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Abstract. Tropospheric ammonia (NH3) is a threat to the environment and human health and is mainly emitted 9 

by agriculture. Ammonia volatilisation following application of nitrogen in the field accounts for more than 40% 10 

of the total ammonia emissions in France. This hence represents a major loss of nitrogen use efficiency which 11 

needs to be reduced by appropriate agricultural practices. In this study we evaluate a novel method to infer 12 

ammonia volatilisation from small agronomic plots made of multiple treatments with repetition. The method is 13 

based on the combination of a set of ammonia diffusion sensors exposed for durations of 3 hours to 1 week, and 14 

a short-range atmospheric dispersion model, used to retrieve the emissions from each plot. The method is 15 

evaluated by mimicking ammonia emissions from an ensemble of 9 plots with a resistance-analogue-16 

compensation-point surface exchange scheme over a yearly meteorological database separated into 28-days 17 

periods. A multi-factorial simulation scheme is used to test the effects of sensor number and heights, plot 18 

dimensions, source strengths and background concentrations, on the quality of the inference method. We further 19 

demonstrate by theoretical considerations in the case of an isolated plot that inferring emissions with diffusion 20 

sensors integrating over daily periods will always lead to underestimations due to correlations between emissions 21 

and atmospheric transfer. We evaluated these underestimations as -8% ± 6% of the emissions for a typical 22 

western European climate. For multiple plots, we find that this method would lead to median underestimations of 23 

-16% with an interquartile [-8% -22%] for two treatments differing by a factor of up to 20 and a control 24 

treatment with no emissions. We further evaluate the methodology for varying background concentrations and 25 

ammonia emission patterns and demonstrate the low sensitivity of the method to these factors. The method was 26 

also tested in a real case and proved to provide sound evaluations of ammonia losses from surface applied and 27 

incorporated slurry. We hence showed that this novel method should be robust and suitable for estimating 28 

ammonia emissions from agronomic plots. Further work should anyway be produced for validating this method 29 

in real conditions. 30 

 31 

Keywords: NH3 emission, multiple sources, dispersion modelling, experimental design, diffusive samplers 32 

Introduction 33 

Tropospheric ammonia (NH3) is mainly emitted by agriculture and has great environmental impacts 34 

(atmospheric pollution, eutrophication, reduction of biodiversity) which are increasingly taken into account in 35 

European and international regulations (Council, 1996; Council, 2016; UNECE, 2012). Ammonia losses also 36 

have great agronomic and economic impacts for farmers, as it reduces nitrogen use efficiency. The varying 37 
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prices of mineral fertilizers and concerns about environmental and health threats demand improvements in the 38 

efficiency of nitrogen utilisation, and especially in recycling nitrogen through organic fertilization (Sutton et al., 39 

2011). Indeed, NH3 volatilization during storage of manure and slurry and following their field application is the 40 

main source of NH3 in Europe (55.3% of the emissions) and France (48-65%) while farm buildings emissions 41 

represent 44.7% and 25-50% in Europe and France, respectively (CITEPA, 2017; ECETOC, 1994; EUROSTAT, 42 

2012; Faburé et al., 2011). Reducing NH3 losses from this agricultural sector is therefore a major objective for 43 

applied research.  44 

While NH3 emissions from farm buildings and storage can be handled by engineering solutions, losses during 45 

organic fertilisation are much more dependent on the combination of application methods (splash plate, band 46 

spreading, pressurised injection, open and close slot injection, trailing hose and trailing shoe), soil type and 47 

occupation, and environmental conditions (soil humidity, air temperature, wind speed, solar radiation) (Sommer 48 

et al., 2003). For instance, Sintermann et al. (2012) report NH3 losses following cattle and pig slurry application 49 

in the field ranging from a few percent to 50% over large fields and up to 100% over medium fields. Evaluating 50 

ammonia losses from field fertilisation over a range of practices, soil and climatic conditions is therefore key in 51 

evaluating the best application methods. 52 

However, characterising these emissions at the field scale requires complex experimental design and most of the 53 

time large fields (Ferrara et al., 2016; Ferrara et al., 2012; Flechard and Fowler, 1998; Loubet et al., 2012; 54 

Milford et al., 2009; Sintermann et al., 2011b; Spirig et al., 2010; Sun et al., 2015; Whitehead et al., 2008). 55 

Especially useful for measuring ammonia losses are methods that can deal with small and medium-scale fields 56 

like agronomic trials (squares of 20 to 50 m on the side), which are widespread. Indirect estimation methods (soil 57 

nitrogen balance or 
15

N balance) are not well adapted to evaluate gaseous ammonia losses, mainly because of the 58 

soil heterogeneity and also because the method relies on evaluating small variations of large numbers (McGinn 59 

and Janzen, 1998). Among existing methods for measuring NH3 emissions, the integrated horizontal flux method 60 

(Wilson and Shum, 1992) is well adapted, but is a subject of debate in its practical application since it seem to be 61 

systematically biased towards higher estimates (Häni et al., 2016; Sintermann et al., 2012). Alternatively, 62 

enclosure methods proved to be not representative for a sticky compound such as ammonia (Pacholski et al., 63 

2006), but more concerning is the fact that ammonia fluxes result from an air-surface equilibrium which is 64 

disturbed by the confined environment offered by the chamber. Inverse dispersion modelling approaches either 65 

based on backward Lagrangian Stochastic models (Flesch et al., 1995) or Eulerian models (Kormann and 66 

Meixner, 2001; Loubet et al., 2001), based on the Philip equation (Philip (1959) have been demonstrated to be 67 

adapted for estimating NH3 volatilization from intensive sources (Loubet et al., 2010; Sommer et al., 2005).  68 

These approaches are well adapted to small or medium fields (≤ 50×50 m
2
) but typically require hourly 69 

concentrations. Long term concentration measurements of NH3 are now well handled by the use of short path 70 

passive samplers developed by Sutton, et al. (2001), or active denuders, which have both been used for 71 

concentration monitoring for years (Tang et al., 2001; Tang et al., 2009). These active denuders can be adapted 72 

for measuring fluxes based on conditional sampling like the conditional time averaged gradient method COTAG 73 

(Famulari et al., 2010), which is a useful method but only adapted for large fields (≥ 0.5 ha). The passive 74 

samplers have also been shown to be adapted for inverse modelling estimations of NH3 sources for large fields 75 

(Carozzi et al., 2013b; Ferrara et al., 2014). 76 
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In another field of research, solutions to the multiple source problem, which consists of inferring multiple 77 

sources based on measured concentrations at multiple points in space and time, have been developed especially 78 

since 2008 (Crenna et al., 2008; Gao et al., 2008; Gericke et al., 2011; Mukherjee et al., 2015; Vandré and 79 

Kaupenjohann, 1998). They have chiefly been used over regional scales (Flesch et al., 2009; Lushi and Stockie, 80 

2010; Yee and Flesch, 2010), and have been shown to be very dependent on the source-sensor geometry (Crenna 81 

et al., 2008; Flesch et al., 2009; Wang et al., 2013 ). Mukherjee et al. (2015) highlighted the dependency of the 82 

inferred source to background concentration and plot disposition, by means of an inverse footprint approach. Yee 83 

et al. (2008) have shown how to retrieve the number, location and intensity of multiple sources with dispersion 84 

models coupled with Bayesian inference methods. Yee and Flesch (2010) have evaluated the inversion and 85 

inference methods for determining 4 points sources using several laser transects. Flesch et al. (2009) have shown 86 

that source-receptor geometry is critical in determining whether a multiple-source inversion problem can provide 87 

realistic solutions or not. Flesch et al. (2009) have moreover shown that if the geometry is well chosen the 88 

accuracy of the method for 15 min data can reach 10% to 20%. These studies have also shown that the multiple 89 

source inversion problems can be solved if not ill-conditioned (ill-conditioning depends on the location of 90 

sources and concentration sensors and is characterised by a conditioning number . 91 

In this study, we pose the following research questions: “Can inverse dispersion modelling approaches be 92 

used for inferring NH3 emissions from multiple small plots (agronomic trials) using passive samplers, and 93 

to which degree of accuracy?” The answer is given through the investigation of the optimal design in terms of 94 

field dimensions, plots locations and size, passive sampler locations and their duration of exposure. Throughout 95 

this study, agronomic trials are considered as adjacent multiple small fields with repetitions of treatments. A 96 

typical trial would consist of three repetitions of three treatments. Hence the double challenge that we face in this 97 

study is (i) to consider together the multiple source issue (adjacent small fields) and the (ii) time-integration issue 98 

(using passive samplers).  99 

To answer these questions, we use a 4 step approach: (1) The ammonia emissions are first modelled on each 100 

source using prescribed NH3 emission potential dynamics coupled with a simple soil-vegetation-atmosphere 101 

exchange scheme to mimic realistic seasonal, daily and hourly variations in NH3 emissions. (2) These prescribed 102 

emissions are then used to estimate the concentration at each target location using short-range atmospheric 103 

dispersion modelling over half hourly periods. (3) The obtained concentrations are then averaged over several 104 

integration periods to simulate the behaviour of passive samplers. Finally, (4) the sources are evaluated by 105 

inference with dispersion modelling based on the averaged concentrations.  106 

Two dispersion models and several inference methodologies are evaluated. The effect of the size of the source, 107 

the locations of targets, the dynamics and magnitude of each source and the meteorological conditions are 108 

evaluated and discussed. The feasibility of the method is finally evaluated over a real case with two repetitions of 109 

three treatments (slurry spreading, injection and a reference without fertilisation). 110 

2.  Materials and methods 111 

At first we present the theoretical background of source inference by optimisation for single and multiple sources 112 

with time averaging concentration sensors. Then the method used to generate a realistic ammonia source is 113 

explained and the dispersion models used for generating the concentration fields and inferring back the sources 114 
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are presented. The geometry of the sources and sensors and the meteorological data used are then shown, and 115 

finally the real test case used for evaluating the method is detailed. 116 

2.1 The theory of the source inference method 117 

At first we will recall some important theoretical features of the “inverse dispersion modelling” approach which 118 

is actually an inference method. 119 

2.1.1 Case of a single area source and a single concentration sampler 120 

We first consider the case of a single area source with a single concentration sampler (target). The source is 121 

varying with time. The method is based upon the general superimposition principle (Thomson et al., 2007), 122 

which relates the concentration at a given location C(x,t) to the source strength S(t) and the background 123 

concentration Cbgd(t) using a transfer function D(x,t), which has the dimensions of a transfer resistance (s m
-1

).  124 

 125 

)()(),(),( tCtStxDtxC bgd        (1) 126 

 127 

Here x denotes the location of the sensor and t the time. The superimposition principle implies that the studied 128 

tracer must be conservative, which is a reasonable hypothesis for NH3 whose reaction time with acids in the 129 

atmosphere is below the transport time for spatial scales below 1000 m (Nemitz et al., 2009). Moreover, in Eq. 130 

(1), we assume a spatially homogeneous area source with strength S(t). The spatial homogeneity of the source is 131 

less trivial for NH3 as the source itself depends on the concentration at the surface. However (Loubet et al., 132 

2010) have shown that the heterogeneity of the source can be neglected as long as the dimension of the source is 133 

larger than 20 m. Hence, this study is limited to source areas with fetch larger than 20 m and a spread of the 134 

concentration samplers over a domain smaller than 1000 m. Moreover, it is interesting to note that for infinitely 135 

spread fields, the transfer resistance is linearly linked to the transfer matrix (See supplementary material S1) 136 

2.1.2 Effect of time averaging sensors on source inference for a single source 137 

Since we consider time averaging concentration samplers, we develop the time-averaged equation of Eq. (1) 138 

over a time period  : 139 

 140 



bgdCSxDxC  )()(        (2) 141 

 142 

where the overbars denote a time average over the period . Similarly as what is done in turbulent flux 143 

calculations, the first part of the right hand side of Eq. (2) is decomposed using the Reynolds decomposition of a 144 

random variable (Kaimal and Finnigan, 1994), giving: 145 

 146 


')(')()( SxDCSxDxC bgd        (3) 147 

 148 
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where 𝐷(𝑥)′S′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏 is the time covariance between D(x,t) and S(t). If the averaged background concentration 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

 149 

is a known quantity, Eq. (3) can be easily manipulated to give an estimation of the averaged source strength S̅𝜏, 150 

the quantity we want to infer: 151 

 152 









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xD
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xD
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S

bgd



        (4) 153 

     (I)         (II) 154 

In the right hand side of Eq. (4), (I) can be calculated from measured 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

 and 𝐶(𝑥)̅̅ ̅̅ ̅̅ 𝜏 and 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅𝜏 which is itself 155 

calculated with dispersion models. On the contrary (II) is a priori unknown and depends on the correlation 156 

between the source strength and the transfer function 𝐷(𝑥)′S′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏. Hence, if (II) is neglected, the inferred source S̅𝜏 157 

is biased. The relative bias of the method is then:  158 

 159 










SxD

SxD

S

S


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)(
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        (5) 160 

 161 

Hence we show in Eq. (5) that time-averaging leads to a relative bias which can be quantified by the time 162 

covariance between the transfer function and the source strength. However this quantity is by nature unknown 163 

since the dynamics of S(t) is unknown. Determining 𝐷(𝑥)′S′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏 requires knowledge of the source dynamics which 164 

can be obtained from measurements with a micrometeorological method. It can alternatively be approached by 165 

modelling using the state of the art of ammonia exchange processes as we do here. 166 

Additionally to the bias, which is term (II) in Eq. (4), evaluating term (I) is encompassed with errors related to 167 

the uncertainties in 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

, 𝐶(𝑥)̅̅ ̅̅ ̅̅ 𝜏 and 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅𝜏. In particular, cases when 𝐷(𝑥)̅̅ ̅̅ ̅̅ ̅𝜏 is small may lead to large errors in 168 

inferring the source term S. This is linked to the conditioning of the inverse problem and is discussed in 169 

supplementary material S2. 170 

2.1.3 Case of multiple sources and multiple concentration samplers with time averaging 171 

If we generalise the approach to multiple sources and multiple receptors, then the transfer function becomes a 172 

matrix D(xi, Sj, t), which is the contribution of source Sj to concentration at target located at xi. For reading 173 

purposes we simplify the matrix notation to Di,j. Eq (3) then becomes: 174 

 175 

[
𝐶1

⋮
𝐶𝑀

]

̅̅ ̅̅ ̅̅ 𝜏

= [

𝐷1,1 ⋯ 𝐷1,𝑀

⋮ ⋱ ⋮
𝐷𝑁,1 ⋯ 𝐷𝑁,𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

× [
𝑆1

⋮
𝑆𝑀

]

̅̅ ̅̅ ̅̅ 𝜏

+ C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

+ [

𝐷′1,1 ⋯ 𝐷′1,𝑀

⋮ ⋱ ⋮
𝐷′𝑁,1 ⋯ 𝐷′𝑁,𝑀

] × [
𝑆′1

⋮
𝑆′𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

  (6a) 176 

 177 

Which in condensed notation gives: 178 

 179 

 𝐶(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅𝜏 = 𝐷𝑖,𝑗
̅̅ ̅̅ 𝜏

× S𝑗̅
𝜏

+ 𝐶𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

+ 𝐷𝑖,𝑗
′ × S𝑗

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏
      (6b) 180 

 181 
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If the number of targets is equal to the number of sources, the problem can be solved by inversion of a linear 182 

system. If the number of targets is larger than the number of sources, the problem is a multiple linear regression 183 

type with unknowns 𝑆𝑗̅
𝜏
 and 𝐶𝑏𝑔𝑑

̅̅ ̅̅ ̅̅ 𝜏
. The third term on the right hand side of the Eq. (6b) is a bias which is a 184 

priori unknown and which we will evaluate in this study.  185 

2.1.4 Source inference methods 186 

The inferred sources, 𝑆𝑖
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

, were derived from Eqns. (3) or (6) assuming the covariance term (last term on 187 

right hand side) was null. The method used to infer the source was either a simple division (Eq. (3)) or an 188 

optimisation of the linear system using the linear model function lm in R (package stats, R version 3.2.3), with 189 

either M = 1 (single source) or M = 9 (multiple sources): 190 

 191 

[

𝐷1,1 ⋯ 𝐷1,𝑀

⋮ ⋱ ⋮
𝐷𝑁,1 ⋯ 𝐷𝑁,𝑀

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

× [
𝑆1

𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

⋮

𝑆𝑀
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏

= [
𝐶1

⋮
𝐶𝑁

]

̅̅ ̅̅ ̅̅ 𝜏

− C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

      (7) 192 

 193 

The bias 𝛿S𝑖
𝜏 was then evaluated as the difference between the inferred sources 𝑆𝑖

𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

and the modelled 194 

sources 𝑆𝑖
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ 𝜏

averaged over each period:   195 

 196 

𝛿S𝑖
𝜏 = 𝑆𝑖

𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏

− 𝑆𝑖
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ 𝜏

         (8) 197 

 198 

As shown in Eqns. (3) and (6) the overall mean bias 𝛿S𝑖
𝜏 contains (i) a bias term due to the inference method 199 

which is dependent mainly on the conditioning of the matrix Dij (see supplementary material S2) and (ii) a bias 200 

term which is intrinsically linked to the covariance between Dij and Sj (Eqns. 3 et 6). Thus, with Eq. (8) we 201 

evaluate the sum of the two biases without distinction. In order to infer the sources, the elements of the 202 

dispersion matrix Dij need to be determined. The next part details how these were estimated with a dispersion 203 

model. 204 

2.2 The dispersion model used for determining the transfer matrix Dij 205 

The elements of the transfer matrix Di,j = D(xi, Sj, t), were calculated using a dispersion model. Indeed, by 206 

definition, D(xi, Sj, t) is the concentration at location xi and time t generated by a source Sj of strength Sj(t) = 1. 207 

The FIDES-3D model (“FIDES”,(Loubet et al., 2010), based on the analytical solution of the advection-diffusion 208 

equation of Philip (1959) was used for that purpose. This model was first compared and tuned with a backward 209 

Lagrangian Stochastic dispersion model (the “WindTrax” software, Thunder Beach Scientific, Nanaimo, 210 

Canada, (Flesch et al., 1995). The two models and how the FIDES model was tuned are briefly described 211 

hereafter and detailed in the supplementary material sections S3 and S4. 212 

The FIDES model is based on the Philip (1959) solution of the advection-diffusion equation, which assumes 213 

power law profiles for the wind speed U(z) and the vertical diffusivity Kz(z). This approach also assumes no 214 

chemical reactions in the atmosphere and spatial horizontal homogeneity of roughness length (z0), wind speed 215 

(U), vertical (Kz) and lateral (Ky) diffusivity. The dispersion model is detailed in Huang (1979), and Loubet 216 
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(2010). The details of the model and the way the transfer function D(xi, Sj, t) was estimated is detailed in the 217 

supplementary material S2.  218 

The Schmidt number which is the ratio of momentum to scalar vertical diffusivity Sc = Kmz / Kz is key in 219 

dispersion modelling, as it determines the vertical diffusion rate of scalars. Wilson (2015) demonstrated that bLS 220 

and dispersion models like FIDES give different values of Sc by constitution. In order to assure consistency of 221 

the Phillip (1959) approach with bLS models, considered as references in dispersion modelling, we chose to tune 222 

the Philip (1959) model to get the same Sc number as in WindTrax as described by Flesch et al. (1995). The 223 

details are given in supplementary material S4. The comparison showed that the tuned FIDES model gives very 224 

similar concentrations to WindTrax at measurement heights lower than 2 m above the source, although slightly 225 

overestimated under stable and neutral conditions and slightly underestimated under unstable conditions. The 226 

correlation between the two models is however very high (R
2
 ≥ ~0.96) meaning that using the tuned FIDES 227 

model to characterise source inference performance, will lead to results very similar to WindTrax. Moreover 228 

since in this study the same model is used for predicting and for inferring the fluxes the results are self-229 

consistent. 230 

2.3 Ammonia sources from simple SVAT modelling and prescribed emission potentials  231 

In order to evaluate the bias introduced by time averaging the concentrations when inferring single or multiple 232 

sources (third term in Eqns. 3 and 6), we generated NH3 emission patterns mimicking the behaviour of real 233 

sources as closely as possible. In that prospect, we used the SurfAtm-NH3 model developed by Personne et al. 234 

(2009), which was used for two purposes: (i) evaluating the turbulence parameters (the friction velocity u*, and 235 

the Monin Obukhov length L) from the meteorological datasets to parameterise the dispersion models, and (ii) 236 

providing the surface temperature 𝑇(z0) and the surface resistances in order to calculate ammonia emission 237 

patterns.  238 

The SurfAtm-NH3 model is a one-dimensional, bi-directional surface-vegetation-atmosphere-transfer (SVAT) 239 

model, which simulates the latent (LE) and sensible (H) heat fluxes, as well as the NH3 fluxes between the 240 

biogenic surfaces and the atmosphere. It is a resistance analogue model separately treating the vegetation layer 241 

and the soil layer, and coupling a slightly modified (Choudhury and Monteith, 1988) model of energy balance 242 

and the two-layer bi-directional NH3 exchange model of (Nemitz et al., 2000) with a water balance model. 243 

Unless otherwise stated, the surface was considered a bare soil with z0 = 5 mm, d = 0 m, and LAI = 0.  244 

The ammonia emission patterns were modelled using the resistance approach and assuming atmospheric 245 

concentration was zero, which is a reasonable assumption following nitrogen application and leads to patterns 246 

mimicking reality, which is what we are seeking here: 247 

 248 

𝐹 =
𝐶pground

𝑅𝑎(𝑧𝑟𝑒𝑓)+𝑅𝑏{𝑁𝐻3}
         (9) 249 

 250 

Where 𝑅𝑎(𝑧𝑟𝑒𝑓) is the aerodynamic resistance at the reference height 𝑧𝑟𝑒𝑓 = 3.17 m, and 𝑅𝑏{𝑁𝐻3} is the soil 251 

boundary layer resistance for ammonia as described in Personne et al. (2009). The ground surface compensation 252 

point concentration (𝐶pground) was expressed as a function of , the ratio of NH4
+
 to H

+
 concentration in the soil 253 

water at the surface, as in Loubet et al. (2012):  254 

 255 
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𝐶pground = 𝐾ℎ{𝑇(z0)} × 𝐾𝑑{𝑇(z0)} ×  =  × 10−3.4362+0.0508 𝑇(z0)     (10) 256 

 257 

where 𝐾ℎ and 𝐾𝑑 are the Henry and the dissociation constant for NH3, and 𝑇(z0) is the soil surface temperature. 258 

Since we wanted to evaluate the correlation between the transfer function Dij and the source strength Sj, which is 259 

the bias in the inference problem (Eq. 6), the NH3 volatilisation was modelled as to reproduce the variety of 260 

existing kinetics of NH3 emissions from fields. In that prospect, three  patterns were simulated:  261 

1. a constant  = 0, which would mimic background NH3 emissions from soils; 262 

2. an exponentially decreasing  = 0 exp(- 4.6 t / 0), which best represents NH3 emissions following 263 

slurry application; 264 

3. a Gaussian  = N(0,), which would represent the typical NH3 emissions following urea application. 265 

Here 0 is the maximum  during the period, t is the time in days, 0 is the duration of the emission in days. The 266 

factor 4.6 was chosen so that when t = 0,  goes down to 1% of 0. The duration of the emissions was chosen to 267 

be four weeks, 0 = 28 days. While these  patterns gave the weekly trend of NH3 emissions, the daily patterns 268 

were produced by the thermodynamical and turbulence drivers of NH3 emissions which were explicitly taken 269 

into account through the compensation point (Eq. 10). To facilitate understanding, in most of the manuscript 270 

only the constant  was considered, and the effect of modifying the source strength was evaluated in a sensitivity 271 

study. 272 

2.4 Spatial set up of the sources, concentration sensors  273 

The sources (plots) were considered as squares with width xplot and aligned south-north. Two configurations were 274 

considered: (1) a single source configuration and (2) a multiple-sources configuration which mimics typical 275 

agronomic trials with 9 sources (plots) placed next to each other, with three treatments times three repetitions. 276 

Each treatment was assigned a value of 0 different from the others, while the three repetitions of the same 277 

treatment were assigned the same value of . The concentration sensors (receptors) locations, xi, were set in the 278 

middle of each plot, at several heights zi. (Figure 1).  279 

 280 

 281 

Figure 1. General scheme of the source receptor locations for (a) a single source, and (b) multiple-sources. (c) 282 
“optimum” plot layout used for the multiple-source configuration. 283 

A number of plot sizes (xplot = 25, 50, 100 and 200 m on the side), and receptor heights (zi = 0.25, 0.5, 1 and 2 284 

m), were tested successively. Several source strengths and dynamics were also tested:  was first considered 285 

constant with time (pattern 1) in all the plots , and the 0 of each of the three treatments were either chosen to be 286 

significantly different in strength (10
4
, 10

5
, 10

6
), or of the same order of magnitude (1000, 2000, 4000). Then the 287 

three  patterns (“constant”, “exponential” and “Gaussian”) were randomly assigned to the treatments for each 288 

(a)
(b)

(c)
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simulation period. The ammonia background concentration, Cbgd, was considered constant and equal to 1 ppb 289 

except when studying the sensitivity of the inference method to the background concentration, where it was set 290 

as unknown. Throughout this study, an “optimum” block configuration was considered (shown in Figure. 1c), 291 

which avoided trivial configurations like aligned blocks and maximised the mean distance between blocks. 292 

2.5 Simulation details 293 

2.5.1 Meteorological data and fertiliser application periods  294 

A range of meteorological conditions were simulated based on the half-hourly meteorological data of the FR-Gri 295 

ICOS site in 2008. In total 13 periods of 28 days were considered which spanned the whole year except the last 296 

two days of the year. Each period consisted of 1344 half-hourly data.  297 

2.5.2 Concentration sensor integration periods 298 

In order to evaluate the influence of the concentration averaging period on the source inference, several 299 

integration periods  were tested: 0.5h (no integration), 3h, 6h, 12h, 24h, 48h, 168h (7 days). In practice the 300 

concentrations were computed at each sensor location using Eq. (6) over 0.5h: at that frequency, the covariance 301 

term is assumed to be negligible. Then the averaged concentrations were computed for all integration periods.  302 

2.5.3 Sensitivity to inferential methods hypotheses 303 

Several hypotheses were considered and summarized in Table 1:  304 

1) the background concentration C𝑏𝑔𝑑
̅̅ ̅̅ ̅̅ 𝜏

 was either supposed known and fixed to the prescribed values (C1-305 

C4) or was inferred (C5-C7); 306 

2) the three repetitions of each treatment were either supposed to have the same source strength (C2, C4, 307 

C5, C6) or they were inferred independently (C1, C3, C7). In C2, C4, C5 and C6, Si = Sm for all i and 308 

m belonging to the same treatment. In practice a new dispersion matrix was calculated by averaging 309 

together all columns belonging to the same treatment (matrix dimension N × 3). Three strength values 310 

of S were inferred to be tested; 311 

3) either one concentration sensor at each source location (zi) was considered (C1, C2, C5) or two sensors 312 

positioned at two heights were considered (C3, C4, C6, C7). All the measurement heights and their 313 

combinations were considered. 314 

 315 

Table 1. Hypotheses tested for inferring the sources and background concentration. 316 

Strategy Number of 

sensors 
Plots# have same 

emissions 
Background 

concentration 
Note 

C1 1 No known Each block is considered independently 

C2 1 Yes known Each block is considered equal 

C3 2 No known Identical to C1 except for the number of sensors 

C4 2 Yes known Identical to C2 except for the number of sensors 

C5 1 Yes unknown Identical to C2 except for the background concentration estimation 

C6 2 Yes unknown Identical to C4 except for the background concentration estimation 

C7 2 No unknown Identical to C3 except for the background concentration estimation 

# plots are plots having the same treatment (repetitions). 317 
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2.6 Statistical indicators 318 

For each run the mean bias (BIAS), normalised mean bias (NBIAS), were calculated as: 𝐵𝐼𝐴𝑆𝑖 =
1

𝑁𝜏
∑ 𝛿𝑐𝑢𝑚𝑆𝑖

𝜏
𝜏 , 319 

𝑁𝐵𝐼𝐴𝑆𝑖 = 𝐵𝐼𝐴𝑆𝑖 (
1

𝑁𝜏
∑ 𝑐𝑢𝑚𝑆𝑖

𝑜𝑏𝑠
𝜏 )⁄ , where 𝑁𝜏 is the number of the time averaged samples over each 28-day 320 

period and 𝑐𝑢𝑚S𝑖 and 𝑐𝑢𝑚S𝑖
𝑜𝑏𝑠 are the cumulated fluxes over the same period. The medians and interquartile of 321 

these statistical indicators were then calculated over the 13 periods of 28-days for 2008. 322 

2.7 Real experimental test case 323 

In order to evaluate the feasibility of the method, we applied it to a real test case (Figure 2). The trial was 324 

located at La Chapelle Saint-Sauveur in France (47°26'44.1''N, 0°58'50.7'W',) and performed from 5
th

 April to 325 

26
th

 April 2011 on a bare soil with loamy soil texture. Soil pH in water was 6.2 and the bulk density in the first 326 

15 cm was 1.4 t m
-3

.. The experimental unit consisted of 6 squared sub-plots of 20 m on each side with 2 327 

repetitions of 3 treatments: (1) surface application of cattle slurry, (2) surface application and incorporation of 328 

the same slurry and (3) no application. The slurry had a pH 7.5, a dry matter (DM) of 6.05%, C:N ratio of 10.4 329 

and contained 38.45 g N kg
-1

 (DM) as total nitrogen and 13.25 g N-NH4 kg
-1

 (DM) as  ammoniacal nitrogen. 330 

Slurry was applied on 5
th

 April 2011 at a rate of 49 m
3
 ha

-1
 which led to  118.7 kg N ha

-1
 and 40.9 kg N-NH4 ha

-1
. 331 

The application was identical between the repetitions with a small standard deviation (< 0.2 kg N ha
-1

). The 332 

incorporation was performed in two sub-plots one hour after the end of the slurry spreading with a disc harrower 333 

at a depth of 0.10 m. The soil humidity between 0 and 5 cm depth was homogeneous over the blocks and 334 

decreased from 20±1% to 17±1% w/w between the start and the end of the experiment. The meteorological data 335 

were measured nearby (Figure 2). Air temperature, relative humidity, global solar radiation, wind velocity and 336 

direction were recorded every 30 minutes at 2 m height. The dispersion model input parameters (u* and L) were 337 

evaluated with a simple energy balance model of Holtslag and Van Ulden (1983) assuming a Bowen ratio of 0.5 338 

and a deep soil temperature equal the averaged ambient temperature. Ammonia concentration was measured with 339 

diffusive samplers (ALPHA samplers), (Sutton et al., 2001; Tang et al., 2001; Tang et al., 2009), which were 340 

placed at the centre of each sub-plot at two heights (0.32 and 0.87 m from the ground) as well as next to  the 341 

assay at three location (5 m away from the plots) at 3 m height. The ALPHA samplers were set in place just after 342 

slurry application and incorporation (between 14:20 and 14:50) and left exposed subsequently for 3 h, 22 h, 23 h, 343 

23 h, 71 h (3 days) and 359 h (15 days) hence spanning 21 days. The diffusive samplers were prepared prior to 344 

the experiment, stored at 4°C in a refrigerator and analysed by colorimetry. Since no background concentrations 345 

were measured at a reasonable distance from the field, the background concentration was assumed as the 346 

minimum over the whole period of the concentrations measured on the 3 m height masts. 347 
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 348 

Figure 2. Scheme of the real experimental test case performed on 6 sub-plots with three treatments and two 349 
repetitions. Cattle slurry was either applied on the surface or incorporated. The concentration sensor and 350 
meteorological station locations are shown on the scheme. 351 

3  Results and discussion 352 

3.1 Meteorological data range and simulated ammonia sources 353 

The meteorological conditions over the 13 periods represented a good sample of temperate climate conditions. In 354 

particular u* and the stability parameter z/L vary over each period and between periods from 0.024 to 1.181 m s
-1

 355 

for u* and from -49 to 21 m
-1

 for z/L, respectively (Figure 3). It is noticeable that u* showed greater variability 356 

during the winter than during the summer, while it was the opposite for z/L. The surface temperature also 357 

showed a structure varying between periods, with a larger temperature range during the summer (from 5.7 to 358 

50.4°C) than during the winter (from -5.2 to 22.9°C). This surface temperature variability is an essential feature 359 

to representing real case ammonia sources (Sutton et al., 2009), which shows a variability reflecting both the 360 

surface temperature and the resistances variations (Eqns. 9 and 10). 361 

North

100 m

No application

Incorporation

Surface application

Concentration sensors at 3 m height

Concentration sensors at 0.32 and 0.87 m height

Meteorological station
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 362 

Figure 3. Footprints of measured u* (a), z/L at 1 m height (b), T(z0) (c), and wind direction (d) for the hour of the day 363 
and the 13 considered periods over year 2008 in the FR-GRI ICOS site. The modelled ammonia source is also 364 
reported (e) according to Eqns. (9) and (10) over the same period with a  = 10000. 365 

 366 

3.2 Example ammonia concentration dynamics modelled with the tuned FIDES model 367 

The modelled ammonia concentrations reproduced typical patterns measured above field following nitrogen 368 

application well, with maximum concentrations during the day and minimum concentrations at night (Figure 4). 369 

These patterns are a consequence of daily variations of the sources driven by surface temperature combined with 370 

variations in the aerodynamic transfer function Dij, which behaves similarly as a transfer resistance (see 371 

supplementary material S1). The integration periods are also shown in Figure 4, which illustrates the progressive 372 

loss of information of the pattern structure with integration periods. Particularly, it can be seen that the day-to-373 

night variation is captured up to an integration period of 6h. Moreover, it should be noted that averaging also 374 

means overestimating lower concentrations and underestimating higher concentrations. 375 

(b)

(c)

(d)

(e)

(a)
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 376 

Figure 4. Example modelled concentration pattern at 1 m above a single 50 m width source for several averaging 377 
periods (0.5h – 168h) for the month of July 2008. The source  was set to 105. The y-axis is log scaled. 378 

 379 

3.3 Evaluation of the inference method for a single source and a single sensor 380 

At first we evaluate the bias of the inference method for the simpler case of a single source and a single sensor 381 

placed in the centre of the source field at several heights, assuming we know the background concentration 382 

(strategy C1; Figure 1a.). This case has the advantage of having a condition number equal to 1 (Eq. (S1)) and a 383 

bias 𝛿𝑆𝜏 which is well defined and equal to −[𝐷̅𝜏]−1 × [𝐷′𝑆′̅̅ ̅̅ ̅𝜏] (Eq. (8)). This section hence focusses on 384 

evaluating the influence of sensor height, time integration, and source dimension on the bias without dealing 385 

with the complexity of the interactions between multiple fields.  386 

3.3.1 Example inferred source dynamics 387 

Figure 5 reports an example source inference, which shows the progressive smoothing of the source with 388 

integration period. We first see that the source strength corresponding to  = 10000 leads to ammonia emissions 389 

ranging from 0 to ~1 µg NH3 m
-2

 s
-1

 in the winter, which corresponds to 0.71 kg N ha
-1

 day
-1

. Over the entire 390 

year, the maximum emission occurs during the hottest days and reaches up to 7.1 kg N ha
-1

 day
-1

. Regarding the 391 

inference method, it can be seen in that example that up to 24 hours the variability in emissions over the period is 392 

captured quite well.  393 
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 394 

Figure 5. Example source inference for a 25 m width square field and a concentration sensor placed at 0.5 m above 395 
ground. Here  = 10000 and is set to constant (pattern 1). The 7 integration periods are shown: 0.5h to 168h. The x-396 
axis shows the day of year and corresponds to a span over November. The prescribed source is in black (Obs.) and the 397 
inferred one in red (Pred.) 398 

 399 

3.3.2 Effect of target height, source dimension and integration period on the bias 𝜹𝑺𝝉 for a single source 400 

In this simpler case shown in Figure 6, the fractional bias of the inferred emission is mostly negative for the 401 

combination where the ratio sensor height / plot dimension is small and integration times are larger than 6h. 402 

According to Eq. (5), this means that the covariance term 𝐷′S′̅̅ ̅̅ ̅̅ 𝜏 is negative for these conditions, meaning that 403 

any increase in source strength S at a time t is correlated with a decrease of the transfer function D(t) and vice 404 

versa. This is expected as S(t) increases with the surface temperature (Eq. (10)) and is proportional 405 

to[𝑅𝑎(𝑧𝑟𝑒𝑓) + 𝑅𝑏{𝑁𝐻3}]
−1

 (Eq. (9)), while D(t) is proportional to the aerodynamic resistance Ra(zref), as shown 406 

in supplementary material S1. Hence, over daily periods, S and D are negatively correlated: S increases during 407 

the day and decreases at night (due to temperature and wind speed daily patterns), while D decreases during the 408 

day and increases at night (mainly due to wind speed patterns). This is expected to be a general feature for NH3 409 

surface fluxes as the daily variability reproduced by the model used in this study is representative of most 410 

situations from mineral and organic fertilisation, to urine patches or seabird colonies (Ferrara et al., 2014; 411 

Flechard et al., 2013; Milford et al., 2001; Moring et al., 2016; Personne et al., 2015; Riddick et al., 2014; Sutton 412 

et al., 2013).  413 

The median bias 𝛿S𝑖
𝜏 tends to increase in magnitude with the sensor height for large fields (100 and 200 m on 414 

side) whilst decreases for smaller fields (25 and 50 m on side) when sensor height gets close to the field 415 

boundary layer height. Furthermore, 𝛿S𝑖
𝜏 becomes positive and very large when sensors get above the field 416 
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boundary layer height (Figure 6). For large fields, the increase of the magnitude of the bias with lower sensor 417 

height is expected as D decreases with height in absolute value. For small fields, the decrease of the bias 418 

corresponds to a loss of information as D gets close to zero when the sensor gets closer to the field boundary 419 

layer height. For heights above this limit, we observe a change in sign of the bias which can be explained by the 420 

fact that the sensor concentration footprint is not in the source during stable conditions (at night) while it is in the 421 

source under unstable conditions during the day. The inference method will hence not work if at least one sensor 422 

is not below the plot boundary layer height.  423 

 
Figure 6. Fractional bias of inferred cumulated ammonia emission for a single squared field of side (S) 25, 50, 100 and 424 
200 m and sensors heights (h) 0.25, 0.5, 1 and 2 m, as a function of the sensors integrating periods from 3 hours to 1 425 
week (168h). The points show the median, the boxes the interquartile and the whiskers the maximum and minimum 426 
over the 13 application periods. 427 

 428 

We also notice that for integration periods below 3h, the fractional bias is slightly positive, which can be 429 

explained by the positive correlation between S and D at small time scales. This is because of the influence of u* 430 

on T(z0): for a given solar radiation and air temperature over small time scales (< 3h), an increase in u* leads to a 431 

decrease in T(z0), which leads to an exponential increase of the surface compensation point according to Eq. 432 

(10). However, at the same time, Ra(z)
-1

 decreases, but linearly with u*. The resulting ammonia emission 433 

calculated with Eq. (9) nevertheless increases because the exponential effect of temperature overcomes the linear 434 

effect of the exchange velocity (data not shown). This effect is more visible for large fields than small fields 435 

because over small fields an additional effect is that when u* decreases, the footprint increases and the source 436 

“seen” by the targets hence decreases because it incorporates a fraction of zero emission sources. 437 

Overall, the median fractional bias for weekly integrated emissions over a 25 m field and sensor heights below 438 

0.5 m was overall -8% with an interquartile (-14% to -2%). We can conclude that the bias of the NH3 emissions 439 

is reproducible within ± 6%. We can also conclude that it would be better to place the concentration sensor at a 440 

low height to minimise the bias of the method.  441 

  442 
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 443 

3.3.3 Effect of surface boundary layer turbulence on the inference method for a single source 444 

The inference method depends on the turbulence at the site and especially on the main drivers of the dispersion 445 

which are the friction velocity and the stability regime. Indeed Figure 7 shows that the relative root mean square 446 

residual of the inferred source (RRMSR) decreases with increasing u* at long integration periods and is larger in 447 

slightly stable than near-neutral or slightly unstable conditions. Figure 7 also shows that the under stable 448 

conditions or low u* the RRMSR increases by more than an order of magnitude (up to 50%) when integration 449 

periods increase from 6 to 12 hours, which catches most of the source variance. We also see that under near-450 

neutral or high u* conditions, the 3
rd

 quartile of the RRMSR remains below 10% for all integration periods. 451 

Finally, we also see that the larger 3
rd

 quartiles at short integration periods are obtained with intermediate u* 452 

values or slightly unstable conditions. A similar response of the bias to u* and 1 / L was reported by Figure 6 in 453 

(Flesch et al., 2004) and Figure 3 in Gao et al. (2009) in controlled source experiments. While Gao et al. (2009) 454 

attributed the bias of the inference method to parameterisation of the stability dependence of the turbulent 455 

parameters (z/L), in this study this cannot happen since we use the same parameterisation for prescribing the 456 

concentration and inferring it. In our case, the interpretation is to be linked with Eq. (5): the smaller u* or the 457 

most stable conditions also correspond to the larger time-derivatives of source strength (driven by surface 458 

temperature and surface exchange resistances) as well as the larger time-derivatives of transfer function D. We 459 

hence expect that under such conditions, the covariance between the transfer function and the source strength 460 

will be larger than under near-neutral conditions. In a more heuristic view, under low turbulence, large time-461 

derivatives of concentrations are expected above a source due to low mixing (small changes in mixing lead to 462 

large variations in concentrations). 463 

We conclude that the inference method with a long integration period will lead to very moderate biases for 464 

locations with near-neutral conditions and high wind speed, typical of oceanic climates, but may lead to much 465 

larger bias under stable conditions and low wind speed typical of continental climates, as soon as the integration 466 

period gets up to 12 hours. 467 
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 468 
Figure 7. Source relative root mean squared error as a function of integration period for stability factor and friction 469 
velocity classes for a single 25 m side field. Medians and quartiles are given for equally sized bins of u* and 1/ L and 470 
for the lowest sensor height (0.25 m). The blue, pink and green curves are the 3rd, 2nd and 1st quartiles, respectively. 471 

 472 

3.4 Multiple source case 473 

In contrast to the single source case, with multiple sources (see Figure 1b) the inference method leads to biases 474 

at small integration times as can be seen in the example reported in Figure 8. In that specific case, the emissions 475 

of treatments 2 and 3 are 10 times and 100 times larger than that of treatment 1, respectively. This leads to 476 

concentrations over plots of treatment 1 (and to a lesser extent over those of treatment 2) being highly correlated 477 

to emissions from plots of treatment 3 (and hence less with sub-plots of treatment 1). As a result, inferring 478 

emissions of plots of treatment 1 becomes harder as soon as averaging periods become larger or equal to 3h. This 479 

can be viewed as a progressive loss of information of the treatment 1 contribution to concentrations due to the 480 

overweighing contribution of treatment 3 plots. However, we also see that treatments 2 and 3 seem quite 481 

correctly inferred for integration times smaller than 48h.  482 

Increasing u*

Slightly stableSlightly unstable Near neutral
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 483 

Figure 8. Example result of multiple plot case inference. Black curves: observations; red dots: inferred sources. Left: 484 
 = 104. Middle:  = 105. Right:  = 106. Missing red dots are out of the y-scale boundaries. Example plots from 485 
treatments 1, 2 and 3 are shown from left to right. The period is the same as in Figure 7 (November 2008 for the FR-486 
Gri ICOS site), and emissions are up to 1, 10 and 100 µg NH3 m

-2 s-1, for the three emission potentials. Strategy C7 487 
with target heights 0.25 and 2 m, and source width 25 m on a side. 488 

 489 

In the following we will first evaluate the influence of the length of integration periods, sensor heights and plots 490 

dimensions on the fractional biases made when inferring the source. Each factor will be evaluated independently 491 

of the others in order to understand the processes behind it. For these evaluations background concentration was 492 

kept constant at 1 µg NH3 m
-3

. Strategy C1 was used except when testing sensor heights for which strategy C3, 493 

which uses two targets, was also used. These two strategies assume that the background concentration is known 494 

which avoids any compensating effects between source and background concentration inferences. Then the 495 

sensitivity of the methodology to the (i) emission ratios between two of the three treatments and (ii) the 496 

variability in the background concentration were evaluated. Finally, seven inversion strategies were compared to 497 

determine which was the most robust (Table 1). 498 
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3.4.1 Effect of integration periods on the bias 499 

We first consider strategy C1, which is the simplest configuration, in which plots are independent, background 500 

concentration is known and one target is used above each plot. Figure 9 shows that for the  given treatment 501 

range (~1-10-100 µg NH3 m
-2

 s
-1

), the fractional mean bias is lower than 0.2 in magnitude for the treatment 502 

emitting the most (treatment-3), lower than 0.4 for the intermediate treatment (treatment-2) and up to 8 for the 503 

treatment emitting the least (treatment-1); here we considered the 0.25-0.75 quantiles. The bias of the highest 504 

treatment (treatment -3) actually behaves similarly to a single source case (Figure 6), with a median bias around 505 

10% for 48h integration periods. This is expected because treatment-1 and treatment-2 have much smaller 506 

emission strength and hence little influence on the concentration above the treatment-3 plots, which therefore 507 

behaves in a similar manner to a single source. As a consequence, this bias in treatment-3 is mainly due to the 508 

anti-correlation between D and S which increases with integration periods. The fractional bias is very large for 509 

treatment-1 even for small integration periods. The bias can either be positive or negative showing that this 510 

method does not allow for a correct estimation of the smallest sources. 511 

 512 

Figure 9. Effect of integration period on source inference in a multiple-plot setup. The fractional mean bias of the 513 
source is shown for each treatment (1 to3) corresponding to  = 104, 105, 106. Inference strategy C1 was used (single 514 
sensor, independent blocks, background concentration known). Statistics for runs with target heights 0.25 and 0.5 m 515 
and source side = 25 m are calculated. All application periods are considered. Filled points show medians, boxes show 516 
interquartiles and bars show minimums and maximums. Outliers are points to 1.5 times away from boxes limits. 517 

 518 

3.4.2 Effect of target heights on the bias 519 

Figure 10 shows that the bias remains quite stable as long as sensor heights are low enough to catch a sufficient 520 

part of the field footprint. When only a single height is used (strategy C1) this means that the sensor should be 521 

placed at 0.5 m or below for the field size we have tested here (25 m), while for a pair of sensors (strategy C3) 522 

the bias remains stable even for sensors places above 0.5 m.  523 
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 524 

 525 

Figure 10. Effect of target heights on source inference in a multiple-plot setup for integration periods of one week 526 
(168h). Same as the case reported for Figure 8 except that strategies C1 (with a single sensor) and C3 (with two 527 
heights) are compared here (the background is assumed known in both strategies). 528 

 529 

3.4.3. Effect of plot size on the bias 530 

Increasing the plot size from 25 to 200 m width reduces the bias of the two largest source treatments for which 531 

the median bias reaches values around 10%, while the interquartiles remain stable (Figure 11). On the contrary, 532 

in treatment-1 (the lowest source), the bias increases. It is expected that the bias in a multiple-source 533 

configuration never becomes smaller than the bias in a single source problem which is a limit linked to the time-534 

integration (covariance between the source and the concentration, see Eqns. (3) and (6). It is also expected that 535 

the biases remain higher than the single source case until the source size increases sufficiently so that the 536 

concentration generated by a block on the neighbour fields become negligible compared to the concentration 537 

generated by the source below. This is what we observe in treatment-2 and treatment-3, withtreatment-2 showing 538 

a median bias of -13% (larger than in the single source case) for the 200 m large field, while the bias of the 539 

highest source tends to be -10% [-17%, -1%], which is the range observed for a single source.  540 

 541 

Figure 11. Effect of plots size on source inference in a multiple-plot setup for integration periods of 168h and target 542 
heights 0.25 and 0.5 m. Same as in Figure 8. 543 
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 544 

3.4.4 Sensitivity of the method to ratios of emission potentials between treatments 545 

A central question is the capability of the inference method to resolve small or large differences in emissions 546 

from the nearby blocks. Indeed, we can speculate that small differences will be hard to resolve while large 547 

differences will lead to large bias. In order to determine the resolution power of the method, we compared the 548 

performance of the inference method with a set of three treatments: the first treatment had  = 0 to mimic a 549 

reference field receiving no nitrogen. The second treatment had a constant  = 1000 corresponding to a small 550 

emission (0.7 kg N ha
-1

 day
-1

), while in the third treatment  was successively set to increasing values from 1500 551 

to 10
5
 (70 kg N ha

-1
 day

-1
). In this section we consider that the background is known (sensitivity to the 552 

background concentration will be evaluated in the next section).  553 

Figure 12 shows the median and interquartile biases of the cumulated emissions for the longest integration 554 

period 168h over the ratio of the high-to-low source treatments. The bias of the highest source always remained 555 

around 14%, which is larger than the single source case. The bias of the lowest source increased with increasing 556 

inter-treatments source ratio from 13% to 40%. In fact we find that the fractional bias increased approximately as 557 

a power function of the ratio of the two predicted sources (dotted lines, 0.11 x
0.256

).  558 

 559 

 560 

Figure 12. Right: Median fractional bias of cumulated emissions as a function of the ratio of the high-to-low source 561 
treatments for a 7 days integration period. Top: bias as a function of the theoretical source ratios. Bottom: bias as a 562 
function of the predicted source ratios. Dotted lines show power functions regressions on medians (green) and 563 
interquartile (blue). Strategies C1 and C3 are pooled together with all runs including sensor heights 0.25 and 0.5 m 564 

 565 

3.4.5 Quality of background concentration estimations 566 

As pointed out by Flesch et al. (2004), the knowledge of the background concentration is essential in a source 567 

inference problem. Retrieving the background necessitates having at least Nsources+1 sensors. Hence only 568 

strategies with two heights per plot or which assume identical emissions in treatment repetitions can be evaluated 569 
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in their capacity of retrieving the background (strategy C2 to C7).  In order to evaluate the sensitivity of the 570 

method when the background concentration varies with time, we set a realistic background concentration as a 571 

linear combination of u* and air temperature (Ta) with a mean of 6 µg NH3 m
-3

, and a standard deviation of 572 

0.1 µg NH3 m
-3

. This test was performed with a range of treatments in order to elucidate the correlations between 573 

varying background and varying treatments. We see in Figure 13 that the concentration, which follows a 574 

realistic pattern, is well retrieved, even over the longest period. However, we see that for the treatments with the 575 

largest source contrast ( = 1000 and 10
5
), the background concentration can be overestimated even for small 576 

integration periods (6h). The median residual of the background concentration was smaller in magnitude than 577 

0.05 µg m
-3

, except for the case with very large differences between treatments (0, 1000, 10000), for which the 578 

residual reached 0.1 and 0.5 for the 6h and 24h/168h integration periods. Furthermore, the background 579 

concentrations were overestimated for the largest source ratios and underestimated for the lowest source ratios 580 

and longer integration periods (24h and 168h). 581 

 582 

 583 

Figure 13. Background concentrations prescribed (Observation) and inferred using strategy C7 and height 584 
combination (0.25 m, 2 m): (a) effect of the treatment contrasts for a short integration period of 6h (treatments 1, 2 585 
and 3 are given; (b) effect of integration period for contrasted treatments ( = 0, 1000, 10000); (c) effect of integration 586 
period for similar treatments ( = 0, 1500, 2000). 587 

 588 

3.4.6 Identifying the most robust strategy 589 

Finally to identify which strategy is the most suitable for retrieving the emissions, we compare all strategies on a 590 

simulation with a variable background (set as in the previous section) and two sources ratios of 2 and 20 between 591 

treatments 2 and 3 (treatment 1 being a zero source reference). We found, as expected, that strategies with 592 

known backgrounds have low biases compared to strategies that calculate the background except for the strategy 593 

C7 which provided biases similar to strategy C3 which is the strategy equivalent to C7 but with known 594 

background (Figure 14). We also see that incorporating some knowledge of the sources by assuming plots from 595 

the same treatment have the same emissions, gave slightly better estimates when the background is known 596 

(strategies C2 and C4 compared to C3). This is however not true when the background is unknown, in which 597 

case the magnitude of the bias increases up to a median of 0.7 (strategies C5 and C6 compared to C7). It is due to 598 

compensation between background concentration and source strength as we have seen in Figure 14, that the 599 

Date ObservationV2 V3 V4 V5

01/01/2008 00:30 3.04 2.91 3.05 2.71 2.69

01/01/2008 01:00 2.79 2.84 2.96 2.82 2.96

01/01/2008 01:30 2.66 3.03 3.01 2.93 2.94

01/01/2008 02:00 3.00 2.78 3.02 2.81 2.82

01/01/2008 02:30 2.98 3.00 2.83 2.94 2.81

01/01/2008 03:00 2.67 2.65 2.76 2.66 2.63

01/01/2008 03:30 2.79 2.74 2.89 2.83 2.84

01/01/2008 04:00 2.76 2.57 2.83 2.78 2.98

01/01/2008 04:30 2.90 2.77 2.71 2.73 2.65

01/01/2008 05:00 2.58 2.54 2.61 2.65 2.65

01/01/2008 05:30 2.30 2.35 2.47 2.48 2.46

01/01/2008 06:00 2.45 2.51 2.29 2.55 2.59

01/01/2008 06:30 2.54 2.53 2.65 2.55 2.68

01/01/2008 07:00 2.49 2.54 2.45 2.54 2.69

01/01/2008 07:30 2.55 2.60 2.43 2.56 2.40

01/01/2008 08:00 2.52 2.58 2.51 2.63 2.70

01/01/2008 08:30 2.74 2.56 2.67 2.59 2.68

01/01/2008 09:00 2.73 2.83 2.80 2.80 2.97

01/01/2008 09:30 2.94 2.78 2.87 2.87 2.95

01/01/2008 10:00 2.89 3.00 2.96 2.92 2.93

01/01/2008 10:30 2.95 2.88 2.85 3.04 3.08

01/01/2008 11:00 3.23 3.16 3.12 3.13 3.17

01/01/2008 11:30 3.37 3.23 3.41 3.22 3.35

01/01/2008 12:00 3.42 3.38 3.39 3.47 3.53

01/01/2008 12:30 3.62 3.75 3.63 3.53 3.69
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background concentration was overestimated in such cases. We also see, as expected, that the strategies with two 600 

sensors placed at different heights above each plot lead to better evaluations of the emissions. Overall, the 601 

strategy based on two sensors above each plot, which also assumes that sources are independent, seems to be the 602 

most robust (strategy C7). This strategy does not assume the background is known, nor does it assume the plots 603 

have similar emissions, which is more adapted to reality. Indeed, even though the same amount of nitrogen is 604 

applied in each repetition plot, the emission may vary due to soil heterogeneity and advection. We finally get a 605 

median bias for strategy C7 which is -16% with an interquartile [-8% -22%]. It is important to stress though that 606 

the minimums and maximums are further away, which indicates that under some rarer circumstances, the method 607 

may overestimate the sources by 12% or underestimate them by 40%. These cases correspond to integration 608 

periods with very low wind speeds and stable conditions. 609 

 610 

 611 

Figure 14. Comparison of biases for all source inference strategies. In strategies C2, C3 andC4 we hypothesize that we 612 
have perfect knowledge of the background concentrations, while in strategies C5, C6 and C7 background 613 
concentrations are inferred together with the sources. In strategies C2, C4, C5 and C6 (red rectangles) we suppose 614 
that plots from the same treatment have the same emissions, while in strategy C3 and C7 we infer each plot 615 
separately. In strategy C2 and C5 we assume single sensors are placed above each plot (blue shades), while in 616 
strategies C3, C4, C6, C7 we assume two sensors are placed above each plot. 617 

 618 

3.5 Application of the methodology to a real test case with multiple treatments 619 

The evaluation of the methodology on a real test case is shown in Figures 15-17. The concentration measured 620 

above the different treatments shows a much higher concentration above the surface applied slurry (up to 621 

200 µg N-NH3 m
-3

) than above the two other treatments (below 50 µg N-NH3 m
-3

), (Figure 15).  622 

Background known Background inferred Background known Background inferred

Strategy
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 623 

Figure 15. Concentrations measured in a real test case with 6 blocks composed of three treatments and two 624 
repetitions. Here the mean concentration for the repetition and the three replicates ALPHA samplers are shown at 625 
two heights above ground. The concentration measured at 3 m height at 5 m away from the plots is also shown in 626 
green. The background concentration, evaluated as the minimum of the green curve was 5 µg N-NH3 m

-3. 627 

 628 

The inference method gives very consistent results both in terms of comparison between repetitions of a given 629 

treatment and in terms of comparison between treatments (Strategy C7 shown in Figure 16). Emissions above 630 

3 kg N ha
-1

 (3.2 kg N ha
-1

 on average) were found for the surface slurry application with a very good 631 

reproducibility between repetitions. This corresponds to an emission factor around 8.2% of the N-NH4 applied 632 

and 2.8% of the total N applied, which is in-line with agronomic references (Sintermann et al., 2011a; Sommer 633 

et al., 2006). In contrast, the incorporated slurry showed much smaller and more variable fluxes between -0.2 634 

and 0.25 kg N ha
-1

. Furthermore, no significant differences were found between the no-application and the slurry 635 

incorporation treatments (Student t-Test with p-values larger than 0.03). 636 

 637 

 638 

Figure 16. Cumulated fluxes estimated with the inverse method on the real test case with strategy C7. Three 639 
treatments with two repetitions are compared.  640 

 641 

0.32 m

0.87 m

3 m height masts

Hours following application

Hours following application
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Comparing the inference strategies is instructive (Figure 17). We see that in methods which assume a known 642 

background (strategies C3 and C4), the inferred emissions are higher than when background is assumed 643 

unknown. We should remind that we set the background concentration to the minimum concentration measured 644 

on the 3 m height masts because these were located too close to the plots to be considered as real background 645 

masts. This explains why strategies C3 and C4 lead to higher estimates compared to strategies C6 and C7, as the 646 

background may have been underestimated. We also find that all methods consistently infer a deposition flux to 647 

the blocks with no application, which is consistent with our knowledge of ammonia exchange between the 648 

atmosphere and the ground (Flechard et al., 2013). Indeed, the concentration in the atmosphere, which is 649 

enriched by the nearby sources is expected to be higher than near the ground, due to a low soil pH (6.1), a low  650 

nitrogen content in the soil surface (6-9.5 g N kg
-1

 DM), and a 20% humid soil surface, hence leading to a flux 651 

from the air to the ground.  652 

 653 

Figure 17. Same as Figure 14 but grouped by treatments and with additional strategies C4 and C6 which consider that 654 
replicates have the same surface flux. The variability in the boxplot aggregates the uncertainty on the inference 655 
method (the standard deviation on the flux estimate in the least-square model, which accounts for the variability in 656 
the replicated concentration measurements), and the variability between the repetitions in each treatment. 657 

From our theoretical study we know that strategy C7 should give a bias around -15 ± 8%. Therefore, we could 658 

expect that the real flux is the one measured with C7 times (1.15 ±0.08), hence 3.7 ± 0.25 kg N ha
-1

. This 659 

corresponds to 10.1 ± 0.7 % of the N-NH4 applied and 3.4 ± 0.2% of the total N applied. For the incorporated 660 

slurry, the uncertainty would be much larger and is not evaluated here. We should bear in mind that the 661 

theoretical study is based on the median of the simulations done with the 2008 dataset in Grignon which had 662 

similar meteorological conditions to this trial. It would be much more relevant in future developments to 663 

evaluate the bias based on the same method as developed here but based on the emissions and meteorological 664 

conditions of the real case.  665 

3.6 Comparison with previous work 666 

Several studies have reported methodologies for evaluating multiple sources using dispersion models. These 667 

were mostly based on Backward Lagrangian modelling (Crenna et al., 2008; Flesch et al., 2009; Gao et al., 668 

2008). There were several inference methods reported: the methods based on the inversion of the dispersion 669 

matrix Dij or singular value decomposition of least-square optimisation (Flesch et al., 2009), which optimise the 670 

conditioning of the dispersion matrix and one based on Bayesian inference (Yee and Flesch, 2010). Yee et al. 671 

(2010) showed that the Bayesian approach would avoid unrealistic source estimates which could appear when 672 
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the matrix conditioning was poor. Unrealistic source estimates were for instance reported by Flesch et al. (2009), 673 

with negative emission sources.  674 

In Ro et al. (2011), they evaluated the bLS technique to infer two controlled methane surface sources with laser 675 

measurements. They found 0.6 recovery ratios (ratio of inferred to known source) if the fields were not in the 676 

footprint of the sensor but with adapted filters, they found a high degree of recovery with of 1.1 ± 0.2 and 677 

0.8 ± 0.1 for the two sources respectively. They found that in contradiction to Crenna et al. (2008) and Flesch et 678 

al. (2009), even with large conditioning numbers they had high recovery rates.  679 

3.6.1 Sensor positioning and conditioning number 680 

Crenna et al. (2008) have clearly shown that the optimal sensor positioning should be so that each sensor sees 681 

preferentially a single source, and reversely, each source should preferentially influence a single sensor. In this 682 

study the sources-sensors geometry was especially designed in a way that minimises the condition number CN, 683 

by placing the sensors in the middle of each plot. For the smallest source (25 m width), the conditioning number 684 

ranged from 1.97 to 3.01 (median 2.42) for sensors located at 0.25 m, and increased  to 2.6-6.9 (median 3.2) for 685 

sensors at 0.5 m, 4.7-150 (median 21) for sensors at 1.0 m, and 40-165000 (median 640) for sensors at 2 m. This 686 

shows that including at least one sensor per block at heights lower than the field width divided by 20 would 687 

ensure that the conditioning number remains lower than in most trials of Crenna et al. (2008).  688 

By comparing different strategies we have found that the strategies using two sensors over each source 689 

systematically led to improved performances (C3 versus C1 and C6 versus C5, Figure 14). This is also in line 690 

with the results of Crenna et al. (2008), who showed that using more sensors separated spatially improves the 691 

performance of the inference method. Hence we can conclude that the inference method we used is based on a 692 

well-conditioned system which leads to robust results of the least-square optimisation. This is further illustrated 693 

by the real case example (Figures 15-17) which shows a good reproducibility between block repetitions. Indeed, 694 

good reproducibility between repetitions is a check for evaluating the quality of the inference method in real test 695 

cases. The use of Bayesian inference method would however also be valuable in the setup we propose here.  696 

3.6.2 Effect of time integrating sensors on the source inference quality 697 

The use of time averaging sensors for estimating ammonia sources was already reported by Sanz et al. (2010), 698 

Theobald et al. (2013), Carozzi et al. (2013a; 2013b), Ferrara et al. (2014) and Riddick et al. (2016a; 2014). All 699 

these studies have shown the feasibility of these measurements, however only a few of them allow estimating the 700 

impact of averaging: Riddick et al. (2014) measured emissions from a bird colony in the Ascension island with 701 

WindTrax using both several alpha samplers in a transect across the colony and a continuous analyser for 702 

ammonia (AiRRmonia, Mechatronics, NL) downwind. They also averaged the continuous sampler 703 

concentrations to evaluate the effect of averaging on the emissions estimates. They found as we do here that 704 

averaging over monthly periods would lead to systematic underestimations from -9% to -66%.  They also found 705 

that estimations from badges would lead to average underestimations of -12%. This is very close to what we find 706 

here for a single source over one week (Figure 6). In a similar comparison Riddick et al. (2016b) found that 707 

time-integration led to slight overestimations with integration approach, which is within the range of statistics of 708 

the bias we have found for the larger area sources (3
rd

 Quartile in Figure 6). 709 
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3.6.3 Dependency to meteorological conditions 710 

We should bear in mind that the use of time averaging sensors in the inference method is also highly dependent 711 

on the surface layer turbulent structure as shown by Figure 7. We find, as expected, that stable conditions or low 712 

wind speed conditions are those that lead to the highest potential bias (as shown by the 3
rd

 quartile under stable 713 

conditions in Figure 7 bottom). This is a well-known limitation of inverse dispersion modelling which was 714 

reported by Flesch et al. (2009; 2004) and which suggested that inverse dispersion would be inaccurate for 715 

u* < 0.15 m s
-1

 and |z/L| < 1. However, both our study and the studies of Riddick et al. (2014; 2016b) show that 716 

this is not as much of an issue for ammonia emissions. Indeed, this is due to the fact that ammonia emissions 717 

follow a daily cycle with low emissions at night and high emissions during the day. This is firstly because (1) the 718 

ground surface compensation point concentration (𝐶pground) has an exponential dependency on surface 719 

temperature as assumed in Eq. (10) based on known thermodynamical equilibrium constants (Flechard et al., 720 

2013). This is secondly due to the fact that ammonia emission is a diffusion-based process which is limited by 721 

the surface resistances, as modelled in Eq. (9), which leads to small fluxes when 𝑅𝑎(𝑧𝑟𝑒𝑓) and 𝑅𝑏{𝑁𝐻3} get 722 

large, which happens during low wind speeds (they are both roughly inversely proportional to wind speed) and 723 

stable conditions, which also happens at night (Flechard et al., 2013). In real situations, the combination of small 724 

turbulence and high surface concentration leads to a further decrease of the flux which is dependent on the 725 

difference between 𝐶pground and the concentration in the atmosphere above (a feature which was not accounted 726 

for in this study as this would imply a higher degree of complexity in the modelling approach). This means that 727 

the results we found in this study would not apply for species having an emission pattern with a different 728 

temporal dynamics (either constant or anti-correlated with surface temperature or wind speed).  729 

4. Conclusions 730 

In this study we have demonstrated that it is possible to infer with reasonable biases ammonia emissions from 731 

multiple small fields located near each other using a combination of a dispersion model and a set of passive 732 

diffusion sensors which integrate over a few hours to weekly periods. We found that the Philip (1959) analytical 733 

model gave similar concentrations as the backward Lagrangian Stochastic model WindTrax (using the Monin 734 

and Obukhov parameterisation) above a small source, as long as the stability correction functions used in both 735 

models are similar. 736 

We demonstrated by theoretical considerations that passive sensors always lead to the underestimation of 737 

ammonia emissions for an isolated source because of the negative time correlation between the ammonia 738 

emissions and the transfer function. Using a yearly meteorological dataset typical of the oceanic climate of 739 

western Europe we found that the bias over weekly integration times is typically -8±6%, which is in line with 740 

previous reports for bird colonies. Larger biases are expected for meteorological conditions with stable 741 

conditions and low wind speeds typical of continental climates, as soon as the integration period is larger than 12 742 

hours. 743 

We showed that the quality of the inference method for multiple sources was dependent on the number of 744 

sensors considered above each plot. The most essential technique to minimise the bias of the method was to 745 

place a sensor in the middle of each source within the boundary layer. The quality of the sensor positioning was 746 

evaluated using “condition numbers” which ranged from 2 to 3 for a sensor placed at 25 cm above the ground to 747 
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much higher values (40-1.6×10
5
) for a sensor at 2 m height above 25 m width sources. Although the highest 748 

sensors had low condition numbers, they were shown to improve the robustness of the sources inference 749 

especially for evaluating the background concentrations. Using replicates of each treatment was found to be 750 

essential for evaluating the quality of the inference and derive robust statistical indicators for each treatment.  751 

When considering a system, characteristic of agronomic trials, composed of a low and a high potential source 752 

and a reference with no nitrogen application, we found that the fractional bias remained smaller than around 25% 753 

for ratios between the largest to the smallest sources lower than factor 5 and increased as a power function of the 754 

ratio. Furthermore, the dynamics of the emissions were found not to strongly affect the fractional bias. As 755 

expected, we also found that the fractional bias decreased with increasing source dimensions, especially for the 756 

lowest source strength in a multiple source trial.  757 

Finally, a test on a practical trial proved the applicability of the method in real situations with contrasted 758 

emissions. We indeed calculated ammonia emissions of around 10.1 ± 0.7% of the total ammoniacal nitrogen 759 

applied for surface applied slurry while we found less than 1% emissions for the treatments with incorporated 760 

slurry. 761 

This method could also be improved by incorporating knowledge of the surface source dynamics into the 762 

inference procedure. Further work is required however, for validating the method, for instance using prescribed 763 

emissions, and to evaluate it for growing crops using real measurements with diffusion samplers close to the 764 

ground. 765 
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