

1 **Fire-regime variability impacts forest carbon dynamics for centuries to millennia**
2

3 **Tara W. Hudiburg¹, Philip E. Higuera², and Jeffrey A. Hicke³**

4 ¹Department of Forest, Rangeland, and Fire Sciences
5 University of Idaho
6 875 Perimeter Dr.
7 Moscow, ID 83844-1133
8

9 ²Department of Ecosystem and Conservation Sciences
10 University of Montana
11 32 Campus Dr.
12 Missoula, MT 59812
13

14 ³Department of Geography
15 University of Idaho
16 875 Perimeter Dr.
17 Moscow, ID 83844-3021
18

19 ***Corresponding Author(s)**

20 thudiburg@uidaho.edu
21 phone: 208-885-7044
22 fax: 208-885-5534
23

24 philip.higuera@umontana.edu

25 phone: 406-243-6337
26 fax: 406-243-4845
27

28 *Running header:*

29 Fire-regime variability impacts on forest carbon
30

31 *Keywords:*

32 Fire regimes, forest carbon, paleoecology, ecosystem modeling, Rocky Mountains, Rocky
33 Mountain National Park, lodgepole pine
34

35 *Type of paper:*

36 Primary research article
37

38 **Abstract**

39 Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical
40 processes including net carbon (C) balance. Long-term monitoring and chronosequence studies
41 highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire
42 events. In contrast, the consequences of repeated fires or temporal variability in a fire regime
43 (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that
44 such variability could strongly influence forest C trajectories (i.e. future states or directions) for
45 millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem
46 modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon
47 balance. We found that C trajectories in a paleo-informed scenario differed significantly from an
48 equilibrium scenario (with a constant fire return interval), largely due to variability in the timing
49 and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive
50 and negative net ecosystem C balance, with magnitudes significantly larger than observed under
51 the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted
52 for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in
53 stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend
54 strongly on the ability of ecosystem models to represent a realistic range of fire-regime
55 variability over the past several centuries to millennia.

56 **1. Introduction**

57 Wildfire is a pervasive disturbance agent in forest ecosystems, strongly shaping ecosystem
58 structure and function, including vegetation composition, nutrient cycling, and energy flow.
59 While the immediate impacts of disturbance can be dramatic, the longevity of these impacts is
60 less clear. In ecosystems where disturbance is historically prevalent, vegetation and
61 biogeochemical properties typically return to pre-disturbance conditions over years to decades
62 (Dunnette et al., 2014; McLauchlan et al., 2014), motivating the concept of “biogeochemical
63 resilience” (Smithwick, 2011). Characterizing biogeochemical resilience emphasizes
64 understanding pool sizes and changes to inputs or outputs of key elements (McLauchlan et al.,
65 2014; Smithwick, 2011). In the context of wildfire, biogeochemical resilience is determined by
66 pool sizes (e.g., carbon, nitrogen) prior to a fire event, elemental losses and transformations that
67 occur during and shortly after a fire event (e.g., from volatilization and erosion), and post-fire
68 changes in elemental pools, which in turn are determined by the rate and composition of post-fire
69 revegetation (McLauchlan et al., 2014; Schlesinger et al., 2015; Smithwick, 2011).

70 Changes in the characteristic frequency or severity of fire (i.e., the fire regime) are therefore
71 predicted to lead to compounding and potentially long-lasting changes or shifts in
72 biogeochemical states. For example, increased disturbance frequency can deplete key growth-
73 limiting nutrients (Yelenik et al., 2013), potentially influencing ecosystem trajectories for
74 decades to centuries (McLauchlan et al., 2014). Net ecosystem carbon balance (NECB; the
75 balance between net forest carbon uptake and forest losses through fire emissions; Chapin et al.,
76 2006) is also highly sensitive to disturbance (Hudiburg et al., 2011), and while NECB trends
77 towards 0 under a uniform disturbance regime, shifting disturbance regimes may alter NECB
78 over centuries to millennia (Goetz et al., 2012; Kelly et al., 2016). While these ideas have a
79 strong conceptual basis and empirical support on decadal timescales, we have lacked the data
80 needed to test them over longer timescales – and to consider their implications for future
81 projections – until only recently.

82 Coupling paleo observations (i.e. “paleo-informed”) with ecosystem modeling provides an
83 important tool for assessing the impacts of fire-regime variability on biogeochemical dynamics
84 by combining the mechanistic representation of ecosystem processes with actual patterns of fire
85 activity reconstructed from the past. For example, in Alaskan boreal forests paleo-informed

86 ecosystem modeling highlights fire as the dominant control on C cycling over the past
87 millennium, far outweighing the effects of climate variability (Kelly et al., 2016). Given the
88 significance influence of fire, estimates of modern C states (“initial conditions” for modeling
89 future C states) can be highly sensitive to assumptions about the past fire activity. Ecosystem
90 models typically require a 'spin up' period to equilibrate C and N pools and can include a fixed
91 disturbance interval (e.g., a constant fire return interval), resulting in ecosystem C and N
92 trajectories that are in 'equilibrium' with climate, ecosystem properties, and the disturbance
93 regime. To initiate the model, C and N pools need to develop, as they start from 'bare soil' with
94 no vegetation; as vegetation grows the modeled soil pools increase, and it takes hundreds to
95 thousands of simulation years during this "spin-up" period for the C and N pools to equilibrate.
96 Following centuries of equilibrium, known disturbance events from the historical record are
97 included, and the final results are used for initial conditions (baseline) for future scenarios.
98 However, paleo-informed disturbance histories spanning many centuries can result in initial
99 conditions that differ from equilibrium runs. In the boreal example, forests were a small net C
100 source over the past several decades in paleo-informed simulations, whereas forests were a small
101 net C sink when a constant fire return interval was assumed (Kelly et al., 2016). We would
102 expect a similar sensitivity of C dynamics to fire in other stand-replacing fire regimes, although
103 specific trajectories and impacts on modern states could vary widely, contingent on the specific
104 history of fire activity.

105 Here, we pair a paleoecological record of vegetation and wildfire activity in a subalpine forest
106 (Dunnette et al., 2014) with an ecosystem model to evaluate the sensitivity of forest ecosystem
107 processes to fire-regime variability over a 4500-year period. Our paleoecological record reveals
108 the timing and severity of past wildfire activity within a subalpine forest watershed that was
109 consistently dominated by lodgepole pine (*Pinus contorta*). We use this record to drive fire
110 disturbances in an ecosystem model and test alternative hypotheses that help reveal the potential
111 patterns and mechanisms causing past ecosystem change, focusing on a slowly varying carbon
112 pool (soil C) and net ecosystem carbon balance (NECB). The resulting trends provide theoretical
113 insight into how observed fire-regime variability can affect carbon trajectories from decadal to
114 millennial scales. Through a series of paleo-informed and control modeling scenarios, we
115 address two key questions about the biogeochemical impacts and legacies of wildfire activity: (1)
116 how does centennial-to-millennial-scale variability in fire activity impact biogeochemical

117 processes that regulate soil C and NECB, and (2) for how long does the legacy wildfire activity
118 impact current biogeochemical states? In addition to testing the general hypothesis that that
119 forest carbon storage will differ between equilibrium and paleo-informed simulations, we also
120 evaluate the impact of increasing or decreasing fire frequency, relative to that inferred from the
121 paleo record.

122 **2 Materials and Methods**

123 **2.1 Model description**

124 DayCent is the globally recognized daily timestep version of the biogeochemical model
125 CENTURY, widely used to simulate the effects of climate and disturbance on ecosystem
126 processes including forests worldwide (Bai and Houlton, 2009; Hartman et al., 2007; Savage et
127 al., 2013). DayCent is a logical choice for our purposes, because it includes soil C pools that
128 have long turnover times, spanning months to 4000 years, and thus can represent long-term
129 ecosystem change. As used here, DayCent is aspatial, representing our c. 30-ha study watershed
130 as a single ‘point.’

131 Required inputs for the model include vegetation cover, daily precipitation and temperature, soil
132 texture, and disturbance histories. DayCent calculates potential plant growth as a function of
133 water, light, and soil temperature, and limits actual plant growth based on soil nutrient
134 availability. The model includes three soil organic matter (SOM) pools (active, slow, and
135 passive) with different decomposition rates, above and belowground litter pools, and a surface
136 microbial pool associated with the decomposing surface litter. Plant material is split into
137 structural and metabolic material as a function of the lignin to nitrogen ratio of the litter (more
138 structural with higher lignin to nitrogen ratios). The active pool (microbial) has short turnover
139 times (1-3 months) and the slow SOM pool (more resistant structural plant material) has turnover
140 times ranging from 10 to 50 years depending on the climate. The passive pool includes
141 physically and chemically stabilized SOM with turnover times ranging from 400 to 4000 years.
142 For this study, DayCent was parameterized to model soil organic carbon dynamics to a depth of
143 30 cm. Model outputs include soil C and N stocks, live and dead biomass, above- and below-
144 ground net primary productivity (NPP), heterotrophic respiration, fire emissions, and net
145 ecosystem production (NEP, defined as the difference between NPP and heterotrophic

146 respiration). We define net ecosystem carbon balance (NECB) as the difference between NEP
147 and fire emissions.

148 Disturbances in DayCent are prescribed and can be parameterized to reflect “severity” through
149 associated impacts to the ecosystem (e.g., biomass killed, nitrogen lost, soil eroded). The fire
150 model in DayCent is parameterized to include the combusted and/or mortality fraction of each
151 carbon pool (live and dead wood, foliage, coarse and fine roots, etc) that occurs with each fire
152 event. Erosion is also scheduled as an event in DayCent and was prescribed to occur in the same
153 month of the observed high-severity fire events. The erosion events are thus decoupled from
154 precipitation in the model.

155 **2.2 Study sites**

156 We studied the biogeochemical consequences of fire-regime variability by informing the
157 DayCent model with fire history data derived from sedimentary charcoal preserved in Chickaree
158 Lake, Colorado (Dunnette et al., 2014). Chickaree Lake (40.334 °N, 105.841 °W, 2796 m above
159 sea level) is a small, deep lake (c. 1.5 ha surface area; 7.9 m depth) in a lodgepole pine-
160 dominated subalpine forest in Rocky Mountain National Park. The even-aged forest surrounding
161 the lake regenerated after a high-severity (i.e., stand-replacing) fire in 1782 CE (common era)
162 (Sibold et al., 2007). The fire regime in subalpine forests of Rocky Mountain National Park is
163 characterized by infrequent, high-severity crown fires (c. 100-300 yr mean return intervals)
164 associated with severe seasonal drought (Sibold et al. 2006). Mean monthly temperature is -8.5
165 °C in January and 14 °C in July, and average total annual precipitation is 483 mm (Western
166 Regional Climate Center 1940-2013 observations, from Grand Lake, CO).

167 Detailed methods for the collection and analysis of the Chickaree Lake sediment record are
168 found in Dunnette et al. (2014). Briefly, the 4500-year record has an average sample resolution
169 of four years, and a chronology constrained by 13 ^{210}Pb dates spanning the upper 20 cm and 25
170 accelerator mass spectrometry ^{14}C dates for deeper sediments. Pollen analysis indicates that the
171 site was continuously dominated by lodgepole pine for the duration of the record presented here,
172 with successional changes following inferred fire events (Dunnette et al., 2014). The persistence
173 of subalpine forest over the past 4500 years is also supported by near-by pollen records in Rocky
174 Mountain National Park (Caffrey and Doerner, 2012; Higuera et al., 2014). Dunnette et al.

175 (2014) used macroscopic charcoal and magnetic susceptibility (a soil-erosion proxy) from
176 Chickaree Lake to infer the timing and severity of wildfires, identifying “high-severity
177 catchment fires” (those with associated erosion) and “lower severity/extralocal fires” (those
178 without associated soil erosion). Thus, while all fire events were likely stand-replacing, the
179 difference between these two fire types was the association with soil erosion. Here, we use the
180 Chickaree Lake fire history record to inform the disturbance component of the DayCent
181 ecosystem model by prescribing the timing and severity of past fire events within a simulated
182 lodgepole pine-dominated subalpine forest.

183 **2.3 Model parameterization**

184 DayCent submodels associated with tree physiological parameters, site characteristics, soil
185 parameters, and disturbance events were modified using available site-specific observations
186 (Dunnette et al., 2014; Sibold et al., 2007), values from the literature (Kashian et al., 2013;
187 Turner et al., 2004), and publically available climate and soils databases. Climate data required
188 for DayCent include daily minimum and maximum temperature and precipitation which were
189 obtained for a 30-yr period from DAYMET (Thornton, 2012). For all model runs, the 30-yr
190 climate dataset was “recycled” for the duration of the run; thus, climate was functionally non-
191 varying over the duration of the simulations (beyond the variability within the 30-yr dataset).
192 Soil texture and classification were identified using the NRCS SSURGO database (NRCS,
193 2010). Model input and parameterization files are available for download as supporting
194 information files.

195 We defined two types of stand-replacing fire to distinguish between the two types of fires
196 identified in the paleo record. The key difference between the two fire types simulated is the
197 associated soil erosion. High-severity catchment fires from the paleo record were simulated by
198 95% tree mortality and a soil erosion event with $\sim 1 \text{ Mg ha}^{-1}$ of soil loss from the watershed
199 (Miller et al., 2011); we refer to these as high-severity fires with erosion. Lower-severity/extralocal
200 fires from the paleo record were simulated by 95% tree mortality with no associated soil-
201 erosion event; we refer to these as high-severity fires without erosion. After parameterization, we
202 evaluated modern modeled aboveground NPP, soil C, total ecosystem carbon, and disturbance C
203 losses against observations of similar-aged lodgepole pine stands in the Central Rockies
204 ecoregion (Hansen et al., 2015; Kashian et al., 2013; Turner et al., 2004).

205 **2.4 Model experiments**

206 We performed a series of modeling experiments to address our questions using the Chickaree
207 Lake paleo-fire record, varied disturbance histories, and varied climate (Table 1). First, DayCent
208 was ‘spun up’ and equilibrated to soil C and NPP levels characteristic of mature lodgepole pine
209 stands in the region with a constant return interval of 145 years between high-severity fires with
210 erosion, replicating the estimated fire rotation period (and mean fire-return interval) for the
211 broader study area (Sibold et al., 2007). This spinup period lasted for 2000 years, and it
212 represents what would be done for model use, in the absence of the long-term fire history
213 information from the paleo record. All experimental simulations were extended from this spinup
214 equilibrium simulation starting 4500 years before present (BP, where “present” is 1950 CE) and
215 running through 2010 CE, for a total of 4561 simulation years. We defined our model simulation
216 that would normally be used in the absence of paleo-informed disturbance histories (“equilibrium
217 scenario”) as a continuation of the equilibrated spinup with the same climate and fire regime,
218 with only the last known fire event (1782 CE) explicitly simulated.

219 In addition to this equilibrium scenario, we implemented three additional scenarios that together
220 helped illustrate the duration, magnitude, and relative importance of fire-induced changes to
221 forest biogeochemistry. First, to test the impacts of variability in fire timing and severity on
222 important biogeochemical states, we compared the equilibrium scenario to a “paleo-informed
223 scenario,” which had a mean fire return interval of 120 years for all fires, and 334 years for the
224 high-severity fires with erosion. Climate was identical in each simulation (i.e., 30-yr recycled
225 modern climate), as we are not testing the influence of climate on the timing and severity of fire,
226 but rather the influence of the known timing and severity of fires (from the charcoal record)
227 versus a constant fire return interval interval.

228 Second, to identify the duration of a legacy effect from fire-regime variability, we constructed
229 eight “partially paleo-informed scenarios,” which included increasingly longer periods of
230 information from the paleo-fire record, spanning the past 500 to 4000 yr, in 500-yr increments
231 that ended in 2010 CE (“Paleo₅₀₀”, “Paleo₁₀₀₀”, ..., “Paleo₄₀₀₀”; Figure 1a). For example, the
232 Paleo₅₀₀ scenario includes the most recent 500 yr of fire history while the Paleo₄₀₀₀ scenario
233 includes the most recent 4000 yr of fire history.

234 Thirdly, to identify how a systematic shift in fire frequency would impact carbon balance, we
235 created two additional scenarios with shortened and lengthened fire return intervals. Beginning
236 with the observed paleo-fire record, we modified each interval between fires to be (a) shortened
237 by 25% (“Increased fire frequency”) or (b) lengthened (“Decreased fire frequency”) by 25%
238 (Figure 1b). The corresponding mean fire return intervals of these two additional runs were 90 yr
239 for the “Increased fire frequency” and 155 yr for the “Decreased fire frequency” scenarios.

240 Because fire events in DayCent are decoupled from climate, the climate data did not impact the
241 timing or severity of fires in the simulations. We evaluated the results from each scenario in
242 terms of modern end points of soil C, soil N, and NECB as well as total cumulative changes in
243 NECB over the entire record. We define cumulative NECB as a running total, such that the sum
244 at any given year represents the integrated impacts of past disturbance events. For example,
245 when return intervals between disturbance events are shorter than C recovery times, cumulative
246 NECB will remain negative. Finally, we considered uncertainty in our estimates based on the
247 uncertainty in the reconstructed fire history record, our assumptions about soil erosion, and our
248 use of recycled modern climate. While there is also uncertainty associated with modeled
249 estimates of soil C, NECB, and other C fluxes presented, we are not attempting to provide
250 estimates that are any more precise than measured modern states (e.g. STATSGO derived soil
251 C). Rather, we compare the variability in biogeochemical states arising from fire-regime
252 variability to the uncertainties in the model that are revealed when evaluated against modern
253 observations from the literature.

254 **3 Results and Discussion**

255 **3.1 Model parameterization and evaluation**

256 We compared our model results with reported values from ecological studies in the region that
257 examined some aspect of the carbon balance in the similar-aged subalpine forests in order to
258 evaluate our model estimates. We found few reported observations (e.g., for C, N pools, NPP)
259 for old (>200 yr) lodgepole pine stands in the Rocky Mountains in the literature. Therefore, we
260 also compare our results with results for the same genus (*Pinus*) and with the soil C content
261 reported by the United States National Resource Conservation Service (NRCS) as part of the
262 national soil survey. Our modeled estimates of modern soil C (to 30 cm) of 54 and 62 Mg C ha⁻¹,
263 for the equilibrium and paleo-informed scenario, respectively (Figure 2), compare well with the
264 NRCS-derived estimates (STATSGO2, NRCS, 2010) of 66 ± 16 Mg C ha⁻¹ for the Chickaree
265 Lake region, and with measurements of current soil C (to 30 cm) ranging from 51 to 73 Mg C ha⁻¹
266 in similarly aged (> 200 yr) Rocky Mountain *Pinus* stands (Bradford et al., 2008). Modeled
267 estimates of aboveground NPP were also in agreement with observations averaging 156 and 172
268 g C m⁻² for the equilibrium and paleo-informed simulations, respectively, compared to estimates
269 from the Northern or Central Rockies ranging from 100 to 200 g C m⁻² (Hansen et al., 2015).
270 Finally, fire emissions from our modeled estimates range from 20 to 30% loss of aboveground C,
271 broadly in agreement with other studies (Campbell et al., 2007; Smithwick et al., 2009).
272

273 **3.2 Fire-regime variability impacts soil C and NECB**

274 When DayCent was driven with the paleo-informed fire history, soil C accumulation was
275 8 Mg ha⁻¹ more at the end of the simulation than in the equilibrium scenario (Figure 2). Total
276 NEP summed over the 4561-year period was also higher in the paleo-informed scenario (1276
277 Mg C ha⁻¹) compared with the equilibrium scenario (1171 Mg C ha⁻¹), directly reflecting NPP
278 rates that were higher than heterotrophic respiration (Figure 3, black bar). In the paleo-informed
279 scenario, cumulative emissions due to combustion losses (i.e., “fire emissions”) were lower than
280 NEP over the entire record, resulting in a cumulative NECB of 27 Mg C ha⁻¹ more than the
281 equilibrium scenario (Figure 3; black bars).

282 The paleo-informed scenario showed substantial variability in soil C (Figure 2) and
283 NECB (Figure 4) trajectories, and higher total accumulations relative to the equilibrium scenario.
284 In fact, the range of variability in soil C over the paleo-informed simulation, from c. 45 to 65 Mg
285 C ha⁻¹, nearly spanned the range of observations of current soil C (to 30 cm) in similarly aged (>
286 200 yr) Rocky Mountain *Pinus* stands (Bradford et al., 2008). For the first ~2000 years of the

287 paleo-informed scenario, long-term mean soil C was similar to baseline levels of soil C in the
288 equilibrium scenario (Figure 2), averaging around 54 Mg C ha^{-1} , though with substantial
289 variability on centennial time scales. Following this period, the soil C trajectory increased
290 distinctly in the paleo-informed scenario during a 500-year period with only one high-severity
291 fire without erosion (c. 2500 cal yr BP). Despite a return to a mean fire return interval closer to
292 the equilibrium scenario, soil C persisted at this elevated level for the following 2000 years (c.
293 2000 cal yr BP to present), resulting in 8 Mg C ha^{-1} (15%) more than the equilibrium scenario at
294 the end of the simulation (2010 CE). A similar trend was observed for NECB (Figure 4), where
295 the paleo-informed scenario maintained a lower NECB in the first half of the record compared
296 the second half. In the latter half of the record, NECB was more consistently positive, ultimately
297 storing more ecosystem C than the equilibrium scenario. The dynamism in NECB over time is
298 consistent with the findings of Kelly et al. (2016). Together, this work and ours highlights the
299 value of examining the ecosystem impacts of past fire-regime variability, which may include
300 disturbance-free or intensified disturbance periods that are not currently represented in or
301 predicted by ecosystem models.

302 **3.3 Impacts of fire-regime variability last for millennia**

303 We compared the partially paleo-informed scenarios to the equilibrium scenario to
304 determine the length of time necessary to arrive at the same inferences about soil C and NECB as
305 in the full paleo-informed scenario. The CE 2010 endpoints for each partially informed scenario
306 were compared to the CE 2010 endpoint for the equilibrium scenario. We found that disturbance-
307 regime legacies lasted for millennia. The number of years needed to simulate the CE 2010 values
308 was between 2000 and 2500 years (Figure 5). Specifically, total NECB and soil C (endpoints that
309 serve as initial conditions for future modeled states) were nearly the same when using 2500 to
310 4500 years of the paleo-fire record, but differed by more than 1 Mg C ha^{-1} when using only 500
311 to 2000 years of the paleo-fire record. We used the 1 Mg C ha^{-1} as a significant threshold for
312 changes in ecosystem C flux (total or soils) both because changes less than this indicate the
313 ecosystem is stable and it is a standard amount of annual C flux into or out of an ecosystem that
314 is considered significant for carbon sequestration (mitigation) activities (Anderson-Teixeira et
315 al., 2009).

316 Differences between the paleo-informed and equilibrium scenario can be interpreted in
317 the context of other model parameters that are known to affect biogeochemical processes,
318 including plant productivity and decomposition rates. Chief among these is growing season
319 temperature, which strongly affects NPP and plant and microbial respiration in DayCent. In a
320 simple sensitivity analysis where we repeated the equilibrium scenario with a uniform 2 °C
321 warming during the growing season, we found that variability in the paleo-informed scenario
322 was an order of magnitude greater than in the scenario with warming. Specifically, warming
323 resulted in a small net decrease in soil C of 0.3 Mg C ha⁻¹, and a reduction in NECB by 0.2 Mg C
324 ha⁻¹ relative to equilibrium scenario. Our results imply that C dynamics in lodgepole pine forests
325 are far more sensitive to variability in the timing and severity of fire activity than to modeled
326 changes to plant growth and decomposition introduced by climate warming alone. This inference
327 is also consistent with findings from strand-replacing fire regimes in Alaskan boreal forests,
328 where C dynamics over the past 1200 years were more strongly shaped by fire activity than by
329 climate variability (Kelly et al., 2016).

330 **3.4 Implications for projecting future biogeochemical states**

331 To evaluate the effects of changing fire regimes on our results, we varied the paleo-
332 informed disturbance regimes by increasing and decreasing the frequency of events by 25%. As
333 expected, increased fire frequency (i.e., shorter return intervals) resulted in a cumulative loss of
334 ecosystem C compared to equilibrium and paleo-informed scenarios, with NECB 13 Mg C ha⁻¹
335 lower compared to equilibrium over the entire simulation period (Figure 3), and with periods of
336 net carbon loss lasting nearly 800 years (Figure 4; red line). The losses reflect large increases in
337 fire emissions, without concurrent proportional increases in NEP (Figure 3). In contrast, with
338 decreased fire frequency (i.e., longer return intervals), NECB increases by 67 Mg C ha⁻¹
339 compared to equilibrium, and by 40 Mg C ha⁻¹ compared to the original paleo-informed scenario.
340 Again, this is primarily due to an unbalanced increase in NEP compared to fire emissions (Figure
341 3).

342 While the differences in NECB (27 Mg C more) and soil C (8 Mg C more) between the
343 paleo-informed and equilibrium scenarios are ultimately small for this single watershed, the
344 impact of fire-regime variability will depend on the synchrony of events at the regional and sub-
345 continental scales (Kelly et al., 2016). This is especially important when considering the

346 trajectory of NECB compared to equilibrium simulations during the periods of the paleo record
347 when fire frequency or severity were higher than in the past few centuries. Cumulative NECB
348 was negative, serving as a net source of C to the atmosphere, for periods of up to 500 years in the
349 paleo-informed scenario and up to 1000 years under scenarios with increased fire frequencies.

350 Given the strong correspondence between observed and simulated modern C stocks, we have
351 high confidence that DayCent accurately simulated the key processes shaping biogeochemical
352 properties in our study area. Important sources of uncertainty in our estimates of past carbon
353 dynamics stem from uncertainty in the timing and severity of past fires. The fire history
354 reconstruction has an estimated temporal precision of several decades (± 10 -20 years) (Dunnette
355 et al., 2014), but because C dynamics unfold over centuries to millennia, this level of uncertainty
356 has negligible effects on our inferences. Another important source of uncertainty is the potential
357 for false positives or false negatives in the fire history reconstruction: failing to detect a fire that
358 occurred in the past, or identifying a fire that did not affect the Chickaree Lake watershed. While
359 the Chickaree Lake record clearly identified the most recent high-severity fire in the watershed
360 (Dunnette et al., 2014), we cannot quantify accuracy over the past four millennia. However, the
361 range of variability in individual fire return intervals reconstructed at Chickaree Lake (20-330
362 year) is consistent with the range of intervals reconstructed from other lake-sediment records in
363 Colorado subalpine forests (Calder et al., 2015; 75-885, 45-750, 30-645, 30-1035 yr, Higuera et
364 al., 2014), suggesting that the C dynamics highlighted here are not unique to this single fire
365 history reconstruction.

366 In addition to fire timing, simulated C dynamics were also a function of variability in fire
367 severity, which in this study reflects the degree of soil erosion associated with stand-replacing
368 fire events. Watershed soil C losses were partially driven by the erosion events accompanying
369 the “high severity catchment fires” reconstructed in the paleo record. Because we have
370 prescribed both fire and erosion, we cannot predict the range of soil C loss that may occur due to
371 changes in precipitation regimes or if any erosion occurs with the lower severity events;
372 however, these results provide an estimate of expected changes in soil C for at least the higher
373 severity events. With expected changes to future precipitation regimes, including intensification
374 of rain events that could lead to increased erosion following fire (Larsen and MacDonald, 2007;

375 Miller et al., 2011), ecosystem model development should include prognostic erosion to account
376 for variability in this ecosystem process, especially at regional scales.

377 Finally, the most important limitation of our study is the fact that our modeling
378 framework does not integrate realistic paleoclimate variability, nor does it represent the
379 important coupling among climate, vegetation, and fire activity. Although paleoclimate proxies
380 exist for nearby regions in Colorado, for example in the form of lake-level reconstructions and
381 oxygen isotope records (Anderson 2011, 2012; Shuman et al. 2010), these records are far from
382 the detailed climate information needed to drive DayCent. Thus, utilizing paleoclimate proxies to
383 develop climate drivers for DayCent is an important next step, but beyond the scope of this
384 study. For example, it will involve developing methodologies to downscale paleoclimate proxies
385 in space (to the elevation and location of Chickaree Lake), in time (to daily value), and to the
386 specific metrics required by DayCent (e.g., from a relative moisture proxy to daily precipitation).
387 While our simulated past carbon dynamics are limited by the lack of available paleoclimate data
388 to drive DayCent, our temperature sensitivity analysis suggests that C dynamics are much more
389 sensitive to the timing and severity of fire events than to even relatively large changes in climate
390 (e.g., 2 °C warming). Further, because we have decoupled climate from fire by using prescribed
391 fire events, the lack of a paleoclimate does not affect our conclusions about the impacts of fire-
392 regime variability on C balance. While we used the paleo-informed modeling scenarios to test
393 general hypotheses about the impacts of fire-regime variability on biogeochemical dynamics,
394 future efforts to simulate the coupled climate-fire-ecosystem dynamics of the past clearly require
395 independent paleoclimate drivers.

396 **4 Summary and Conclusions**

397 Our simulations highlight fire-regime variability as a dominant driver of C dynamics in
398 lodgepole pine forests, with periods of unusually high or low fire activity creating legacies
399 lasting for centuries to millennia. Anticipating the impacts of future climate or disturbance-
400 regime change on forest carbon balance, therefore, should be done in the context of past
401 variability, with the duration dependent on the frequency and variability of relevant disturbance
402 processes. In the case of stand-replacing wildfires this requires information spanning at least
403 several centuries, and at Chickaree Lake this required several millennia, well beyond the length
404 of both observational and tree-ring records. Many studies have reported ecosystem impacts or

405 recovery times from individual fire events and then extrapolated to infer scenarios that would
406 lead to C gain or loss (Dunnette et al., 2014; Kashian et al., 2013; Mack et al., 2011; Smithwick
407 et al., 2009). In contrast, our paleo-informed scenario highlights the importance of variability in
408 fire timing and severity over multiple fire events for carbon cycling dynamics, independent of
409 complete shifts in a fire regime.

410 Our findings also have implications for ecosystem and Earth system model development,
411 which are increasingly including prognostic fire components (Lasslop et al., 2014), primarily
412 driven by climate and fuels. Some models are also representing post-fire C and N dynamics
413 beyond simple combustion of live and dead biomass or only the dead-wood pools (fuels).
414 Development of these modules depends on observations of fire and climate interactions, fuel
415 availability, and post-fire C and N dynamics. We suggest that this requires accurately accounting
416 for the (often high) variability inherent in stand-replacing fire regimes, independent from or in
417 response to climate variability. Our results indicate that even utilizing tree-ring record that span
418 several centuries may not be sufficient to capture this variability. Further development of
419 prognostic (predictive) fire processes in ecosystem models would benefit from the use of paleo-
420 fire records to evaluate fire occurrence and severity, and if combined with paleoclimate data,
421 model algorithms could be further improved to accurately reflect past variability.

422 The importance of fire-regime variability in determining ecosystem C dynamics implies
423 that equilibrium scenarios are a poor assumption for conceptualizing and simulating fire regimes
424 in ecosystem and Earth system models. Particularly at spatial scales larger than an individual
425 site, such a simplification may result in C-balance projections that are grossly inaccurate. We
426 demonstrate how variability in the timing and severity of disturbances can potentially have long-
427 lasting and compounding impacts on biogeochemical states, such that modern (or future) states
428 can reflect dynamics that have unfolded over centuries to millennia. For our modeling scenarios
429 in lodgepole-pine dominated forests, the effects lasted approximately 2500 years. The duration of
430 these legacies will depend on the ecosystem, and the degree of variability in disturbance
431 frequency and severity, relative to an equilibrium scenario. Ultimately, the implications of fire-
432 regime variability on biogeochemical states will depend strongly on the synchrony of fire
433 activity across spatial scales larger than a single watershed. If fire activity is synchronized at
434 landscape to regional scales, as in past (Calder et al., 2015; Marlon et al., 2012; Morgan et al.,

435 2008) and as anticipated for the future (Westerling et al., 2011) in Rocky Mountain forests, we
436 would expect to see similar centennial- to millennial-scale dynamics in biogeochemical states
437 revealed here, which would have important implications for carbon cycling, including potential
438 feedbacks to CO₂-induced warming.

439

440 **5 Data Availability**

441 The following datasets are available at Dryad.org <url TBD>: the fire history record generated
442 from the charcoal record, the relevant model output, and model input files and climate input file.

443

444 *Author Contributions.* T.W. Hudiburg and P.E. Higuera designed the study, analyzed the data,
445 and prepared the manuscript with contributions from J.A. Hicke.

446 *Competing interests.* The authors declare that they have no conflict of interest.

447 *Acknowledgments.* We thank K. McLauchlan and B. Shuman for valuable discussions on these
448 topics. T.H. was supported by the NSF Idaho EPSCoR Program and by the National Science
449 Foundation under award number IIA-1301792. P.E.H was supported by the National Science
450 Foundation under award number IIA-0966472 and EF-1241846, and JAH was supported by the
451 Agriculture and Food Research Initiative of the USDA National Institute of Food and
452 Agriculture (Grant 2013-67003-20652) and the National Science Foundation under award
453 number DMS-1520873. The authors declare no competing financial conflicts of interests or other
454 affiliations with conflicts of interest with respect to the results of the paper.

455 **References**

456 Anderson, L.: Holocene record of precipitation seasonality from lake calcite ^{18}O in the central
457 Rocky Mountains, United States. *Geology*, 39, 211– 214, 2011.

458 Anderson, L.: Rocky Mountain hydroclimate: Holocene variability and the role of insolation,
459 ENSO, and the North American Monsoon. *Global and Planetary Change*, 92–93, 198–208, 2012.

460 Bai, E., and Houlton, B. Z.: Coupled isotopic and process-based modeling of gaseous nitrogen
461 losses from tropical rain forests, *Global Biogeochemical Cycles*, 23, 2009.

462 Anderson-Teixeira K.J., Davis S.C., Masters M.D., and Delucia E.H.: Changes in soil organic
463 carbon under biofuel crops. *Global Change Biology Bioenergy*, 1, 75 –96, 2009.

464 Bradford, J. B., Birdsey, R. A., Joyce, L. A., and Ryan, M. G.: Tree age, disturbance history, and
465 carbon stocks and fluxes in subalpine Rocky Mountain forests, *Global Change Biology*, 14,
466 2882-2897, 10.1111/j.1365-2486.2008.01686.x, 2008.

467 Caffrey, M. A., and J. P. Doerner.: A 7000-Year Record of Environmental Change, Bear Lake,
468 Rocky Mountain National Park, USA. *Physical Geography*, 33, 438-456, 2012.

469 Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G., and Shuman, B. N.: Medieval
470 warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains, *Proceedings of*
471 *the National Academy of Sciences*, 112, 13261-13266, 2015.

472 Campbell, J., Donato, D., Azuma, D., and Law, B.: Pyrogenic carbon emission from a large
473 wildfire in Oregon, United States, *Journal of Geophysical Research: Biogeosciences*, 112,
474 G04014, 10.1029/2007JG000451, 2007.

475 Chapin, F., Woodwell, G., Randerson, J., Rastetter, E., Lovett, G., Baldocchi, D., Clark, D.,
476 Harmon, M., Schimel, D., Valentini, R., Wirth, C., Aber, J., Cole, J., Goulden, M., Harden, J.,
477 Heimann, M., Howarth, R., Matson, P., McGuire, A., Melillo, J., Mooney, H., Neff, J.,
478 Houghton, R., Pace, M., Ryan, M., Running, S., Sala, O., Schlesinger, W., and Schulze, E. D.:
479 Reconciling carbon-cycle concepts, terminology, and methods, *Ecosystems*, 9, 1041-1050, 2006.

480 Dunnette, P. V., Higuera, P. E., McLaughlan, K. K., Derr, K. M., Briles, C. E., and Keefe, M. H.:
481 Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine
482 watershed, *New Phytologist*, 203, 900-912, 2014.

483 Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A.,
484 McNulty, S., O'Halloran, T., Harmon, M., Meddens, A. J. H., Pfeifer, E. M., Mildrexler, D., and
485 Kasischke, E. S.: Observations and assessment of forest carbon dynamics following disturbance
486 in North America, *Journal of Geophysical Research-Biogeosciences*, 117,
487 10.1029/2011jg001733, 2012.

488 Hansen, E. M., Amacher, M. C., Van Miegroet, H., Long, J. N., and Ryan, M. G.: Carbon
489 Dynamics in Central US Rockies Lodgepole Pine Type after Mountain Pine Beetle Outbreaks,
490 *Forest Science*, 61, 665-679, 2015.

491 Hartman, M. D., Baron, J. S., and Ojima, D. S.: Application of a coupled ecosystem-chemical
492 equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain
493 watershed, *ecological modelling*, 200, 493-510, 2007.

494 Higuera, P. E., Briles, C. E., and Whitlock, C.: Fire-regime complacency and sensitivity to
495 centennial-through millennial-scale climate change in Rocky Mountain subalpine forests,
496 Colorado, USA, *Journal of Ecology*, 102, 1429-1441, 2014.

497 Hudiburg, T. W., Law, B. E., Wirth, C., and Luyssaert, S.: Regional carbon dioxide implications
498 of forest bioenergy production, *Nature Climate Change*, 1, 419-423, 10.1038/nclimate1264,
499 2011.

500 Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., and Ryan, M. G.: Postfire changes
501 in forest carbon storage over a 300-year chronosequence of *Pinus contorta*-dominated forests,
502 *Ecological Monographs*, 83, 49-66, 10.1890/11-1454.1, 2013.

503 Kelly, R., Genet, H., McGuire, A. D., and Hu, F. S.: Palaeodata-informed modelling of large
504 carbon losses from recent burning of boreal forests, *Nature Climate Change*, 6, 79-82, 2016.

505 Larsen, I. J., and MacDonald, L. H.: Predicting postfire sediment yields at the hillslope scale:
506 Testing RUSLE and Disturbed WEPP, *Water Resources Research*, 43, n/a-n/a,
507 10.1029/2006WR005560, 2007.

508 Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system model:
509 Model development and evaluation, *Journal of Advances in Modeling Earth Systems*, 6, 740-
510 755, 10.1002/2013MS000284, 2014.

511 Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A. G., Shaver, G.
512 R., and Verbyla, D. L.: Carbon loss from an unprecedented Arctic tundra wildfire, *Nature*, 475,
513 489-492, 2011.

514 Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K.
515 J., Colombaroli, D., Hallett, D. J., and Power, M. J.: Long-term perspective on wildfires in the
516 western USA, *Proceedings of the National Academy of Sciences*, 109, E535-E543, 2012.

517 McLaughlan, K. K., Higuera, P. E., Gavin, D. G., Perakis, S. S., Mack, M. C., Alexander, H.,
518 Battles, J., Biondi, F., Buma, B., and Colombaroli, D.: Reconstructing disturbances and their
519 biogeochemical consequences over multiple timescales, *BioScience*, bit017, 2014.

520 Miller, M. E., MacDonald, L. H., Robichaud, P. R., and Elliot, W. J.: Predicting post-fire
521 hillslope erosion in forest lands of the western United States, *International Journal of Wildland
522 Fire*, 20, 982-999, 2011.

523 Morgan, P., Heyerdahl, E. K., and Gibson, C. E.: Multi-season climate synchronized forest fires
524 throughout the 20th century, northern Rockies, USA, *Ecology*, 89, 717-728, 2008.

525 NRCS: Soil Survey Staff, Natural Resources Conservation Service, United States Department of
526 Agriculture. Available online at <http://soildatamart.nrcs.usda.gov>. Soil Survey Geographic
527 (SSURGO) Database for Eastern US, 2010.

528 Savage, K. E., Parton, W. J., Davidson, E. A., Trumbore, S. E., and Frey, S. D.: Long-term
529 changes in forest carbon under temperature and nitrogen amendments in a temperate northern
530 hardwood forest, *Global change biology*, 19, 2389-2400, 2013.

531 Schlesinger, W. H., Dietze, M. C., Jackson, R. B., Phillips, R. P., Rhoades, C. C., Rustad, L. E.,
532 and Vose, J. M.: Forest biogeochemistry in response to drought, *Global Change Biology*, 2015.

533 Shuman, B., Pribyl, P., Minckley, T.A. and Shinker, J.: Rapid hydrologic shifts and prolonged
534 droughts in Rocky Mountain headwaters during the Holocene. *Geophysical Research Letters*, 37,
535 L06701, 2010.

536 Sibold, J. S., Veblen, T. T., Chipko, K., Lawson, L., Mathis, E., and Scott, J.: Influences of
537 secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park,
538 *Ecological Applications*, 17, 1638-1655, 2007.

539 Sibold, J. S., T. T. Veblen, and M. E. Gonzalez.: Spatial and temporal variation in historic fire
540 regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park,
541 Colorado, USA. *Journal of Biogeography*, 33, 631-647, 2006.

542 Smithwick, E. A. H., Ryan, M. G., Kashian, D. M., Romme, W. H., Tinker, D. B., and Turner,
543 M. G.: Modeling the effects of fire and climate change on carbon and nitrogen storage in
544 lodgepole pine (*Pinus contorta*) stands, *Global Change Biology*, 15, 535-548, 10.1111/j.1365-
545 2486.2008.01659.x, 2009.

546 Smithwick, E. A. H.: Pyrogeography and biogeochemical resilience, in: *The Landscape Ecology*
547 of Fire, Springer, 143-163, 2011.

548 Thornton, P., MM Thornton, BW Mayer, N Wilhelmi, Y Wei, RB Cook . : Daymet: Daily
549 surface weather on a 1 km grid for North America, 1980 - 2008. In: Daymet: Daily surface
550 weather on a 1 km grid for North America, 1980 - 2008., Acquired online
551 (<http://daymet.ornl.gov/>) on 20/09/2012 from Oak Ridge National Laboratory Distributed Active
552 Archive Center, O. R., Tennessee, U.S.A. doi:10.3334/ORNLDAA/Daymet_V2. (Ed.),
553 Daymet: Daily surface weather on a 1 km grid for North America, 1980 - 2008., 2012.

554 Turner, M. G., Tinker, D. B., Romme, W. H., Kashian, D. M., and Litton, C. M.: Landscape
555 patterns of sapling density, leaf area, and aboveground net primary production in postfire
556 lodgepole pine forests, Yellowstone National Park (USA), *Ecosystems*, 7, 751-775, 2004.
557 Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan, M. G.:
558 Continued warming could transform Greater Yellowstone fire regimes by mid-21st century,
559 *Proceedings of the National Academy of Sciences*, 108, 13165-13170, 2011.
560 Yelenik, S., Perakis, S., and Hibbs, D.: Regional constraints to biological nitrogen fixation in
561 post-fire forest communities, *Ecology*, 94, 739-750, 2013.
562

563 **Tables**564 **Table 1.** Model simulation scenarios, including climate, fire regime, duration, and summary
565 description.

Scenario	Purpose	Climate*	Fire Regime	Duration (yr)	Description
Spinup	Spin up C, N pools to equilibrium conditions	Ambient	Fixed 145-yr return interval; high severity with erosion	2000	DayCent initialization run for NPP and C to reach equilibrium conditions.
Equilibrium	Run with fixed fire interval	Ambient	Fixed 145-yr return interval; high severity with erosion	4561	Equilibrium run extended from the spinup run for the length of the paleo-fire record.
Paleo-Informed	Run with observed paleo-fire intervals and severity	Ambient	Paleo-record; high severity with and without erosion	4561	A 4561-year simulation with fires matching the timing and severity from the paleo-fire record.
Increased fire frequency	Run with paleo-fire intervals decreased by 25%	Ambient	Modified Paleo-record; 90-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario decreased by 25%.
Decreased fire frequency	Run with paleo-fire intervals increased by 25%	Ambient	Modified Paleo-record ;155-yr MFRI with high severity with and without erosion	4561	A 4561-year simulation with the timing between fires in the paleo-informed scenario increased by 25%.
Paleo500... Paleo4000	Test influence of length of paleo record on modern states	Ambient	Paleo-record; high severity with and without erosion	500 - 4000	Branches from the equilibrium scenario at varying points in time, in 500-yr increments**. All scenarios ends in CE 2010.

566 * 30-year recycled historical record (DayMet)

567 ** For example, the 500 year simulation starts in the year 1510 (CE) and runs until the end of 2009

568

569

570
571

Figures

572
573

574 **Figure 1.** Paleo-informed fire history scenarios used to drive the DayCent model. (a) Fire history
575 record form Chickaree Lake (red circles), with horizontal lines illustrating the duration of the
576 record used in the incremental “partial paleo-informed” scenarios (Paleo_500...4000). (b) The
577 same full Chickaree Lake fire history record used in the paleo-informed scenario (top), with the
578 two additional scenarios representing a 25% increase and 25% decrease in fire frequency
579 (bottom two scenarios).
580

581

582 **Figure 2.** Model simulations of equilibrium (grey) and paleo-informed (black) total soil carbon
 583 (C) in Mg C ha^{-1} . Each simulation branches from a 2000-year equilibrium spinup starting at the
 584 same soil C baseline and runs for 4561 years (4500 BP to CE 2010). The large open circles
 585 represent the years of the high-severity fires with erosion, and the small closed circles are high-
 586 severity fires without erosion used to drive the paleo-informed model run. A constant 145-year
 587 fire return interval was used for the equilibrium run. The vertical red line indicates the most
 588 recent stand-replacing fire (1782 CE), reconstructed from the tree-ring record (Sibold et al.,
 589 2007).

590

593 **Figure 3.** Accumulated anomalies in fluxes relative to equilibrium scenario, in Mg C ha^{-1} ,
 594 summed over the entire 4561-year simulation period. NEP, fire emissions, and NECB (left y-
 595 axis) and NPP and Rh (right y-axis) for the paleo-informed (black), increased fire frequency
 596 (red; 155 year mean FRI), and decreased fire frequency (blue; 90 year mean FRI) scenarios.
 597 Negative (positive) numbers indicate a decrease (increase) in total carbon flux compared to the
 598 equilibrium scenario.

611

612 **Figure 4.** Trends in cumulative net ecosystem carbon balance (NECB) over time for the paleo-
 613 informed, increased fire frequency, and decreased fire frequency scenarios compared to
 614 equilibrium over the last 4561 years. Positive numbers indicate a cumulative net sink while
 615 negative numbers indicate a cumulative net source.

616

617
618 **Figure 5.** Total NECB (NPP - Rh - fire emissions) for the 4561-year simulated period and for
619 each of the partially paleo-informed scenarios (Paleo_500, Paleo_1000, etc. in Figure 1). Each
620 partially paleo-informed scenario branches from the equilibrium scenario in the year indicated on
621 the x-axis. For example, the 500-year record only includes fires that occurred in the most recent
622 500 years of the paleo-fire record (1511-2010 CE).

623

624

625