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S1. Analogy between dispersion equation and flux-resistance approaches 10 

It is interesting to note that Eq. (1) is essentially similar to resistance analogy approaches, where the flux F is 11 

evaluated as a concentration difference divided by a transfer resistance between two heights z1 and z2, 𝐹 =12 

− (𝐶(𝑧2) − 𝐶(𝑧1)) 𝑅(𝑧1, 𝑧2)⁄ . Indeed, assuming, as is done in the resistance analogy that the source is infinitely 13 

expanded in x, then computing Eq. (1) for heights z1 and z2 and recombining leads simply to 𝑅(𝑧1, 𝑧2) =14 

𝐷(𝑧1) − 𝐷(𝑧2). Hence the transfer function D is equivalent to a transfer resistance. In particular, for infinitely 15 

expanded sources, the resistance between two heights equals the difference between the transfer function 16 

between these two heights and the ground. 17 

S2 Condition number to identify suitable source-receptor geometry 18 

A major issue when trying to infer sources from concentrations is the fact that under some circumstances, the 19 

problem is ill-conditioned, which means that a small change in the concentration or the transfer matrix D𝑖𝑗  will 20 

induce large changes on the sources strength estimates. A measure of the conditioning of the problem is 21 

therefore an important indicator for determining whether the source-receptor geometry can lead to realistic 22 

solutions. The condition number is a measure of ill-conditioning and is defined as (Crenna et al., 2008): 23 

 24 

𝐶𝑁 = ‖D𝑖𝑗 ‖ × ‖D𝑖𝑗
−1‖         (S1) 25 

 26 

Where ‖ . ‖ denotes a norm of a matrix, one definition of which being the maximum of the sum of the rows. The 27 

higher CN, the larger the uncertainty on the solution of Eqns. (3) and (6) (Flesch et al., 2009). To evaluate the 28 

conditioning state of each set-up, we considered the simplified case where the background concentration is zero 29 

and the number of receptors equals the number of sources. In such a case, the matrix D𝑖𝑗  is squared and D𝑖𝑗
−1 is 30 

defined. 31 

Considering the single source case, with all the concentration sensors placed, eases the understanding of the 32 

condition number. Indeed, in that case 𝐷𝑖𝑗  = 𝐷𝑗  is a vector and CN is simply: max(𝐷(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅𝜏) min(𝐷(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅𝜏)⁄ . In 33 

physical terms, this means that if some concentration samplers are well exposed to the source and others are not, 34 

CN is large. In such a case, Eq. (4) shows that the a small error in 𝐶(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅𝜏 − 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

 will lead to a large error in 35 
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𝑆̅𝜏. Therefore we see here that using several concentration samplers may lead to increasing the error on 𝑆̅τ if 36 

their locations are not chosen with care. This was also showed by Crenna et al. (2008) and Flesch et al. (2009), 37 

who showed that the condition numberCN should be minimised in order to keep this error minimal;  in this 38 

regards, Gao et al. (2008) suggest that CN should be smaller than 10. In practice, minimising CN would mean 39 

minimising the range of 𝐷(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅𝜏, which basically means that the source area should represent a reasonable 40 

footprint fraction of each concentration sensor. This holds for multiple sources also: in that case each source 41 

should represent a large fraction of each sensor footprint placed above it. The setup we propose in this study is, 42 

by construction, minimising CN as the sensors are placed in the middle of each plot, provided they are placed 43 

low enough to catch a significant part of the field footprint. If the plots are in a non-squared configuration, the 44 

CN is simply calculated as in Eq. S1, where the second term in the right hand is the pseudo inverse of the 45 

matrix D𝑖𝑗 . The calculation of the CN was performed by the kappa function in R (version 3.2.3). 46 

S3. Details of the FIDES model based on a solution of Philip (1959) of the advection diffusion equation 47 

In the FIDES model, the transfer function D(xi, Sj, t) was estimated by first translating and rotating the x-y plan 48 

to locate the source Sj at the centre coordinates (0,0) and set the wind direction WD to 0 (align the x-axis with the 49 

wind vector. This was done by setting the following coordinate transformation 𝑋𝑖𝑗 = (𝑥𝑖 − 𝑥𝑠𝑗
) sin(𝑊𝐷) −50 

(𝑦𝑖 − 𝑦𝑠𝑗
) cos(𝑊𝐷), and 𝑌𝑖𝑗 = (𝑥𝑖 − 𝑥𝑠𝑗

) cos(𝑊𝐷) − (𝑦𝑖 − 𝑦𝑠𝑗
) sin(𝑊𝐷). Moreover, all heights are 51 

considered as heights above displacement height d (Z = z – d). In such conditions, the Philip (1959) solution 52 

reads: 53 

 54 

𝑈(𝑍𝑖) = 𝑎𝑍𝑖
𝑝           (S2) 55 

𝐾𝑧(𝑍𝑖) = 𝑏𝑍𝑖
𝑛           (S3) 56 
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 58 

where  = 2 + p + n,  = (1 - n) / , and I- is the modified Bessel function of the first kind of order -, and Cy 59 

and m were taken from Sutton (1932). The values of a, b, p and n were inferred by linear regression between 60 

ln(U), ln(Kz) and ln(Z), over the height range 2×z0 to 20 m, using U(z) and Kz(z) estimated from the Monin-61 

Obukhov similarity theory as 𝐾𝑧(𝑍) = 𝑘𝑢∗𝑍[𝑆𝑐∅𝐻(𝑍/𝐿)]−1. Here ∅𝐻(𝑍/𝐿) is the universal stability correction 62 

function as in Kaimal and Finnigan (1994), which is ∅𝐻(𝑍/𝐿) = (1 + 5.2 𝑍/𝐿) for 𝑍/𝐿 ≥ 0 and ∅𝐻(𝑍/𝐿) =63 

(1 − 16 𝑍/𝐿)0.5 for 𝑍/𝐿 ≤ 0. Following Loubet et al. (2001), to ensure Eq. (S4) exists, the source height is 64 

taken as Zs = 1.01 z0. FIDES is essentially the same model as the one reported by Kormann and Meixner (2001). 65 

The only difference resides in the way a, b, p and n are determined: in Kormann and Meixner (2001) these 66 

constants are determined by equating U and Kz from Monin-Obukhov similarity theory to Eq. (S2-S3) at the 67 

reference height (H), while in FIDES a range of heights (2×z0 to 20 m) is used to compute these values. 68 

However, Wilson shows that under neutral stratification, any choice of 𝐻 / 𝑧0 ≫ 10  should return an adequate 69 



concentration profile near the surface at fetches 1 ≪ 𝑥 / 𝑧0 ≪ 105, hence FIDES and Korman and Meixner 70 

models can be considered equivalent in the range of dimensions considered in this study. 71 

S4. Insuring coherency between WindTrax and Philip (1959) models (tuning FIDES with Windtrax) 72 

S4.1. Insuring comparable Schmidt numbers 73 

The WindTrax software combines the backward Lagrangian stochastic (bLS) dispersion model described by 74 

(Flesch et al., 2004) with an interface where sources and sensors can be mapped. The transfer function D(xi, Sj, t) 75 

is calculated by releasing N trajectories upwind from each sensor location xi for each time step and recording the 76 

vertical velocity (w0) of those that intersect the ground (Nsource, or “touchdowns”). The transfer function is 77 

computed as: 78 

 79 

 
sourceN

ji
wN

tSxD
0

21
),,(         (S5) 80 

 81 

In practice N = 50000 trajectories were used to compute Dij. In WindTrax the Schmidt number (Sc, see 82 

2.2) tends to 0.64 in the neutral limit as discussed by Wilson (2015). 83 

S4.2. Insuring comparable Schmidt numbers 84 

Most bLS models, and especially WindTrax assume Sc = 0.64, while models based on the eddy diffusion 85 

analogy, and hence FIDES and the Korman and Meixner model, lead to a Sc which was calculated in Carozzi et 86 

al. (2013) to be: 87 

 88 

𝑆𝑐 =
𝑢∗

2

𝑎𝑏𝑝
𝑍1−𝑝−𝑛          (S6) 89 

 90 

Hence constitutively, the Phillip (1959) model does not lead to a constant Schmidt number in the surface layer, 91 

unless 1-p-n~0, which was found to be the case under near neutral conditions (Carozzi et al., 2013). Note that the 92 

Korman and Meixner approach lead to Sc = 1 at the reference height in all conditions by construction. 93 

Furthermore, the stability correction functions are different in the Philip (1959) model and in Windtrax. Hence in 94 

order to compare the two approaches, the vertical diffusivity Kz(Z) in FIDES was set as to reproduce the far field 95 

diffusivity of Windtrax. Indeed, in bLS, the far-field diffusivity is Kz = w TL, where w is the standard deviation 96 

of the vertical component of the air velocity, and TL is the Lagrangian time scale. Replacing by their expression 97 

as in Flesch et al. (1995), leads to the following far-field diffusivity in Windtrax:  98 

 99 

𝐾𝑧(𝑍) = 0.5√1.7𝑢∗𝑍/ (1 +  5
𝑍

𝐿
)       for  𝐿 > 0    (S7) 100 

𝐾𝑧(𝑍) = 0.5√2.2𝑢∗𝑍 × (1 − 6
𝑍

𝐿
)

0.25

(1 − 3.3
𝑍

𝐿
)

(
0.67

2
)

 for 𝐿 ≤ 0   (S8) 101 

 102 



It is noticeable that in Eqns. (S5-S6) there is a step change between stable and unstable conditions. Indeed, when 103 

L → +∞ 𝐾𝑧(𝑍) →  𝑘𝑢∗𝑍 × 0.63−1, while when 𝐿 → −∞ 𝐾𝑧(𝑍) →  𝑘𝑢∗𝑍 × 0.55−1. This means that in 104 

WindTrax, the Sc number is set to 0.63 under stable conditions and 0.55 under unstable conditions and that in 105 

near-neutral conditions Sc steps from 0.63 to 0.55 when passing from 𝐿 > 0 to 𝐿 ≤ 0. In FIDES, to ensure 106 

compatibility, Sc was set to 0.64 and parameters b / Sc and n where adjusted so that Kz(Z) in Eq. (S3) fits that in 107 

Eqns. (S7-S8) over a logarithmically spaced vector of 30 heights from z0×1.01 to 2 m. Figure S1 shows that our 108 

approach insures a coherency between the diffusivity of the bLS and Philip approach but small differences 109 

remain which are height dependent. We should also notice that lateral dispersion was treated separately in the 110 

two models, which will also lead to differences in the modelled concentration, especially for larger fields. 111 

 112 

Figure S1. Ratio of the “tuned” FIDES (“Philip”) to WindTrax vertical diffusivity for scalars (K(z)) as a function of 113 
the inverse of Obukhov length (1/L) at 0.25, 0.5, 1 and 2 m heights. The tuned diffusivity correspond to Eq  (S7) and 114 
(S8). 115 

 116 

S4.3. Comparison of FIDES and WindTrax models for predicting concentrations above a single source 117 

A first step in the study was to compare the two dispersion models. Figure S2 shows that the “tuned” FIDES 118 

model leads to the same concentration pattern as WindTrax although systematically underestimating the 119 

maximum concentration under unstable conditions. From Figure S3 we can further see that the concentration 120 

modelled with the original FIDES (Philip, 1959) and WindTrax (Flesch et al., 1995) are similar at 25 cm above 121 

the surface (left graphs) but differ substantially at 2 m above the surface (right graphs). This is expected as the 122 

longer the travel distance, the larger the expected difference in dilution if the two models’ diffusivity differ. In 123 

the original FIDES, the diffusivity is lower than in WindTrax by a factor of roughly two in unstable conditions 124 

(Sc
Philip

 = 1 and Sc
WT

 = 0.55). In a first order approach (over an infinitely homogeneous source), the 125 

concentration difference between z0 and 2 m would be proportional to the aerodynamic resistance (itself 126 

proportional to the inverse of the vertical diffusivity) times the height above ground (see e.g. (Flechard et al., 127 

2013)), which explains the differences observed in Figure S3. 128 

 129 



 130 

Figure S2. Example concentration modelled above a single ammonia source using two dispersion models WindTrax 131 
and FIDES with Kz as in Phillip (1959), at 0.5 m above a simulated squared ammonia source of 25 by 25 m in the FR-132 
Gri ICOS site during August 2008. 133 

 134 

 135 
 136 
Figure S3. WindTrax versus FIDES concentration, modelled above an ammonia source of 25 by 25 m at 0.25 and 2 m 137 
heights. In the top graphs FIDES vertical diffusivity Kz is fit to the Windtrax Kz, while in the bottom graphs FIDES Kz 138 
is fit to the Monin and Obukhov Similarity theory with Sc = 1. The comparison is made of the entire year of 2008 in 139 
the FR-Gri ICOS site. S, U and N stand for stable, unstable and neutral atmospheric conditions. The power-law 140 
regression equation is given for each condition together with the R2 of that regression. The black line is the 1:1 line. 141 

 142 

Figure S3 also shows that the “tuned” FIDES modelled concentrations (top graphs) do not perfectly fit to the 143 

Wintrax ones (top graphs in Figure S3). At height of 25 cm, the “tuned” FIDES concentration does lead to a 144 

worse regression score than the original FIDES, while at 2 m height, although the “tuned” FIDES performs much 145 

better than the original FIDES, it does over-predict the concentrations under stable and neutral conditions and 146 

slightly under-predicts them in unstable conditions. Although Figure S3 is focussing on a 25 m × 25 m field, the 147 

results are similar for larger fields (data not shown). This is explained by the difference in Z-dependency of Kz in 148 

the WindTrax and FIDES model, which is highlighted in Figure S1: under stable conditions (1 / L > 0), “tuned” 149 

FIDES Kz is larger than WindTrax at 0.25 and 2 m, but smaller at 0.5 and 1 m, and the opposite under unstable 150 

conditions(1 / L < 0). This means that constitutively the two models may never fit perfectly, showing a bias that 151 



will depend on height. Nevertheless, the correlation between the two models is very high as shown by large 152 

R
2
 ≥ ~0.96, except in unstable conditions at 2 m height (R

2
 = ~0.8).  153 

 154 

Supplementary figures 155 

 156 

 157 

Figure S4. (a) Distribution of condition numbers for the 0.25 m height sensor and the 25 m width plots, for integration 158 
periods of 6h and 24h, and (b) condition number as a function of 1 / L, where L is the Obukhov length. 159 

 160 
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