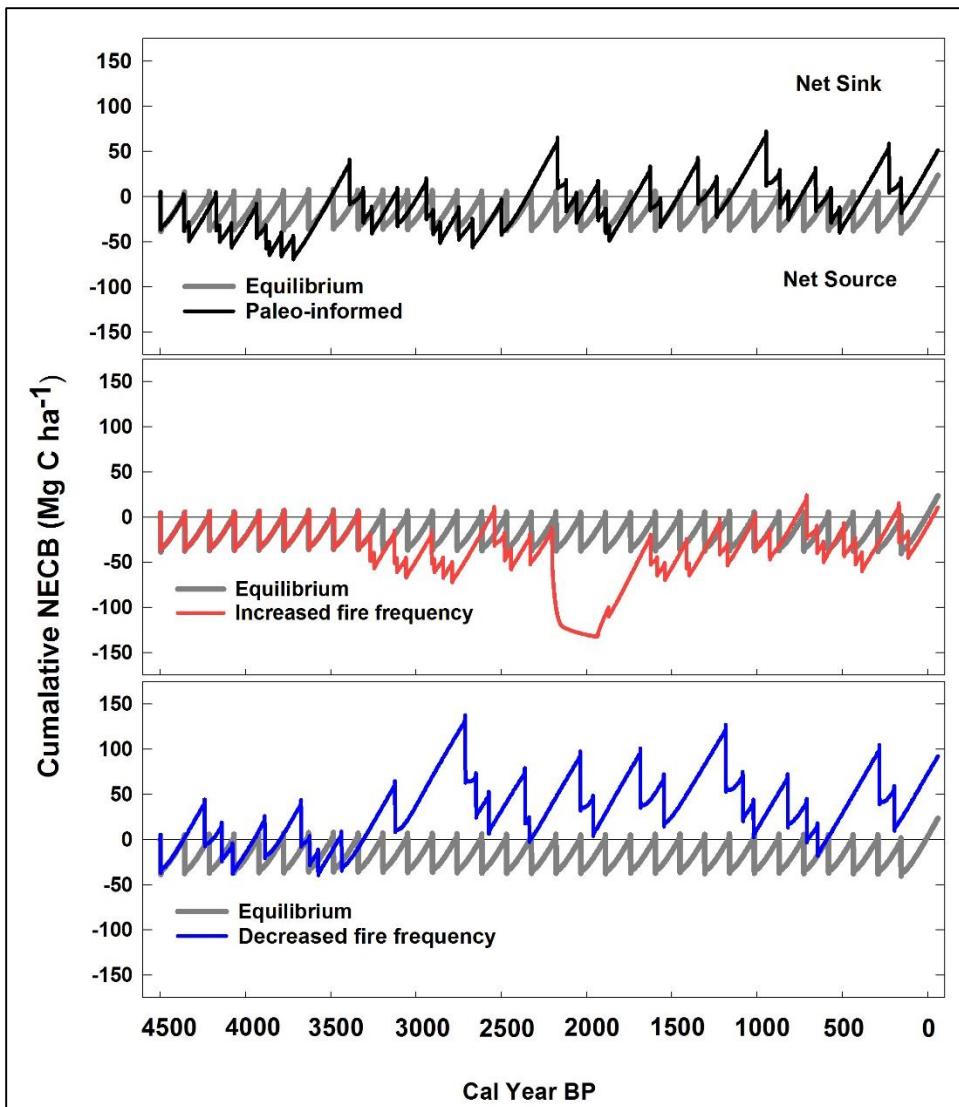
1106

1107

1108

1109

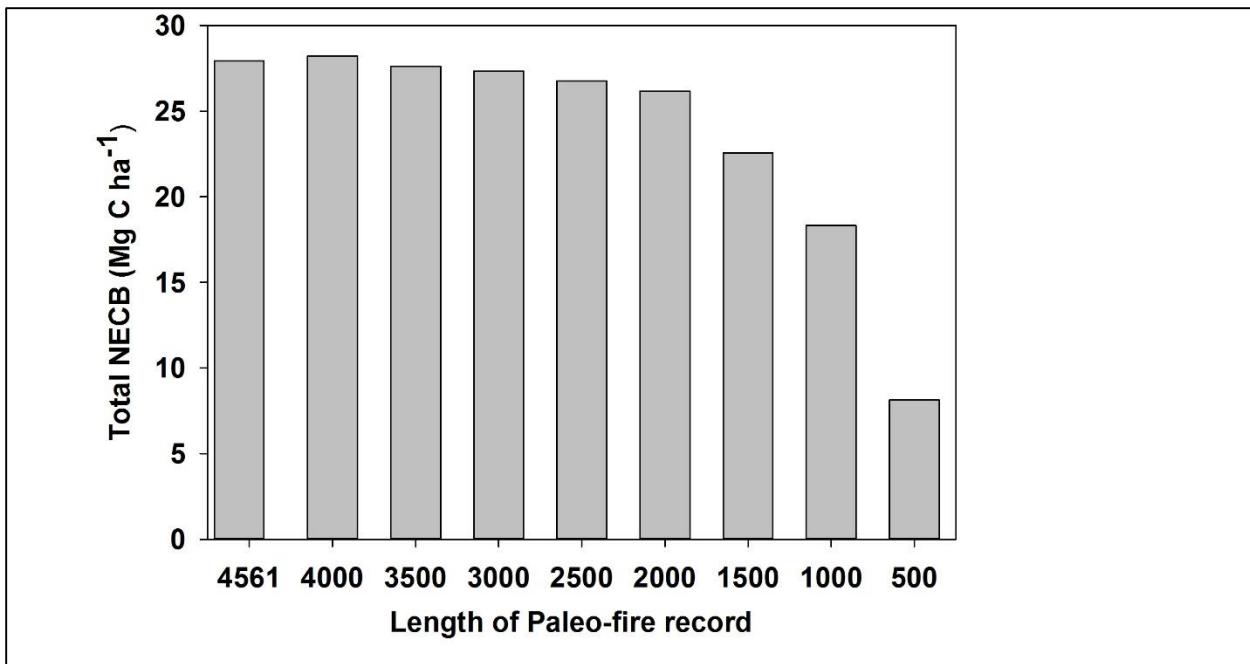
1110


1111

1112

1113

1114


1115

1116

1117 **Figure 4.** Trends in cumulative net ecosystem carbon balance (NECB) over time for the paleo-
 1118 informed, increased fire frequency, and decreased fire frequency scenarios compared to
 1119 equilibrium over the last 4561 years. Positive numbers indicate a cumulative net sink while
 1120 negative numbers indicate a cumulative net source.

1121

1122
 1123 **Figure 5.** Total NECB (NPP - Rh - fire emissions) for the 4561-year simulated period and for
 1124 each of the partially paleo-informed scenarios (Paleo_500, Paleo_1000, etc. in Figure 1). Each
 1125 partially paleo-informed scenario branches from the equilibrium scenario in the year indicated on
 1126 the x-axis. For example, the 500-year record only includes fires that occurred in the most recent
 1127 500 years of the paleo-fire record (1511-2010 CE).

1128

1129

1130