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Abstract. Tropospheric ammonia (NH3) is a threat to the environment and human health and is mainly emitted 10 

by agriculture. Ammonia volatilisation following application of nitrogen in the field accounts for more than 40% 11 

of the total NH3 emissions in France. This hence represents a major loss of nitrogen use efficiency which needs 12 

to be reduced by appropriate agricultural practices. In this study we evaluate a novel method to infer NH3 13 

volatilisation from small agronomic plots made of multiple treatments with repetition. The method is based on 14 

the combination of a set of NH3 diffusion sensors exposed for durations of 3 hours to 1 week, and a short-range 15 

atmospheric dispersion model, used to retrieve the emissions from each plot. The method is evaluated by 16 

mimicking NH3 emissions from an ensemble of 9 plots with a resistance-analogue-compensation-point surface 17 

exchange scheme over a yearly meteorological database separated into 28-days periods. A multi-factorial 18 

simulation scheme is used to test the effects of sensor number and heights, plot dimensions, source strengths and 19 

background concentrations, on the quality of the inference method. We further demonstrate by theoretical 20 

considerations in the case of an isolated plot that inferring emissions with diffusion sensors integrating over daily 21 

periods will always lead to underestimations due to correlations between emissions and atmospheric transfer. We 22 

evaluated these underestimations as -8% ± 6% of the emissions for a typical western European climate. For 23 

multiple plots, we find that this method would lead to median underestimations of -16% with an interquartile 24 

[-8% -22%] for two treatments differing by a factor of up to 20 and a control treatment with no emissions. We 25 

further evaluate the methodology for varying background concentrations and NH3 emission patterns and 26 

demonstrate the low sensitivity of the method to these factors. The method was also tested in a real case and 27 

proved to provide sound evaluations of NH3 losses from surface applied and incorporated slurry. We hence 28 

showed that this novel method should be robust and suitable for estimating NH3 emissions from agronomic plots. 29 

We believe that the method could be further improved by using Bayesian inference and inferring surface 30 

concentrations rather than surface fluxes. Validating against controlled source is also a remaining challenge. 31 

 32 
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Introduction 34 

Tropospheric ammonia (NH3) is mainly emitted by agriculture and has great environmental impacts 35 

(atmospheric pollution, eutrophication, reduction of biodiversity) which are increasingly taken into account in 36 

European and international regulations (Council, 1996; Council, 2016; UNECE, 2012). Ammonia losses also 37 
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have great agronomic and economic impacts for farmers, as it reduces nitrogen use efficiency. The varying 38 

prices of mineral fertilizers and concerns about environmental and health threats demand improvements in the 39 

efficiency of nitrogen utilisation, and especially in recycling nitrogen through organic fertilization (Sutton et al., 40 

2011). Indeed, NH3 volatilization during storage of manure and slurry and following their field application is the 41 

main source of NH3 in Europe (55% of the emissions) while farm buildings emissions represent 45%. In France, 42 

crop farming represent 35% of the emission and animal farming represent 65% (CITEPA, 2017; ECETOC, 43 

1994; EUROSTAT, 2012; Faburé et al., 2011). Reducing NH3 losses from this agricultural sector is therefore a 44 

major objective for applied research.  45 

While NH3 emissions from farm buildings and storage can be handled by engineering solutions, losses during 46 

organic fertilisation are much more dependent on the combination of application methods (splash plate, band 47 

spreading, pressurised injection, open and close slot injection, trailing hose and trailing shoe), soil type and 48 

occupation, and environmental conditions (soil humidity, air temperature, wind speed, solar radiation) (Sommer 49 

et al., 2003). For instance, Sintermann et al. (2012) report NH3 losses following cattle and pig slurry application 50 

in the field ranging from a few percent to 50% over large fields and up to 100% over medium fields. Evaluating 51 

ammonia losses from field fertilisation over a range of practices, soil and climatic conditions is therefore key in 52 

evaluating the best application methods. 53 

However, characterising these emissions at the field scale requires complex experimental design and most of the 54 

time also requires the use of large fields (Ferrara et al., 2016; Ferrara et al., 2012; Flechard and Fowler, 1998; 55 

Loubet et al., 2012; Milford et al., 2009; Sintermann et al., 2011b; Spirig et al., 2010; Sun et al., 2015; 56 

Whitehead et al., 2008). Especially useful for measuring ammonia losses are methods that can deal with small 57 

and medium-scale fields (20-50 m on the side) that are commonly used in agronomic trials. Indirect estimation 58 

methods (soil nitrogen balance or 
15

N balance) are not well adapted to evaluate gaseous ammonia losses, mainly 59 

because of the soil heterogeneity and also because the method relies on evaluating small variations of large 60 

numbers (McGinn and Janzen, 1998). Among existing methods for measuring NH3 emissions, the integrated 61 

horizontal flux method (Wilson and Shum, 1992) is well adapted, but is a subject of debate in its practical 62 

application since it seem to be systematically biased towards higher estimates (Häni et al., 2016; Sintermann et 63 

al., 2012). Alternatively, enclosure methods proved to be not representative for a sticky compound such as 64 

ammonia (Pacholski et al., 2006), but more concerning is the fact that ammonia fluxes result from an air-surface 65 

equilibrium which is disturbed by the confined environment offered by the chamber. Inverse dispersion 66 

modelling approaches either based on backward Lagrangian Stochastic models (Flesch et al., 1995) or Eulerian 67 

models (Kormann and Meixner, 2001; Loubet et al., 2001), based on the Philip equation (Philip, 1959) have 68 

been demonstrated to be adapted for estimating NH3 volatilization from strong sources (Loubet et al., 2010; 69 

Sommer et al., 2005).  70 

These approaches are well adapted to small or medium fields (≤ 50×50 m
2
) but typically require hourly NH3 71 

concentration measurements. Long term concentration measurements of NH3 are now well handled by the use of 72 

short path passive samplers developed by Sutton, et al. (2001), or active denuders, which have both been used 73 

for concentration monitoring for years (Tang et al., 2001; Tang et al., 2009). These active denuders can be 74 

adapted for measuring fluxes based on conditional sampling like the conditional time averaged gradient method 75 

COTAG (Famulari et al., 2010), which is a useful method but only adapted for large fields (≥ 0.5 ha). The 76 



passive samplers have also been shown to be adapted for inverse modelling estimations of NH3 sources for large 77 

fields (Carozzi et al., 2013b; Ferrara et al., 2014). 78 

In another field of research, solutions to the multiple source inference problem, which consists of inferring 79 

multiple sources based on measured concentrations at multiple points in space and time, have been developed 80 

especially since 2008 (Crenna et al., 2008; Gao et al., 2008; Gericke et al., 2011; Mukherjee et al., 2015; Vandré 81 

and Kaupenjohann, 1998). They have chiefly been used over regional scales (Flesch et al., 2009; Lushi and 82 

Stockie, 2010; Yee and Flesch, 2010), and have been shown to be very dependent on the source-sensor geometry 83 

(Crenna et al., 2008; Flesch et al., 2009; Wang et al., 2013 ). Mukherjee et al. (2015) highlighted the dependency 84 

of the inferred source to background concentration and plot disposition, by means of an inverse footprint 85 

approach. Yee et al. (2008) have shown how to retrieve the number, location and intensity of multiple sources 86 

with dispersion models coupled with Bayesian inference methods. Yee and Flesch (2010) have evaluated the 87 

inversion and inference methods for determining 4 points sources using several laser transects. Flesch et al. 88 

(2009) have shown that source-receptor geometry is critical in determining whether a multiple-source inversion 89 

problem can provide realistic solutions or not. Flesch et al. (2009) have moreover shown that if the geometry is 90 

well chosen the accuracy of the method for 15 min integration time can reach 10% to 20%. These studies have 91 

also shown that the multiple source inference problems can be solved if not ill-conditioned (ill-conditioning 92 

depends on the location of sources and concentration sensors and is characterised by a conditioning number . 93 

In this study, we pose the following research questions: “Can inverse dispersion modelling approaches be 94 

used for inferring NH3 emissions from multiple small plots (agronomic trials) using passive samplers, and 95 

to which degree of accuracy?” The answer is given through the investigation of the optimal design in terms of 96 

field dimensions, plots location and size, passive sampler locations and their duration of exposure. Throughout 97 

this study, agronomic trials are considered as adjacent multiple small fields with repetitions of treatments. A 98 

typical trial would consist of three repetitions of three treatments. Hence the double challenge that we face in this 99 

study is (i) to consider together the multiple source inference issue (adjacent small fields) and the (ii) time-100 

integration issue (using passive samplers).  101 

To answer these questions, we use a 4 step approach: (1) The ammonia emissions are first modelled on each 102 

source using prescribed NH3 emission potential dynamics coupled with a simple soil-vegetation-atmosphere 103 

exchange scheme to mimic realistic seasonal, daily and hourly variations in NH3 emissions. (2) These prescribed 104 

emissions are then used to estimate the concentration at each target location using short-range atmospheric 105 

dispersion modelling over half hourly periods. (3) The obtained concentrations are then averaged over several 106 

integration periods to simulate the behaviour of passive samplers. Finally, (4) the sources are evaluated by 107 

inference with dispersion modelling based on the averaged concentrations.  108 

Two dispersion models and several inference methodologies are evaluated. The effect of the size of the source, 109 

the locations of targets, the dynamics and magnitude of each source, the meteorological conditions and the 110 

background concentration variability are evaluated and discussed. The feasibility of the method is finally 111 

evaluated over a real case with two repetitions of three treatments (slurry spreading, injection and a reference 112 

without fertilisation). 113 



2.  Materials and methods 114 

At first we present the theoretical background of source inference by optimisation for single and multiple sources 115 

with time averaging concentration sensors. Then the method used to generate a realistic ammonia source is 116 

introduced before the description of the dispersion models used for both generating the concentration fields and 117 

inferring back the sources. The geometry of the sources, sensor locations and the meteorological data used for 118 

this analysis are then shown, and finally the real test case used for evaluating the method is detailed. 119 

2.1 The theory of the source inference method 120 

At first we will recall some important theoretical features of the inverse dispersion modelling approach which is 121 

actually an inference method. 122 

2.1.1 Case of a single area source and a single concentration sampler 123 

We first consider the case of a single area source with a single concentration sampler (target). The source is 124 

varying with time. The method is based upon the general superimposition principle (Thomson et al., 2007), 125 

which relates the concentration at a given location C(x,t) to the source strength S(t) and the background 126 

concentration Cbgd(t) using a transfer function D(x,t), which has the dimensions of a transfer resistance (s m
-1

).  127 

 128 

)()(),(),( tCtStxDtxC bgd        (1) 129 

 130 

Here x denotes the location of the sensor and t the time. The concentration and source units are in µg N-NH3 m
-3

 131 

and µg N-NH3 m
-2

 s
-1

, respectively. The superimposition principle implies that the studied tracer must be 132 

conservative, which is a reasonable hypothesis for NH3 whose reaction time with acids in the atmosphere is 133 

below the transport time for spatial scales below 1000 m (Nemitz et al., 2009). Moreover, in Eq. (1), we assume 134 

a spatially homogeneous area source with strength S(t). The spatial homogeneity of the source is less trivial for 135 

NH3 than other gas released in agriculture as the source itself depends on the concentration at the surface. 136 

However (Loubet et al., 2010) have shown that the heterogeneity of the source can be neglected as long as the 137 

dimension of the source is larger than 20 m. Hence, this study is limited to source areas with fetch larger than 138 

20 m and a spread of the concentration samplers over a domain smaller than 1000 m. Moreover, it is interesting 139 

to note that for infinitely spread fields, the transfer resistance is linearly linked to the transfer matrix (see 140 

supplementary material S1) 141 

2.1.2 Effect of time averaging sensors on source inference for a single source 142 

Since we consider time averaging concentration samplers, we develop the time-averaged equation of Eq. (1) 143 

over an integration time period  : 144 

 145 

𝐶(𝑥)̅̅ ̅̅ ̅̅ = 𝐷(𝑥) × 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅          (2) 146 

 147 



where the overbars denote a time average over the period . Similarly as what is done in turbulent flux 148 

calculations, the first part of the right hand side of Eq. (2) is decomposed using the Reynolds decomposition of a 149 

random variable (Kaimal and Finnigan, 1994), giving: 150 

 151 

𝐶(𝑥)̅̅ ̅̅ ̅̅ = 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅ × S̅ + 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ + 𝐷′(𝑥)𝑆′̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (3) 152 

 153 

where 𝐷(𝑥)′S′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the time covariance between D(x,t) and S(t). If the averaged background concentration 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅  is 154 

a known quantity, Eq. (3) can be easily manipulated to give an estimation of the averaged source strength  𝑆̅, the 155 

quantity we want to infer: 156 

 157 

𝑆̅ =
𝐶(𝑥)̅̅ ̅̅ ̅̅ ̅−𝐶𝑏𝑔𝑑̅̅ ̅̅ ̅̅ ̅

𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅ −
𝐷′(𝑥)×S′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅              (4) 158 

      (I)         (II) 159 

In the right hand side of Eq. (4), (I) can be calculated from measured 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅  and 𝐶(𝑥)̅̅ ̅̅ ̅̅  and 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅ which is itself 160 

calculated with dispersion models. On the contrary (II) is a priori unknown and depends on the correlation 161 

between the source strength and the transfer function 𝐷(𝑥)′𝑆′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Hence, if (II) is neglected, the inferred source  𝑆̅ is 162 

biased. The relative bias of the method is then:  163 

 164 

𝛿𝑆̅

𝑆̅
=

𝐷′(𝑥)𝑆′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅×𝑆
          (5) 165 

 166 

Hence we show in Eq. (5) that time-averaging leads to a relative bias which can be quantified by the time 167 

covariance between the transfer function and the source strength. However this quantity is by nature unknown 168 

since the dynamics of S(t) is unknown. Determining 𝐷(𝑥)′𝑆′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  requires knowledge of the source dynamics which 169 

can be obtained from measurements with a micrometeorological method. It can alternatively be approached by 170 

modelling using the state of the art of ammonia exchange processes as we do here. 171 

Additionally to the bias, which is term (II) in Eq. (4), evaluating term (I) is encompassed with errors related to 172 

the uncertainties in 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ , 𝐶(𝑥)̅̅ ̅̅ ̅̅  and 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅. In particular, cases when 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅ is small may lead to large errors in 173 

inferring the source term S. This is linked to the conditioning of the inverse problem and is discussed in 174 

supplementary material S2. 175 

2.1.3 Case of multiple sources and multiple concentration samplers with time averaging 176 

If we generalise the approach to multiple sources and multiple receptors, then the transfer function becomes a 177 

matrix D(xi, Sj, t), which is the contribution of source Sj to concentration at target located at xi. For reading 178 

purposes we simplify the matrix notation to Dij. Eq (3) then becomes: 179 

 180 

[
𝐶1

⋮
𝐶𝑀

]

̅̅ ̅̅ ̅̅

= [

𝐷1,1 ⋯ 𝐷1,𝑀

⋮ ⋱ ⋮
𝐷𝑁,1 ⋯ 𝐷𝑁,𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

× [
𝑆1

⋮
𝑆𝑀

]

̅̅ ̅̅ ̅̅

+ C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ + [

𝐷′1,1 ⋯ 𝐷′1,𝑀

⋮ ⋱ ⋮
𝐷′𝑁,1 ⋯ 𝐷′𝑁,𝑀

] × [
𝑆′1

⋮
𝑆′𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  (6a) 181 



 182 

Which in condensed notation gives: 183 

 184 

𝐶(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅ = 𝐷𝑖,𝑗
̅̅ ̅̅ × S�̅� + 𝐶𝑏𝑔𝑑

̅̅ ̅̅ ̅̅ + 𝐷𝑖,𝑗
′ × S𝑗

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (6b) 185 

 186 

If the number of targets is equal to the number of sources, the problem can be solved by inversion of a linear 187 

system. If the number of targets is larger than the number of sources, the problem is a multiple linear regression 188 

type with unknowns 𝑆�̅� and 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ . The third term on the right hand side of the Eq. (6b) is a bias which is a priori 189 

unknown and which we will evaluate in this study.  190 

2.1.4 Source inference methods 191 

The inferred sources, 𝑆𝑖
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

, were derived from Eqns. (3) or (6) assuming the covariance term (last term on 192 

right hand side) was null. The method used to infer the source was either a simple division (Eq. (3)) or an 193 

optimisation of the linear system using the linear model function lm in R (package stats, R version 3.2.3), with 194 

either M = 1 (single source) or M = 9 (multiple sources): 195 

 196 

[

𝐷1,1 ⋯ 𝐷1,𝑀

⋮ ⋱ ⋮
𝐷𝑁,1 ⋯ 𝐷𝑁,𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

× [
𝑆1

𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

⋮

𝑆𝑀
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= [
𝐶1

⋮
𝐶𝑁

]

̅̅ ̅̅ ̅̅

− C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅      (7) 197 

 198 

The bias  𝛿S𝑖 was then evaluated as the difference between the inferred sources 𝑆𝑖
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 and the modelled 199 

sources 𝑆𝑖
𝑜𝑏𝑠̅̅ ̅̅ ̅̅  averaged over each period:   200 

  201 

𝛿S𝑖 = 𝑆𝑖
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

− 𝑆𝑖
𝑜𝑏𝑠̅̅ ̅̅ ̅̅         (8) 202 

 203 

As shown in Eqns. (3) and (6) the overall mean bias  𝛿S𝑖 contains (i) a bias term due to the inference method 204 

which is dependent mainly on the conditioning of the matrix Dij (see supplementary material S2) and (ii) a bias 205 

term which is intrinsically linked to the covariance between Dij and Sj (Eqns. 3 et 6). Thus, with Eq. (8) we 206 

evaluate the sum of the two biases without distinction. In order to infer the sources, the elements of the 207 

dispersion matrix Dij need to be determined. The next part details how these were estimated with a dispersion 208 

model. 209 

2.2 The dispersion model used for determining the transfer matrix Dij 210 

The elements of the transfer matrix Dij = D(xi, Sj, t), that is by definition the concentration at location xi and time 211 

t generated by a source Sj of strength Sj(t) = 1, were calculated using a dispersion model.. The FIDES-3D model 212 

(“FIDES”, Loubet et al., 2010), based on the analytical solution of the advection-diffusion equation of Philip 213 

(1959) was used for that purpose. This model was first compared with a backward Lagrangian Stochastic 214 

dispersion model (bLS, the “WindTrax” software, Thunder Beach Scientific, Nanaimo, Canada, Flesch et al., 215 



1995), and successively tuned to mimic the bLS. The two models and how the FIDES model was tuned are 216 

briefly described hereafter and detailed in the supplementary material sections S3 and S4. 217 

The FIDES model is based on the Philip (1959) solution of the advection-diffusion equation, which assumes 218 

power law profiles for the wind speed U(z) and the vertical diffusivity Kz(z) at height z. This approach also 219 

assumes no chemical reactions in the atmosphere and spatial horizontal homogeneity of roughness length (z0), 220 

wind speed (U), vertical and lateral diffusivity (Kz and Ky). The dispersion model is detailed in Huang (1979), 221 

and Loubet (2010). The details of the model and the way the transfer function D(xi, Sj, t) was estimated is 222 

detailed in the supplementary material S2.  223 

The Schmidt number which is the ratio of momentum to scalar vertical diffusivity Sc = Kmz / Kz is key in 224 

dispersion modelling, as it determines the vertical diffusion rate of scalars. Wilson (2015) demonstrated that bLS 225 

and dispersion models like FIDES give different values of Sc by constitution. In order to assure consistency of 226 

the Philip (1959) approach with bLS models, considered as references in dispersion modelling, we chose to tune 227 

the Philip (1959) model to get the same Sc number as in WindTrax as described by Flesch et al. (1995). The 228 

details are given in supplementary material S4. The comparison showed that the tuned FIDES model gives very 229 

similar concentrations to WindTrax at measurement heights lower than 2 m above the source, although slightly 230 

overestimated under stable and neutral conditions and slightly underestimated under unstable conditions. The 231 

correlation between the two models is however very high (R
2
 ≥ ~0.96) meaning that using the tuned FIDES 232 

model to characterise source inference performance, will lead to results comparable to WindTrax. Moreover 233 

since in this study the same model is used for predicting and for inferring the fluxes the results are self-234 

consistent. 235 

2.3 Ammonia sources from simple SVAT modelling and prescribed emission potentials  236 

In order to evaluate the bias introduced by time averaging the concentrations when inferring single or multiple 237 

sources (third term in Eqns. 3 and 6), we generated NH3 emission patterns mimicking the behaviour of real 238 

sources as closely as possible. In that prospect, we used the SurfAtm-NH3 model developed by Personne et al. 239 

(2009) for two purposes: (i) evaluating the turbulence parameters (the friction velocity u*, and the Monin 240 

Obukhov length L) from the meteorological datasets to parameterise the dispersion models, and (ii) providing the 241 

surface temperature 𝑇(z0) and the surface resistances in order to calculate ammonia emission patterns.  242 

The SurfAtm-NH3 model is a one-dimensional, bi-directional surface-vegetation-atmosphere-transfer (SVAT) 243 

model, which simulates the latent (LE) and sensible (H) heat fluxes, as well as the NH3 fluxes between the 244 

biogenic surfaces and the atmosphere. It is a resistance analogue model separately treating the vegetation layer 245 

and the soil layer, and coupling a slightly modified (Choudhury and Monteith, 1988) model of energy balance 246 

and the two-layer bi-directional NH3 exchange model of (Nemitz et al., 2000) with a water balance model. 247 

Unless otherwise stated, the surface was considered a bare soil with z0 = 5 mm, displacement height (d) = 0 m, 248 

and leaf area index (LAI) = 0.  249 

The ammonia emission patterns were modelled using the resistance approach and assuming atmospheric 250 

concentration was zero, which is a reasonable assumption following nitrogen application and leads to patterns 251 

mimicking reality, which is what we are seeking here: 252 

 253 

𝐹 =
𝐶pground

𝑅𝑎(𝑧𝑟𝑒𝑓)+𝑅𝑏𝑁𝐻3

        (9) 254 



 255 

Where 𝑅𝑎(𝑧𝑟𝑒𝑓) is the aerodynamic resistance at the reference height 𝑧𝑟𝑒𝑓 = 3.17 m, and 𝑅𝑏𝑁𝐻3
 is the soil 256 

boundary layer resistance for ammonia as described in Personne et al. (2009). The ground surface compensation 257 

point concentration (𝐶pground) was expressed as a function of , the ratio of NH4
+
 to H

+
 concentrations in the soil 258 

liquid phase at the surface, as in Loubet et al. (2012):  259 

 260 

𝐶pground = 𝐾ℎ{𝑇(z0)} × 𝐾𝑑{𝑇(z0)} ×  =  × 10−3.4362+0.0508 𝑇(z0)    (10) 261 

 262 

where 𝐾ℎ and 𝐾𝑑 are the Henry and the dissociation constant for NH3 respectively, and 𝑇(z0) is the soil surface 263 

temperature. Since we wanted to evaluate the correlation between the transfer function Dij and the source 264 

strength Sj, which is the bias in the inference problem (Eq. 6), the NH3 volatilisation was modelled as to 265 

reproduce the variety of existing kinetics of NH3 emissions from fields. In that prospect, three  patterns were 266 

simulated:  267 

1. a constant  = 0, which would mimic background NH3 emissions from soils; 268 

2. an exponentially decreasing  = 0 exp(- 4.6 t / 0), which best represents NH3 emissions following 269 

slurry application ; 270 

3. a Gaussian  = N(0,), which would represent the typical NH3 emissions following urea application. 271 

Here 0 is the maximum  during the period, t is the time in days, 0 is the duration of the emission in days. The 272 

factor 4.6 was chosen so that when t = 0,  goes down to 1% of 0. The duration of the emissions was chosen to 273 

be four weeks, 0 = 28 days. The time scale of the exponential decrease we used here was around 6 days, which 274 

is twice as large as the one reported by Massad et al. (2010) for slurry application (2.9 days). While these 275 

 patterns gave the weekly trend of NH3 emissions, the daily patterns were produced by the thermodynamical 276 

and turbulence drivers of NH3 emissions which were explicitly taken into account through the compensation 277 

point (Eq. 10). To facilitate understanding, in most of the manuscript only the constant  was considered, and 278 

the effect of modifying the source strength was evaluated in a sensitivity study. 279 

2.4 Spatial set up of the sources, concentration sensors  280 

The sources (plots) were considered as squares with width xplot and aligned south-north. Two configurations were 281 

considered: (1) a single source configuration and (2) a multiple-sources configuration which mimics typical 282 

agronomic trials with 9 sources (plots) placed next to each other, with three treatments times three repetitions. 283 

Each treatment was assigned a value of 0 different from the others, while the three repetitions of the same 284 

treatment were assigned the same value of . The concentration sensors (receptors) locations, xi, were set in the 285 

middle of each plot, at several heights zi. (Figure 1).  286 

 287 



 288 

Figure 1. General scheme of the source receptor locations for (a) a single source, and (b) multiple-sources. (c) 289 
“optimum” plot layout used for the multiple-source configuration. 290 

A number of plot sizes (xplot = 25, 50, 100 and 200 m on the side), and receptor heights (zi = 0.25, 0.5, 1 and 2 291 

m), were tested successively. Several source strengths and dynamics were also tested:  was first considered 292 

constant with time (pattern 1) in all the plots , and the 0 of each of the three treatments were either chosen to be 293 

significantly different in strength (10
4
, 10

5
, 10

6
), or of the same order of magnitude (1000, 2000, 4000). Then the 294 

three  patterns (“constant”, “exponential” and “Gaussian”) were randomly assigned to the treatments for each 295 

simulation period. The ammonia background concentration, Cbgd, was considered constant and equal to 1 ppb 296 

except when studying the sensitivity of the inference method to the background concentration, where it was set 297 

as unknown. Throughout this study, an “optimum” block configuration was considered (shown in Figure 1c), 298 

which avoided trivial configurations like aligned blocks and maximised the mean distance between blocks as in a 299 

Latin-square design. 300 

2.5 Simulation details 301 

2.5.1 Meteorological data and fertiliser application periods  302 

A range of meteorological conditions were simulated based on the half-hourly meteorological data of the FR-Gri 303 

ICOS site in 2008. In total 13 periods of 28 days were considered which spanned the whole year except the last 304 

two days of the year. Each period consisted of 1344 half-hourly data.  305 

2.5.2 Concentration sensor integration periods 306 

In order to evaluate the influence of the concentration averaging period on the source inference, several 307 

integration periods  were tested: 0.5h (no integration), 3h, 6h, 12h, 24h, 48h, 168h (7 days). In practice the 308 

concentrations were computed at each sensor location using Eq. (6) over 0.5h: at that time scale, which 309 

corresponds to the spectral-gap, the covariance term is assumed to be negligible (Van der Hoven, 1957). Then 310 

the averaged concentrations were computed for all integration periods.  311 

2.5.3 Sensitivity to inferential methods scenarios 312 

Several scenarios were considered and summarized in Table 1:  313 

1) the background concentration C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅  was either supposed known and fixed to the prescribed values (C1-314 

C4) or was inferred (C5-C7); 315 

2) the three repetitions of each treatment were either supposed to have the same source strength (C2, C4, 316 

C5, C6) or they were inferred independently (C1, C3, C7). In C2, C4, C5 and C6, Si = Sm for all i and 317 

m belonging to the same treatment. In practice a new dispersion matrix was calculated by averaging 318 

(a)
(b)

(c)



together all columns belonging to the same treatment (matrix dimension N × 3). Three strength values 319 

of S were inferred to be tested; 320 

3) either one concentration sensor at each source location (zi) was considered (C1, C2, C5) or two sensors 321 

positioned at two heights were considered (C3, C4, C6, C7). All the measurement heights and their 322 

combinations were considered. 323 

 324 

Table 1. Scenarios tested for inferring the sources and background concentration. 325 

Strategy Number of 

sensors 
Plots# have same 

source strength in a 

given treatment 

Background 

concentration 
Note 

C1 1 No known Each block is considered independently 

C2 1 Yes known Each block is considered equal 

C3 2 No known Identical to C1 except for the number of sensors 

C4 2 Yes known Identical to C2 except for the number of sensors 

C5 1 Yes unknown Identical to C2 except for the background concentration estimation 

C6 2 Yes unknown Identical to C4 except for the background concentration estimation 

C7 2 No unknown Identical to C3 except for the background concentration estimation 

# Each treatment have 3 plots (repetitions). 326 

2.6 Statistical indicators 327 

For each run the mean bias (BIAS) and the normalised mean bias (NBIAS), were calculated as: 𝐵𝐼𝐴𝑆𝑖 =328 

1

𝑁𝜏
∑ 𝛿𝑐𝑢𝑚S𝑖𝜏 , 𝑁𝐵𝐼𝐴𝑆𝑖 = 𝐵𝐼𝐴𝑆𝑖 (

1

𝑁𝜏
∑ 𝑐𝑢𝑚𝑆𝑖

𝑜𝑏𝑠
𝜏 )⁄ , where 𝑁𝜏 is the number of the time averaged samples over 329 

each 28-day period and 𝑐𝑢𝑚S𝑖 and 𝑐𝑢𝑚S𝑖
𝑜𝑏𝑠 are the inferred and observed cumulated fluxes over the same 330 

period. The medians and interquartile of these statistical indicators were then calculated over the 13 periods of 331 

28-days for 2008. 332 

2.7 Real experimental test case 333 

In order to evaluate the feasibility of the method we applied it to a real test case (Figure 2). The trial was located 334 

at La Chapelle Saint-Sauveur in France (47°26'44.1''N, 0°58'50.7'W') and performed from 5
th

 April to 26
th

 April 335 

2011. Soil texture was loamy with a pH in water of 6.2 and a bulk density of 1.4 t m
-3

 in the first 15 cm. The 336 

experimental unit was composed by 6 squared sub-plots of 20 m wide with 2 repetitions of 3 treatments: (1) 337 

surface application of cattle slurry, (2) surface application and incorporation of the same slurry and (3) no 338 

application. Slurry pH was 7.5 with dry matter (DM) content of 6.05%, C:N ratio of 10.4 and contained 339 

38.4 g N kg
-1

 (DM) as total nitrogen and 13.2 g N-NH4 kg
-1

 (DM) as ammoniacal nitrogen. Slurry was applied 340 

on 5
th

 April 2011 at a rate of 49 m
3
 ha

-1
 which led to 119 kg N ha

-1
 and 41 kg N-NH4 ha

-1
. The application was 341 

identical between the two repetitions with a small standard deviation (< 0.2 kg N ha
-1

). The incorporation was 342 

performed in two sub-plots one hour after the end of the slurry spreading with a disc harrower at a depth of 343 

0.10 m. The soil humidity between 0 and 5 cm depth was homogeneous over the blocks and decreased from 344 

20±1% to 17±1% w/w between the start and the end of the experiment. Meteorological data were measured at 345 

less than 50 m from the central plots (Figure 2). Air temperature, relative humidity, global solar radiation, wind 346 

velocity and direction were recorded every 30 minutes at 2 m height. The turbulence parameters (u* and L), input 347 

of the dispersion models, were evaluated with a simple energy balance model of Holtslag and Van Ulden (1983) 348 

assuming a Bowen ratio of 0.5 and a deep soil temperature equal the averaged ambient temperature. Ammonia 349 

concentration was measured with diffusive samplers (ALPHA), (Sutton et al., 2001; Tang et al., 2001; Tang et 350 



al., 2009), which were placed at the centre of each sub-plot at two heights (0.32 and 0.87 m from the ground) as 351 

well as next to the assay at three location (5 m away from the plots) at 3 m height. The ALPHA samplers were 352 

set in place just after slurry application and incorporation (between 14:20 and 14:50) and left exposed 353 

subsequently for 3h, 22h, 23h, 23h, 71h (3 days) and 359h (15 days) hence spanning 21 days. The diffusive 354 

samplers were prepared prior to the experiment, stored at 4°C in a refrigerator and analysed by colorimetry. 355 

Since no background concentrations were measured at a reasonable distance from the field, the background 356 

concentration was assumed as the minimum over the whole period of the concentrations measured on the 3 m 357 

height masts. 358 

 359 

Figure 2. Scheme of the real experimental test case performed on 6 sub-plots with three treatments and two 360 
repetitions. Cattle slurry was either applied on the surface or incorporated. The concentration sensor and 361 
meteorological station locations are shown on the scheme. 362 

3  Results and discussion 363 

3.1 Meteorological data range and simulated ammonia sources 364 

The meteorological conditions over the 13 periods represented a good sample of temperate climate conditions. 365 

The friction velocity u* varied between 0.024 and 1.181 m s
-1

, and the stability parameter z/L at 1m height varied 366 

between -49 and 21 (Figure 3). It is noticeable that u* showed greater variability during the winter than during 367 

the summer, while it was the opposite for z/L. The surface temperature also showed a structure varying between 368 

periods, with a larger temperature range during the summer (from 5.7 to 50.4°C) than during the winter (from -369 

5.2 to 22.9°C). This surface temperature variability is an essential feature to representing real case ammonia 370 

sources (Sutton et al., 2009), which shows a variability reflecting both the surface temperature and the 371 

resistances variations (Eqns. 9 and 10). 372 

North

100 m

No application

Incorporation

Surface application

Concentration sensors at 3 m height

Concentration sensors at 0.32 and 0.87 m height

Meteorological station



 373 

Figure 3. Footprints of measured u* (a), z/L at 1 m height (b), T(z0) (c), and wind direction (d) for the hour of the day 374 
and the 13 considered periods over year 2008 in the FR-GRI ICOS site. The modelled ammonia source is also 375 
reported (e) according to Eqns. (9) and (10) over the same period with an emission potential  = 10000. 376 

 377 

3.2 Example ammonia concentration dynamics modelled with the tuned FIDES model 378 

The modelled ammonia concentrations reproduced typical patterns measured above field following nitrogen 379 

application well, with maximum concentrations during the day and minimum concentrations at night (Figure 4). 380 

These patterns are a consequence of daily variations of the sources driven by surface temperature combined with 381 

variations in the aerodynamic transfer function Dij, which behaves similarly as a transfer resistance (see 382 

supplementary material S1). The integration periods are also shown in Figure 4, which illustrates the progressive 383 

loss of information of the pattern structure with integration periods. Particularly, it can be seen that the day-to-384 

night variation is captured up to an integration period of 6h. Moreover, it should be noted that averaging also 385 

means overestimating lower concentrations and underestimating higher concentrations. 386 

Periods



 387 

 388 

Figure 4. Example modelled concentration pattern at 1 m above a single 50 m width source for several averaging 389 
periods (0.5h, 12h and 168h) for the month of July 2008. The source  was set to 105. The y-axis is log scaled. 390 

 391 

3.3 Evaluation of the inference method for a single source and a single sensor 392 

At first we evaluate the bias of the inference method for the simpler case of a single source and a single sensor 393 

placed in the centre of the source field at several heights, assuming we know the background concentration 394 

(strategy C1; Figure 1a.). This case has the advantage of having a condition number equal to 1 (Supplementary 395 

material section S2 and Eq. S1) and a bias 𝛿𝑆 which is well defined and equal to −[�̅�]−1 × [𝐷′𝑆′̅̅ ̅̅ ̅] (Eq. (8)). This 396 

section hence focuses on evaluating the influence of sensor height, time integration, and source dimension on the 397 

bias without dealing with the complexity of the interactions between multiple fields.  398 

3.3.1 Example inferred source dynamics 399 

Figure 5 reports an example source inference, which shows the progressive smoothing of the source with 400 

integration period. We first see that the source strength corresponding to  = 10
5
 leads to ammonia emissions 401 

ranging from 0 to ~1 µg NH3 m
-2

 s
-1

 in the winter, which corresponds to 0.71 kg N ha
-1

 day
-1

. Over the entire 402 

year, the maximum emission occurs during the hottest days and reaches up to 7.1 kg N ha
-1

 day
-1

. Regarding the 403 

inference method, it can be seen in that example that up to 24 hours the variability in emissions over the period is 404 

captured quite well.  405 

Date



 406 

Figure 5. Example source inference for a 25 m width square field and a concentration sensor placed at 0.5 m above 407 
ground. Here  = 105 and is set to constant (pattern 1). The 7 integration periods are shown: 0.5h to 168h. The x-axis 408 
shows the day of year and corresponds to a span over November. The prescribed source is in black (Obs.) and the 409 
inferred one in red (Pred.) 410 

 411 

3.3.2 Effect of target height, source dimension and integration period on the bias 𝜹𝑺 for a single source 412 

In this simpler case shown in Figure 6, the fractional bias of the inferred emission is mostly negative for the 413 

combination where the ratio sensor height / plot dimension is small and integration times are larger than 6h. 414 

According to Eq. (5), this means that the covariance term 𝐷′S′̅̅ ̅̅ ̅̅  is negative for these conditions, meaning that any 415 

increase in source strength S at a time t is correlated with a decrease of the transfer function D(t) and vice versa. 416 

This is expected as S(t) increases with the surface temperature (Eq. (10)) and is proportional to[𝑅𝑎(𝑧𝑟𝑒𝑓) +417 

𝑅𝑏𝑁𝐻3
]

−1
 (Eq. (9)), while D(t) is proportional to the aerodynamic resistance Ra(zref), as shown in supplementary 418 

material S1. Hence, over daily periods, S and D are negatively correlated: S increases during the day and 419 

decreases at night (due to temperature and wind speed daily patterns), while D decreases during the day and 420 

increases at night (mainly due to wind speed patterns). This is expected to be a general feature for NH3 surface 421 

fluxes as the daily variability reproduced by the model used in this study is representative of most situations 422 

from mineral and organic fertilisation, to urine patches or seabird colonies (Ferrara et al., 2014; Flechard et al., 423 

2013; Milford et al., 2001; Moring et al., 2016; Personne et al., 2015; Riddick et al., 2014; Sutton et al., 2013).  424 

The median bias 𝛿S𝑖  tends to increase in magnitude with the sensor height for large fields (xplot =100 and 200 m) 425 

whilst decreases for smaller fields (xplot = 25 and 50) when sensor height gets close to the field boundary layer 426 
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height. Furthermore, 𝛿S𝑖  becomes positive and very large when sensors get above the field boundary layer 427 

height (Figure 6). For large fields, the increase of the magnitude of the bias with lower sensor height is expected 428 

as D decreases with height in absolute value. For small fields, the decrease of the bias corresponds to a loss of 429 

information as D gets close to zero when the sensor gets closer to the field boundary layer height. For heights 430 

above this limit, we observe a change in sign of the bias which can be explained by the fact that the sensor 431 

concentration footprint is not in the source during stable conditions (at night) while it is in the source under 432 

unstable conditions during the day. The inference method will hence not work if at least one sensor is not below 433 

the plot boundary layer height.  434 

 

435 
Figure 6. Fractional bias of inferred cumulated ammonia emission for a single squared field of side (xplot ) 25, 50, 100 436 
and 200 m and sensors heights (h) 0.25, 0.5, 1 and 2 m, as a function of sensors integrating periods. The points show 437 
the median, the boxes the interquartile and the whiskers the maximum and minimum over the 13 application periods. 438 

 439 

We also notice that for integration periods equal or below 3h, the fractional bias is slightly positive, which can be 440 

explained by the positive correlation between S and D at small time scales. This is because of the influence of u* 441 

on T(z0): for a given solar radiation and air temperature over small time scales (< 3h), an increase in u* leads to a 442 

decrease in T(z0), which leads to an exponential increase of the surface compensation point according to Eq. 443 

(10). However, at the same time, Ra(z)
-1

 decreases, but linearly with u*. The resulting ammonia emission 444 

calculated with Eq. (9) nevertheless increases because the exponential effect of temperature overcomes the linear 445 

effect of the exchange velocity (data not shown). This effect is more visible for large fields than small fields 446 

because over small fields an additional effect is that when u* decreases, the footprint increases and the source 447 

“seen” by the targets hence decreases because it incorporates a fraction of zero emission sources. 448 

Overall, the median fractional bias for weekly integrated emissions over a 25 m field and sensor heights below 449 

0.5 m was overall -8% with an interquartile (-14% to -2%). We can conclude that the bias of the NH3 emissions 450 

is reproducible within ± 6%. We can also conclude that it would be better to place the concentration sensor at a 451 

low height to minimise the bias of the method.  452 
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  453 

 454 

3.3.3 Effect of surface boundary layer turbulence on the inference method for a single source 455 

The inference method depends on the turbulence at the site and especially on the main drivers of the dispersion 456 

which are the friction velocity and the stability regime. Indeed Figure 7 shows that the relative root mean square 457 

residual of the inferred source (RRMSR) decreases with increasing u* at long integration periods and is larger in 458 

slightly stable than near-neutral or slightly unstable conditions. Figure 7 also shows that the under stable 459 

conditions or low u* the RRMSR increases by more than an order of magnitude (up to 50%) when integration 460 

periods increase from 6h to 12h, which catches most of the source variance. We also see that under near-neutral 461 

or high u* conditions, the 3
rd

 quartile of the RRMSR remains below 10% for all integration periods. Finally, we 462 

also see that the larger 3
rd

 quartiles at short integration periods are obtained with intermediate u* values or 463 

slightly unstable conditions. A similar response of the bias to u* and 1/L was reported by Figure 6 in (Flesch et 464 

al., 2004) and Figure 3 in Gao et al. (2009) in controlled source experiments. While Gao et al. (2009) attributed 465 

the bias of the inference method to parameterisation of the stability dependence of the turbulent parameters (z/L), 466 

in this study this cannot happen since we use the same parameterisation for prescribing the concentration and 467 

inferring it. In our case, the interpretation is to be linked with Eq. (5): the smaller u* or the most stable 468 

conditions also correspond to the larger time-derivatives of source strength (driven by surface temperature and 469 

surface exchange resistances) as well as the larger time-derivatives of transfer function D. We hence expect that 470 

under such conditions, the covariance between the transfer function and the source strength will be larger than 471 

under near-neutral conditions. In a more heuristic view, under low turbulence, large time-derivatives of 472 

concentrations are expected above a source due to low mixing (small changes in mixing lead to large variations 473 

in concentrations). 474 

We conclude that the inference method with a long integration period will lead to very moderate biases for 475 

locations with near-neutral conditions and high wind speed, but may lead to much larger bias under stable 476 

conditions and low wind speed as soon as the integration period gets up to 12h. 477 



 478 
Figure 7. Relative root mean squared error as a function of integration period for stability factor and friction velocity 479 
classes for a single 25 m side field. Medians and quartiles are given for equally sized bins of u* and 1/ L and for the 480 
lowest sensor height (0.25 m). The blue, pink and green curves are the 3rd, 2nd and 1st quartiles, respectively. 481 

 482 

3.4 Multiple source case 483 

In contrast to the single source case, with multiple sources (see Figure 1b) the inference method leads to biases 484 

at small integration times as can be seen in the example reported in Figure 8. In that specific case, the emissions 485 

of treatments-2 ( = 10
5
) and 3 ( = 10

6
) are 10 times and 100 times larger than that of treatment-1 ( = 10

4
), 486 

respectively. This leads to concentrations over plots of treatment-1 (and to a lesser extent over those of 487 

treatment-2) being highly correlated to emissions from plots of treatment-3 (and hence less with sub-plots of 488 

treatment-1). As a result, inferring emissions of plots of treatment 1 becomes harder as soon as averaging periods 489 

become larger or equal to 3h. This can be viewed as a progressive loss of information of the treatment-1 490 

contribution to concentrations due to the overweighing contribution of treatment 3 plots. However, we also see 491 

that treatments 2 and 3 seem quite correctly inferred for integration times smaller than 48h.  492 
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 493 

Figure 8. Example result of multiple plot case inference. Black curves: observations; red dots: inferred sources. Left: 494 
treatment-1,  = 104. Middle: treatment-2,  = 105. Right: treatment-3,  = 106. Missing red dots are out of the y-scale 495 
boundaries. Example plots from treatments 1, 2 and 3 are shown from left to right. The period is the same as in 496 
Figure 7 (November 2008 for the FR-Gri ICOS site), and emissions are up to 1, 10 and 100 µg NH3 m

-2 s-1, for the 497 
three emission potentials. Strategy C7 with target heights 0.25 and 2 m, and source width 25 m on a side. 498 

 499 

In the following we will first evaluate the influence of the length of integration periods, sensor heights and plots 500 

dimensions on the fractional biases made when inferring the source. Each factor will be evaluated independently 501 

of the others in order to understand the processes behind it. For these evaluations background concentration was 502 

kept constant at 1 µg NH3 m
-3

. Strategy C1 was used except when testing sensor heights for which strategy C3, 503 

which uses two targets, was also used. These two strategies assume that the background concentration is known 504 

which avoids any compensating effects between source and background concentration inferences. Then the 505 

sensitivity of the methodology to the (i) emission ratios between two of the three treatments and (ii) the 506 

variability in the background concentration were evaluated. Finally, seven inversion strategies were compared to 507 

determine which was the most robust (Table 1). 508 
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3.4.1 Effect of integration periods on the bias 509 

We first consider strategy C1, which is the simplest configuration, in which plots are independent, background 510 

concentration is known and one target is used above each plot. Figure 9 shows that for the given treatment range 511 

(~1-10-100 µg NH3 m
-2

 s
-1

), the fractional mean bias is lower than 0.2 in magnitude for the treatment emitting 512 

the most (treatment 3,  = 10
6
), lower than 0.4 for the intermediate treatment (treatment-2,  = 10

5
) and up to 8 513 

for the treatment emitting the least (treatment-1,  = 10
5
); here we considered the 0.25-0.75 quantiles. The bias 514 

of the highest treatment (treatment -3) actually behaves similarly to a single source case (Figure 6), with a 515 

median bias around 10% for 48h integration periods. This is expected because treatment-1 and treatment-2 have 516 

much smaller emission strength and hence little influence on the concentration above the treatment-3 plots, 517 

which therefore behaves in a similar manner to a single source. As a consequence, this bias in treatment-3 is 518 

mainly due to the anti-correlation between D and S which increases with integration periods. The fractional mean 519 

bias is very large for treatment-1 even for small integration periods. The bias can either be positive or negative 520 

showing that this method does not allow for a correct estimation of the smallest sources. 521 

 522 

Figure 9. Effect of integration period on source inference in a multiple-plot setup. The fractional mean bias of the 523 
source is shown for each treatment. Inference strategy C1 was used (single sensor, independent blocks, background 524 
concentration known). Statistics for runs with target heights 0.25 and 0.5 m and source width = 25 m are calculated. 525 
All application periods are considered. Filled points show medians, boxes show interquartiles and bars show 526 
minimums and maximums. Outliers are points to 1.5 times away from boxes limits. 527 

 528 

3.4.2 Effect of target heights on the bias 529 

Figure 10 shows that the bias remains low as long as sensor heights are low enough to catch a sufficient part of 530 

the field footprint. When only a single height is used (strategy C1) this means that the sensor should be placed at 531 

0.5 m or below for the field size we have tested here (25 m). The result is similar for a pair of sensors (strategy 532 

C3). For the lowest treatment though, the bias (and its variability) remain high whatever the heights. It is 533 

interesting to notice that the heights which were found to provide an optimal inference of NH3 sources (below 534 

0.5 m) are smaller than ZINST reported by Wilson et al. (1982) (which were 0.9 m for 40 m diameter circular 535 

sources, and which we estimate as 0.65 m based on a power law extrapolation as in Laubach et al., 2012). It is 536 

also important to notice that this height should vary with both the roughness length z0 and displacement height 537 

as was showed by Wilson et al. (1982) for ZINST. 538 

= 104 = 105 = 106



 539 

Figure 10. Effect of target heights on source inference in a multiple-plot setup for integration periods of one week 540 
(168h). Same as the case reported for Figure 9 except that strategies C1 (with a single sensor, top graphs) and C3 541 
(with two heights, bottom graphs) are compared here (the background is assumed known in both strategies). 542 

 543 

3.4.3. Effect of plot size on the bias 544 

Increasing the plot size from 25 to 200 m width reduces the bias of the two highest source treatments for which 545 

the median bias reaches values around 10%, while the interquartiles remain stable (Figure 11). On the contrary, 546 

in treatment-1 ( = 10
4
), the bias increases. It is expected that the bias in a multiple-source configuration never 547 

becomes smaller than the bias in a single source problem which is a limit linked to the time-integration 548 

(covariance between the source and the concentration, see Eqns. 3 and 6). It is also expected that the biases 549 

remain higher than the single source case until the source size increases sufficiently so that the concentration 550 

generated by a block on the neighbour fields become negligible compared to the concentration generated by the 551 

source below. This is what we observe in treatment-2 ( = 10
5
) and treatment-3 ( = 10

6
), with treatment-2 552 

showing a median bias of -13% (larger than in the single source case) for the 200 m wide field, while the bias of 553 

the largest source tends to be -10% [-17%, -1%], which is the range observed for a single source.  554 

 555 

Figure 11. Effect of plots size on source inference in a multiple-plot setup for integration periods of 168h and target 556 
heights 0.25 and 0.5 m. Same as in Figure 8. 557 
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3.4.4 Sensitivity of the method to ratios of emission potentials between treatments 559 

A central question is the capability of the inference method to resolve small or large differences in emissions 560 

from the nearby blocks. Indeed, we can speculate that small differences will be hard to resolve while large 561 

differences will lead to large bias. In order to determine the resolution power of the method, we compared the 562 

performance of the inference method with a set of three treatments: the first treatment had  = 0 to mimic a 563 

reference field receiving no nitrogen: the second treatment had a constant  = 1000 corresponding to a small 564 

emission (0.7 kg N ha
-1

 day
-1

), while in the third treatment  was successively set to increasing values from 1500 565 

to 10
5
 (70 kg N ha

-1
 day

-1
). In this section we consider that the background is known (sensitivity to the 566 

background concentration will be evaluated in the next section).  567 

Figure 12 shows the median and interquartile biases of the cumulated emissions for the longest integration 568 

period 168h over the ratio of the high-to-low source treatments. The bias of the largest source always remained 569 

around 14%, which is larger than the single source case. The bias of the lowest source increased with increasing 570 

inter-treatments source ratio from 13% to 40%. In fact we find that the fractional bias increased approximately as 571 

a power function of the ratio of the two predicted sources (dotted lines, 0.11 x
0.256

).  572 

 573 

 574 

Figure 12. Median fractional bias of cumulated emissions as a function of the ratio of the high-to-low source 575 
treatments for a 7 days integration period. Top: bias as a function of the theoretical source ratios. Bottom: bias as a 576 
function of the predicted source ratios. Dotted lines show power functions regressions on medians (green) and 577 
interquartile (blue). Strategies C1 and C3 are pooled together with all runs including sensor heights 0.25 and 0.5 m 578 

 579 

3.4.5 Quality of background concentration estimations 580 

As pointed out by Flesch et al. (2004), the knowledge of the background concentration is essential in a source 581 

inference problem. Retrieving the background necessitates having at least Nsources+1 sensors. Hence only 582 

strategies with two heights per plot or which assume identical emissions in treatment repetitions can be evaluated 583 

in their capacity of retrieving the background (strategy C2 to C7).  In order to evaluate the sensitivity of the 584 

method when the background concentration varies with time, we set a realistic background concentration as a 585 



linear combination of u* and air temperature (Ta) with a mean of 6 µg NH3 m
-3

 and a standard deviation of 586 

0.1 µg NH3 m
-3

. This test was performed with a range of treatments in order to elucidate the correlations between 587 

varying background and varying treatments. We see in Figure 13 that the concentration, which follows a 588 

realistic pattern, is well retrieved even over the longest integration period of 168h. However, we see that for the 589 

treatments with the largest source contrast ( = 1000 and 10
5
), the background concentration can be 590 

overestimated even for small integration periods (6h). The median residual of the background concentration was 591 

smaller in magnitude than 0.05 µg NH3 m
-3

, except for the case with very large differences between treatments 592 

(0, 1000, 10000), for which the residual reached 0.1 and 0.5 µg NH3 m
-3 

for the 6h and 24h/168h integration 593 

periods. Furthermore, the background concentrations were overestimated for the largest source ratios and 594 

underestimated for the lowest source ratios and longer integration periods (24h and 168h). 595 

 596 

 597 

Figure 13. Background concentrations prescribed (Observation) and inferred using strategy C7 and height 598 
combination (0.25 m, 2 m): (a) effect of the treatment contrasts for a short integration period of 6h (treatments 1, 2 599 
and 3 are given; (b) effect of integration period for contrasted treatments ( = 0, 1000, 10000); (c) effect of integration 600 
period for similar treatments ( = 0, 1000, 1500). 601 

 602 

3.4.6 Identifying the most robust strategy 603 

Finally to identify which strategy is the most suitable for retrieving the emissions from the multiplot 604 

configuration, we compared all strategies on a simulation with a variable background (set as in the previous 605 

section) and two sources ratios of 2 and 20 between treatments 2 and 3 (treatment-1 b  eing a zero source 606 

reference). We found, as expected, that strategies with known backgrounds have low biases compared to 607 

strategies that calculate the background, except for the strategy C7 which provided biases similar to strategy C3 608 



which is the strategy equivalent to C7 but with known background (Figure 14). We also see that incorporating 609 

some knowledge of the sources by assuming plots from the same treatment have the same emissions, gave 610 

slightly better estimates when the background is known (strategies C2 and C4 compared to C3). This is however 611 

not true when the background is unknown, in which case the magnitude of the bias increases up to a median of 612 

0.7 (strategies C5 and C6 compared to C7). It is due to compensation between background concentration and 613 

source strength as we have seen in Figure 14, that the background concentration was overestimated in such 614 

cases. We also see, as expected, that the strategies with two sensors placed at different heights above each plot 615 

lead to better evaluations of the emissions. Overall, the strategy based on two sensors above each plot, which 616 

also assumes that sources are independent, seems to be the most robust (strategy C7). This strategy does not 617 

assume the background is known, nor does it assume the plots have similar emissions, which is more adapted to 618 

reality. Indeed, even though the same amount of nitrogen is applied in each repetition plot, the emission may 619 

vary due to soil heterogeneity and advection. We finally get a median bias for strategy C7 which is -16% with an 620 

interquartile [-8% -22%]. It is important to stress though that the minimums and maximums are further away, 621 

which indicates that under some rarer circumstances, the method may overestimate the sources by 12% or 622 

underestimate them by 40%. These cases correspond to integration periods with very low wind speeds and stable 623 

conditions. 624 

 625 

 626 

Figure 14. Comparison of biases for all source inference strategies. In strategies C2, C3 andC4 we hypothesize that we 627 
have perfect knowledge of the background concentrations, while in strategies C5, C6 and C7 background 628 
concentrations are inferred together with the sources. In strategies C2, C4, C5 and C6 (red rectangles) we suppose 629 
that plots from the same treatment have the same emissions, while in strategy C3 and C7 we infer each plot 630 
separately. In strategy C2 and C5 we assume single sensors are placed above each plot (blue shades), while in 631 
strategies C3, C4, C6, C7 we assume two sensors are placed above each plot. 632 

 633 

3.5 Application of the methodology to a real test case with multiple treatments 634 

The evaluation of the methodology on a real test case is shown in Figures 15-17. The concentration measured 635 

above the different treatments shows a much higher concentration above the surface applied slurry (up to 636 

200 µg N-NH3 m
-3

) than above the two other treatments (below 50 µg N-NH3 m
-3

), (Figure 15).  637 

Background known Background inferred Background known Background inferred

Strategy



 638 

Figure 15. Concentrations measured in a real test case with 6 blocks composed of three treatments and two 639 
repetitions. Here the mean concentration for the repetition and the three replicates ALPHA samplers are shown at 640 
two heights above ground. The concentration measured at 3 m height at 5 m away from the plots is also shown in 641 
green. The background concentration, evaluated as the minimum of the green curve was 5 µg N-NH3 m

-3. 642 

 643 

The inference method gives very consistent results both in terms of comparison between repetitions (B1 and B2) 644 

of a given treatment and in terms of comparison between treatments (Strategy C7 shown in Figure 16). Surface 645 

slurry application showed the largest emissions: 9 ± 0.3 kg N ha
-1

 in B1 and 10 ± 0.2 kg N ha
-1

 in B2 (median 646 

and confidence interval). This corresponds to an emission factor around 24% of the N-NH4 applied and 8% of 647 

the total N applied, which is in-line with agronomic references (Sintermann et al., 2011a; Sommer et al., 2006). 648 

In contrast, the incorporated slurry showed much smaller emissions: 0.3 ± 0.2 kg N ha
-1

 in B1 and 649 

0.6 ± 0.2 kg N ha
-1

 in B2. It is noticeable that the no-application showed slight deposition, especially in 650 

B2: -0.26 ± 0.2 kg N ha
-1

 in B1 and -1.7 ± 0.2 kg N ha
-1

 in B2.  651 

  652 

Figure 16. Cumulated fluxes estimated with the inference method on the real test case with strategy C7. Three 653 
treatments with two repetitions are compared (b1 and B2).  654 
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Comparing the inference strategies is instructive (Figure 17). We see that in methods which assume a known 656 

background (strategies C3 and C4), the inferred emissions are slightly higher than when background is assumed 657 

unknown. We should remind that we set the background concentration to the minimum concentration measured 658 

on the 3 m height masts because these were located too close to the plots to be considered as real background 659 

masts. This explains why strategies C3 and C4 lead to higher estimates compared to strategies C6 and C7, as the 660 

background may have been underestimated. We also find that all methods consistently infer a deposition flux to 661 

the blocks with no application, which is consistent with our knowledge of ammonia exchange between the 662 

atmosphere and the ground (Flechard et al., 2013). Indeed, the concentration in the atmosphere, which is 663 

enriched by the nearby sources is expected to be higher than near the ground, due to a low soil pH (6.1), a low  664 

nitrogen content in the soil surface (6-9.5 g N kg
-1

 DM), and a 20% humid soil surface, hence leading to a flux 665 

from the air to the ground.  666 

 667 

Figure 17. Same as Figure 16 but grouped by treatments and with additional strategies C4 and C6 which consider that 668 
replicates have the same surface flux. The variability in the boxplot aggregates the uncertainty on the inference 669 
method (the standard deviation on the flux estimate in the least-square model, which accounts for the variability in 670 
the replicated concentration measurements), and the variability between the repetitions in each treatment. Letters a, b 671 
and c shows significant differences between treatments for the C7 strategy, according to a Tukey test (95% family-672 
wise confidence level). 673 

From our theoretical study we know that strategy C7 should give a bias around -16% ± ~7%. Therefore, we 674 

could expect that the real flux is the one measured with C7 times 1.15 (± 0.08), hence would be 10.9 ± 1.3 kg N 675 

ha
-1

. This corresponds to 28 ± 3% of the N-NH4 applied and ~9 ± 1% of the total N applied. For the incorporated 676 

slurry, the emissions are around 20 times smaller than the emissions from the surface applied slurry. Under these 677 

conditions, the bias on the emission would be around -20%, which means that the corrected emissions would 678 

range from 0.5% to 2.5% of the N-NH4 applied and 0.2 and 0.8% of the total N applied. We should bear in mind 679 

that the theoretical correction is based on the median of the simulations done with the 2008 dataset in Grignon 680 

which had similar meteorological conditions to this trial. It would be much more relevant though for future 681 

developments to evaluate the bias based on the same method as developed here but with emissions and 682 

meteorological conditions taken from the real case.  683 

3.6 Comparison with previous work 684 

Several studies have reported methodologies for evaluating multiple sources using dispersion models. These 685 

were mostly based on backward Lagrangian modelling (Crenna et al., 2008; Flesch et al., 2009; Gao et al., 686 
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2008). There were several inference methods reported: the methods based on the inversion of the dispersion 687 

matrix Dij or singular value decomposition of least-square optimisation (Flesch et al., 2009), which optimise the 688 

conditioning of the dispersion matrix and one based on Bayesian inference (Yee and Flesch, 2010). Yee et al. 689 

(2010) showed that the Bayesian approach would avoid unrealistic source estimates which could appear when 690 

the matrix conditioning was poor. Unrealistic source estimates were for instance reported by Flesch et al. (2009), 691 

with negative emission sources.  692 

In Ro et al. (2011), they evaluated the bLS technique to infer two controlled methane surface sources with laser 693 

measurements. They found 0.6 recovery ratios (ratio of inferred to known source) if the fields were not in the 694 

footprint of the sensor but with adapted filters, they found a high degree of recovery with of 1.1 ± 0.2 and 695 

0.8 ± 0.1 for the two sources respectively. They found that in contradiction to Crenna et al. (2008) and Flesch et 696 

al. (2009), even with large conditioning numbers they had high recovery rates.  697 

Misselbrook (2005) compared different methodologies and showed that under high concentrations diffusion 698 

samplers may lead to overestimation of up to 70% of the concentration. They suggest potential issues related to 699 

the deformation of the Teflon membrane which would modify the distance between coated filters and the 700 

membrane itself that could cause sampler saturation. There is hence some concern on the quality of diffusion 701 

samplers to measure concentrations at heights close to large sources which would necessitate field validations. 702 

3.6.1 Sensor positioning and conditioning number 703 

Crenna et al. (2008) have clearly shown that the optimal sensor positioning should be so that each sensor sees 704 

preferentially a single source, and reversely, each source should preferentially influence a single sensor. In this 705 

study the sources-sensors geometry was especially designed in a way that minimises the condition number CN, 706 

by placing the sensors in the middle of each plot. For the smallest source (xplot = 25 m), the conditioning number 707 

ranged from 1.97 to 3.01 (median 2.42) for sensors located at 0.25 m, and increased  to 2.6-6.9 (median 3.2) for 708 

sensors at 0.5 m, 4.7-150 (median 21) for sensors at 1.0 m, and 40-165000 (median 640) for sensors at 2 m. This 709 

shows that including at least one sensor per block at heights lower than the field width divided by 20 would 710 

ensure that the conditioning number remains lower than in most trials reported by Crenna et al. (2008).  711 

By comparing different strategies we have found that the strategies using two sensors over each source 712 

systematically led to improved performances (C3 versus C1 and C6 versus C5, Figure 14). This is also in line 713 

with the results of Crenna et al. (2008), who showed that using more sensors separated spatially improves the 714 

performance of the inference method. Hence we can conclude that the inference method we used is based on a 715 

well-conditioned system which leads to robust results of the least-square optimisation. This is further illustrated 716 

by the real case example (Figures 15-17) which shows a good reproducibility between block repetitions. Indeed, 717 

good reproducibility between repetitions is a check for evaluating the quality of the inference method in real test 718 

cases. The use of Bayesian inference method would however also be valuable in the setup we propose here.  719 

3.6.2 Effect of time integrating sensors on the source inference quality 720 

The use of time averaging sensors for estimating ammonia sources was already reported by Sanz et al. (2010), 721 

Theobald et al. (2013), Carozzi et al. (2013a; 2013b), Ferrara et al. (2014) and Riddick et al. (2016a; 2014). All 722 

these studies have shown the feasibility of these measurements, however only a few of them allow estimating the 723 

impact of averaging: Riddick et al. (2014) measured emissions from a bird colony in the Ascension Island with 724 



WindTrax using both several ALPHA samplers in a transect across the colony and a continuous analyser for 725 

ammonia (AiRRmonia, Mechatronics, NL) downwind. They also averaged the continuous sampler 726 

concentrations to evaluate the effect of averaging on the emissions estimates. They found as we do here that 727 

averaging over monthly periods would lead to systematic underestimations from -9% to -66%.  They also found 728 

that estimations from diffusive samplers would lead to average underestimations of -12%. This is very close to 729 

what we find here for a single source over one week (Figure 6). In a similar comparison Riddick et al. (2016b) 730 

found that time-integration led to slight overestimations with integration approach, which is within the range of 731 

statistics of the bias we have found for the larger area sources (3
rd

 quartile in Figure 6). 732 

3.6.3 Dependency to meteorological conditions 733 

We should bear in mind that the use of time averaging sensors in the inference method is also highly dependent 734 

on the surface layer turbulent structure as shown by Figure 7. We find, as expected, that stable conditions or low 735 

wind speed conditions are those that lead to the highest potential bias (as shown by the 3
rd

 quartile under stable 736 

conditions in Figure 7 bottom). This is a well-known limitation of inverse dispersion modelling which was 737 

reported by Flesch et al. (2009; 2004) and which suggested that inverse dispersion would be inaccurate for 738 

u* < 0.15 m s
-1

 and |z/L| < 1. However, both our study and the studies of Riddick et al. (2014; 2016b) show that 739 

this is not as much of an issue for ammonia emissions. Indeed, this is due to the fact that ammonia emissions 740 

follow a daily cycle with low emissions at night and high emissions during the day. This is firstly because the 741 

ground surface compensation point concentration (𝐶pground) has an exponential dependency on surface 742 

temperature as assumed in Eq. (10) based on known thermodynamical equilibrium constants (Flechard et al., 743 

2013). This is secondly due to the fact that ammonia emission is a diffusion-based process which is limited by 744 

the surface resistances, as modelled in Eq. (9), which leads to small fluxes when 𝑅𝑎(𝑧𝑟𝑒𝑓) and 𝑅𝑏𝑁𝐻3
 get large, 745 

which happens during low wind speeds (they are both roughly inversely proportional to wind speed) and stable 746 

conditions, which also happens at night (Flechard et al., 2013). In real situations, the combination of small 747 

turbulence and high surface concentration leads to a further decrease of the flux which is dependent on the 748 

difference between 𝐶pground and the concentration in the atmosphere above (a feature which was not accounted 749 

for in this study as this would imply a higher degree of complexity in the modelling approach). This means that 750 

the results we found in this study would not apply for species having an emission pattern with a different 751 

temporal dynamics (either constant or anti-correlated with surface temperature or wind speed).  752 

4. Conclusions 753 

In this study we have demonstrated that it is possible to infer with reasonable biases ammonia emissions from 754 

multiple small fields located near each other using a combination of a dispersion model and a set of passive 755 

diffusion sensors which integrate over a few hours to weekly periods. We found that the Philip (1959) analytical 756 

model in FIDES gave similar concentrations as the backward Lagrangian Stochastic model WindTrax at 2 m 757 

above a small source, under neutral and stable stratification as long as the stability correction functions used in 758 

both models are similar and the Schmidt number is identical (here set to 0.64). Under unstable conditions FIDES 759 

gave 20% smaller concentrations at 2 m compared to WindTrax.  760 



We demonstrated by theoretical considerations that passive sensors always lead to the underestimation of 761 

ammonia emissions for an isolated source because of the negative time correlation between the ammonia 762 

emissions and the transfer function. Using a yearly meteorological dataset typical of the oceanic climate of 763 

western Europe we found that the bias over weekly integration times is typically -8±6%, which is in line with 764 

previous reports. Larger biases are expected for meteorological conditions with stable conditions and low wind 765 

speeds as soon as the integration period is larger than 12 hours. 766 

We showed that the quality of the inference method for multiple sources was dependent on the number of 767 

sensors considered above each plot. The most essential technique to minimise the bias of the method was to 768 

place a sensor in the middle of each source within the boundary layer. The quality of the sensor positioning was 769 

evaluated using “condition numbers” which ranged from 2 to 3 for a sensor placed at 25 cm above the ground to 770 

much higher values (40-1.6×10
5
) for a sensor at 2 m height above 25 m width sources. Although the lowest 771 

sensors have the best condition number, we would rather recommend using heights of 50 cm above the canopy in 772 

order to reduce uncertainty in positioning the sensors close to the ground as well as avoid non-diffusive transfer 773 

conditions. Similarly, although the highest sensors had low condition numbers, they were shown to improve the 774 

robustness of the sources inference especially for evaluating the background concentrations. Using replicates of 775 

each treatment was found to be essential for evaluating the quality of the inference and derive robust statistical 776 

indicators for each treatment.  777 

When considering a system, characteristic of agronomic trials, composed of a low and a high potential source 778 

and a reference with no nitrogen application, we found that the fractional bias remained smaller than around 25% 779 

for ratios between the largest to the smallest sources lower than factor 5 and increased as a power function of the 780 

ratio. Furthermore, the dynamics of the emissions were found not to strongly affect the fractional bias. As 781 

expected, we also found that the fractional bias decreased with increasing source dimensions, especially for the 782 

lowest source strength in a multiple source trial.  783 

Finally, a test on a practical trial proved the applicability of the method in real situations with contrasted 784 

emissions. We indeed calculated ammonia emissions of around 27 ± 3% of the total ammoniacal nitrogen 785 

applied for surface applied slurry while we found less than 1% emissions for the treatments with incorporated 786 

slurry. 787 

This method could also be improved by incorporating knowledge of the surface source dynamics into the 788 

inference procedure. Further work is required however, for validating the method, for instance using prescribed 789 

emissions, and to evaluate it for growing crops using real measurements with diffusion samplers close to the 790 

ground. 791 
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