Response to Editor

We thank Dr. Zaehle for his extensive suggestions to the manuscript. It is much improved for the attention. The text of the manuscript is now reduced by about one third through the removal of redundancies and considerable re-writing of some sections. We hope that this is clearer and more directly to the point, while still retaining the depth of information required to review the state of carbonyl sulfide research.

We have addressed each of the points Dr. Zaehle suggested as detailed below. The format is *editor comment* followed by author response. Thanks for the considerable effort.

Cheers,

Mary Whelan

I further do not understand the current structure of the manuscript, which presents available measurements AFTER the application of OCS. It would seem to me more logical to have Section 4 prior to Section 3, but I'm open to your ideas on this.

Most of the data is presented in review as it is needed for the discussion. The data available section is more of a resource for readers who would like to perform their own analysis now that they have been brought up to speed on the state of the science, rather than as the foundation of the discussion.

I would also appreciate if – especially in section 2 – would have a common format suggestion recommendations at the end of each section, possibly starting with "Recommendations: " This has been done for Sections 2 and 3.

P4 L26-27: seems out of place for the introduction. There is a section on EC data where this should be mentioned.

This has been moved.

P5 L10-18: This is conclusion material, not the introduction. Merge with the Conclusion Section These ideas have been merged with the conclusion

P5 L26-27. This is a common place and can be removed

Done

P6 L1-14: This is the introduction section to an extensive section of different Earth system compartments and their fluxes. No need to go into detail here. Focus on the essential (probably L9-14) and merge the remaining information with the relevant sections. The details have been moved to appropriate sections.

P6 L15-16. This is a common place and can be removed

Done

P8 L7-9. This is a common place and can be removed

Done

P9 L5: Briefly explain reviewer #2 concern here and explain why you still use the concept.

We've now included an explanation of the "Ohm's Law" approach and why it is sufficient to side step for the studies presented here.

"The F_{CO2} to F_{OCS} relationship depends on the leaf conductance to each gas as it changes with the difference between concentrations inside and outside of the leaf. This requires further modeling to anticipate within leaf concentrations of OCS and CO₂, which cannot be observed directly. To keep the simplicity of the approach, especially when using OCS to evaluate models with many other built-in assumptions, the data-based LRU approximation is sufficient in many cases."

P10 L17-28: not directly relevant to the review. Shorten to make the key point. Shortened.

P11 L9-10: repeats what was said in the sentences before. remove

Done.

P11 L22- P12 L16: Check for redundancies with the content of Section 2.3.1 and shorten (here or there) accordingly.

Content moved to Section 2.3.1.

P12 L21-23: Yes, but this is not a review on the EC technique, and OCS does not circumvent this problem. Can be removed.

Done.

P13 L14-15: Is a negative repetition of the previous sentence. Remove. Done.

P13 L19: It is not immediately clear how modeling can side-step a fundamental problem with the observations. A subclause hinting at the main information source helping to side-step this problem would be warranted.

This idea was removed here and described further in Applications, section 3.1 instead.

P13 L20-22: It is a large step from resolving weekly GPP to climate carbon feedbacks. I would agree that this is a step towards better understanding the effect of synoptic meteorological variability on carbon fluxes, and therefore maybe the seasonal to interannual variability of the carbon fluxes. but not more.

The conclusion here was scaled back, "Additionally, OCS observing towers upstream and downstream of large forested areas could resolve the synoptic scale variability in forest carbon uptake (Campbell et al., 2017b)."

P14 L2-4 is redundant with L14 16-18. Removed.

P15 L1-11: Why are such questions formulated here, whereas they aren't in the other sections. Why is there such an emphasis on model development, when this isn't the case for the other sections. This seems out of place to me, since in the other Sections there is also no focus on model development and future scenarios.

This section was removed.

P19 L 4-5 "We integrate ... ". Not necessary, remove

Done.

P20 L1 and following. covers abiotic processes also described in Section 2.3.4. I don't see the need for such a duplication.

The abiotic processes section is now reduced to the sorption and hydrolysis section. Redundancies have been removed.

P21 L12-14. Irrelevant for a review.

Removed.

Section 2.3.3. Given that not much is know, and most of the text does not concern OCS, I recommend to significantly shorten this section.

Section removed, relevant information absorbed into discussion of plant fluxes.

P24 L20-24: I don't see why this is relevant here. This has nothing to do with understanding realworld OCS sorption, as becomes clear in the following sentence.

This section has been reworked to be more concise.

P25 L 1-10: I suggest that this can be summarized in 2 sentences and added to the atmosphere section

Done.

P25 L11-P26-L28. I think the context should be merged with the soils section and reducing redundancies significantly shortened.

Done.

P26 L18-19. Unclear whether these number are global or regional estimates. I don't really see the need for giving these numbers here.

The numbers are presented in the budget section much later on instead.

P30 Paragraph beginning in L26: seems more a topic for 3.1.3. Merge with information there. Done.

P31 L21- P 32 L 17: This entire section mostly summarizes findings of one manuscript. Please shorted to the essential findings and refer the reader to Belviso et al. 1986 for details on various modeling approaches etc.

Done.

Section 2.7: Misses important components of the budget (e.g. ocean, volcanoes). I would recommend moving the relevant sentences here (ie not need to repeating between 2.X and 2.7, but 2.7 should allow to understand Table 4 without having to read all of 2.X in detail. Otherwise, this section does not fit with table 4 and remains incomprehensive. All discussions of budget have been moved to the budget section.

P 33 L7: There is no justification to assign the tropical biome as C4. Most tropical tree species are C3 and they contribute to a large fraction of global GPP. Tropical zones are now calculated at C3.

P 33 L 8-10 Example of lack of adequate text editing in this manuscript. This can be significantly shortened. No need to mention Table 4 (see first sentence of Section) Done.

P 33 L 15: Check the unit. This is a stock, not a flux. It cannot be used to calculate an OCS flux. Where does this LRU value come from?

The unit had a typo: it should be per year. The LRU value now has a citation.

P 33 L 17-21. Should have been part of the discussion in Section 2.2.4, and is probably partly redundant

Removed.

P34 L 12 Unit missing. The last sentence is not necessary.

Unit included; sentence removed.

P35 L4: Ciais et al. 2014 missing in the reference list. Also, I don't think that this is correct. It is a key source of uncertainty in carbon cycle prediction

This sentence was taken out. It wasn't adding much to the paragraph.

P35 L11-P36 L5: This introduction is unnecessarily lengthy, as it provides information that is then repeated in the following section. Shorten as much as possible

The introduction has now been reduced in size considerably.

P36 L27-P37 L10. This can be summarized more efficiently to focus on what was found. The reader can refer to Hilton et al. to see which data sources were used, and which modeling approaches were used. I also don't understand "By using multiple estimates of each uncertainty (these are not explained)... quantitatively assessed each uncertainty source ...

The description of Hilton's work is now more concise and focusses more on conclusions than methods.

P37 L23-P38 L9. No need to explain the studies finding in all detail, in particular, which model did what.

The section has been reworked to be more concise.

P38 L8-9: This is a contradiction, please reword: A model bias cannot be only deducible by OCS, when it can also be seen in the CO2 record.

I see your point. This sentence is fixed.

Section 3.1.2. Does this not seem a bit hopeful, given the uncertainties in the overall OCS budget and findings discussed for instance in Section 2.5?

This section has been removed.

P42 / Section 3.2. I am surprised that is has taken 42 pages to arrive at this not insignificant fact, which is largely absent from any previous discussion.

Ideas from the introduction of Section 3.2 are now included in the Terrestrial Ecosystems introduction, Section 2.2.

P42 L 23-P43 L9: There is no need for such level of detail in a review&synthesis. Shorten to the essentials.

Shortened.

P43 L 25- P45 L6: I am missing the "Application" relevance of these paragraphs. The content seems to be more relevant for Section 2, in particular the soils section. This section also misses the review and synthesis character. I recommend it to be shortened to fit into this character. This has been shortened to essentials and the relevant information transferred to the soils section.

Section 4.1.: This section is disproportionally long compared to the other Sections. Please be more synthetic here. There is no need to describe individual panels of figures in this level of detail. Describe the main features and strength (to the extent that they have not been presented before).

The satellite data section now describes the data instead of going into too much detail about interpretation.

P 50 L5: This sentence is redundant. Calibration was mentioned before. Removed.

P50 L 2: Clarify or remove entire sentence.

Removed.

P51 L 19: Remove last sentence

Done

P52 L2: Available from where and whom? Give details or remove.

Removed.

P52 L8: This statement is not helpful, and inadequate given the other subsections in Section 4. The ice cores data section has now been expanded to include more description and include firn data.

Section 5: This is a shopping list of things that may be interesting to do, but falls short of the aspiration of being a "community research plan". Either write is this such that it becomes a plan, or reduce the ambition stated in the introduction.

Ambition reduced.

P52 L11: This sentence is redundant with the following few sentences. remove. Removed.

P52 L 25-26. If there are not enough measurements in desert (Table 4), why do you recommend not making any measurements there?

Good point. This is now included in the discussion.

P52 L26: Several boreal regions? This is somewhat imprecise a statement. Clarify. Yes, there's only one Boreal region. Corrected.

P53 L9: As has been outlined very well in the preceding 53 pages, this is not as straightforward as one would have hoped. I think the presentation needs to be a bit more balanced here. Sentence removed.

P53 L13: While I agree that such a data-base would allow to investigate global carbon / water / climate connections the data themselves will not generate a "massive advancement in our understanding", if they are not accompanied by improved process understanding to attribute observed sources and their variability. While I do not disagree that OCS may contribute to improved understanding, I do not think that the use of the word "massive" is appropriate here. Finally, I must have missed this in the manuscript, but as far as I understand from what has been said in the manuscript, OCS may potentially help to constrain the carbon-water exchanges in terrestrial ecosystems, but this is a long way from making inferences on the effect of carbon-cycle feedbacks on the global water cycles.

The idea here is that OCS observations would help evaluate ecosystem process-based models that would then be used to predict future scenarios. That is too many orders removed to make any sort of massive claim. This language is removed.

P53 L20-21. Acknowledgements should be focused on contributions to the manuscript, not the overall scientific community. If you want to highlight their contributions to the field in general, this should be done in the manuscript, at an appropriate place.

General contributors to the field are removed.

Tables Arrange tables 1-3 to conform to a similar format Region – Season – Flux estimate – Reference Done

Table 4 misses an approximation of the current atmospheric imbalance (evidenced as the mean average growth rate). Otherwise, it is impossible to determine the magnitude of the budget gap. Done.

Table 6: It would be good if you could separate somehow what is know from what needs to be known or measured.

A new column of "critical data gaps" has been added to Table 6.

Figures:

I did not assess the Figures, as they were not revised as requested.

They are revised in this new version.

	Reviews and Syntheses: Carbonyl Sulfide as a Multi-scale Tracer for Carbon and Water Cycles	 Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
5	Mary E. Whelan ^{1,2} , Sinikka T. Lennartz ³ , Teresa E. Gimeno ⁴ , Richard Wehr ⁵ , Georg Wohlfahrt ⁶ , Yuting Wang ⁷ , Linda M. J. Kooijmans ⁸ , Timothy W. Hilton ² , Sauveur Belviso ⁹ , Philippe Peylin ⁹ , Róisín Commane ¹⁰ , Wu Sun ¹¹ , Huilin Chen ⁸ , Le Kuai ¹² , Ivan Mammarella ¹³ , Kadmiel Maseyk ¹⁴ , Max Berkelhammer ¹⁵ , King-Fai Li ¹⁶ , Dan Yakir ¹⁷ , Andrew Zumkehr ² , Yoko Katayama ¹⁸ , Jérôme Ogée ⁴ , Felix M. Spielmann ⁶ , Florian Kitz ⁶ , Bharat Rastogi ¹⁹ , Jürgen Kesselmeier ²⁰ , Julia Marshall ²¹ , Kukka-Maaria Erkkilä ¹³ , Lisa Wingate ⁴ , Laura K. Meredith ²² , Wei He ⁸ , Rüdiger Bunk ²⁰ , Thomas Launois ⁴ , Timo Vesala ^{13,23,24} , Johan A. Schmidt ²⁵ , Cédric G. Fichot ²⁶ , Ulli Seibt ¹¹ , Scott Saleska ⁵ , Eric S. Saltzman ²⁷ , Stephen A. Montzka ²⁸ , Joseph A. Berry ¹ , J. Elliott Campbell ²⁹	 Formatted: Font:(Default) +Theme Body (Times New Roman)
10	 ¹Carnegie Institution for Science, 260 Panama St., Stanford, CA, USA, 94305 ²University of California, Merced, 5200 N. Lake Rd., Merced, CA, USA, 95343 ³GEOMAR Helmholtz-Centre for Ocean Research Kiel, Duesternbrooker Weg 20, Kiel, Germany, 24105 	
15	 ⁴INRA, UMR ISPA, 71 Avenue Edouard Bourleaux, F-33140, Villenave d'Ornon, France ⁵Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, USA, 85721 ⁶University of Innsbruck, Institute of Ecology, Sternwartestr, 15, Innsbruck, Austria, 6020 	
20	 ⁷Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, Bremen, Germany, 28359 ⁸Centre for Isotope Research, University of Groningen, Nijenborgh 6, Groningen, The Netherlands, 9747 AG 	
25	 ⁹Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Orme des Merisiers, Gif-sur-Yvette, France, 91191 ¹⁰Harvard School of Engineering and Applied Sciences, 20 Oxford Street, Cambridge, USA, 2138 ¹¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave. 7127 Math Sciences Building Los Angeles, CA, USA, 90095-1565 	
30	 ¹²UCLA Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) Jet Propulsion Laboratory, Caltech, 4800 Oak Groove Dr., M/S 233-200, Pasadena, CA, USA, 91109 ¹³Department of Physics, PO Box 68, FI-00014, University of Helsinki, Finland ¹⁴School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton 	
35	 Keynes, UK, MK178NY ¹⁵Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA, 60607 ¹⁶Environmental Sciences, University of California, Riverside, 900 University Ave, Geology 2460, Riverside, USA, CA 92521 	
	¹⁷ Earth and Planetary Sciences, Weizmann Institutute of Science, 234 Herzl st., Rehovot, Israel, 76100	 Formatted: Superscript
	13-43 Ueno Park, Taito-ku, Tokyo, Japan, 110–8713	Formatted: Not Superscript/ Subscript

¹⁹Forest Ecosystems and Society, Oregon State University, 374 Richardson Hall, Corvallis, USA, 97333

²⁰Max Planck Institute for Chemistry, Department of Multiphase Chemistry, P.O. Box 3060, Mainz, Germany, 55020

- ²¹Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, Germany, 7745
 ²²School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, USA, 85721
- ²³University of Helsinki, Department of Forest Sciences, PO Box 27, FI-00014, University of Helsinki, Finland
- ²⁴Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
 ²⁵University of Copenhagen, Department of Chemistry, Universitetsparken 5, Copenhagen, Denmark, DK-2100
- ²⁶Department of Earth and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA, USA, 02215
- ²⁷Department of Earth System Science/University of California, Irvine, University of California, Irvine, Irvine, CA, USA, 92697-3100
 ²⁸NOAA/ESRL/GMD, 325 Broadway, Boulder, USA, 80305

²⁹Environmental Studies Department, UC Santa Cruz, 1156 High St., Santa Cruz, CA, USA, 95064

20 Correspondence to: Mary E. Whelan (mary.whelan@gmail.com)

Abstract. For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO₂ during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important. The

- 25 majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO₂ are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO₂ without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon
- 30 uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.

Deleted: ¹⁸Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan, 183-8509 "

Formatted: Font:(Default) +Theme Body (Times New Roman)

1 Introduction

Carbonyl sulfide (OCS or COS) observations have emerged as a tool for understanding terrestrial carbon uptake and plant physiology. Some of the enzymes involved in <u>photosynthesis</u> by leaves also efficiently destroy OCS, so that leaves consume OCS whenever they are assimilating CO₂ (Protoschill-

- 5 Krebs and Kesselmeier, 1992; Schenk et al., 2004; Notni et al., 2007). The two molecules diffuse from the atmosphere to the enzymes along a shared pathway, and the rates of OCS and CO₂ uptake tend to be closely related (Seibt et al., 2010), Plants do not produce OCS and consumption in plant leaves is straightforward to observe. In contrast, CO₂ uptake is difficult to measure by itself. At ecosystem, regional, and global scales, Jarge respiratory CO₂ fluxes from other plant tissues and other organisms
- 10 <u>obscure the photosynthetic CO₂ signal, i.e. gross primary productivity (GPP)</u>, Measurements of OCS concentrations and fluxes can generate estimates of photosynthesis or of other leaf parameters, like stomatal conductance, at otherwise inscrutable temporal and spatial scales.

Several independent groups examined OCS and CO₂ observations and came to similar conclusions

- 15 about links between the plant uptake processes for the two gases. Goldan et al., (1988) linked OCS plant uptake, F_{OCS}, to <u>uptake of CO₂</u>, F_{CO2}, specifically referring to GPP. Advancing the global perspective, Chin and Davis (1993) thought F_{OCS} was connected to net primary productivity, which includes respiration terms, and this scaling was used in earlier versions of the OCS budget, e.g. Kettle et al., (2002). Sandoval-Soto et al., (2005) re-introduced GPP as the link to F_{OCS}, using available GPP
- 20 estimates to improve OCS and S budgets, which were their prime interest. Montzka et al. (2007) first proposed to reverse the perspective in the literature and suggested that OCS might be able to supply constraints on gross CO₂ fluxes, with Campbell et al., (2008) directly applying it in this way.

Since then, other applications have been developed, including understanding of terrestrial plant
productivity since the last ice age (Campbell et al., 2017a), <u>estimating canopy (Yang et al., 2018) and</u> stomatal conductance and enzyme concentrations on the ecosystem scale (Wehr et al., 2017),

assessment of the current generation of continental-scale carbon models (e.g. Hilton et al., 2017), and better tracing of large-scale atmospheric processes like convection and tropospheric-stratospheric mass

3

Deleted: CO ₂ assimilation		
Deleted:	(mainly carbonic anhydrase, CA)	

Deleted: Moreover, b

Deleted: ecause t

Deleted: — although the rate of OCS is about 1 million times lower than that of CO₂, owing to the ratio of their natural abundances

Moved (insertion) [11]

Deleted: This is particularly true at

Deleted: where the Deleted: further

Deleted: CO₂ uptake is difficult to measure by itself because the simultaneous respiration of CO₂ is conflated with photosynthetic CO₂ assimilation. The advantage of measuring OCS to estimate CO₂ uptake is that leaves do not produce OCS. **Deleted:** therefore

Deleted:

Moved up [11]: This is particularly true at ecosystem, regional, and global scales, where the large respiratory CO₂ fluxes from other plant tissues and other organisms further obscure the photosynthetic CO₂ signal, i.e. gross primary productivity (GPP).

Deleted: were the first to

Deleted: that

Deleted: probably the first to

Formatted: Font:(Default) +Theme Body (Times New Roman)

transfers. Many of these applications rely on the fact that the largest fluxes of atmospheric OCS are geographically separated: most atmospheric OCS is generated in surface oceans and is destroyed by terrestrial plants. In practice, these new applications often call for refining the terms of the global budget of OCS.

5

20

An abundance of new observations have been made possible by technological innovation. While OCS is the longest-lived and most <u>plentiful</u> sulfur-containing gas in the atmosphere, its low ambient concentration (~0.5 ppb) makes measurement challenging. Quantification of OCS in air used to require time-consuming pre-concentration before injection into a gas chromatograph with a mass spectrometer

- 10 or other detector. While extended time series remain scarce, <u>17 years of observations have been</u> generated by the National Oceanic and Atmospheric Administration (NOAA) Global Air Sampling Network (Montzka et al., 2007). A system for measuring flask samples for a range of important low-concentration trace gases was modified slightly in early 2000 to enable reliable measurements for OCS. These observations allowed for the first robust evidence of OCS as a tracer for terrestrial CO₂ uptake on
- 15 continental to global scales (Campbell et al., 2008). In 2009, a quantum cascade laser instrument was developed, followed by many improvements in precision and measurement frequency (Stimler et al., 2010a). Current instruments can measure OCS with < .010 ppb precision and a frequency of 10 Hz (Kooijmans et al., 2016), On larger spatial scales, many FTIR stations and 3 satellites have recently been used to retrieve spectral signals for OCS in the atmosphere.</p>

This review seeks to synthesize our collective understanding of atmospheric OCS, highlight the new questions that these data help answer, and identify the outstanding knowledge gaps to address moving forward. First, we present what information is known from surface level studies. Then we develop a scaled up global OCS budget that suggests where there are considerable uncertainties in the flux of OCS

4

25 to the atmosphere. We examine how the existing data has been applied to estimating GPP and other ecosystem variables. Finally, we describe where data is available and prioritize topics for further research.

Deleted: M

Deleted:	e
Deleted:	N
Deleted:	abundant
Deleted:	relative to other important carbon cycle gases
Deleted: source of s	For decades, OCS has been a compound of interest as a ulfate to the stratosphere.
Deleted:	Although e
Deleted:	were
Deleted:	a set
Deleted:	is being
Deleted:	parts-per-trillion
Deleted: Billesbach be mindful (Kooijman	, which is suitable for eddy covariance (Asaf, et al., 2013 et al., 2014) although users of these instruments should to correct OCS spectra for water vapor interactions s et al., 2016; Bunk et al., 2017)
Deleted:	currently in operation
Deleted:	and biospheric
Deleted:	to
Deleted:	innovative
Deleted:	will
Deleted:	to
Deleted:	that will need
Deleted:	be
Deleted:	ed
Deleted:	suggests a considerable missing source of
Deleted:	submit
Deleted:	a community research plan.
Moved d constrain o end, we ne	own [1]: The ultimate goal of OCS tracer research is to ur estimates of global carbon-climate feedbacks. To this ed to perform the modeling studies necessary to

constrain our estimates of global carbon-climate feedbacks. To this end, we need to perform the modeling studies necessary to determine the location, distribution, and feasibility of a tall tower network that would support regional-scale GPP estimates based on OCS uptake. In support of regional studies, our understanding of processes should be refined: in particular, lab-based studies with water or nutrient-stressed plants are needed. On the global scale, our understanding of the OCS budget needs to be reconciled, determining whether a large missing source is from the oceans or from anthropogenic activity. With these advances, OCS could become an essential tracer of plant CO_2 uptake that operates on temporal and spatial scales where there are currently large knowledge gaps.

2 Global Atmospheric OCS budget

The sulfur cycle is arguably the most perturbed element cycle on Earth. Half of sulfur inputs to the atmosphere come from anthropogenic activity (Rice et al., 1981). OCS is the most abundant and <u>longest-lived</u> sulfur-containing gas. Ambient concentrations of OCS are relatively stable over month-

5 long time scales, Trends observed from flask (Montzka et al., 2007), FTIR (Toon et al., 2018), and FTS measurements (Kremser et al., 2015) are <5% on decadal time scales. Over millennia, concentrations, may reflect large-scale changes in global plant cover (Aydin et al., 2016, Campbell et al., 2017a),</p>

Upscaling ecosystem estimates (Sandoval-Soto et al., 2005) and global transport models with atmospheric measurements (Berry et al., 2013, Suntharalingam et al., 2008) suggest that there may be a large missing source of OCS, sometimes attributed to the tropical oceans; however, individual observations from ocean vessels do not necessarily support this hypothesis (Lennartz et al., 2017). Anthropogenic emissions are an important OCS source to the atmosphere, but data for the relevant global industries are incomplete (Zumkehr et al., 2018). Here we analyze our current understanding of

15 global surface-atmosphere OCS exchange and generate new global flux estimates from the bottom up, with no attempt at balancing the atmospheric budget (Fig. 1). We use the convention that positive flux represents emission to the atmosphere and negative flux represents removal.

2.1 Global Atmosphere

- 20 OCS in the atmosphere is primarily generated from ocean and anthropogenic sources. A portion of these sources are indirect, emitted as CS₂ which can be oxidized to OCS (Zeng et al., 2016). Within the atmosphere, major sinks of OCS are OH oxidation in the troposphere and photolysis in the stratosphere. Between large volcanic eruptions, OCS is a significant source of sulfur to the stratosphere and was briefly entertained as a geoengineering approach to promote global dimming (Crutzen, 2006). However,
- 25 the global warming potential of OCS roughly balances whatever global cooling effect it might have (Brühl et al., 2012). Hydrolysis in the atmosphere plays a small role: while snow and rain were observed to be supersaturated with OCS (Belviso et al., 1989; Mu et al., 2004), even in the densest

Formatted: p1
Deleted: stable
Deleted: of all the
Deleted: es
Deleted: in the short term (months)
Deleted: ,
Moved down [12]: and in the longer term (millennia) may reflect large-scale changes in global plant cover (Aydin et al., 2016).
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New Roman)
Moved (insertion) [12]
Deleted: and in the longer term (
Deleted:)
Deleted:
Formatted: Font:(Default) +Theme Body (Times New Roman), English (US)
Deleted: Much work has been done to characterize OCS exchange over terrestrial and oceanic ecosystems, but important questions remain.
Formatted: Font:(Default) +Theme Body (Times New Roman)
Deleted: Most oxic soils only contribute a small flux to the overall ecosystem OCS exchange, but some agricultural soils have been shown to contribute large emissions to the atmosphere that offset up to 25% of the total OCS uptake flux (Kitz et al., 2017; Maseyk et al., 2014; Whelan et al., 2016). Process studies with agricultural soils demonstrate a potentially larger source under increasing water content and high soil pore CO ₂ (Bunk et al., 2017). No obvious pattern has emerged to explain why some soils exhibit large emissions.
Deleted: 7
Deleted: In this article, w
Deleted: uptake by the ecosystem
Moved (insertion) [8]
Deleted: Although OCS has been studied mostly as a proxy for photosynthesis, OCS uptake by vegetation is actually governed mechanistically by (i) the series of diffusive conductances off1
Formatted
Formatted
Formatted

supersaturated clouds the OCS in the air would represent 99.99% of the OCS present (Campbell et al., 2017b). Multiple lines of evidence support hydrolysis in plant leaves as the dominant removal mechanism of atmospheric OCS.

- 5 <u>The observed atmospheric OCS distribution suggests that seasonality is driven by terrestrial uptake in</u> the Northern Hemisphere and oceanic fluxes in the Southern Hemisphere (Montzka et al. 2007). Improvements in the OCS budget were derived through inverse modeling of NOAA tower and airborne observations on a global scale (Berry et al., 2013; Launois et al., 2015b; Suntharalingam et al., 2008). Lower concentrations were generally found in the terrestrial atmospheric boundary layer compared to
- 10 the free troposphere during the growing season, and amplitudes of seasonal variability were enhanced at low-altitude stations, particularly those situated in mid-continent.

Total column measurements of OCS <u>from</u> ground-based Fourier transform spectroscopy (FTS) <u>show</u> trends in OCS concentrations coincident with the rise and fall of global rayon production which creates

- 15 <u>OCS indirectly (Campbell et al., 2015).</u> Kremser et al. (2015) found an overall positive tropospheric <u>rise</u> of 0.43–0.73%/y at three sites in the southern hemisphere from 2001 to 2014. <u>The trend was interrupted</u> by a sharply decreasing <u>interval</u> from 2008 to 2010, also observed in the global surface flask measurements (Fig. S2, Campbell et al., 2017a). A similar <u>but smaller</u> dip was observed in the stratosphere, indicating that the trends are driven by processes within the troposphere. <u>Over</u>
- 20 Jungfraujoch, Switzerland, Lejeune et al. (2017) observed a decrease in tropospheric OCS from 1995 to 2002 and an increase from 2002 to 2008; after 2008 there was no significant trend observed. <u>An</u> increase in OCS concentrations from the mid-20th century with a decline around the 1980s were also recorded in firn air (Montzka et al., 2004), following historic rayon production trends.
- 25 Changes in terrestrial OCS uptake and possibly the ocean OCS source can be observed from the 54,000 year record from ice cores. Global OCS concentrations dropped 45 to 50 % between the last glacial maximum and the start of the Holocene (Aydin et al., 2016). By the late Holocene, concentrations rose and were the highest recorded in the 1980s (Campbell et al., 2017).

6

Moved down [4]: The tropospheric sink owing to oxidation by OH is estimated to be in the range $82-130 \text{ Gg S y}^{-1}$ (Berry et al., 2013; Kettle et al., 2002; Watts, 2000), and the stratospheric sink is in the range $30-80 \text{ Gg S y}^{-1}$, or $50 \pm 15 \text{ Gg S y}^{-1}$ (Berly et al., 2008; Chin and Davis, 1995; Crutzen, 1976; Engel and Schmidt, 1994; Krysztofiak et al., 2015; Turco et al., 1980; Weisenstein et al., 1997).

Deleted: Our understanding of the OCS balance in the atmosphere has evolved as new observations have become available. The
Deleted: Spatial and temporal trends of atmospheric OCS
Formatted
Deleted: that emerge from observations
Formatted[11]
Deleted: dominantly influenced
Formatted[6]
Formatted[8]
Formatted[9]
Formatted[12]
Deleted: ic summer,
Deleted: by
Deleted: .The global atmospheric flask sampling network [13]
Deleted: (
Deleted: has served as a basis for understanding the distr([14])
Deleted: also
Deleted: those
Deleted: Moreover, 1
Deleted: (as opposed to coastal marine sites)
Deleted: These lines of evidence all support the notion tha [15]
Deleted: •
Deleted: have been made with
Deleted: . Within the accuracy of those measurements the [16]
Deleted: trend
Deleted: However, the increasing
Deleted: trend
Deleted: . This dip was
Deleted: , but was smaller than in the troposphere
Deleted: Also,
Deleted: changing trends over Jungfraujoch, Switzerland, with
Moved down [13]: Smaller datasets of OCS vertical pro [17]
Deleted: The generally smaller trends in the stratosphere [[18]
Deleted:

<u>Recommendations</u>; Modern seasonal and annual variability of OCS can be validated with smaller vertical profile datasets, e.g. Kato et al. (2011) and data from flights e.g. Wofsy et al., (2011). Interhemispheric variability on millennia time scales requires ice core data from the Northern

5 Hemisphere: all current ice core data is from the Antarctic (Aydin et al., 2016),

2.2 Terrestrial ecosystems

OCS uptake by terrestrial vegetation is governed mechanistically by the series of diffusive conductances of OCS into the leaf and the reaction rate coefficient for OCS destruction by CA (Wohlfahrt et al., 2012), though it can also be destroyed by other photosynthetic enzymes, e.g. RuBisCo (Lorimer and

- 10 Pierce, 1989), CA is present both in plant leaves and soils, although soil uptake tends to be proportionally much lower than plant uptake. In soil systems, OCS uptake provides information about CA activities within diverse microbial communities. OCS uptake over plants integrates information about the sequential components of the diffusive conductance (the leaf boundary layer, stomatal, and mesophyll conductances) and about CA activity, all important aspects of plant and ecosystem function.
- 15 <u>Stomatal conductance in particular is a prominent research focus in its own right, as it couples the</u> carbon and water cycles via transpiration and photosynthesis.

Terrestrial plant OCS uptake has typically been derived by scaling estimates of the plant CO₂ uptake with proportionality coefficients, such as the <u>empirically-derived</u> leaf relative uptake rate ratio (LRU;
20 Sandoval-Soto et al., 2005):

 $F_{OCS} = F_{CO2}[OCS][CO_2]^{-1} LRU$

(1)

where F_{OCS} is the uptake of OCS into plant leaves, F_{CO2} is CO₂ uptake, [OCS] and [CO₂] are the
ambient concentrations of OCS and CO₂, and LRU is the ratio of the OCS to CO₂ uptake, which is a function of plant type and water and light conditions. The concept of the LRU is a simplification of the leaf CO₂ and OCS uptake process. The F_{CO2} to F_{PCS} relationship depends on the leaf conductance to

7

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Italic

Deleted: With the commercially available quantum cascade laser spectrometer (Commane et al., 2013; Kooijmans et al., 2016; Stimler et al., 2010a), continuous atmospheric concentration measure of OCS allow for regional source and sink studies (Belviso et al., 2016; Kooijmans et al., 2016). In situ vertical profile measurements of OCS have been obtained in the altitude range from 14 to 30 km at tropical and polar latitudes using the SPIRALE, a tunable diode laser spectrometer (Krysztofiak et al., 2015). The uncertainty of the in situ OCS measurements increases with decreasing pressures (higher altitude), ranging from 3.3% below 18 km to more than 30% ... [19] Formatted: Line spacing: 1.5 lines Moved (insertion) [13] Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: S Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: of OCS vertical profiles could be used to validate these broader trer Formatted: Font:(Default) + Theme Body (Times New Roman) Deleted: Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: Formatted: Font:(Default) +Theme Body (Times New Roman) **Deleted:** Uptake by land plants is thought to represent the most important sink for OCS, estimated to account for 50–82% o(... [20]) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: The t Deleted: FCO2 is often equated with GPP, however photorespiration in C3 plants confuses the matter (Wohlfahr ... [21] Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript

Formatted: Font:(Default) +Theme Body (Times New Roman)

each gas as it changes with the difference between concentrations inside and outside of the leaf. This requires further modeling to anticipate within leaf concentrations of OCS and CO₂, which cannot be observed directly. To keep the simplicity of the approach, especially when using OCS to evaluate models with many other built-in assumptions, the data-based LRU approximation is sufficient in many

- 5 cases, We have compiled LRU data (n = 53) from an earlier review and merged them with more recent published studies (Berkelhammer et al., 2014; Stimler et al., 2010b, 2011, 2012). The LRUs compiled in Sandoval-Soto et al., (2005) were partly re-calculated in Seibt et al., (2010) to account for the lower gas concentrations in the sample cuvettes, For C₃ plants, OCS uptake behavior is attributed to CA activity (Yonemura et al., 2005). As shown in Fig. 2, LRU estimates for C₃ species under well-
- 10 illuminated conditions are positively skewed, with 95 % of the data between 0.7 to 6.2, which coincides with the <u>theoretically</u> expected range of 0.6 to 4.3 (Wohlfahrt et al. 2012). The median, 1.68, is quite close to values reported and used in earlier studies and provides a solid "anchor ratio" for linking C₃ plant OCS uptake and photosynthesis in high light. LRU data are fewer for C₄ species (n = 4) converging to a median of 1.21, reflecting more efficient CO₂ uptake rates compared to C₃ species
- 15 (Stimler et al., 2011).

LRU remains fairly constant with changes in boundary layer and stomatal conductance but is expected to deviate due to changes in internal OCS conductance and CA activity (Seibt et al., 2010; Wohlfahrt et al., 2012). The primary environmental driver of LRU is light, and an increase in LRU with decreasing

20 photosynthetically active radiation has been observed at both the leaf (Stimler et al., 2010b, 2011) and ecosystem scale (Maseyk et al., 2014; Commane et al., 2015; Wehr et al., 2017; Yang et al., 2018). This behaviour arises because photosynthetic CO₂ assimilation is reduced in low light whereas OCS uptake continues since the reaction with CA is not light dependent (Stimler et al., 2011). Note that since low light reduces CO₂ uptake, the flux-weighted effect of the variations in LRU on estimating F_{CO2} (or GPP)

8

25 is also reduced on daily or longer time scales (Yang et al., 2018).

Comment [MW1]: I describe Dennis' Ohm's law approach and why we are not using it here.

Deleted: has been instrumental, both in calculating the plant OCS sink from estimates of plant CO₂ uptake in global modeling studies and for experimentally estimating GPP from ecosystem-scale OCS flux measurements (e.g. Asaf et al., 2013) Deleted: For the purpose of this synthesis, w

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Subscript Formatted: Font:(Default) +Theme Body (Times New

Roman)

Deleted: Fig. 3 Deleted: predicted by

Deleted: (

Deleted: on a theoretical basis

Deleted:

Deleted: (e.g. Asaf et al., 2013; Berkelhammer et al., 2014)

Moved down [14]: The causes for the observed variability in Fig. 3, whether reflective of differences in environmental conditions or differences between plant species (e.g. in lear internal conductance for OCS or in carbonic anhydrase activity), are still poorly understood and hamper the specification of defensible plant functional type-specific LRUs (Sandoval-Soto et al., 2005) and the development of models with non-constant LRU (Wohlfahrt et al., 2012).

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: As detailed by Seibt et al. (2010) and Wohlfahrt et al. (2012), the

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: behavior

Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Not Highlight

Moved down [15]: Relatively little is known regarding ... [22]
Formatted ... [23]

An additional complication is introduced by soil and non-vascular plant processes that both emit and consume OCS, with a few studies reporting net OCS emission under certain conditions comparable in magnitude to net uptake rates during peak growth. Generally, soil OCS fluxes are low compared to plant uptake with a few exceptions (Fig. 3). In non-vascular plants, OCS uptake continues in the dark

- 5 even when photosynthesis ceases (Gries et al., 1994; Kuhn et al., 1999; Kuhn and Kesselmeier, 2000; Gimeno et al., 2017; Rastogi et al., 2018). Unlike other plants, bryophytes and lichens lack responsive stomata and protective cuticles to control water losses. OCS emissions from these organisms seems to be primarily driven by temperature (Gimeno et al., 2017).
- 10 The yearly average land OCS flux rate in recent modeling studies of global budgets (i.e. plant and soil) uptake minus soil emissions) ranges from -2.5 to -12.9 pmol m⁻² s⁻¹ (Fig. 3). The only study reporting year-round OCS flux measurements is from a mixed temperate forest, which was a sink for OCS with a net flux of -4.7 pmol m⁻² s⁻¹ during the observation period (Commane et al., 2015). Daily average OCS fluxes during the peak growing season are available from a larger selection of studies and cover the range
- 15 from -8 to -23 pmol m-2 s-1, excluding Xu et al., (2002) which found a surprisingly high uptake (-97 \pm 11.7 pmol m⁻² s⁻¹) from the relaxed eddy accumulation method (Fig. 3). Despite the limited temporal and spatial coverage, these data suggest that some of the larger global land net sink estimates may be too high (Launois et al., 2015b).
- 20 <u>Recommendations:</u> Available observations are limited in time and do not cover tropical ecosystems, which contribute almost 60% of global GPP (Beer et al., 2010). More vear-round measurements from a larger number of biomes, in particular those presently underrepresented, are required to provide reliable bottom-up estimates of the total net land OCS flux. The causes for the observed variability in Fig. 2 require more investigation because they hamper the specification of defensible plant functional type-
- 25 specific LRUs (Sandoval-Soto et al., 2005) and the development of models with non-constant LRU (Wohlfahrt et al., 2012). Relatively little is known regarding using OCS to estimate CA activity (Wehr et al., 2017), which is a promising new avenue of OCS research, Within this context, plant physiological

Moved (insertion) [16]		
Deleted: Soils		
Deleted: contain		
Deleted: (Sun et al., 2015; Whelan et al., 2016)		
Deleted: (Fig. 2)		
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Deleted:		
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt		
Formatted: Comment Text		
Deleted:		
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Deleted: see also		
Moved up [16]: Soils contain processes that both emit and consume OCS (Sun et al., 2015; Whelan et al., 2016), with a fe studies reporting net OCS emission under certain conditions comparable in magnitude to net uptake rates during peak growt (Fig. 2).	w h	
Formatted: Font:(Default) +Theme Body (Times New Roman), Italic		
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Formatted: Font:(Default) +Theme Body (Times New Roman), English (UK)		
Formatted: Normal		
Moved (insertion) [17]		
Deleted: (see Fig. 1)		
Deleted: At present, the processes and drivers underlying the emissions are poorly understood – some evidence points to photo/thermo-production from dead plant matter playing a role et al., 2017; Whelan et al., 2016; Whelan and Rhew, 2015). Me year-round measurements from a larger number of biomes, in particular those presently underrepresented, are required to pro reliable bottom-up estimates of the total net land OCS flux (see 1).	se (Kitz ore vide Fig.	
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Moved up [17]: More year-round measurements from a .	. [24]	
Moved (insertion) [14]		
Deleted: Fig. 3		
Deleted: , whether reflective of differences in environmer	. [25]	
Deleted:		
Moved (insertion) [15]		

Deleted:

and enzymatic adaptations to increasing CO₂ and their effects on the exchange of OCS are of special interest.

2.2.1 Forests

OCS has the potential to overcome many difficulties in studying the carbon balance of forest

- 5 ecosystems. To partition carbon fluxes, respiration is often quantified at night when photosynthesis has ceased and turbulent airflow is reduced (Reichstein et al., 2005). This method has systematic uncertainties, e.g. less respiration happens during the day than at night (Wehr et al., 2016). Partitioning with OCS is based on daytime data and does not rely on modeling respiration with limited nighttime flux measurements.
- 10

Forests are daytime net sinks for atmospheric OCS when photosynthesis is occurring in the canopy (Table 1). While the relative uptake of OCS to CO₂ by leaves appears stable in high light conditions, the ratio changes in low light when the net CO₂ uptake is reduced (Stimler et al., 2011; Wehr et al., 2017; Rastogi et al., 2018). Forest soil interaction with OCS has been found to be small with respect to leaf

- 15 uptake (Fig. 3) and straightforward to correct (Belviso et al., 2016; Wehr et al., 2017). Sun et al. (2016) noted that litter was the most important component of soil OCS fluxes in an oak woodland. Otherwise, forest ecosystem OCS uptake appears to be dominated by tree leaves, both during the day and at night (Kooijmans et al., 2017).
- 20 <u>Recommendations;</u> Tropical forest OCS fluxes would be informative for global OCS modeling efforts and are currently absent from the literature. The OCS tracer approach is particularly useful in high humidity or foggy environments like the tropics, where traditional estimates of carbon uptake variables via water vapor exchange are ineffective. Additionally, OCS observing towers upstream and downstream of large forested areas could resolve the synoptic scale variability in forest carbon uptake

25 (Campbell et al., 2017b).

Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript Formatted: Font:(Default) +Theme Body (Times New

Roman)

Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), Italic Formatted: Font:(Default) +Theme Body (Times New

2.2.2 Grasslands

<u>OCS</u> observations can address the need for additional studies on primary productivity in grassland ecosystems. Grasslands generally are considered to behave as carbon sinks or be carbon-neutral but appear highly sensitive to drought and heat waves and can rapidly shift from neutrality to a carbon

- 5 source (Hoover and Rogers, 2016). Currently OCS grassland studies are scarce (Fig. 3), but indicate a significant role for soils. Theoretical deposition velocities for grasses of 0.75 mm s⁻¹ were reported by Kuhn et al. (1999) and LRU values of 2.0 were reported by Seibt et al. (2010). Whelan and Rhew (2016) made chamber-based estimates of ecosystem fluxes from a California grassland with a <u>distinct growing and non-growing season</u>. Total ecosystem fluxes <u>averaged</u> -26 pmol m⁻² s⁻¹ during the wet
- 10 season and -6.1 pmol m⁻² s⁻¹ during the dry season. During the wet season, simulated rainfall increased the sink strength. Light and dark flux estimates yielded similar sinks, suggesting either a large role for soils in the ecosystem flux or the presence of open stomata under dark conditions. Yi and Wang (2011) undertook chamber measurements over a grass lawn in subtropical China. Ecosystem fluxes of -19.2 pmol m⁻² s⁻¹ were observed. They noted <u>average</u> soil fluxes of -9.9 pmol m⁻² s⁻¹ that were occasionally
- 15 greater than 50% of the total ecosystem flux. The large contribution of soils to the grassland OCS flux was attributed to atmospheric water stress on the plants that led to significant stomatal closure and reduced midday uptake by vegetation. More recently, Gerdel et al. (2017) reported daily average ecosystem-scale OCS fluxes of -28.7 \pm 9.9 pmol m⁻² s⁻¹ for a productive managed <u>temperate</u> grassland.
- 20 Solar radiation has been identified recently as a controlling factor of grassland soil <u>OCS emissions</u>. Kitz et al. (2017) highlighted that in grasslands, primary production is devoted to belowground biomass early in the growing season, leading to a situation where exposed soils may be emitting photo-produced OCS simultaneously with high GPP. If unaccounted for, this would lead to an underestimation of the plant component of the total ecosystem OCS flux (Kitz et al., 2017; Whelan and Rhew, 2016).

25

Recommendations: Grassland plants tend to include mixtures of C₃ and C₄ species with a relative abundance and importance to GPP evolving over the season. These different photosynthetic pathways are known to exhibit different LRU values. On the one hand, this poses a challenge to direct estimations

11

Deleted: . Deleted: 1

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

	Deleted: Grasslands cover ~20% of the terrestrial surface and store ~30% of the world's soil carbon (Hungate et al., 1997; Scurlock and Hall, 1998). Although grasslands store less carbon per area than forests, they are more ubiquitous and contain a larger portion of the terrestrial carbon pool (Parton et al., 1995). Grasslands generally are considered to behave as carbon sinks or be carbon-
	neutral but appear highly sensitive to drought and heat waves and can rapidly shift from neutrality to a carbon source (Hoover and Rogers, 2016). Studies on the response of grasslands to elevated CO ₂ suggest that the sink strength temporarily increases. Because much of this carbon is stored as labile pools, it is unclear whether the effect has long-term consequences (Hungate et al., 1997). The lability of these pools and their dynamics are difficult to study and point to important uncertainties and challenges in projecting the role these scorewares will have up a changing carbon guide. Existing
	work highlights the need for additional studies on primary productivity in grassland ecosystems, which could be addressed with OCS observations.
	Formatted: Font:(Default) +Theme Body (Times New Roman)
ľ	Deleted: In an early field-based study on the topic, Mihal
ĺ	Deleted: presented
l	Deleted: Mediterranean climate
	Deleted: They found t
	Deleted: of
Į	Deleted: Individual flux estimates ranged from -75 pmol 1 [29]
	Deleted: moisture
J	Deleted: While this study did not separate soil and plant [[30]
J	Deleted: In a similar study,
ļ	Deleted: on average
ţ	Deleted: temperature
ł	Deleted: flux
ſ	Deleted: used transparent chambers over a temperate gras [31]
Ą	Formatted [32]
Ą	Formatted: Normal1, Line spacing: 1.5 lines
Ą	Formatted [33]
Ą	Deleted: Existing studies suggest a pressing need to under [34]
Ą	Deleted: This would involve sustained chamber measure [35]
ł	Deleted: s
ł	Deleted: varying
ţ	Deleted: whose
ſ	Deleted: evolves
ſ	Deleted: in response to temperature and soil moisture
ſ	Deleted: (see Sect. 2.1 introduction) and are expected to

of GPP from OCS; on the other hand, observations may provide a unique opportunity to study C₃ and C4 contributions to GPP. Another pressing research question is the effect of the changing leaf area index of grasses on radiation and related soil emissions,

5 2.2.3 Wetlands and peatlands

Much of the early work on OCS terrestrial-atmospheric fluxes was conducted in wetlands, perhaps because of the large emissions observed there. Unfortunately, many of these first surveys were conducted with sulfur-free sweep air, significantly biasing the observed net OCS flux compared with that under ambient conditions (Castro and Galloway, 1991).

10

OCS fluxes have been measured in a variety of wetland ecosystems, including peat bogs, coastal salt marshes, tidal flats, mangrove swamps, and freshwater marshes. Observed ecosystem emission rates vary by two orders of magnitude and generally increase with salinity (Fig. 4). OCS emissions in salt marshes usually range from 10 to 300 pmol m⁻² s⁻¹ (Aneja et al., 1981; DeLaune et al., 2002; Li et al.,

15 2016; Steudler and Peterson, 1984, 1985; Whelan et al., 2013), whereas freshwater marshes and bogs have mean emission rates below 10 pmol m⁻² s⁻¹ (DeLaune et al., 2002; Fried et al., 1993) or act as net sinks due to plant uptake (Fried et al., 1993; Liu and Li, 2008; de Mello and Hines, 1994).

Although plants are generally OCS sinks, wetland plants may appear as OCS sources. Emergent stems

- 20 can act as conduits transmitting OCS produced in the soil to the atmosphere, or OCS may be a byproduct of processes related to osmotic management by plants in saline environments. For example, in a Batis maritima coastal marsh, vegetated plots were found to have up to four times more OCS emission than soil-only plots (Whelan et al., 2013). Growing season OCS emissions may greatly exceed those in the non-growing season (Li et al., 2016), but whether this is caused by environmental factors like
- temperature and soil saturation or by the developmental stage of plants is unclear. 25

Recommendations; Assessing the role of plants in the wetland OCS budget would require careful investigation of OCS transport via plant stems and OCS producing capacity of aboveground plant 12

Deleted: evolving ERU values

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: 2.2.2 Forests [... [37]] Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Text 1 Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: Wetlands cover approximately 6% of the global land area (Lehner and Döll, 2004), but contribute a proportionally large amount to the source of reduced sulfur gases to the atmosphere Deleted: While it appears that all other terrestrial plants are net sinks of OCS, wetland plants may produce OCS or may act as passive conduits for gases produced in the soil (Whelan et al., 2013). Deleted: tundra Deleted: tundra Deleted: OCS exchange in brackish wetlands has been reported only in DeLaune et al. (2002), which found similar emission rates compared with saline coastal wetlands. Deleted: if their s Deleted: The life cycle of wetland plants may also influence their ability to transmit belowground trace gases to the atmosphere, due to variation in the plant structures involved in gas transport, e.g.

rooting depth and plant height (Chanton et al., 1997) Deleted: plant-soil system

Deleted: that

Formatted: Font:(Default) +Theme Body (Times New Roman), Italic

Formatted: Font:(Default) +Theme Body (Times New Roman)

materials and the rhizosphere. More work needs to be done on the evolution of OCS in soils with low redox potential. Additional experiments should aim to help scale up wetland OCS fluxes.

2.2.4 Lakes and rivers

- 5 The role of lakes and rivers in the global OCS budget is not well known. OCS production and consumption have been studied in ocean waters, and these processes most likely occur similarly in freshwater. In the ocean, OCS is produced photochemically from chromophoric dissolved organic matter (CDOM) (Ferek and Andreae, 1984) and by a light-independent production that has been linked to sulfur radical formation (Flöck et al., 1997; Zhang et al., 1998). A mechanism for OCS photo-
- 10 production was recently described for lake water (Du et al., 2017). Dissolved OCS (Fig. 5) is consumed by hydrolysis at a rate determined by pH, salinity, and temperature (Fig. 6; Elliott et al., 1989).

OCS is present in freshwaters at much higher concentrations than those found in the ocean (Table 2). This might be due to more efficient mixing in the ocean surface waters compared to lakes. However,

- 15 Richards et al. (1991) found that the concentration remained at the same throughout the water column and observed a midsummer OCS concentration minima in 8 of the 11 studied lakes. This latter point was surprising because photochemical production should be highest during the summer months. It has been demonstrated that ocean algae take up OCS, which might explain the low concentrations when light levels are high; however, Blezinger et al. (2000) concluded that the consumption term should be 20 small compared to hydrolysis and photo-production.

To our knowledge, there have not yet been any studies on OCS fluxes using direct flux measurement methods over freshwaters. Richards et al. (1991) calculated OCS fluxes from different lakes in Ontario, Canada, based on concentration measurements and wind-speed-dependent gas transfer coefficients,

resulting in fluxes of 2-5 pmol OCS m⁻² s⁻¹. In another study, Richards et al. (1994) found fluxes of 2-25 34 pmol OCS m⁻² s⁻¹ in salty lakes. These fluxes are 5 to 75 times higher than those measured in the oceans (Lennartz et al., 2017). There is also an indirect atmospheric OCS source from carbon disulfide (CS₂) production (Richards et al., 1991, 1994), for which little data exists,

13

Deleted: The contribution of global wetlands to the atmospheric OCS budget needs to be better constrained to assess regional importance and whether wetland OCS emissions will affect othe applications of the OCS tracer, e.g. interpretation of historical GPP changes from ice core data when wetlands were more prevalent. Often global ecosystem models do not have the resolution necessary to take into account wetland contributions, though there is a potential for significant effects (Whelan et al., 2013). What happens to wetland OCS exchange following land use change (for example, saltwater intrusion into freshwater marshes)? Would we then be ab to discern the effect of sea level rise on the global OCS budget as coastal wetlands are inundated and destroyed? We need to characterize soil and vegetation components of OCS exchange across major wetland types, make longer-term observations of wetland OCS exchange to understand the environmental controls over variability, and implement wetland OCS processes in land biosphere models for regional and global simulations. Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: Freshwaters are supersaturated with CO2 (Cole et al., 1994), contributing significant emissions to the global atmospheric carbon budget (Bastviken et al., 2011). Deleted: lakes and rivers Deleted: Recently, a Deleted: 4 Deleted: 5 Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: level

Deleted: In addition to direct emissions of OCS from freshwaters Deleted: Deleted: can be oxidized into OCS (Wang et al., 2001)

Recommendations; Measurements in lakes are easier than on the open ocean while generating more information on the processes that may drive OCS production in both regions. Flux data by eddy covariance (EC) and floating chamber methods from lakes and rivers are <u>suggested</u>. <u>Concurrent</u>

5 measurements <u>should target</u> understanding of the biotic and abiotic factors driving water-air exchange of OCS to provide the basis for upscaling aquatic OCS <u>fluxes</u>, including <u>CS₂</u>, concentrations.

2.3 Other terrestrial OCS flux components 2.3.1 Soils

10 Measurements show that <u>non-wetland</u> soils are predominantly a sink for OCS and wetland (anoxic) soils are typically a source of OCS_OCS production has also been observed in <u>most non-desert</u> oxic soils when dry, with particularly large emissions from agricultural soil (Fig. 7).

In the field, reported oxic soil OCS fluxes range from near zero up to -10 pmol m⁻² s⁻¹, with average

- 15 uptake rates typically between 0 and <u>-5 pmol m⁻² s⁻¹</u>, Higher uptake fluxes of -10 -20 pmol m⁻² s⁻¹ have been observed in a grassland soil (Whelan and Rhew, 2016), wheat field soils (Kanda et al., 1995; Maseyk et al., 2014), unplanted rice paddies (Yi et al., 2008) and bare lawn soil (Yi and Wang, 2011). However, under warm and dry conditions, fluxes approached zero in grasslands (Berkelhammer et al., 2014; Whelan and Rhew, 2016) and an oak woodland (Sun et al., 2016). The highest reported <u>uptake</u>
- 20 <u>rates</u> are nearly -40 pmol m⁻² s⁻¹, following simulated rainfall in a grassland (Whelan and Rhew, 2016). Sun et al. (2016) also reported a rapid response to re-wetting following a rainstorm in a dry Mediterranean woodland.

Variations in soil OCS fluxes measured in the field have been linked to temperature, soil water content,
nutrient status, and CO₂ fluxes. Uptake rates have been found to increase with temperature (White et al., 2010; Yi et al., 2008) but also decrease with temperature such that OCS fluxes approached zero or shifted to emissions at temperatures around 15–20°C (Maseyk et al., 2014; Steinbacher et al., 2004; Whelan and Rhew, 2016; Yang et al., 2018). It can be difficult to separate the effects of temperature and soil water content in the field, and seasonal decreases in OCS fluxes may also be associated with lower

Deleted: It is easier to take m		
Formatted: Font:(Default) +Theme Body (Times New Roman), Italic		
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Deleted: To support this, f		
Deleted: required		
Deleted: For proper interpretations of EC fluxes, one needs to monitor other variables in addition to the OCS flux: downwelling and upwelling radiation, wind velocity, friction velocity, CS ₂ , CO ₂ , sensible and latent heat fluxes, water temperature, water-surface OCS concentration, pH, and CDOM. These		
Deleted: would		
Deleted: facilitate		
Deleted: and would		
Deleted: balances		
Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript		
Formatted: Font:(Default) +Theme Body (Times New Roman)		
Deleted: The contribution of soils to the atmospheric budget of OCS has been studied for a few decades in both the field and the laboratory. The soil-atmosphere exchange of OCS has been measured in a range of environments, and these m		
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Bold, Font color: Auto		
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Bold		
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Bold, Font color: Auto		
Formatted: Font:(Default) +Theme Body (Times New Roman), Bold		
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Bold, Font color: Auto		
Formatted[38]		
Formatted: Normal1, Line spacing: 1.5 lines		
Deleted: The contribution of soils to the atmospheric bud [39]		
Deleted: is		
Deleted: in non-wetland soils.		
Deleted: W		
Deleted: , but		
Deleted: some agricultural		
Formatted		
Deleted: (see Fig. 7)		
Deleted: fluxes		
Formatted		

soil water content (Steinbacher et al., 2004; Sun et al., 2016). Uptake rates have also been found to be stimulated by nutrient addition in the form of fertilizer or lime (Melillo and Steudler, 1989; Simmons, 1999).

- 5 Several field studies have found that OCS uptake is positively correlated with rates of soil respiration, or CO₂ production (Yi et al., 2007), but these relationships <u>also</u> vary with temperature (Sun et al., 2016, 2017), soil water content (Maseyk et al., 2014), or high CO₂ conditions (Bunk et al., 2017). The relationship with respiration is attributed to the role of microbial activity in OCS consumption, and similar covariance has been seen between OCS and H₂ uptake (Belviso et al., 2013), a microbially
- 10 driven process. Berkelhammer et al. (2014) and Sun et al. (2017) have found that the OCS/CO₂ flux ratio has a non-linear relationship with temperature, such that the ratio decreases (becomes more negative) at lower temperatures but is constant at higher temperatures. Kesselmeier and Hubert (2002) observed both OCS uptake and emission by beech leaf litter that was related to microbial respiration rates. Sun et al. (2016) determined that most of the soil OCS uptake in an oak woodland occurred in the
- 15 litter layer, composing up to 90% of the small surface sink,

Extensive laboratory studies <u>demonstrate</u> that OCS uptake is mainly governed by biological activity and physical constraints. Kesselmeier et al. (1999), van Diest and Kesselmeier (2008), and Whelan et al. (2016) characterized the response of several controlling variables such as atmospheric OCS mixing

- 20 ratios, temperature, and soil water content or water-filled pore space. Clear temperature and soil water content optima are observed for OCS consumption. These optima vary with soil type but indicate water limitation at low soil water content and diffusion resistance at high soil water content. Additionally, other organism-mediated or abiotic processes in the soil, such as photo- or thermal degradation of soil organic matter (Whelan and Rhew, 2015), can play an important role,
- 25

The strong activity of sulfate reduction metabolism in anoxic environments is thought to drive OCS production in anoxic wetland soils (see Fig. 4) (Aneja et al., 1981; Kanda et al., 1992; Whelan et al., 2013; Yi et al., 2008). Temperature probably drives the observed seasonal variation of OCS production,

15

Deleted: also

-{	Deleted: or
	Formatted: Font:(Default) +Theme Body (Times New Roman)
Ì	Formatted: Font:(Default) +Theme Body (Times New Roman)
1	Deleted: which is also
	Deleted: also

Deleted: The links between OCS and CO₂ production extend to the litter layer (Kesselmeier and Hubert, 2002; Sun et al., 2016). Kesselmeier and Hubert (2002) observed both OCS uptake and emission by beech leaf litter that was related to microbial respiration rates, a finding that may indicate OCS production within an elevated CO₂ environment, and Sun et al. (2016) determined that most of the soil OCS uptake in an oak woodland occurred in the litter layer. Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: have added further insight into the mechanisms underlying soil OCS exchange, demonstrating

Deleted: , demonstrating

Deleted: c

Deleted: , and are responses characteristic of biological processes
Deleted: in terrestrial-atmospheric OCS exchange

Deleted: Under typical conditions, most soil is a small sink of OCS, probably due to the prevalence of carbonic anhydrase in microbial communities (Kesselmeier et al., 1999).

Deleted: Soil OCS emissions are usually associated with **Formatted:** Font:(Default) +Theme Body (Times New Roman), 12 pt

Deleted:), due to the strong activity of sulfate reduction metabolism in anoxic environments (Schlesinger and Bernhardt, 2012

Deleted: Much early work on the subject used sulfur-free sweep air leading to biased results, and few soil-only field measurements with ambient air exist, e.g. Whelan et al., (2013) found fluxes ranging from 1 to 27 pmol m² s¹. We integrate a "global" estimate of wetland fluxes in Sect. 2.7. Temperature and redox potential are major abiotic drivers controlling OCS production from wetland soils.

with higher fluxes in the summer than winter (Whelan et al., 2013). <u>How much OCS escapes to the atmosphere depends</u> on transport in the soil column. Tidal flooding <u>may</u> inhibit OCS emission from wetland soils <u>due to decreasing gas diffusivity with increasing soil saturation rather than changes in</u> OCS production rates (Whelan et al., 2013).

5

With high light or temperatures, OCS production in oxic soils can exceed rates found in wetlands. Substantial OCS production has been observed in agricultural fields under both wet and dry conditions (Kitz et al., 2017; Maseyk et al., 2014). OCS fluxes of up to +30 and +60 pmol m⁻² s⁻¹ were related strongly to temperature (Maseyk et al., 2014) and radiation (Kitz et al., 2017), respectively. While most

- 10 ecosystems do not experience these conditions, most all soils produce OCS abiotically when air dried and incubated in the laboratory (Whelan et al., 2016; Liu et al., 2010; Sauze et al., 2018; Meredith et al., [in review]). Whelan and Rhew (2015) compared sterilized and living soil samples from the agricultural study site originally investigated in Maseyk et al. (2014), finding that all samples emitted considerable amounts of OCS under high ambient temperature and radiation, with even higher emissions after
- 15 sterilization. Net OCS emissions can occur from agricultural soils at all water contents (Bunk et al., 2017), develops in summer (Yang et al., 2018), and OCS production rates do not differ significantly in moist and dry soils (Kaisermann et al., 2018), Meredith et al., [in review] found that OCS soil production rates are higher in low pH, high N soils that have relatively greater levels of microbial biosynthesis of S containing amino acids and concentrations of related S compounds.
- 20

Two mechanistic models for soil OCS exchange have been developed and can simulate observed features of soil OCS exchange, such as the responses of OCS uptake to soil water content, temperature, and the transition from OCS sink to source at high soil temperature (Ogée et al., 2015; Sun et al., 2015). Both models resolve the vertical transport and the source and sink terms of OCS in soil layers. OCS

25 uptake is represented with the Michaelis–Menten enzyme kinetics, dependent on the OCS concentration in each soil layer, whereas OCS production is assumed to follow an exponential relationship with soil temperature, consistent with field observations (Maseyk et al., 2014). Although diffusion across soil

	Deleted: Soil redox potential is an indicator of soil oxidation- reduction status and is positively related to oxygen content in the soil column (Patrick and DeLaune, 1977). [42]
	Formatted: Font:(Default) +Theme Body (Times New Roman)
Ì	Deleted: also
Ϊ	Deleted: s
Ϊ	Deleted: , perhaps
Υ	Moved down [18]: If OCS produced by microbes accumulates
	in isolated soil pore spaces during inundation, subsequent ventilation can lead to abrupt release of OCS, which may appear as hig [43]
	Formatted [44]
1	Formatted
l	Formatted
l	Comment [LKM2]: Go ahead and cut this out or cut dow [47]
ľ	Formatted
Î	Formatted
l	Deleted: Recent field and laboratory studies have shown ([50]
l	Formatted [51]
	Moved down [26]: Related strongly to temperature (Ma [52]]
	Moved (insertion) [26]
1	Formatted
ĥ	Formatted [54]
1	Formatted
l	Formatted
Ą	Formatted
Å	Formatted
A	Formatted
4	Formatted [60]
1	Formatted: Font:12 pt
-1	Formatted [61]
1	Formatted: Font:12 pt
ľ	Formatted [62]
Ì	Formatted: Font:12 pt
Ň	Formatted [63]
Ĵ	Formatted[64]
Ň	Deleted: Recently, t
Ì	Deleted: using diffusion-reaction equations (Ogée et al., [
V	Moved (insertion) [19]
V	Deleted: ing
V	Deleted: (Ogée et al., 2016; Sun et al., 2015) and
Ń	Deleted: (Ogée et al., 2015)
Ĩ	Deleted:

layers neither produces nor consumes OCS altering the OCS concentration profile affects the concentration-dependent uptake of OCS.

Recommendations; Additional experiments are required to understand OCS production in oxic soils.

- 5 The mechanism of soil production and why some soils are more prone to high production rates is unknown. In wetlands, the interaction between OCS production and transport processes remains poorly understood. Jf OCS produced by microbes accumulates in isolated soil pore spaces during inundation, subsequent ventilation can lead to an abrupt release, which may appear as high variability in surface emissions. Field experiments using simple transport manipulation (e.g. straight tubes inserted into
- 10 sediment) interpreted with soil modeling would clarify matters.

2.3.2 Microbial communities

The mechanism of OCS consumption in ecosystems is thought to be mediated by carbonic anhydrase (CA), a fairly ubiquitous enzyme present within cyanobacteria, micro-algae, bacteria and fungi. Purified

- 15 from soil environments or from culture collections, bacteria and fungi show degradation of OCS at atmospheric concentrations. *Mycobacterium* spp. purified from soil and *Dietzia maris* NBRC15801^T and *Streptomyces ambofaciens* NBRC12836^T showed significant OCS degradation (Kato et al., 2008; Ogawa et al., 2016). Purified saprotrophic fungi *Fusarium solani* and *Trichoderma* spp. were found to decrease atmospheric OCS (Li et al., 2010; Masaki et al., 2016). Some free-living saprophyte
- 20 Sordariomycete fungi and Actinomycetale bacteria, dominant in many soils, are also capable of degrading OCS (Harman et al., 2004; Nacke et al., 2011). Sterilized soil inoculated with Mycobacterium sp. showed ability to take up OCS (Kato et al., 2008). In addition, cell-free extract of Acidianus sp. showed significant catalysed hydrolysis of OCS (Smeulders et al., 2011). During OCS degredation, soil bacteria introduce isotopic fractionation (Kamezaki et al., 2016; Ogawa et al., 2017). Using different
- 25 <u>approaches, Bunk et al., (2017), Sauze et al., (2017), and Meredith et al., [submitted] showed that fungi</u> might be the dominant player in soil OCS uptake.

Deleted: by	
Deleted: it	
Moved up [19]: demonstrate good skill in s	simulating ob [[67]
Deleted: The mechanistic models that resolv	e the diffusio [66]
Formatted	[68]
Formatted	
Moved (insertion) [18]	([05]
Deleted: of OCS	
Deleted: OCS	
Deleted: However, the interaction between p	roduction and [70]
Deleted: It is hoped that future studies may i	ntegrate the [71]
Formatted	[72]
Formatted: Line spacing: 1.5 lines	
Formatted	[73
Formatted	[74]
Formatted: Font:12 pt	
Formatted	[75]
Deleted: Microbes are key drivers of OCS es	schange in tet [76]
Moved down [20]: Fusarium and Trichode	erma spp. tha
Formatted	[78]
Formatted	[79]
Deleted:	[80]
Formatted	[81]
Formatted	[82]
Deleted: Both b	
Deleted:	
Deleted: purified from soil environments or	from culture [83]
Deleted: For example,	
Deleted: , and p	
Deleted: such as	
Formatted	[85]
Moved (insertion) [20]	
Deleted: In addition to the uptake of OCS at	atmospheric [84]
Formatted	[86]
Formatted	[87]
Formatted	[88]
Formatted	[89]
Deleted: Bacterial OCS degradation in s	
Deleted: surprising	
Deleted: also	
Deleted: Performing fungi inhibition experi	ments in who

In addition, there exist hyperdiverse microbial communities that colonise the surface of plant leaves or the "phyllosphere" (Vacher et al., 2016). The phyllosphere is an extremely large habitat (estimated in 1 billion km²) hosting microbial population densities ranging from 10⁵ to 10⁷ cells cm⁻² of leaf surface (Vorholt, 2012). With respect to OCS, it has already been shown that plant-fungal interactions can

5 <u>cause OCS emissions (Bloem et al., 2012). It is undetermined if these epiphytic microbes are capable of consuming and emitting OCS.</u>

Biotic OCS production is a possibility: in bacteria, novel enzymatic pathways have been described that degrade thiocyanate and isothiocyanate and render OCS as a byproduct (Bezsudnova et al., 2007;

- 10 Hussain et al., 2013; Katayama et al., 1992; Welte et al., 2016). Evidence for OCS emissions following SCN⁻ degradation has been observed from a range of environmental samples from aquatic and terrestrial origins, indicating a wide distribution of OCS-emitting microorganisms in nature (Yamasaki et al., 2002). Hydrolysis of isothiocyanate, another breakdown product of glucosinolates (Hanschen et al., 2014), by the SaxA protein also yields OCS, as shown in phytopathogenic *Pectobacterium* sp. (Welte et al., 2014).
- 15 al., 2016). Some Actinomycetales bacteria and Mucoromycotina, fungi, both commonly found in soils, are also known to emit OCS, but the origin and pathway remains unspecified (Masaki et al., 2016; Ogawa et al., 2016).

<u>Recommendations</u>; Further studies should test the connection between the microorganisms that degrade
 OCS and the candidate enzymes that we assume are performing the degradation. In addition, the magnitude of biotic OCS production in soils is unknown. While sterilized soils exhibit higher OCS production than live soils (Whelan and Rhew, 2015), we have not determined if biotic production is universally insignificant in bulk soils.

25 2.3.4 Surface sorption and hydrolysis

Several abiotic processes can affect surface fluxes of OCS. OCS can dissolve in water and adsorb and desorb on solid surfaces. Hydrolysis of OCS in water occurs slowly relative to the time scales of typical flux observations (Fig. 6). The temperature dependence of OCS solubility was modeled and described 18

	Formatted: Font:(Default) +Theme Body (Times New Roman), Italic
	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Formatted: Font:(Default) +Theme Body (Times New Roman), Italic
$\ $	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Deleted: to be elucidated
	Formatted: Font:(Default) +Theme Body (Times New Roman), Italic
\mathbb{N}	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Deleted:
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
$\!\!\!//$	Formatted: Font:(Default) +Theme Body (Times New Roman)
1	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Deleted: Abiotic processes
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Deleted: Emission to the atmosphere can also be generated by swings in redox potential and thermal- or photo-degradation of organic matter, both in soil and in the surface ocean.

Formatted: Font:(Default) +Theme Body (Times New Roman)

by Equation 20 in Sun et al., (2015): For a OCS concentration in air of 500 ppt, in equilibrium at ambient temperatures, the OCS dissolved in water will be less than 0.5 pmol OCS/mol H₂O (Fig. 5). Some portion of the dissolved OCS is destroyed by hydrolysis, following data generated by Elliott et al. (1989). For the rate-limiting step of hydrolysis in near-room-temperature water, the pseudo-first order

5 rate constant is around 2×10^{-5} s⁻¹. The hydrolysis of OCS gains significance over hours, and especially in ice cores (Aydin et al., 2014, 2016).

Under typical environmental conditions, OCS adsorption and desorption is near steady state. OCS adsorbs onto various mineral surfaces at ambient temperatures and can be desorbed at higher

10 temperatures (Devai and DeLaune, 1997). In some ecosystems with large temperature swings, temperature-regulated sorption cannot be ruled out as playing a small role in <u>the variability of observed</u> fluxes.

Recommendations; Abiotic sorption has been overlooked in studies of OCS exchange. Observing fluxes

15 while abruptly changing OCS concentrations over a sterile soil or litter substrate could reveal sorption's role. This information could be used to inform our mechanistic soil models and explain some of the variability in OCS soil fluxes we see in the field.

2.4 Ocean

- 20 The oceans are known to contribute to the atmospheric budget of OCS directly via OCS and indirectly via CS₂ (Fig. 8) (Chin and Davis, 1993; Watts, 2000; Kettle et al., 2002). Large uncertainties are still associated with current estimates of marine fluxes (Launois et al., 2015a; Lennartz et al., 2017, and references therein) and has led to diverging conclusions regarding the magnitude of their global role.
- 25 <u>The range of observed OCS concentrations in surface waters informs how the magnitude of direct oceanic emissions is calculated. Observations of OCS in the surface water of the Atlantic, Pacific, Indian, and Southern Ocean revealed a consistent concentration range of ~10–100 pmol L⁻¹ in the surface mixed</u>

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Italic Deleted: Formatted
Deleted: Formatted
Formatted [[93] Deleted:
Deleted: [941
Formatted [95]
Formatted [96]
Formatted [97]
Deleted: Redox potential has long been known to play a r [98]
Formatted [99]
Formatted[100]
Formatted [101]
Formatted[102]
Deleted: A missing source of about 600-800 Gg S y ⁻¹ in [103]
Deleted: direct
Deleted: emissions
Deleted: emissions of two short-lived gases:
Deleted:
Deleted: and, potentially, dimethyl sulfide (DMS), most [104]
Formatted [105]
Deleted: However,
Deleted: 1
Formatted [106]
Deleted: on whether oceanic emissions represent the mi [107]
Deleted: Bottom-up emission estimates from global oce [108]
Formatted [109]
Formatted [110]
Formatted
Formatted [112]
Formatted [113]
Deleted: 2.4.1 Surface ocean OCS measurements [114]
Formatted [115]
Deleted: Ocean
Deleted: s
Deleted: per liter

layer on daily averages, across different methods. Largest differences are found between coastal and estuaries (nanomolar \underline{L}^{-1} range) and open oceans (picomolar \underline{L}^{-1} range) (Table 3).

2.4.1 Marine production and removal processes

The primary sources of OCS in the ocean are <u>divided into</u> photochemical and light-independent (dark)
processes (Von Hobe et al., 2001; Uher and Andreae, 1997). The primary sink is hydrolysis (Fig. 6; Elliott et al., 1989). Evidence indicates that these processes can regulate OCS concentrations in the ocean surface mixed layer, with diverging <u>conclusions</u> on the magnitude and global significance of marine <u>OCS</u> emissions (Launois et al., 2015a). We use the Lennartz et al., (2017) budget here because the emission estimate based on a model consistent with the majority of sea surface concentration

10 measurements.

Global estimates of photo-production for the surface mixed layer can range by as much as 40-fold depending on the methodology used (Fig. 9). The heart of the problem is a limited knowledge of the magnitude, spectral characteristics, and spatial and temporal variability of the apparent quantum yield 15 (AQY).

<u>There is evidence for the role of biological processes (Flöck and Andreae, 1996) and for the</u> involvement of radicals (Pos et al., 1998), <u>Independent of a mechanism, only one parameterization for</u> dark production is currently used in models (Von Hobe et al., 2001). Neither the direct precursor nor the

20 global applicability of this parameterization is known. Despite these unknowns, the current gap in the top down OCS budget (Sect. 3.1.2) is larger than the estimated ocean emissions, including uncertainties from process parameterization and in situ observations.

Recommendations; Further studies should focus on generating a biochemical model for estimating

25 oceanic OCS fluxes, Refining uncertainty bounds for OCS photo-production could be facilitated by a comprehensive study of the variability of AQYs across contrasting marine environments; the use of a photochemical model that utilizes AQYs and facilitates calculations on a global scale; and the cross-

20

Formatted

... [117]

Deleted: A publicly accessible database of ship-based measurements in water and the marine boundary layer should receive the highest priority. Because vertical profiles of OCS concentrations are even more scarce and OCS enrichment in the seasurface microlayer remains a general unknown, high-resolution measurements over time and depth in open and coastal waters are required to show how OCS concentrations vary over diel cycles and along transects from open to coastal waters. The consistent range of observed OCS concentrations determines the magnitude for direct oceanic emissions, but uncertainty remains due to our limited ability to globally extrapolate production processes in models.

Deleted: 2

Dolotod

Deleted: , and t...e primary sink is hydrolysis (Fig. 6; Elliott et al., 1989). EAlthough e...idence indicates that these three ...rocesses can regulate OCS concentrations in the ocean surface mixed layer, with diverging studies ...onclusions on the magnitude and global significance of marine OCS emissions of OCS have recently highlighted that considerable uncertainties remain in the quantification of these source and sink terms ...Launois et al., 2015a; Lennartz et al., 2017 [118]

Formatted: Font:(Default) +Theme Body (Times New Roman)

The OCS photo production

1	constrainedlobal estimates of photo-production for the surface mixed layer can range by as much as 40-fold depending on the methodology used (Fig. 9). While some discrepancies can be attributed to distinct limitations within each methodology, it is evident that at the heart of the problem liess a limited knowledge of the magnitude, spectral characteristics, and spatial and temporal variability of the spectralparent quantum yield (AQY) for OCS photo-production in the ocean[119]			
	Moved down [21]: Here, we propose that refining estimates and uncertainty bounds for OCS photo-production could be facilitated by (1) a comprehensive study of the variability of the spectral [120]			
$\langle \rangle \rangle$	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt			
V	Deleted:			
	Formatted: Font:(Default) +Theme Body (Times New Roman)			
	Deleted: Dark production remains similarly poorly constrained. There is Despite[121]			
$\langle \rangle$	Formatted: Font:(Default) +Theme Body (Times New Roman)			
	Deleted: , only one parameterization is currently used in models of dark production (Von Hobe et al., 2001)			
Formatted: Font:(Default) +Theme Body (Times New Roman)				
\mathbb{Z}	Deleted: The acquisition of vertical profiles of OCS concentrations within and below the euphotic zone would [[122]]			
$\langle \rangle$	Formatted[123]			
\mathcal{N}	Moved (insertion) [21]			
-	Deleted: Here we propose that r efining estimates and			

validation of the depth-resolved modeled rates with direct in situ measurements. During night time, continuous concentration measurements from research vessels can be used to calculate dark production rates assuming an equilibrium between hydrolysis and dark production.

2.4.2, Indirect marine emissions

- 5 Indirect marine emissions from oxidation of the precursor gases CS₂ and possibly DMS were hypothesized to be on the same order as or larger than direct ocean emissions of OCS (Chin and Davis, 1993; Watts, 2000; Kettle et al., 2002). Production and loss processes of CS₂ in seawater are less well constrained than OCS production, and they include photo-production, evidence for biological production (Xie et al., 1998, 1999), and a slow chemical sink (Elliott, 1990).
- 10

Measurements of CS₂ in the surface ocean comprise several transects in the Atlantic and Pacific oceans with concentrations in the lower pmol L_{a}^{-1} range. Significantly larger concentrations have been found in coastal waters (Uher, 2006, and references therein). In laboratory experiments, Hynes et al. (1988) found that the OCS yield from CS₂ increases with decreasing temperatures, suggesting larger OCS production from CS₂ at high latitudes.

15 production from CS_2 at high latitudes.

It is unclear if the ambient yield of OCS from DMS oxidation is globally important. The production of OCS from the oxidation of DMS by OH has been observed in several chamber experiments, all of which used the same technique and experimental chamber (Barnes et al., 1994, 1996; Patroescu et al.,

- 20 1998; Arsene et al., 1999, 2001) with a molar yield of 0.7 ± 0.2%. These studies were carried out at precursor levels far exceeding those in the atmosphere (ppm), so the potential exists for radical_radical reactions that do not occur in nature. In addition, experiments took place in a quartz chamber on time scales that have potential for wall-mediated surface or heterogeneous reactions and using only a single total pressure and temperature (1000 mbar, 298 K). The mechanism and atmospheric relevance of OCS
- 25 production from DMS remains highly uncertain.

Deleted: Formatted: Font:(Default) +Theme Body (Times New Roman)
Deleted: 3
Deleted: potentially

Deleted: (Xie et al., 1998)

Deleted: 9
Deleted: are very scarce, but
Deleted: ico
Deleted: ar
Formatted: Font:(Default) +Theme Body (Times New Roman)
Moved down [6]: A molar yield of CS_2 to OCS of 0.81–0.93 v established by Stickel et al. (1993) and Chin and Davis (1993),

established by structer et al. (1959) and thin and Davis (1959), resulting in OCS emissions from CS₂ with an uncertainty of 20–80 Gg S y^{\dagger} . This uncertainty arises from the uncertainty in the emissions, not the molar yield, for which a globally constant factor is used.

Moved down [22]: To better constrain oceanic emissions of OCS from CS₂, we suggest expanding surface concentration observations across various biogeochemical regimes and seasons; using field observations, laboratory studies, and process models to characterize production processes and identify drivers and rates; and applying a temporally and spatially varying conversion factor when calculating resulting OCS emissions.

Deleted: The mechanism and atmospheric relevance of OCS production from DMS remains highly uncertain.

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: The global DMS oxidation source of OCS was estimated by Barnes et al. (1994) as 50.1-140.3 Gg S y⁻¹, and subsequent budgets contain only revisions according to updated DMS emissions (Kettle et al., 2002; Watts, 2000). We suggest that the uncertainty in the production of OCS from DMS is underestimated, given the uncertainty in the pressure/temperature dependence of OCS production via this mechanism, and the uncertainty of the applicability of the chamber results to the atmosphere. Until these issues are resolved, we recommend that this term be removed as a source from future budgets, but retained as an uncertainty. Validating the atmospheric applicability of the reported yields would require experiments at lower concentrations in a system that eliminates (or permits quantification) of wall-induced reactions.

Recommendations: To better constrain oceanic CS₂ emissions, we suggest expanding surface concentration observations across various biogeochemical regimes and seasons. Using field observations, laboratory studies, and process models we could characterize production processes and identify drivers and rates when calculating OCS emission estimates. Elucidating the production pathway

5 and validating the atmospheric applicability of the reported OCS yields from DMS would require experiments at lower concentrations in a system that eliminates (or permits quantification) of wallinduced reactions.

2.5 Anthropogenic sources

- 10 <u>Anthropogenic OCS</u> sources include direct emissions of OCS and indirect sources from emissions of CS₂. The dominant source is from rayon production (Campbell et al., 2015), while other large sources include coal combustion, aluminum smelting, pigment production, shipping, tire wear, vehicle emissions, and coke production (Blake et al., 2008; Chin and Davis, 1993; Du et al., 2016; Lee and Brimblecombe, 2016; Watts, 2000).
- 15

All recent global atmospheric modeling studies used the low estimate of 180 Gg S y⁻¹ from Kettle et al., (2002), which did not capture significant emissions from China. Updated globally-gridded inventories are considerably higher: a bottom-up estimate of 223-586 Gg S y⁻¹ for 2012 (Zumkehr et al., 2018), and a top-down assessment of 230 to 350 Gg S y⁻¹ for 2011 to 2013 (Campbell et al., 2015). One reason for

20 the gap between the two recent inventories is that the top-down study used an optimization approach in which the result was limited to the a priori range, 150 to 364 Gg S y⁻¹. Both datasets indicate that most anthropogenic sources are in Asia,

Biomass burning is generally accounted as a category separate from anthropogenic emissions.

25 Several airborne campaigns have observed increases in OCS concentrations in air masses from nearby burning events (Blake et al., 2008). The most recent estimate suggests that biofuels, open burning, and

	Moved (insertion) [22]			
$\overline{\mathbb{N}}$	Formatted: Font:(Default) +Theme Body (Times New Roman)			
N	Deleted: of OCS from CS ₂ ,			
	Formatted: Font:(Default) +Theme Body (Times New Roman)			
N	Deleted: ; u			
(M)	Deleted: to			
///	Deleted: ; and applying a temporally and spatially varying conversion factor			
$\langle \rangle \rangle$	Deleted: resulting			
$-\lambda$	Deleted: s			
	Formatted: Font:(Default) +Theme Body (Times New Roman)			
	Formatted: Font:(Default) +Theme Body (Times New Roman), Italic			
	Formatted: Font:(Default) +Theme Body (Times New Roman)			
	Deleted: Anthropogenic sources have been used to interpret changes in atmospheric OCS observations in space and time (Campbell et al., 2015, 2017a; Zumkehr et al., 2017). These			
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt			
111	Deleted: s well as			
- [[]]	Deleted: caused by			
() , ()	Deleted: anthropogenic			
$(\)$	Deleted: anthropogenic			
$\langle \rangle \langle$	Deleted: anthropogenic			
	Deleted: Temporally and spatially explicit inventories have been created for use in OCS atmospheric transport models (Campbell et al., 2015; Zumkehr et al., 2017).			
	Formatted: Font:(Default) +Theme Body (Times New Roman)			
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt			
	Deleted: Bottom-up analysis of the global anthropogenic inventory estimates a source of 500 ± 220 Gg S y ⁻¹ for the year 2012. The large uncertainty is primarily due to limited observations of emission factors, particularly for the rayon, pulp, and paper industries. An independent approach using a top-down method			
	estimated that the average source for the years 2011 through 2013 was 230 to 350 Gg S y^{-1} (Campbell et al., 2015). One possible reason for the gap between these estimates is that the top-d [125]			
	Formatted[126]			
	Moved down [2]: The spatial and temporal trends in th [127]			
1	Deleted			

Deleted: Biomass burning is generally accounted as a se ... [128]

Deleted:

agriculture residue are 63%, 26%, and 11% of the total OCS biomass burning emissions (Campbell et al., 2015).

Recommendations; Anthropogenic OCS emissions experience large year to year variation (Campbell et

5 al., 2017a). Ambient OCS monitoring and on site industry observations in Asia could observe the anthropogenic contribution over time. In particular, modern viscose-rayon factory emissions are necessary to capture the variability of emissions factors used to scale rayon production to OCS emissions using economic data.

2.6 Volcanic sources

- 10 OCS is emitted into the atmosphere by degassing magma, volcanic fumaroles, and geothermal fluids, OCS can be released at room temperature by volcanic ash (Rasmussen et al., 1982), and has been observed to be conservative in the atmospheric plume emitted by the Erebus volcano up to tens of kilometers downwind of the volcanic source (Oppenheimer et al., 2010).
- 15 Using the linear relationship between the logarithm of the OCS/CO₂ ratio in volcanic gases and temperature, the volcanic OCS contribution was determined from estimated CO₂ emissions (Belviso et al., 1986), Here we calculate a revised temperature dependence of log[OCS/CO₂] with additional data (Chiodini et al., 1991; Notsu and Toshiya, 2010; Sawyer et al., 2008; Symonds et al., 1992), as shown, in Fig. 10. The compilation of measurements from 14 volcanoes shows that the former relationship from
- 20 <u>Belviso et al. (1986)</u> overestimated the OCS/CO₂ ratio of volcanic gases with emission temperatures from 110°C to 400°C₂ typical of extra-eruptive volcanoes. Even with this improved estimate, extraeruptive volcanoes <u>OCS emissions are negligibly small and can definitely be discarded from the</u> inventory of volcanic <u>OCS emissions</u>. <u>Eruptive and post-eruptive volcanoes contribute almost all of</u> <u>OCS emissions from volcanism</u>.

25

Recommendations: An updated inventory of eruptive volcanos and a better assessment of their CO2 emissions will refine our understanding at a regional scale of the contribution of OCS from volcanos.

23

Formatted: Font:(Default) +Theme Body (Times New Roman), Italic

Formatted: Font:(Default) +Theme Body (Times New Roman)

Moved down [5]: The most recent estimate of the biomass burning sources is 116 ± 52 Gg S y¹, which includes contributions from biofuels, open burning, and agriculture residue that are 63%, 26%, and 11% of the total, respectively (Campbell et al., 2015).

Deleted: The most recent estimate of the biomass burning sources burning sources is 116 ± 52 (gg S y¹, which includes contributions from biofuels, open burning, and agriculture residue that are 63%, 26%, and 11% of the total, respectively (Campbell et al., 2015).

Formatted ([129] Deleted: Extensive sampling of Deleted: has shown that OCS is also emitted into the atr([130] Deleted: Although Deleted: measurements from both air and ground showed
Deleted: Extensive sampling of Deleted: has shown that OCS is also emitted into the atr[[130] Deleted: Although Deleted: measurements from both air and ground showed
Deleted: has shown that OCS is also emitted into the atr[[130] Deleted: Although Deleted: measurements from both air and ground showed
Deleted: Although Deleted: measurements from both air and ground showed
Deleted: measurements from both air and ground showed
Deleted: that
Deleted: OCS
Deleted: was conserved
Deleted: This finding is consistent with our current unde [131]
Moved down [3]: (Belviso et al., 1986).
Deleted: The first compilation of OCS/CO2 ratios in vol
Deleted: In light of the variability of the OCS/CO ₂ ratio [133]
Deleted: t
Deleted: of eruptive and non-eruptive volcanoes
Deleted: their respective
Moved (insertion) [3]
Deleted: . The authors gathered data from 11 volcanoes
Deleted: Although most of the results showed that the O [135]
Deleted: A
Deleted: is shown
Deleted: (
Deleted: red dots and line)
Deleted: by up to an order of magnitude
Deleted: , whereas for temperatures over 700°C, typical [136]
Deleted: . For a more complete description of the outgas [137]
Deleted: already represented a negligible proportion of t
Formatted[139]
Formatted: Normal
Formatted [140]
Formatted

Special attention should be paid to the Ring of Fire off the Asian continent where satellites observed significant atmospheric OCS enhancements,

2.7 Bottom-up OCS budget

We calculate a "bottom up" global balance of OCS with several approaches presented in Table 4.

- 5 Within the atmosphere, the tropospheric sink owing to oxidation by OH is estimated to be in the range 82–130 Gg S y⁻¹ (Berry et al., 2013; Kettle et al., 2002; Watts, 2000), and the stratospheric sink is in the range 30–80 Gg S y⁻¹, or 50 ± 15 Gg S y⁻¹ (Barkley et al., 2008; Chin and Davis, 1995; Crutzen, 1976; Engel and Schmidt, 1994; Krysztofiak et al., 2015; Turco et al., 1980; Weisenstein et al., 1997). OCS concentrations are increasing roughly 0.5-1ppt/year averaged over the last 10 years (Campbell et al., 2015).
- 10 2017a), suggesting approximately 2 to 5 Gg S y⁻¹ remains in the atmosphere.

We build a budget for terrestrial biomes that relies on observations where available, and on estimates of carbon uptake where no data exists, as has been done previously (Campbell et al., 2008; Kettle et al., 2002; Suntharalingam et al., 2008). In Table 5, the estimated OCS uptake is first calculated from a GPP

- 15 estimate and Eq. 1, then the net OCS flux is appraised by taking into account observed or estimated soil fluxes for each biome, <u>The [CO₂] and [OCS] are assumed to be 400 ppm and 500 ppt, respectively, and</u> LRU is 1.16 ± 0.2 for C₄ plants (Stimler et al. 2010b) and 1.99 ± 1.44 for C₃ plants (Fig. 2). We further assume a 150-day growing season with 12 h of light per day for the purposes of converting between annual estimates of GPP and field measurements calculated in s⁻¹ units, though this obviously does not
- 20 represent the diversity of biomes' carbon assimilation patterns. Additionally, we assume that plants in desert biomes photosynthesize using the C₄ pathway. Converting annual estimated F_{COS} in pmol m⁻² y⁻¹ to pmol m⁻² s⁻¹ is sensitive to our growing season assumption. The lack of soil OCS flux time series datasets makes a more sophisticated upscaling approach ineffective. Anticipated fluxes from soils and plants are therefore combined in this purposely simple method, scaled to the area of the biome extent,
- 25 and presented in Table 4 as annual contributions to the atmospheric OCS budget.

Deleted: The range of the preferred global volcanic CO₂ emission estimates of the five studies reviewed by Gerlach (2011) being 0.15-0.26 Pg y¹, or 0.205 ± 0.055 Pg y¹, and assuming that the mean OCS/CO₂ molar ratio of gases emitted by eruptive and post-eruptive volcanoes is 2.3×10^4 (for emission temperatures in the range 525° C-1130°C), the revised annual volcanic input of OCS into the troposphere is estimated to be in the range 25^{-43} Gg S y⁻¹, in accordance with former estimates (Belviso et al., 1986, and references therein).

Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Heading 3, Line spacing: single Deleted: Formatted: Font:(Default) +Theme Body (Times New Roman), Not Bold Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: 1 Deleted: , we provide estimates of OCS fluxes into (positive) and out of (negative) the atmosphere Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: The derivation of the values provided in the table are discussed below. Formatted: Font:(Default) +Theme Body (Times New Roman) Moved (insertion) [4] Deleted: T Deleted: First, we compare estimates of OCS terrestrial uptake based on carbon cycle assessments with actual observations. W Deleted: with less available information Deleted: . The contribution of wetlands and cryptogamic cover is treated separately Deleted: Eq. (1) relates GPP to OCS uptake, with Deleted: 1 Deleted: 0 Deleted: tropical and Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font: (Default) + Theme Body (Times New Roman) Formatted: Font:(Default) + Theme Body (Times New Roman) Formatted [... [142] Deleted: The result is presented in Table 4. Deleted: then

	We use a range of OCS flux observations in pmol OCS m ² s ⁻¹ for fresh and saline wetlands: -15 (de		
	Mello and Hines, 1994) to +27 (Liu and Li, 2008) for freshwater wetlands and -9.5 (Li et al., 2016) to		
	+60 (Whelan et al., 2013) for saltwater wetlands (Fig. 4). Marine and inland wetlands cover 552 and		
	$0200 \ 10^3 \ \text{km}^2$ respectively (Diver at al. 2016; Lehner and Däll 2004). Berforming a simple scaling		
	<u>5255 10 Km ; respectively (Dixon et al., 2010, Lenner and Don, 2004). Ferforming a simple scaling</u>	1	Deleted:
5	exercise results in contributions of -140 to 250 and -5 to 33 Gg S y ⁻¹ for fresh and saltwater wetlands,	-H	Deleted: cryptogamic
	respectively, yielding a total range of -150 to 290 Gg S y^{-1} (Table 4).	-777	Deleted: and Eq. (1)
		////	Deleted: of cryptogamic covers
	Υ	////	Deleted:
	To determine the role of non-vascular plant communities to the atmospheric OCS loading, we leverage	(M)	Deleted: Lakes and rivers could be important for regional OCS
	Eq. (1) and work that has already been done on their carbon balance, According to Elbert et al. (2012),	$\langle \rangle \rangle$	studies, especially in the northern latitudes. Lakes cover only about 3% of the Earth's surface (Downing et al., 2006), but in the boreal
10	the annual contribution is 3.9 Pg C \underline{y}^{-1} . A [OCS] of 500 ppt, a [CO ₂] of 400 ppm, and a LRU of 1.1 ±	(//)	Finland (Raatikainen and Kuusisto, 1990) and Northern Canada
	0.5 (Gimeno et al., 2017), yields -821 Gg S y ⁻¹ .	//-	(Spence et al., 2003) they occupy up to 20% and 30% of the landscape, respectively. Among the admittedly few studies, no
		1	berrations support lakes and rivers as a consistent OCS sink.
			Roman), 12 pt
	To estimate the maximum possible source of lakes to the atmospheric OCS burden, we perform a		Formatted: Font:(Default) +Theme Body (Times New Roman)
	simple estimation of the global OCS flux following the approach in MacIntyre et al. (1995) as	$\ / $	Formatted: Font:(Default) +Theme Body (Times New
15		// / .	Deleted: taken as minimum
	$F_{OCS} = k(c_{aq} - c_{eq}), \tag{2}$	177	Deleted: or as maximum
		///	Deleted: of OCS
	where gas transfer coefficient, k, is assumed to be constant 0.54 m d ⁻¹ (Read et al., 2012); OCS	M	Deleted: 💷
	concentration in the water, c_{aq} , is 90 pmol L ⁻¹ to 1.1 nmol L ⁻¹ (Richards et al., 1991); and OCS		Formatted: Font:(Default) +Theme Body (Times New Roman)
20	concentration in the surface water if it was in equilibrium with the above air, c_{eq} , calculated using	- ///	Deleted: As a first guess at the contribution of wetlands to the
	Henry's law at global average temperature of 15°C and global atmospheric OCS mixing ratio of 500	M	global OCS budget, we use a range of OCS flux observations in pmol OCS $m^2 s^1$ for fresh and saline wetlands: -15 (de Mello and Hinge 1004) to ± 72 (Ju and Li 2002) for freshwater wetlands and
	ppt. Accounting for the number of ice-free days in a year and total lake surface area per latitude	M^{-}	9.5 (Li et al., 2016) to +60 (Whelan et al., 2013) for saltwater wetlands (Fig. 4). Marine and inland wetlands cover 552 and 9299
	(Downing et al., 2006), the range of possible COS burden from lakes to the atmosphere is reported here	11	 10³ km², respectively (Dixon et al., 2016; Lehner and Döll, 2004). Performing a simple scaling exercise results in contributions of -140
	as 0.8 to 12 Gg S y ⁻¹	1	to 250 and -5 to 33 Gg S y ⁻¹ for fresh and saltwater wetlands, respectively, yielding a total range of -150 to 290 (Table 4). This
25	V		tidal variation, temperature, and many other factors.
	Lennartz et al. (2017) generated a direct estimate of direct OCS emissions from oceans as 130±80 Gg S		Formatted: Font:(Default) +Theme Body (Times New Roman)
	y^{-1} . A molar yield of CS ₂ to OCS of 0.81–0.93 was established by Stickel et al. (1993) and Chin and		Moved (insertion) [6]
	Davis (1002) resulting in accord OCS amissions from CS, with an uncontainty of 20, $0.0 \text{ C} \sim 0^{-1}$ This	1	Deleted: arises
	<u>Davis (1995), resulting in ocean OCS emissions from CS₂ with an uncertainty of 20–80 Gg S y . This</u>	1	Deleted: uncertainty in the
	uncertainty is from the emissions of CS ₂ , not the molar yield, for which a globally constant factor is	la serie de la companya	Formatted: Font:(Default) +Theme Body (Times New Roman)

used. The global DMS oxidation source of OCS was estimated by Barnes et al. (1994) as 50.1-140.3 Gg S y⁻¹, and subsequent budgets contain only revisions according to updated DMS emissions (Kettle et al., 2002; Watts, 2000). We suggest that the uncertainty in the production of OCS from DMS is underestimated. Until these issues are resolved, we recommend that this term be removed as a source

5 from future budgets, but retained as an uncertainty.

Bottom-up analysis of the global anthropogenic inventory indicates a source of $500 \pm 220 \text{ Gg S y}^{-1}$ for the year 2012 (Zumkehr et al., 2018). The large uncertainty is primarily due to limited observations of emission factors, particularly for the rayon, pulp, and paper industries. The most recent estimate of the bismers herein a surger in 110 + 52 Ge 8 e⁻¹ (Generated et al. 2015).

10 <u>biomass burning sources is $116 \pm 52 \text{ Gg S y}^{-1}$ (Campbell et al., 2015).</u>

To calculate global volcanic OCS emissions, we first consider the range of global volcanic CO₂ emission estimates of the five studies reviewed by Gerlach (2011) of 0.15–0.26 Pg y⁻¹, or 0.205 \pm 0.055 Pg y⁻¹. Assuming that the mean OCS/CO₂ molar ratio of gases emitted by eruptive and post-eruptive

15 volcanoes is 2.3×10^{-4} (for emission temperatures in the range 525°C–1130°C, see Fig. 10), the revised annual volcanic input of OCS into the troposphere is estimated to be in the range 25–43 Gg S y⁻¹

Examining Table 4, we find Jarge <u>uncertainties in many global estimates and some biome observations</u> <u>are completely absent</u>. It has been suggested that ocean OCS production has been underestimated (Berry

- 20 et al., 2013), and some research points to unaccounted anthropogenic sources (Zumkehr et al., 2018). The uncertainty on our ocean OCS production and/or the industry inventories do not necessarily capture the true range of OCS fluxes. Despite the large uncertainties of the global OCS budget, many applications of the OCS tracer have been attempted with success.
- 25 <u>Recommendations</u>: More observations in the ocean OCS source region and from industrial processes, particularly in Asia, are needed to further assess their actual magnitude and variation (Suntharalingam et al., 2008). Current leaf-based investigations need to be expanded to include water or nutrient-stressed

Deleted: The most recent estimate of the biomass burning sources is 116 ± 52 Gg S γ^i , which includes contributions from biofuels, open burning, and agriculture residue that are 63%, 26%, and 11% of the total, respectively (Campbell et al., 2015).

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto Formatted: Font:(Default) +Theme Body (Times New

Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: a

Deleted: missing source of at least 1200 Gg S $y^{\cdot l}$, up to 4100 Gg S $y^{\cdot l}$

Deleted: but

Deleted: closing the budget gap

Deleted: 7 Deleted: This suggests that t

Deleted: ir

Moved (insertion) [23]

Formatted: Font:(Default) +Theme Body (Times New Roman), Italic

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Additionally, there is a possibility that the plant sink is overestimated or that there is an unidentified source.

plants, Measurements from biomes with a complete lack of data, such as deserts and the entirety of the tropics, are desperately needed.

3 Applications

3.1 Global and regional GPP estimates

- 5 Here we describe work using OCS observations to assemble more information about ecosystem functioning on different scales. Estimates disagree in their diagnoses of global (Piao et al., 2013) and regional (Parazoo et al., 2015) GPP magnitude and spatial distribution in North America (Huntzinger et al., 2012), the Amazon (Restrepo-Coupe et al., 2017), and Southeast Asia (Ichii et al., 2013). Feeding observations of OCS uptake over land into transport models informs the spatial distribution and
- 10 magnitude of GPP, With the suite of OCS <u>flask and satellite data available</u>, we describe studies that examine OCS <u>fluxes</u> with the top_down approach. Finally, we examine GPP estimates on very long temporal scales using the OCS ice core record.

3.1.1 Evaluating biosphere models

There are <u>many</u> uncertainties in evaluating biosphere models using OCS <u>observations</u>, Hilton et al.

- 15 (2017) showed that the spatial placement of GPP dominates other uncertainty sources in the GPP tracer approach on the regional scale. Land surface models that placed the largest GPP in the Upper Midwest of the United States produced OCS plant fluxes that matched well against aircraft observations for all estimates of OCS soil flux, OCS anthropogenic flux, and transport model boundary conditions. OCS plant fluxes derived from GPP models that place the largest GPP in the Southeast United States were
- 20 not able to match aircraft-observed OCS for any combination of secondary OCS fluxes. <u>Placement of</u> the strongest North American GPP in the Upper Midwest is consistent with new ecosystem models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) with <u>space-based</u> estimates from SIF (Guanter et al., 2014<u>; Parazoo et al., 2014</u>). This result is encouraging for the potential of OCS to provide a directly observable tracer for GPP at regional scales.

25

27

Deleted: , perhaps revealing lower OCS plant uptake

Moved up [23]: Despite the large uncertainties of the global OCS budget, many applications of the OCS tracer have been attempted with success.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Deleted: Terrestrial photosynthetic carbon fluxes (GPP) are a key source of uncertainty in climate prediction (Ciais et al., 2014). Efforts to estimate GPP using models

Deleted: regional

 Deleted: This demonstrates a critical gap in understanding of the terrestrial carbon cycle and suggests a need for independent information, such as that provided by OCS observations, to further constrain models. - [... [143]

 Formatted: Font:(Default) +Theme Body (Times New Roman)

 Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New

Roman)
Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New

Roman)
Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt
Formatted: Font:(Default) +Theme Body (Times New

Roman)
Deleted: has

Deleted: given us an idea of

Deleted: t Deleted: , allowing us to evaluate the representation of c ... [144] Deleted: We also explore the potential of using OCS to (... [145]) Deleted: have Deleted: Deleted: Deleted: Formatted [... [146]] Deleted: without carefully chosen OCS component flux ... [147] Deleted: However, on the regional scale, Moved down [7]: Using aircraft OCS observations fro [148] Deleted: they derived OCS plant fluxes from differing (... [149] Formatted ... [150] Deleted: M

Deleted: While inconsistent with some modeled GPP estimates, p Deleted: enhanced agroecosystem processes and emerging Launois et al. (2015b) analyzed the potential of existing atmospheric OCS and CO₂ mixing ratio measurements to evaluate model GPP biases. They used the simulated GPP from three global land surface model_simulations from the TRENDY intercomparison (Sitch et al., 2015) and an atmospheric transport model_The amplitude and phase of the seasonal variations of atmospheric OCS appear mainly

- 5 controlled by the vegetation OCS sink. This allows for bias recognition in the spatial and temporal patterns of the GPP. For instance, the ORCHIDEE GPP at high northern latitudes is overestimated, as revealed by a too-large OCS seasonal cycle at the Alert station (ALT, Canada) (Fig. 11). These results highlight the potential of current in situ OCS measurement to reveal model GPP and respiration biases.
- 10 <u>Recommendations</u>: While current datasets can support or refute current land surface model GPP data products over North America, evaluating modeled surface GPP fluxes with OCS observations would benefit from a broader network of continuous OCS observations, Unfortunately, satellite data are not currently sensitive to concentrations at the surface. Maintaining a network of tall towers with continuous OCS measurements over more than one continent could, in conjunction with upper-
- 15 troposphere measurements from satellites, provide the data needed to refine next generation land surface models.

3.1.2 Top-down global OCS budgets

<u>Top-down estimates use observed spatial and temporal gradients of OCS in the atmosphere to adjust</u> independent surface fluxes, called the prior estimate. Constraints can be introduced to the results, e.g.

- 20 Launois et al. (2015b) used flask measurement observations to optimize surface OCS flux components to obtain a closed global OCS budget. Other top down estimates without this restriction found a missing source of about 600–800 Gg S y⁻¹ in the atmospheric budget of OCS (Berry et al., 2013; Glatthor et al., 2015; Kuai et al., 2015; Suntharalingam et al., 2008; Wang et al., 2016). This could be the result of missing oceanic sources, missing anthropogenic OCS sources from Asia, overestimated plant uptake, or
- 25 <u>a combination of factors.</u>

Deleted: State-of-the-art global land surface models, such as those used in CMIP6, show large differences in the simulated GPP in terms of mean value, phase, and amplitude, hampering accurate investigations into carbon-climate feedbacks.

Deleted: (discrete samples from NOAA), together with CO₂, **Deleted:** s

Deleted: (ORCHIDEE, CLM4CN and LPJ;

Deleted: (OKCHIDEE, CEMI4CIV and

Deleted: , LMDz

Deleted: Vegetation uptake of OCS was derived as a linear function of GPP using LRU, the ratio of OCS to CO₂ deposition velocities, from Seibt et al. (2010). Non-photosynthetic sinks (oxic soils, atmospheric oxidation), biogenic sources (oceans and anoxic soils), and anthropogenic sources of OCS were also included in the transport simulations.

Deleted: to be

	Deleted: Similarly, the seasonal variations of the GPP in CLM4CN appear to be out of phase for the northernmost ecosystems, showing a maximum carbon uptake too early in s Both model biases could only be deduced from the OCS diagnalthough they are also suggested by the CO ₂ evaluation.	pring. nostic,
Ì	Deleted: ;	
	Formatted: Font:(Default) +Theme Body (Times New Roman), Italic	
	Formatted: m9073931282399749217gmail-normal1, Pattern: Clear (White)	
	Formatted	. [151]
Ì	Formatted	. [152]
Ì	Formatted	. [153]
Ì	Formatted	. [154]
1	Formatted	. [155]
1	Formatted	. [156]
Ì	Deleted: however, they rely on the robustness of the glo	. [157]
Ì	Formatted	. [158]
	Deleted: 3.1.2 Extreme events and the carbon cycle	. [159]
Ì	Formatted	. [160]
Ì	Formatted	. [161]
ļ	Formatted	. [162]
l	Formatted	. [163]
j	Deleted: 3	
	Moved (insertion) [24]	
Ì	Deleted: the measurements at 10 surface stations	
Ì	Deleted: global scalars of all	
ļ	Deleted: in order	
Ì	Deleted: (i.e. sources and sink that are compatible with	. [164]
ì	Deleted	

Kuai et al., (2015) implied a large ocean OCS source over the Indo-Pacific region with the total ocean source budget consistent with the global budget proposed by Berry et al. (2013). The observations in Kuai et al., (2015) were estimated OCS surface fluxes from NASA's Tropospheric Emission Spectrometer (TES) ocean-only observations. A similar conclusion was obtained by Glatthor et al.

5 (2015), who showed that the OCS global seasonal cycle observed by MIPAS was more consistent with the seasonal cycles modeled using the Berry et al. global budget than using the global budget proposed earlier by Kettle et al. (2002).

Most of the anthropogenic source is located in China, while most of the atmospheric OCS monitoring is

- 10 located in North America (Campbell et al., 2015). The spatial separation allows regional applications of OCS to North America to control for most of the anthropogenic influence through observed boundary conditions (Campbell et al., 2008; Hilton et al., 2015, 2017). The anthropogenic source has large interannual variations (Campbell et al., 2015), which suggest that applications of the OCS tracer to interannual carbon cycle analysis will require careful consideration of anthropogenic variability.
- 15

<u>Recommendations</u>; The accuracy of OCS surface flux inversions can be improved by using simultaneous OCS observations from multiple satellites, e.g. TES and MIPAS, to provide more constraints on the OCS distribution in different parts of the atmosphere. Satellite products need to be compared to observations to determine how well the upper troposphere can reflect surface fluxes, e.g.

20 long-term tower measurements, airborne eddy flux covariance, and atmospheric profiles. This effort is furthered by better estimates of surface fluxes, in particular observations of OCS emissions from the oceans where we assume a large source region might exist (Kuai et al., 2015) and where poorly described anthropogenic sources are located in Asia (Zumkehr et al., 2018).

3.1.3 Long-term changes in carbon uptake

25 Jce core samples from the West Antarctic Ice Sheet Divide were used to produce a 54,300 year OCS record and an order of magnitude estimate of the change in GPP during the last glacial/interglacial transition (Aydin et al., 2016). Atmospheric OCS declined by 80 to 100 ppt during the last

Moved (insertion) [2]	
Deleted: The spatial and temporal trends in these inventories hav multiple implications for applying OCS as a carbon cycle tracer. First, m	e
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt	
Deleted: Second, t	
Deleted: s	
Deleted:	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Deleted:	5]
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt	
Moved up [24]: Launois et al. (2015b) used the measurements a 10 surface stations to optimize global scalars of all surface OCS flu components in order to obtain a closed global OCS budget (i.e. sources and sink that are compatible with the atmospheric budget)	t x
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Formatted: Font:(Default) +Theme Body (Times New Roman), Italic	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Formatted: Font:(Default) +Theme Body (Times New Roman)	
Deleted: Among the four satellite OCS products, only TES OCS data have been used for OCS surface flux inversions. As the TES OCS product is limited to over ocean only, the inversion of the OC terrestrial sinks in Kuai et al. (2015) may be subject to large uncertainties. Thus, for consistency, TES OCS over land may be highly desired. Spectral retrieval over land requires exact details of surface properties, including surface altitude, temperature, emissivity, reflectance, snow cover, etc., which have been [[16]	5
Formatted[16]	7D
Formatted[160	3D
Formatted[169	Ð
Deleted: 4	
Deleted: Measurements of OCS in Antarctic ice core and	
glacial/interglacial transition. Interpretation of these measurements with a simple box model suggests that GPP roughly doubled during the transition. This order of magnitude estimate is consistent with an ecosystem model that simulates 44% growth in GPP over the same period (Prentice et al., 2011).

- 5 The ice core OCS record has also been used to explore variation in GPP over the past 2,000 years. Observations show relative maxima at the peak of the Little Ice Age (Aydin et al., 2008). These data were used to estimate growth in GPP and were combined with other information to estimate the temperature sensitivity of pre-industrial CO₂ fluxes for the terrestrial biosphere (Rubino et al., 2016).
- 10 Given that earth system model projections have highly uncertain carbon-climate feedbacks (Friedlingstein et al., 2013), understanding of GPP in the current industrial era is needed to provide a benchmark for future model development. Firn air measurements and one-dimensional firn models have been used to show an increase in atmospheric OCS during most of the industrial era, with a decadal period of decline beginning in the 1990s (Montzka et al., 2004, 2007). The trend in the firn record has
- 15 been interpreted to largely reflect the increase in industrial emissions, but it also suggests an increase in GPP during the 20^{th} century of $31 \pm 5\%$, which is consistent with some models (Campbell et al., 2017a).

<u>Recommendations: Ice core measurements represent the only observational constraint on GPP variation</u> • over the glacial/interglacial transition, and the ability to provide such constraints provides powerful new

20 stimulus for development and testing of paleoclimate and biosphere models. Additionally, examining the polar differences in OCS over glacial-interglacial periods would provide additional evidence to interpret changes in GPP. For such an analysis, ice core OCS observations from the Northern Hemisphere are needed.

3.2 OCS to probe variables other than GPP

25 <u>OCS and CO₂ uptake within plant leaves is partly regulated by the opening of stomata on leaf surfaces.</u> Stomatal conductance is typically determined from combined estimates of transpiration, water vapor concentration, and leaf temperature. That approach can be particularly challenging at the canopy scale,

2	Δ
2	υ

De	eleted: change
De	eleted: in the Little Ice Age
De	eleted: Ice core
De	eleted: o
De	eleted: over the last 2,000 years
De	eleted: OCS observations
De	eleted: data
Fc Rc	rmatted: Font:(Default) +Theme Body (Times New man), 12 pt
м	oved (insertion) [25]
De	eleted: U
De ha	eleted: projections from earth system models, given that they ve highly uncertain carbon-climate feedbacks in climate ojections (Friedlingstein et al., 2013)
De	eleted:
Fc Rc	rmatted: Font:(Default) +Theme Body (Times New man)
De tre	eleted: Analysis of firn air samples was used to estimate GPP nds in the industrial era.
De	eleted: global ecosystem
Fc Rc	mmatted: Font:(Default) +Theme Body (Times New man), English (UK)
Fo	rmatted: Normal
Fc Rc	matted: Font:(Default) +Theme Body (Times New man), 12 pt, Font color: Auto, English (UK), Pattern: Clear
Fc Rc	mmatted: Font:(Default) +Theme Body (Times New man)
M era ear cli	byed up [25]: Understanding of GPP in the current industrial is needed to provide a benchmark for future projections from th system models, given that they have highly uncertain carbon- mate feedbacks in climate projections (Friedlingstein et al., 2013).
Me for int de pla pro up mi int co	byed up [8]: Although OCS has been studied mostly as a proxy photosynthesis, OCS uptake by vegetation is actually governed exhanistically by (i) the services of diffusive conductances of OCS ot the leaf, and (ii) the reaction rate coefficient for OCS struction by CA (Wohlfahrt et al., 2012). CA is present both in int leaves and soils, although soil uptake tends to be oportionally much lower than plant uptake. Over soils, OCS take provides information about CA activities within diverse crobial communities. OCS uptake over plants integrates formation about the leaf boundary laver. Isomerohyll
co	nductances) and about CA activity, all important aspects [171]
Fo	matted [172]
De	eleted:
Fo	matted [173]
Fo	matted [174]
De	eleted:
Fo	rmatted [175]

where transpiration is difficult to distinguish from non-stomatal water fluxes (i.e. evaporation from soil and canopy surfaces) and to upscale from sap flux measurements (Wilson et al., 2001). Use of OCS uptake involves the similar, but more tractable challenge of distinguishing the canopy OCS uptake from soil OCS uptake or emission, as in Wehr et al. (2017). OCS data can also look at changes in uptake

- 5 activity when plants are grown under elevated CO2 environments (White et al., 2010; Sandoval-Soto et al., 2012). Use of OCS uptake may also be less sensitive to errors in leaf temperature, which is difficult to define and quantify at the canopy scale but may be improved by OCS measurements (Yang et al., 2018). However, leaf temperature may still enter the problem via estimation of mesophyll conductance and CA activity.
- 10

The use of OCS to study <u>canopy and stomatal conductance is therefore promising</u>, but it is so far represented mostly by <u>very few studies</u> (Wehr et al., 2017; Yang et al., 2018), Wehr et al. (2017) used OCS uptake to derive canopy stomatal conductance and hence transpiration in a temperate forest. Stomatal conductance was the rate-limiting diffusive step, and so its diel and seasonal patterns were

- 15 retrievable from the canopy OCS uptake to within 6% of independent estimates based on sensible and latent heat flux measurements (Fig. 12). OCS would be especially useful in humid environments or at night, when transpiration is too small to use other methods that rely on sap flow or heat flux (Campbell et al., 2017b). However, an independent estimate of CA activity and mesophyll conductance would be required.
- 20

Recommendations: OCS observations should be used to link plant physiological variables together. OCS fluxes are related to GPP via all three diffusive conductances, CA activity, transpiration, and the ¹⁸O isotope compositions of CO₂ and H₂O, The ¹⁸O connection results from the fact that CA promotes the exchange of oxygen isotopes between CO₂ and liquid water in the leaves. Solar-induced

25 fluorescence measurements could also be synergistic, as they relate to the photochemical aspect of photosynthesis, while OCS uptake relates to the gas transport aspect. So far, few research schemes have taken advantage of these relationships.

31

- А	Deleted: via soil surface chamber measurements
4	Formatted: Font:(Default) +Theme Body (Times New Roman)
/ [Deleted: —though
	Formatted: Font:(Default) +Theme Body (Times New Roman)
Ņ	Formatted: Font:(Default) +Theme Body (Times New Roman)
//	Formatted: Font:(Default) +Theme Body (Times New Roman)
//	Deleted: a single study
	Formatted: Font:(Default) +Theme Body (Times New Roman)
// /	Deleted: :
Ņ	Formatted: Font:(Default) +Theme Body (Times New Roman)
/	Deleted: Eddy covariance and soil chamber measurements were combined to quantify canopy OCS uptake, whose diel and seasonal patterns turned out to be predictable (to within 3%) from independent estimates of the stomatal, mesophyll, and boundary layer conductances under the assumption of constant CA activity.
Ì	Deleted: 3
Ø	
14	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leaf", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open.
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leaf", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman)
11 X	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leaf", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
ll À	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e([177]
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an er[177] Formatted [176]
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e([177] Formatted ([176] Deleted: is ([176]
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman). Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e([177] Formatted [[176] Deleted: is
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman). Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e([177] Formatted Deleted: is Deleted: (a)
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e[[177] Formatted [[176] Deleted: is Deleted: is Deleted: [.]
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e[[177] Formatted Deleted: is Deleted: is Deleted: [] Deleted: [] Deleted: [] Deleted: [] Deleted: [] Deleted: []
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e([177] Formatted Deleted: is Deleted: is Deleted: (a) Deleted: , Deleted: and Deleted: ; (b)
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leat", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e [177] Formatted [176] Deleted: is Deleted: : Deleted: : Deleted: : Deleted: ; Deleted: , Deleted: and Deleted: ; (b)
	Deleted: These findings support the underlying theoretical basis describing OCS uptake by the vegetation, even if the canopy is treated as a single "big leaf", and suggest that OCS may be a useful probe of stomatal conductance. Traditionally, stomatal conductance is indirectly observed by measuring the transpiration water flux from the leaf when stomata are open. Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Deleted: A powerful and more general approach would be to combine OCS measurements with other constraints in an e[[177] Formatted [[176] Deleted: is Deleted: is Deleted: [.] Deleted: [.] Deleted: [.] Deleted: [.] Deleted: [.] Deleted: [.] Deleted: ind Deleted: [.] Deleted: ind Deleted: [.] Deleted: via the boundary layer and stomatal conductances; Deleted: (c)

Deleted: (Stimler et al., 2011).

[... [178]]

Deleted: . Formatted

4 Available datasets

4.1 OCS satellite data products

Global OCS concentrations have been retrieved from <u>several</u> satellite instruments, including NASA's TES (Kuai et al., 2014), the Canadian Space Agency's Atmospheric Chemistry Experiment–Fourier

- 5 Transform Spectrometer (ACE-FTS) (Boone et al., 2005), the European Space Agency's MIPAS (von Clarmann et al., 2003; Glatthor et al., 2017) and the Infrared Atmospheric Sounding Interferometer (IASI) (Camy-Peyret et al., 2017; Vincent and Dudhia, 2017). Among these instruments, TES and IASI are nadir-viewing instruments (i.e. looking downwards from space towards the surface), while ACE-FTS and MIPAS are limb scanners (i.e. looking through the atmosphere tangentially). Nadir
- 10 measurements are less prone to cloud interference and provide good horizontal spatial resolution but coarse vertical resolution. Limb measurements provide better vertical resolution and higher sensitivity to tracer concentrations, but they are subject to a higher probability of cloud interference and poorer line-of-sight spatial resolution. Currently there are no satellite measurements that are strongly sensitive to OCS concentrations near the surface, where they are most needed to evaluate surface fluxes.
- 15

The standard TES OCS product is an average between 200 and 900 hPa, with maximum sensitivity to the mid-tropospheric value (Kuai et al., 2014, Fig. 13a). Currently, the TES OCS retrievals are available over ocean only for latitudes below 40°, where the signal-to-noise ratio is higher (due to larger thermal contrasts) and the surface spectral emissivity can be easily specified. Comparisons with collocated

20 airborne and ground measurements show that the current TES OCS data has an accuracy of 50–80 ppt, and the accuracy is improved to ~7 ppt when averaged over one month (Kuai et al., 2014).

MIPAS retrievals from 7 to 25 km characterize the average OCS concentration in a thin layer (a few kilometers thick) around the corresponding tangent height. Currently, the MIPAS OCS product (Fig.

25 <u>13b</u>) provides pole-to-pole OCS concentrations at multiple levels in the upper troposphere and the stratosphere, which show an accuracy of ~50 ppt against balloon-borne measurements. Fig. 14 shows the summertime (June–August) latitudinal distribution of OCS observed by MIPAS (Glatthor et al., <u>2017)</u>.

32

Deleted: Further study of vegetative OCS uptake along these lines has the potential to clucidate ecosystem function, including the mechanistic basis of the OCS-GPP relationship (for example, OCS and CO₂ data can be used to optimize biosphere parameters such as the Ball-Berry slope and intercept (Ball et al., 1987; Collaz et al., 1991)). Practical use of OCS as a GPP proxy will require improved quantitative understanding of how the diffusive conductances and CA activity mediate that relationship. -

To use the OCS GPP tracer to its full potential, surface OCS estimates over land and ocean are needed to evaluate ocean and ecosystem fluxes to the atmosphere at the global scale. Current satellite retrievals are sensitive to OCS concentrations much higher in the troposphere, and FTIR or tower data have limited coverage. Currently, the most used surface OCS dataset is from the NOAA Flask Network, where gas samples are often collected twice a day. Coordinating satellite retrievals with ground-based measurement efforts is important to realize greater data coverage and accuracy.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font: (Default) + Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman) Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: To use the OCS GPP tracer to its full potential, surface OCS estimates over land and ocean are needed to evaluate ocean and ecosystem fluxes to the atmosphere at the global scale. Current satellite retrievals are sensitive to OCS concentrations much higher in the troposphere, and F1(...[179])

Deleted: Currently, g

Deleted: a few

Deleted: , measuring spectra of the atmospheric tracers
Deleted: In contrast 1

Deleted: Accurate limb measurements are generally limited to altitudes above the upper troposphere.

IASI retrieves a single value for the total column OCS (Fig. 13c). Recently, Vincent and Dudhia (2017) reported the pole-to-pole global OCS retrieved from the IASI measurements. Their preliminary test showed that the seasonally averaged IASI OCS data vary consistently with ground measurements. The

- 5 IASI OCS observations over land generally agree with the MIPAS observations, showing large sinks over South America and Africa. The high spatial resolution also reveals more clearly the land OCS sources over Asia, which are not seen in TES nor MIPAS observations. Furthermore, the relatively low OCS abundance over the Inter-Tropical Convergence Zone is only apparent in IASI data.
- 10 The ACE-FTS OCS reported concentrations in the lower stratosphere are known to be 15% lower than the balloon-borne measurements (Velazco et al., 2011) and ~100 ppt lower than MIPAS OCS (Glatthor et al., 2017)

4.2 FTIR data

Ground-based FTIR retrievals of OCS are sensitive to the altitudes between surface and 30 km, and can

- 15 therefore more directly capture the variations near the surface compared to satellite data. There are two networks of FTIR spectrometers: the Network for the Detection of Atmospheric Composition Change (NDACC), recording the mid-infrared spectra including the OCS bands, and the Total Carbon Column Observing Network (TCCON)₂ mainly focusing on the near-infrared with only some sites including the OCS bands. The FTIR remote sensing measurement is an indirect measurement, and therefore needs to
- 20 be calibrated to in-situ observations to have the same scale when combining the datasets. For example, Wang et al.,(2016) added an offset when comparing FTIR retrievals and HIAPER Pole-to-Pole Observations (HIPPO) to the same model. Published datasets exist for the periods 1993–1997 (Griffith et al., 1998), 1978–2002 (Rinsland et al., 2002), 2001–2014 (Kremser et al., 2015), 2005–2012 (Wang et al., 2016), and 1995–2015 (Lejeune et al., 2017) and by an airborne Fourier spectrometer for the
- 25 period 1978–2005 (Coffey and Hannigan, 2010). <u>Balloon-borne FTIR data are available, starting in 1985 (Toon et al., 2018).</u>

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Deleted: , regardless of surface types

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: MIPAS retrievals from 7 to 25 km characterize the average OCS concentration in a thin layer (a few kilometers thick) around the corresponding tangent height. Currently, the MIPAS OCS product provides pole-to-pole OCS concentrations at multiple levels in the upper troposphere and the stratosphere, which show an accuracy of ~50 ppt against balloon-borne measurements (Glatthor et al., 2017).

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Moved down [10]: Fig. 14c shows two-month averages of the day-time total column OCS obtained using IASI OCS retrievals in 2014. IASI also provides total column OCS over the polar region,		
which we do not discuss here. IASI has much higher spatia	[[188]	
Deleted:	[[180]	
Formatted	[[181]	
Formatted	[[182]	
Formatted	[183]	
Moved down [9]: For comparison, Fig. 14b shows the	[[184]	
Formatted	[[187]	
Formatted	[[185]	
Deleted: . MIPAS also provides OCS abundance over the	[186]	
Formatted	[[189]	
Formatted	[[190]	
Formatted	[191]	
Formatted	[[192]	
Deleted: OCS is an important tool to constrain GPP, and	[193]	
Formatted	[[194]	
Formatted	[195]	
Deleted: the		
Deleted: without OCS bands,		
Deleted: but some of the TCCON		
Deleted: are expending the measurements to		
Deleted: , e.g.		
Deleted:	[[196]	
Deleted: As with comparing in situ atmospheric observe	[197]	
Formatted	[198]	

4.3 Tower and airborne data

<u>Data are available from two kinds of airborne sampling: survey flights, and atmospheric chemistry</u> <u>projects.</u> OCS measurements from aircraft began in the late 1980s, using both *in situ* and flask collection with subsequent analysis by GC-MS (e.g. Bandy et al., 1992, 1993; Hoell et al., 1993;

- 5 Thornton et al., 1996; Blake et al., 2008, etc). The airborne survey flight data are designed to sample background air at set locations on a regular basis over long time periods and are part of the NOAA ESRL GMD Carbon Cycle Aircraft Network (<u>http://www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html</u>, an update of results published in Montzka et al., 2007). This data collection started in 1999 at a range of locations and have been used extensively in analysis of the continental US carbon budget (e.g.
- 10 Campbell et al., 2008; Hilton et al., 2017), OCS has been measured at 10 globally distributed sites in the AGAGE network using the MEDUSA GC-MS. The data for the Jungfraujoch site is presented in Lejeune et al., (2017). Larger spatial scale/shorter time interval survey flights include the HIPPO (2009-2011) and ATom (2016-2018) airborne programs that predominantly sample OCS over remote marine locations. Atmospheric chemistry flights are designed to understand chemical processing and pollution
- 15 transport and include sampling as part of pollution transport across the Pacific (e.g. Pacific Exploratory Mission-West A (PEM-A), Thornton et al., 1996) or Transport and Chemical Evolution over the Pacific experiment (TRACE-P), which sampled Asian outflow dominated by anthropogenic OCS emissions in 2001, (Blake et al., 2004). Other projects included sampling of OCS over continents (e.g. over the US in 2004; Blake et al., 2008).
- 20

OCS measurements have been made from tall towers using flasks and subsequent analysis by GC-MS. Most long-term tall tower observations have been conducted as part of the NOAA ESRL GMD Carbon Cycle Tower Network (Montzka et al., 2007). These data from 11-12 sites include continuous sampling from 2000 onward at a daily or twice daily time basis for most of the record

25 4.4 Ecosystem-level data

Three approaches have been used to quantify ecosystem fluxes of OCS: chamber measurements, gradient measurements, and eddy flux covariance measurements. While researchers have been

34

1	Moved (insertion) [27]
$\langle \rangle$	Moved up [27]: Data are available from two kinds of airborne sampling: survey flights, and atmospheric chemistry projects.
/	Deleted: (Montzka et al., 2007)
	Deleted: ese
	Deleted: include sampling from
$\ \ $	Deleted: . These data
	Deleted: but sample sites outside the continental US are also available
$\ $	Formatted: Font:(Default) +Theme Body (Times New Roman)
И	Formatted: Font:(Default) +Theme Body (Times New Roman), Font color: Black, English (US)
$\left \right $	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
	Formatted: Normal1
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
	Deleted: much
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
	Deleted: Using aircraft OCS observations from the NOAA Global Greenhouse Gas Reference Networks aircraft program
	Moved (insertion) [7]
17	Deleted: to present
Ŵ	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
_	Deleted: (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html, an update of results published in Montzka et al., 2007),
	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
$\langle \rangle$	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
1	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, English (US)
Ì	Formatted: Font:(Default) +Theme Body (Times New

Roman)

quantifying OCS measurements with chambers for decades, most field outings prior to 1990 used dynamic chambers with sulfur-free sweep air, artificially inducing high emissions (Castro and Galloway, 1991).

- 5 Measurements from towers have been made in a variety of ecosystems. An OCS analyzer capable of determining ambient OCS and CO₂ concentrations at 10 Hz js commercially available (Kooijmans et al., 2016; Commane et al., 2013; Stimler et al., 2010a) allowing for eddy flux covariance measurements (Asaf et al., 2013; Billesbach et al., 2014; Commane et al., 2015; Wehr et al., 2017). With this powerful new tool, traditional methods of partitioning carbon fluxes over ecosystems can be directly compared to
- 10 using OCS data as a proxy for GPP in situ. <u>A few studies have made use of the gradient method</u> (Berresheim and Vulcan, 1992; <u>Blonquist et al.</u>, 2011; <u>Rastogi</u>, et al, 2018).

4.5 Oceanic measurements

OCS measurements in the surface ocean comprise <u>about 6,000 ship-based measurements</u>. These samples are usually taken at a depth of 0-5m below the ocean surface and analyzed by gas

- 15 chromatography with various detectors or off-axis integrated cavity output spectrometry. Table 3 gives an overview on available measurements. <u>A</u> central database for ship-based OCS measurements is desired to derive global patterns and facilitate model comparison. Measurements of the precursor gas CS₂ are scarcer than OCS measurements. Samples for CS₂ are taken usually in a similar way to OCS samples from the same depth range <u>and analyzed using gas chromatography and mass-spectrometry</u>
- 20 detection.

4.6 Firn and ice core records

Different hydrolysis rates apply for OCS trapped in bubbly ice versus clathrate (bubble-free) ice. Some ice core material is not suitable for OCS analysis because the environment was too warm for long periods and OCS was hydrolyzed at high rates for thousands of years. Aydin et al. (2014, 2016)

25 developed the necessary corrections to take into account OCS hydrolysis within the ice core bubbles. Corrected data is published for Taylor Dome, the West Antarctic Ice Sheet Divide, and Siple Dome

Deleted: Eddy covariance m Deleted: , generally finding the expected uptake of OCS Moved down [28]: (Asaf et al., 2013; Billesbach et al., 2014; Commane et al., 2015; Wehr et al., 2017) Deleted: used Deleted: measuring Deleted: has become Moved (insertion) [28] Deleted: F Formatted: Font:(Default) +Theme Body (Times New Roman) Deleted: See Sect. 2.1 for specific studies.

	Deleted: ca.
	Deleted: with
	Deleted: using different
	Deleted: (mass-spectrometry, flame photometry)
{	Deleted: No
	Deleted: available at the moment, but one is

Deleted: . Deleted: They are mainly Deleted: Approximately 1,500 measurements are available.

Deleted: I

Deleted: Several ice cores have been analyzed for OCS concentrations.

Deleted: Some ice core material is not suitable for OCS analysis because the environment was too warm for long periods and OCS was continuously hydrolyzed for thousands of years.

(Aydin et al., 2016). Firn data is available for more recent time periods (Montzka et al., 2004, Sturges et al., 2001),

5 Conclusion

On the global scale, top-down estimates suggest a large missing source or overestimated sink of OCS.

- 5 The available ocean water OCS measurements have not revealed a large enough OCS source to close the budget gap. This review concludes that the DMS source contribution for ocean OCS estimations should be considered only as a source of uncertainty until further experiments can be performed under conditions more similar to ambient air. Anthropogenic OCS estimates would benefit greatly from CS₂ and OCS observations from rayon factories, particularly in Asia. Unaccounted for domestic coal
- 10 combustion in Asia may also play a significant role. To <u>improve the robustness of the large plant sink</u> <u>estimate</u>, observing OCS uptake in plants that are water or nutrient stressed may <u>effect OCS exchange</u> closer to the natural environment.

For regional scale studies, aircraft profiles or flux measurements could help substantially with the OCS

- 15 budget, We will need to quantify soil OCS fluxes in periodically hot and dry regions, Boreal and Arctic, regions must take into account OCS fluxes from freshwater as well as bryophytes, Studies in tall forests require a more in-depth treatment of canopy-dwelling organisms, such as mosses and lichen (Rastogi et al., 2018).
- 20 Our overall understanding of the elements of the budget are summarized in Table 6. Several types of observations are needed to link the observed ground fluxes and the atmospheric satellite <u>data</u>, for example, FTIR measurements and AirCore campaigns. <u>Ground OCS observations can also be applied in</u> regions where current satellite coverage is poor, such as the Tropics. <u>Creating a global OCS data</u> product and a coordinated tall tower network generating continuous, calibrated concentration data will
- 25 provide the information we need to close the global OCS budget and create an OCS-based estimate of global GPP. Forwarding our process-based understanding with new observations will promote advancement in our understanding of global carbon feedbacks.

Deleted: The discussion in Aydin et al. (2016) identifies	199]
Moved (insertion) [1]	
Deleted: The ultimate goal of OCS tracer research is to ([2	200]
Deleted: there is	
Deleted: This may be from incomplete knowledge of the	201]
Deleted: few	
Deleted:	
Deleted: reaction chamber	
Deleted: challenge	
Deleted: very	
Deleted: show	
Deleted: Other questions become more important on	
Deleted: the	
Deleted: . NOAA a	
Deleted: were intended to be conducted from many diffe	202]
Formatted	203]
Deleted: COS	
Deleted: for this region	
Deleted: , and inform us about COS from different proce	204]
Deleted: , excluding deserts	
Deleted: Several b	
Formatted	205]
Deleted: lakes and	
Deleted: and lichen	
Deleted: Upcoming s	
Deleted: cryptogamic cover and other	
Deleted: e.g.	
Formatted	206]
Deleted:	
Formatted	207]
Formatted	208]
Formatted: Normal	
Deleted: While there is still much work to be done, our ([2	209]
Deleted: fluxes	
Deleted: The OCS tracer gives us information on the	210]
Deleted: he	
Deleted: tracer	
Deleted:	
Deleted: promote	
Deleted: a massive	
Deleted: and their effect on the water cycle	

Acknowledgements

25

This review was initiated at a workshop "The biosphere-atmosphere exchange and global budget of carbonyl sulfide" held in Hyytiälä, Finland 5-9 Sept 2016. The authors would like to thank <u>C. Sweeney</u>, J. de Gouw, M. Zahniser, G. Badgley, L. Anderegg, B. Miller, M. Aydin, and J. Chalfant for helpful

5 discussion and data sharing. We acknowledge the integrative activities through an OCS/CO2/SIF workshop funded by the Keck Institute of Space Studies. Funding to support this work included the following: MEW was supported by a National Science

Funding to support this work included the following: MEW was supported by a National Science Foundation (NSF) postdoctoral fellowship #1433257; MEW and JEC were supported by NSF grant #1600109; ESS was supported by NSF OPP-1142517; GW, FMS and FK acknowledge support by the

- 10 Austrian National Science fund, FWF project #P27176-B16, and the Tyrolean Science fund project #UNI-0404/1801; HC was supported by NOAA contract NA13OAR4310082; TV, IM, and K-ME were supported by the Academy of Finland Centre of Excellence grant #307331, Academy Professor projects #284701 and #282842, ICOS-Finland #281255, and CARB-ARC #286190; US and WS were supported by NSF grant #1455381; JM was supported by the DFG, Project MA 6668/1-1.; TEG & LW have
- 15 received funding from the IdEx post-doctoral programme of the Université de Bordeaux and by a Marie Skłodowska-Curie Intra-European fellowship, grant agreement #653223; LW & TL have received funding from the European Research Council under the European Union's Seventh Framework Programme, FP7/2007-2013, grant agreement #338264; JO has received funding from the Agence National de la Recherche, ANR award #ANR-13-BS06- 0005-01; YK has received Grant-in Aid for
- 20 Scientific Research (#18310020, #23310051, #16H05884, #17H06105, #17J08979) from the Ministry of Education, Culture, Sport, Science and Technology, Japan; DY was supported by the MINERVA foundation and the Israel Science Foundation (ISF); and the European Geosciences Union and Aerodyne Research, Inc., who provided financial support to enable young researchers to attend the workshop from which this article emerged.

Formatted: Line spacing: 1.5 lines

Deleted: ; C. Sweeney who directs the NOAA Global Greenhouse Gas Reference Networks aircraft program; and J. R. Worden who first suggested the satellite retrieval of COS using infrared measurements. -

References

5

- Andreae, M. O. and Ferek, R. J.: Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere, Global Biogeochem. Cycles, 6(2), 175–183, 1992,
- Aneja, V. P., Overton, J. H., and Aneja, A. P.: Emission Survey of Biogenic Sulfur Flux from Terrestrial Surfaces, JAPCA J. Air Waste Ma., 31, 256–258, 1981.
- Arsene, C., Barnes, I., and Becker, K. H.: FT-IR product study of the photo-oxidation of dimethyl sulfide: Temperature and O₂ partial pressure dependence, Phys. Chem. Chem. Phys., 1, 5463–5470, 1999.
- Arsene, C., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR product study on the photo-oxidation of
 dimethyl sulphide in the presence of NOx—temperature dependence, Atmos. Environ., 35, 3769–3780, 2001.
- Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A., and Yakir, D.: Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux, Nat. Geosci., 6, 186–190, 2013.
- 15 Aydin, M., Williams, M. B., Tatum, C., and Saltzman, E. S.: Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos. Chem. Phys., 8, 7533–7542, 2008.
- Aydin, M., Fudge, T. J., Verhulst, K. R., Nicewonger, M. R., Waddington, E. D., and Saltzman, E. S.: Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years, J. Geophys. Res.-Atmos., 119, 2014JD021618, 2014.
- 20 Aydin, M., Campbell, J. E., Fudge, T. J., Cuffey, K. M., Nicewonger, M. R., Verhulst, K. R., and Saltzman, E. S.: Changes in atmospheric carbonyl sulfide over the last 54,000 years inferred from measurements in Antarctic ice cores, J. Geophys. Res.-Atmos., 121, 2015JD024235, 2016.
- Bandy, A. R., Thornton, D. C., Scott, D. L., Lalevic, M., Lewin, E. E. and Driedger, A. R.: A time series for carbonyl sulfide in the northern hemisphere, J. Atmos. Chem., 14, 527–534, 1992.
 De da A. D. Thornton, D. C. and Driedger, A. R.: A time series for carbonyl sulfide in the northern hemisphere, J. Atmos. Chem., 14, 527–534, 1992.
- 25 Bandy, A. R., Thornton, D. C. and Driedger, A. R.: Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry, J. Geophys. Res., 98, 23423–23433, 1993.
- Barkley, M. P., Palmer, P. I., Boone, C. D., Bernath, P. F., and Suntharalingam, P.: Global distributions of carbonyl sulfide in the upper troposphere and stratosphere, Geophys. Res. Lett., 35, L14810, 2008.
- Barnes, I., Becker, K. H., and Patroescu, I.: The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide, Geophys. Res. Lett., 21, 2389–2392, 1994.
- Barnes, I., Becker, K. H., and Patroescu, I.: FTIR product study of the OH initiated oxidation of dimethyl sulphide: Observation of carbonyl sulphide and dimethyl sulphoxide, Atmos. Environ., 30, 1805–1814, 1996.
- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., and Bonan, G. B.: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329, 834–838, 2010.
- Belviso, S., Nguyen, B. C., and Allard, P.: Estimate of carbonyl sulfide (OCS) volcanic source strength
 deduced from OCS/CO₂ ratios in volcanic gases, Geophys. Res. Lett., 13, 133–136, 1986.

38

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Normal1, Indent: Left: 0", Hanging: 0.25" Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover, Science, 351, 600–604, 2016.

Deleted: Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research, Vol. 4, edited by: Biggins, J., Martinus Nijhoff, the Netherlands, 221–224, 1987. -

Deleted: Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50, 2011.

- Belviso, S., Mihalopoulos, N., and Nguyen, B. C.: The supersaturation of carbonyl sulfide (OCS) in rain waters, Atmos. Environ., 21, 1363–1367, 1989.
- Belviso, S., Schmidt, M., Yver, C., Ramonet, M., Gros, V., and Launois, T.: Strong similarities between night-time deposition velocities of carbonyl sulphide and molecular hydrogen inferred from semicontinuous atmospheric observations in Gif-sur-Yvette, Paris region, Tellus B, 65,
- continuous atmospheric observations in Gif-sur-Yvette, Paris region, Tellus B, 65, doi:10.3402/tellusb.v65i0.20719, 2013.
 Belviso, S., Reiter, I. M., Loubet, B., Gros, V., Lathière, J., Montagne, D., Delmotte, M., Ramonet, M.,
- Kalogridis, C., Lebegue, B., Bonnaire, N., Kazan, V., Gauquelin, T., Fernandez, C., and Genty, B.: A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest
 ecosystem in southern France, Atmos. Chem. Phys., 16, 14909–14923, 2016.
- Berkelhammer, M., Asaf, D., Still, C., Montzka, S., Noone, D., Gupta, M., Provencal, R., Chen, H., and Yakir, D.: Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide, Global Biogeochem. Cy., 28, 161–179, 2014.
- Berresheim, H. and Vulcan, V. D.: Vertical distributions of COS, CS₂, DMS and other sulfur
 compounds in a loblolly pine forest, Atmos. Environ. A-Gen., 26, 2031–2036, 1992.
- Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D., and Zhu, Z.: A coupled model of the global cycles of carbonyl sulfide and CO₂: A possible new window on the carbon cycle, J. Geophys. Res.-Biogeo., 118, 842–852, 2013.
- 20 Bezsudnova, E. Y., Sorokin, D. Y., Tikhonova, T. V., and Popov, V. O.: Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium *Thiohalophilus thiocyanoxidans*, BBA-Proteins Proteom., 1774, 1563–1570, 2007.
- Billesbach, D. P., Berry, J. A., Seibt, U., Maseyk, K., Torn, M. S., Fischer, M. L., Abu-Naser, M., and
 Campbell, J. E.: Growing season eddy covariance measurements of carbonyl sulfide and CO₂
 fluxes: COS and CO₂ relationships in Southern Great Plains winter wheat, Agric. Forest Meteorol., 184, 48–55, 2014.
- Blake, N. J., Streets, D. G., Woo, J.-H., Simpson, I. J., Green, J., Meinardi, S., Kita, K., Atlas, E., Fuelberg, H. E., Sachse, G., Avery, M. A., Vay, S. A., Talbot, R. W., Dibb, J. E., Bandy, A. R.,
- 30 Thornton, D. C., Rowland, F. S. and Blake, D. R.: Carbonyl sulfide and carbon disulfide: Largescale distributions over the western Pacific and emissions from Asia during TRACE-P, J. Geophys. Res., 109, D15S05, 2004.
- Blake, N. J., Campbell, J. E., Vay, S. A., Fuelberg, H. E., Huey, L. G., Sachse, G., Meinardi, S., Beyersdorf, A., Baker, A., Barletta, B., Midyett, J., Doezema, L., Kamboures, M., McAdams, J.,
- 35 Novak, B., Rowland, F. S., and Blake, D. R.: Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO₂, J. Geophys. Res.-Atmos., 113, doi:10.1029/2007JD009163, 2008.
 - Blezinger, S., Wilhelm, C., and Kesselmeier, J.: Enzymatic consumption of carbonyl sulfide (COS) by marine algae, Biogeochemistry, 48, 185–197, 2000.
- 40 Bloem, E., Haneklaus, S., Kesselmeier, J., and Schnug, E.: Sulfur fertilization and fungal infections affect the exchange of H₂S and COS from agricultural crops. J. Agricultural and Food Chemistry, 60, 7588-7596, 2012.

- Blonquist, J. M., Montzka, S. A., Munger, J. W., Yakir, D., Desai, A. R., Dragoni, D., Griffis, T. J., Monson, R. K., Scott, R. L., and Bowling, D. R.: The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites, J. Geophys. Res.-Biogeo., 116, 1–18, 2011.
- Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P.
 F.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Optics, 44, 7218–7231, 2005.
- Brühl, C., Lelieveld, J., Crutzen, P. J. and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12(3), 1239–1253, 2012,
- 10 Bunk, R., Behrendt, T., Yi, Z., Andreae, M. O., and Kesselmeier, J.: Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO₂ concentrations, J. Geophys. Res.-Biogeo., 2016JG003678, 2017.
- Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J.,
 Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L., and
 Stanier, C. O.: Photosynthetic control of atmospheric carbonyl sulfide during the growing season,
 Science, 322, 1085–1088, 2008.
- Campbell, J. E., Whelan, M. E., Seibt, U., Smith, S. J., Berry, J. A., and Hilton, T. W.: Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints, Geophys. Res. Lett., doi:10.1002/2015GL063445, 2015.
- 20 Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., Belviso, S., Bopp, L. and Laine, M.: Large historical growth in global terrestrial gross primary production, Nature, 544(7648), 84–87, 2017a.
 - Campbell, J.E., Whelan, M.E., Berry, J.A., Hilton, T.W., Zumkehr, A., Stinecipher, J., Lu, Y., Kornfeld, A., Seibt, U., Dawson, T.E., Montzka, S.A., Baker, I.T., Kulkarni, S., Wang, Y., Herndon, S.C.,
- 25 Zahniser, M.S., Commane, R., Loik, M.E.: Coast redwood sink of atmospheric carbonyl sulfide provides a new biogeochemical tracer for coastal fog-mediated processes, J Geophys Res Biogeosci, 2017b.
 - Camy-Peyret, C., Liuzzi, G., Masiello, G., Serio, C., Venafra, S., & Montzka, S. A.: Assessment of IASI capability for retrieving carbonyl sulphide (OCS), J Quant Spectrosc Ra, 201, 197–208, 2017.
- 30 Castro, M. S. and Galloway, J. N.: A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere, J. Geophys. Res., 96, 15427–15437, 1991.
 - Chin, M. and Davis, D. D.: Global sources and sinks of OCS and CS₂ and their distributions, Global Biogeochem. Cy., 7, 321–337, 1993.
- 35 Chin, M. and Davis, D. D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 100(D5), 8993–9005, 1995.
 Chindini, C., Cinzi, B., Bass, B., and Sasn Jiffia, C.: Carbonyl sulphide (OCS) in particular fluids.
- Chiodini, G., Cioni, R., Raco, B., and Scandiffio, G.: Carbonyl sulphide (OCS) in geothermal fluids: An example from the Larderello field (Italy), Geothermics, 20, 319-327, 1991.

Coffey, M. T. and Hannigan, J. W.: The temporal trend of stratospheric carbonyl sulfide, J. Atmos.
 Chem., 67, 61, 2010.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Brilli, F., Hörtnagl, L., Hammerle, A., Haslwanter, A., Hansel, A., Loreto, F., and Wohlfahrt, G.: Leaf and ecosystem response to soil water availability in mountain grasslands, Agric. Forest Meteorol., 151, 1731–1740, 2011.

Deleted: Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., and Bollich, P. K.: Methane emission from rice: Stable isotopes, diurnal variations, and CO₂ exchange, Global Biogeochem. Cy., 11, 15–27, 1997.

Deleted: Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M.. and Others: Carbon and other biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge, pp. 465–570, 2014.

- Commane, R., Herndon, S. C., Zahniser, M. S., Lerner, B. M., McManus, J. B., Munger, J. W., Nelson, D. D., and Wofsy, S. C.: Carbonyl sulfide in the planetary boundary layer: Coastal and continental influences, J. Geophys. Res.-Atmos., 118, 8001–8009, 2013.
- Commane, R., Meredith, L. K., Baker, I. T., Berry, J. A., Munger, J. W., Montzka, S. A., Templer, P.
 H., Juice, S. M., Zahniser, M. S., and Wofsy, S. C.: Seasonal fluxes of carbonyl sulfide in a midlatitude forest, P. Natl. Acad. Sci. USA, 112, 14162–14167, 2015.
 - Crutzen, P. J.: The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 73–76, 1976.
- Crutzen, P. J.: Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?, Clim. Change, 77(3-4), 211, 2006,
- Cutter, G. A. and Radford-Knoery, J.: Carbonyl sulfide in two estuaries and shelf waters of the western North Atlantic Ocean, Mar. Chem., 43(1), 225–233, 1993,
- Cutter, G. A., Cutter, L. S., and Filippino, K. C.: Sources and cycling of carbonyl sulfide in the Sargasso Sea, Limnol. Oceanogr., 49, 555–565, 2004.
- 15 DeLaune, R. D., Devai, I., and Lindau, C. W.: Flux of reduced sulfur gases along a salinity gradient in Louisiana coastal marshes, Estuar. Coast. Shelf S., 54, 1003–1011, 2002.
- de Mello, W. Z. and Hines, M. E.: Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum peatlands: Implications for the magnitude and direction of flux, J. Geophys. Res., 99, 14601–14607, 1994.
- 20 Deprez, P. P., Franzmann, P. D., and Burton, H. R.: Determination of reduced sulfur gases in antarctic lakes and seawater by gas chromatography after solid adsorbent preconcentration, J. Chromatogr. A, 362, 9–21, 1986.
 - Devai, I. and DeLaune, R. D.: Trapping Efficiency of Various Solid Adsorbents for Sampling and Quantitative Gas Chromatographic Analysis of Carbonyl Sulfide, Anal. Lett., 30, 187–198, 1997.
- 25 Dixon, M. J. R., Loh, J., Davidson, N. C., Beltrame, C., Freeman, R., and Walpole, M.: Tracking global change in ecosystem area: The Wetland Extent Trends index, Biol. Conserv., 193, 27–35, 2016. Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W.
- H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middleburg, J. J.: The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397, 2006.
 Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song, M., Tian, D., Liu, P., Liu, J., Xue, C.,
- Ye, C.: An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion, Geophys Res Lett, 43(16), 8720–8727, 2016.
- Du, Q., Mu, Y., Zhang, C., Liu, J., Zhang, Y., and Liu, C.: Photochemical production of carbonyl sulfide, carbon disulfide and dimethyl sulfide in a lake water, J. Environ. Sci., 51, 146–156, 2017.
- 35 Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462, 2012.
 - Elliott, S.: Effect of hydrogen peroxide on the alkaline hydrolysis of carbon disulfide, Environ. Sci. Technol., 24, 264–267, 1990.
- 40 Elliott, S., Lu, E., and Rowland, F. S.: Rates and mechanisms for the hydrolysis of carbonyl sulfide in natural waters, Environ. Sci. Technol., 23, 458–461, 1989.

Deleted: Conrad, R. and Meuser, K.: Soils contain more than one activity consuming carbonyl sulfide, Atmos. Environ., 34, 3635–3639, 2000.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: de Gouw, J. A., Warneke, C., Montzka, S. A., Holloway, J. S., Parrish, D. D., Fehsenfeld, F. C., Atlas, E. L., Weber, R. J., and Flocke, F. M.: Carbonyl sulfide as an inverse tracer for biogenic organic carbon in gas and aerosol phases, Geophys. Res. Lett., 36(5), L05804, 2009. .

Deleted: Devai, I. and DeLaune, R. D.: Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition, Org. Geochem., 23, 283–287, 1995.

Engel, A. and Schmidt, U.: Vertical profile measurements of carbonylsulfide in the stratosphere, Geophys. Res. Lett., 21, 2219-2222, 1994. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Deleted: Ensign, S. A.: Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and carbonyl sulfide, and carbon disulfide, Biochemistry, 34, 5372 5 organization, Geosci. Model Dev., 9, 1937-1958, 2016. 5378, 1995. Ferek, R. J. and Andreae, M. O.: Photochemical production of carbonyl sulphide in marine surface waters, Nature, 307(5947), 148-150, 1984. Fichot, C. G. and Miller, W. L.: An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction, Remote Sens. Environ., 114, 1363-1377, 2010. 10 Flöck, O. R. and Andreae, M. O.: Photochemical and non-photochemical formation and destruction of Deleted: Fischer, M. L., Torn, M. S., Billesbach, D. P., Doyle, G., Northup, B., and Biraud, S. C.: Carbon, water, and heat flux carbonyl sulfide and methyl mercaptan in ocean waters, Mar. Chem., 54, 11-26, 1996. responses to experimental burning and drought in a tallgrass Flöck, O. R., Andreae, M. O., and Dräger, M.: Environmentally relevant precursors of carbonyl sulfide prairie, Agric. Forest Meteorol., 166, 169-174, 2012. in aquatic systems, Mar. Chem., 59, 71-85, 1997. 15 Fried, A., Klinger, L. F., and Iii, D. J. E.: Atmospheric carbonyl sulfide exchange in bog microcosms, Geophys. Res. Lett., 20, 129-132, 1993. Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks, J. Climate, 27, 511-526. 2013. 20 Fritz, M. and Bachofen, R.: Volatile organic sulfur compounds in a meromictic alpine lake, Acta Hydroch. Hydrob., 28, 185-192, 2000. Geng, C. and Mu, Y .: Carbonyl sulfide and dimethyl sulfide exchange between lawn and the Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto atmosphere, J. Geophys. Res. D: Atmos., 109(D12), D12302, 2004, Formatted: Font:(Default) +Theme Body (Times New Gerdel, K., Spielmann, F.M., Hammerle, A., and Wohlfahrt G.: Eddy covariance carbonyl sulfide flux Roman) 25 measurements with a quantum cascade laser absorption spectrometer, Atmos. Meas. Tech., 10, 3525-3537, 2017. Gerlach, T.: Volcanic versus anthropogenic carbon dioxide, Eos Trans. Amer. Geophys. Union, 92, 201-202, 2011. Gimeno, T. E., Ogée, J., Royles, J., Gibon, Y., West, J. B., Burlett, R., Jones, S. P., Sauze, J., Wohl, S., 30 Benard, C., Genty, B., and Wingate, L.: Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light, New Phytol., 215, 965-976, 2017. Glatthor, N., Höpfner, M., Baker, I. T., Berry, J., Campbell, J. E., Kawa, S. R., Krysztofiak, G., Leyser, A., Sinnhuber, B.-M., Stiller, G. P., Stinecipher, J., and von Clarmann, T.: Tropical sources and 35 sinks of carbonyl sulfide observed from space, Geophys. Res. Lett., 42, 10082-10090, doi: 10.1002/2015GL066293, 2015. Glatthor, N., Höpfner, M., Leyser, A., Stiller, G. P., von Clarmann, T., Grabowski, U., Kellmann, S., Linden, A., Sinnhuber, B.-M., Krysztofiak, G., and Walker, K. A.: Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002-2012, Atmos. Chem. Phys., 17(4), 2631-2652, 2017. Goldan, P. D., Kuster, W. C., Albritton, D. L. and Fehsenfeld, F. C.: The measurement of natural sulfur 40 Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto emissions from soils and vegetation: Three sites in the Eastern United States revisited, J. Atmos. Formatted: Font:(Default) +Theme Body (Times New Chem., 5(4), 439-467, 1987. Roman)

- Gries, C., Iii, T. H. N., and Kesselmeier, J.: Exchange of reduced sulfur gases between lichens and the atmosphere, Biogeochemistry, 26, 25–39, 1994.
- Griffith, D. W. T., Jones, N. B., and Matthews, W. A.: Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground-based solar FTIR spectra, J. Geophys. Res.-Atmos., 103, 8447–8454, 1998.

- Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–33, 2014.
- Hanschen, F. S., Lamy, E., Schreiner, M., and Rohn, S.: Reactivity and stability of glucosinolates and their breakdown products in foods, Angew. Chem. Int. Edit., 53, 11430–11450, 2014.
 Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M.: Trichoderma species —
- opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol., 2, 43–56, 2004.
 15 Hilton, T. W., Zumkehr, A., Kulkarni, S., Berry, J., Whelan, M. E., and Campbell, J. E.: Large variability in ecosystem models explains uncertainty in a critical parameter for quantifying GPP with carbonyl sulphide, Tellus B, 67, doi:10.3402/tellusb.v67.26329, 2015.
- Hilton, T. W., Whelan, M. E., Zumkehr, A., Kulkarni, S., Berry, J. A., Baker, I. T., Montzka, S. A., Sweeney, C., Miller, B. R., and Campbell, J. E.: Peak growing season gross uptake of carbon in
- North America is largest in the Midwest USA, Nat. Clim. Change, doi:10.1038/nclimate3272, 2017. Hoell, J. M., Davis, D. D., Gregory, G. L., McNeal, R. J., Bendura, R. J., Drewry, J. W., Barrick, J. D., Kirchhoff, V. W. J. H., Motta, A. G., Navarro, R. L., Dorko, W. D. and Owen, D. W.: Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide, J. Geophys. Res., 98, 23291–23304, 1993.
- Hoover, D. L. and Rogers, B. M.: Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling, Glob. Change Biol., 22, 1809–1820, 2016.
- Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., Baker, I. T.,
 Chen, J. M., Davis, K. J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, S., McGuire, A. D.,
 Neilson, R. P., Potter, C., Poulter, B., Price, D., Raczka, B. M., Tian, H. Q., Thornton, P., Tomelleri,
 E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, R.: North American Carbon
 Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison, Ecol.
 Model., 232, 144–157, 2012.
- 35 Hussain, A., Ogawa, T., Saito, M., Sekine, T., Nameki, M., Matsushita, Y., Hayashi, T., and Katayama, Y.: Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic alphaproteobacteria strain THI201, Microbiology, 159, 2294–2302, 2013.
- Hynes, A. J., Wine, P. H., and Nicovich, J. M.: Kinetics and mechanism of the reaction of hydroxyl with carbon disulfide under atmospheric conditions, J. Phys. Chem.-US, 92, 3846–3852, 1988.
- 40 Ichii, K., Kondo, M., Lee, Y.-H., Wang, S.-Q., Kim, J., Ueyama, M., Lim, H.-J., Shi, H., Suzuki, T., Ito, A., Kwon, H., Ju, W., Huang, M., Sasai, T., Asanuma, J., Han, S., Hirano, T., Hirata, R., Kato, T., Li, S.-G., Li, Y.-N., Maeda, T., Miyata, A., Matsuura, Y., Murayama, S., Nakai, Y., Ohta, T.,

43

Deleted: Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, R.: Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405, 2006. Saitoh, T. M., Saigusa, N., Takagi, K., Tang, Y.-H., Wang, H.-M., Yu, G.-R., Zhang, Y.-P., and Zhao, F.-H.: Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddycovariance observation network: toward future modeling efforts, J. Forestry Res., 18, 13–20, 2013. Kaisermann, A., Ogée, J., Sauze, J., Wohl, S., Jones, S. P., Gutierrez, A., and Wingate, L.:

- Disentangling the rates of carbonyl sulphide (COS) production and consumption and their dependency with soil properties across biomes and land use types, Atmos. Chem. Phys. Discuss., 2018.
- Kamezaki K., Hattori S., Ogawa T., Toyoda, S., Kato H., Katayama Y. Yoshida N. 2016. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria. Environ. Sci. Technol. 50:3537-3544.
- Kamyshny, A., Goifman, A., Rizkov, D., and Lev, O.: Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides, Environ. Sci. Technol., 37, 1865–1872, 2003.
 Kanda, K. I., Tsuruta, H., and Minami, K.: Emission of dimethyl sulfide, carbonyl sulfide, and carbon bisulfide from paddy fields, Soil Sci. Plant Nutr., 38, 709–716, 1992.
- 15 Kanda, K.-I., Tsuruta, H., and Minami, K.: Emissions of biogenic sulfur gases from maize and wheat fields, Soil Sci. Plant Nutr., 41, 1–8, 1995.
- Katayama, Y., Narahara, Y., Inoue, Y., Amano, F., Kanagawa, T., and Kuraishi, H.: A thiocyanate hydrolase of *Thiobacillus thioparus*. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate, J. Biol. Chem., 267, 9170–9175, 1992.
- Kato, H., Saito, M., Nagahata, Y., and Katayama, Y.: Degradation of ambient carbonyl sulfide by <u>Mycobacterium</u>, spp. in soil, Microbiology, 154, 249–255, 2008.
 Kato, H., Igarashi, Y., Dokiya, Y., Katayama, Y. (2011) Vertical distribution of carbonyl sulfide at
- Kato H., Igarashi Y., Dokiya Y., Katayama Y. (2011) Vertical distribution of carbonyl sulfide at Mt.Fuji, Japan. Water Air Soil Pollution DOI 10.1007/s11270-011-0847-0
- Kesselmeier, J. and Hubert, A.: Exchange of reduced volatile sulfur compounds between leaf litter and the atmosphere, Atmos. Environ., 36, 4679–4686, 2002.
- Kesselmeier, J., Teusch, N., and Kuhn, U.: Controlling variables for the uptake of atmospheric carbonyl sulfide by soil, J. Geophys. Res., 104, 11577–11584, 1999.
- Kettle, A. J., Rhee, T. S., von Hobe, M., Poulton, A., Aiken, J. and Andreae, M. O.: Assessing the flux of different volatile sulfur gases from the ocean to the atmosphere, J. Geophys. Res. D: Atmos., 106(D11), 12193–12209, 2001,
- Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. and Andreae, M. O.: Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res. D: Atmos., 107(D22), 1–16, 2002.
- Kitz, F., Gerdel, K., Hammerle, A., Laterza, T., Spielmann, F. M., and Wohlfahrt, G.: In situ soil COS
 exchange of a temperate mountain grassland under simulated drought, Oecologia, 183, 851–860, 2017.
- Kooijmans, L. M. J., Uitslag, N. A. M., Zahniser, M. S., Nelson, D. D., Montzka, S. A., and Chen, H.: Continuous and high precision atmospheric concentration measurements of COS, CO_{2e} CO and H2O using a quantum cascade laser spectrometer (QCLS), Atmos. Meas. Tech., 9, 5293-5314, 2016.

Deleted: Iordan, S. L., Kraczkiewicz-Dowjat, A. J., Kelly, D. P., and Wood, A. P.: Novel eubacteria able to grow on carbon disulfide, Arch. Microbiol., 163, 131–137, 1995.

Formatted: Font:(Default) +Theme Body (Times New Roman), Italic

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Indent: Left: 0", Hanging: 0.25", Line spacing: single

Deleted: Kettle, A. J., Kuhn, U., Von Hobe, M., Kesselmeier, J., Liss, P. S., and Andreae, M. O.: Comparing forward and inverse models to estimate the seasonal variation of hemisphere-integrated fluxes of carbonyl sulfide, Atmos. Chem. Phys. Discuss., 2, 577– 621, 2002.

Formatted: Indent: Left: 0", Hanging: 0.25"

Formatted: Font:(Default) +Theme Body (Times New Roman), Subscript

Formatted: Font:(Default) +Theme Body (Times New Roman)

- Kooijmans, L. M. J., Maseyk, K., Seibt, U., Sun, W., Vesala, T., Mammarella, I., Kolari, P., Aalto, J., Franchin, A., Vecchi, R., Valli, G. and Chen, H.: Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest, Atmos. Chem. Phys., 17, 11453–11465, 2017.
- Kremser, S., Jones, N. B., Palm, M., Lejeune, B., Wang, Y., Smale, D., and Deutscher, N. M.: Positive
 trends in Southern Hemisphere carbonyl sulfide, Geophys. Res. Lett., 42, doi:
 10.1002/2015GL065879, 2015.
- Krysztofiak, G., Té, Y. V., Catoire, V., Berthet, G., Toon, G. C., Jégou, F., Jeseck, P., and Robert, C.: Carbonyl sulphide (OCS) variability with latitude in the atmosphere, Atmos. Ocean, 53, 89–101, 2015.
- 10 Kuai, L., Worden, J., Kulawik, S. S., Montzka, S. A., and Liu, J.: Characterization of Aura TES carbonyl sulfide retrievals over ocean, Atmos. Meas. Tech., 7, 163–172, 2014.
- Kuai, L., Worden, J. R., Campbell, J. E., Kulawik, S. S., Li, K.-F., Lee, M., Weidner, R. J., Montzka, S. A., Moore, F. L., Berry, J. A., Baker, I., Denning, A. S., Bian, H., Bowman, K. W., Liu, J., and Yung, Y. L.: Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations, J. Geophys. Res.-Atmos., 120, doi: 10.1002/2015JD023493, 2015.
 - Kuhn, U. and Kesselmeier, J.: Environmental variables controlling the uptake of carbonyl sulfide by lichens, J. Geophys. Res.-Atmos., 105, 26783–26792, 2000.
- Kuhn, U., Ammann, C., Wolf, A., Meixner, F. X., Andreae, M. O., and Kesselmeier, J.: Carbonyl sulfide exchange on an ecosystem scale: soil represents a dominant sink for atmospheric COS, Atmos. Environ., 33, 995–1008, 1999.
 - Kusumi, A., Li, X. S., and Katayama, Y.: Mycobacteria isolated from angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur, Front. Microbiol., 2, 104, 2011.
 Launois, T., Belviso, S., Bopp, L., Fichot, C. G., and Peylin, P.: A new model for the global
- ²⁵ biogeochemical cycle of carbonyl sulfide Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model, Atmos. Chem. Phys., 15, 2295–2312, 2015a.
- Launois, T., Peylin, P., Belviso, S., and Poulter, B.: A new model of the global biogeochemical cycle of carbonyl sulfide Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models, Atmos. Chem. Phys., 15, 9285–9312, 2015b.
- Lee, C.-L. and Brimblecombe, P.: Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes, Earth-Sci. Rev., 160, 1–18, 2016.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
- 35 Lejeune, B., Mahieu, E., Vollmer, M. K., Reimann, S., Bernath, P. F., Boone, C. D., Walker, K. A., and Servais, C.: Optimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995, J. Quant. Spectrosc. Ra., 186, 81–95, 2017.
- Lennartz, S. T., Marandino, C. A., Von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer,
 A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., and Krüger, K.: Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide, Atmos. Chem. Phys., 17, 385–402, 2017.

- Li, X. S., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J.-D., and Katayama, Y.: Oxidation of elemental sulfur by *Fusarium solani* strain THIF01 harboring endobacterium *Bradyrhizobium* sp, Microb. Ecol., 60, 96–104, 2010.
- Li, X., Zhu, Z., Yang, L., and Sun, Z.: Emissions of biogenic sulfur gases (H₂S, COS) from *Phragmites australis* coastal marsh in the Yellow River estuary of China, Chinese Geogr. Sci., 26, 770–778, 2016.
 - Liu, J. and Li, X.: Sulfur cycle in the typical meadow *Calamagrostis angustifolia* wetland ecosystem in the Sanjiang Plain, Northeast China, J. Environ. Sci., 20, 470–475, 2008.
- Liu, J., Geng, C., Mu, Y., Zhang, Y., Xu, Z. and Wu, H.: Exchange of carbonyl sulfide (COS) between
 the atmosphere and various soils in China, Biogeosciences, 7(2), 753–762, 2010.
- Lorimer, G.H. and Pierce, J., 1989. Carbonyl sulfide: an alternate substrate for but not an activator of ribulose-1, 5-bisphosphate carboxylase. Journal of Biological Chemistry, 264(5), pp.2764-2772, MacIntyre, S., Wanninkhof, R., and Chanton, J. P.: Trace gas exchange across the air-water interface in
- freshwaters and coastal marine environments, in: Biogenic trace gases: Measuring emissions from soil and water, Matson, P. A., and Harriss, R. C., eds., Blackwell, p. 52–97, 1995.
- Masaki, Y., Ozawa, R., Kageyama, K., and Katayama, Y.: Degradation and emission of carbonyl sulfide, an atmospheric trace gas, by fungi isolated from forest soil, FEMS Microbiol. Lett., 363, doi:10.1093/femsle/fnw197, 2016.
- Maseyk, K., Berry, J. A., Billesbach, D., Campbell, J. E., Torn, M. S., Zahniser, M., and Seibt, U.:
 Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains, P. Natl. Acad. Sci. USA, 111, 9064–9069, 2014.
 - Melillo, J. M. and Steudler, P. A.: The effect of nitrogen fertilization on the COS and CS₂ emissions from temperature forest soils, J. Atmos. Chem., 9, 411–417, 1989.
- Meredith, L.K., Ogée, J., Boye, K., Singer, E., Wingate, L., von Sperber, C., Sengupta, A., Whelan, M.,
 Pang, E., Keiluweit, M., Brüggemann, N., Berry, J. A., and Welander, P. V. Soil exchange rates of COS and CO¹⁸O differ with the diversity of microbial communities and their carbonic anhydrase enzymes, ISME Journal [in_review].
- Meredith, L.K., Boye, K., Youngerman, C., Whelan, M., Ogée, J., Sauze, J., and Wingate, L., Coupled biological and abiotic mechanisms driving carbonyl sulfide production in soils, Soil Systems [submitted].
- Mihalopoulos, N., Bonsang, B., Nguyen, B. C., Kanakidou, M., and Belviso, S.: Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation, Atmos. Environ., 23, 2159–2166, 1989.
- Mihalopoulos, N., Nguyen, B. C., Putaud, J. P. and Belviso, S.: The oceanic source of carbonyl sulfide
 (COS), Atmos. Environ., 26(8), 1383–1394, 1992,
- Montzka, S. A., Aydin, M., Battle, M., Butler, J. H., Saltzman, E. S., Hall, B. D., Clarke, A. D., Mondeel, D., and Elkins, J. W.: A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firm air and air trapped in ice, J. Geophys. Res., 109, doi:10.1029/2004JD004686, 2004.
- Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., and Sweeney, C.: On
 the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO₂, J. Geophys. Res.- Atmos., 112, doi:10.1029/2006JD007665, 2007.

Deleted: Lindo, Z., Nilsson, M.-C., and Gundale, M. J.: Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change, Glob. Change Biol., 19, 2022–2035, 2013.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto, Pattern: Clear

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted:

Maestre, F. T., Escolar, C., de Guevara, M. L., Quero, J. L., Lázaro, R., Delgado-Baquerizo, M., Ochoa, V., Berdugo, M., Gozalo, B., and Gallardo, A.: Changes in biocrust cover drive earbon cycle responses to climate change in drylands, Glob. Change Biol., 19, 3835–3847, 2013. .

Formatted: Font:(Default) +Theme Body (Times New Roman), 10 pt

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Maestre, F. T., Escolar, C., de Guevara, M. L., Quero, J. L., Lázaro, R., Delgado-Baquerizo, M., Ochoa, V., Berdugo, M., Gozalo, B., and Gallardo, A.: Changes in biocrust cover drive carbon cycle responses to climate change in drylands, Glob. Change Biol., 19, 3835–3847, 2013.

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Indent: Left: 0", Hanging: 0.25"

Deleted: Meredith, L. K., Ogée, J., Boye, K., Singer, E., Wingate, L., von Sperber, C., Sengupta, A., Whelan, M.E., Pang, E., Keiluweit, M., Brüggemann, N., Berry, J., Welander, P.V.: Soil exchange rates of COS and CO¹⁶O shift with the diversity of microbial communities and their carbonic anhydrase enzymes, In prep. - (... [214]) Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Morel, A. and Gentili, B.: Radiation transport within oceanic (case 1) water, J. Geophys. Res. C: Oceans, 109, 2004

Mu, Y., Geng, C., Wang, M., Wu, H., Zhang, X., and Jiang, G.: Photochemical production of carbonyl sulfide in precipitation, J. Geophys. Res.-Atmos., 109, doi:10.1029/2003JD004206, 2004.

- 5 Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., and Daniel, R.: Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils, PLoS One, 6, e17000, 2011.
- 10
- Notni, J., Schenk, S., Protoschill Krebs, G., Kesselmeier, J. and Anders, E., 2007. The missing link in COS metabolism: A model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue. ChemBioChem, 8(5), pp.530-536.
- 15 <u>Notsu, K. and Toshiya, M.: Chemical monitoring of volcanic gas using remote FT-IR spectroscopy at several active volcanoes in Japan, Appl. Geochem, 25, 505–512, 2010.</u>
- Ogawa, T., Noguchi, K., Saito, M., Nagahata, Y., Kato, H., Ohtaki, A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda, M., Nyunoya, H., and Katayama, Y.: Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes, J. Am. Chem. Soc., 135, 3818–3825, 2013.
- Ogawa, T., Kato, H., Higashide, M., Nishimiya, M., and Katayama, Y.: Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of β-class carbonic anhydrase, FEMS Microbiol. Lett., doi:10.1093/femsle/fnw223, 2016
- Ogawa T., Hattori S., Kamezaki K., Kato H., Yoshida N., Katayama Y. Isotopic fractionation of sulfur in carbonyl sulfide by carbonyl sulfide hydrolase of *Thiobacillus thioparus* THI115. Microbes and Environments, 32, 367-375, 2017.
- Ogée, J., Sauze, J., Kesselmeier, J., Genty, B., Van Diest, H., Launois, T., and Wingate, L.: A new mechanistic framework to predict OCS fluxes from soils, Biogeosciences, 13, 2221-2240, 2016.
- Oppenheimer, C., Kyle, P., Eisele, F., Crawford, J., Huey, G., Tanner, D., Kim, S., Mauldin, L., Blake,
 D., Beyersdorf, A., Buhr, M., and Davis, D.: Atmospheric chemistry of an Antarctic volcanic plume,
 J. Geophys. Res., 115, D04303, 2010.
 - Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, A., Pérez-Priego, Ó., Wohlfahrt, G., and Montagnani, L.: Terrestrial gross primary production inferred from satellite fluorescence and vegetation models, Glob. Change Biol., 20, 3103–3121, 2014.
- 35 Parazoo, N. C., Barnes, E., Worden, J., Harper, A. B., Bowman, K. B., Frankenberg, C., Wolf, S., Litvak, M., and Keenan, T. F.: Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region, Global Biogeochem. Cy., 29, 1247–1265, 2015.
- Patroescu, I. V., Barnes, I., Becker, K. H., and Mihalopoulos, N.: FT-IR product study of the OHinitiated oxidation of DMS in the presence of NOx, Atmos. Environ., 33, 25–35, 1998.
- 40 Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng,

47

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Moved down [30]:

Notni, J., Schenk, S., Protoschill - Krebs, G., Kesselmeier, J. and Anders, E., 2007. The missing link in COS metabolism: A model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue. ChemBioChem, 8(5), pp.530-536. -Notsu, K. and Toshiya, M.: Chemical monitoring of volcanic gas using remote FT-IR spectroscopy at several active volcanoes in Japan, Appl. Geochem, 25, 505–512, 2010. -Ogawa, T., Noguchi, K., Saito, M., Nagahata, Y., Kato, H., Ohtaki, A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda,

A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda, M., Nyunoya, H., and Katayama, Y.: Carbonyl sulfide hydrolase from *Thiobacillus thioparus* strain THI115 is one of the β -carbonic anhydrase family enzymes, J. Am. Chem. Soc., 135, 3818–3825, 2013.

Ogawa, T., Kato, H., Higashide, M., Nishimiya, M., and Katayama, Y.: Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of β-class carbonic anhydrase, FEMS Microbiol. Lett., doi:10.1093/femsle/fnw223, 2016.

Formatted: Font:(Default) Calibri

Formatted: Font:(Default) +Theme Body (Times New Roman)

Moved (insertion) [30]

Formatted: Indent: Left: 0", Hanging: 0.25"

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Pandey, S. K. and Kim, K.-H.: A review of methods for the determination of reduced sulfur compounds (RSCs) in air, Environ, Sci. Technol., 43, 3020–3029, 2009.

Deleted: Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Schimel, D. S., Hall, D. O., and SCOPEGRAM Group Members: Impact of climate change on grassland production and soil carbon worldwide, Glob. Change Biol., 1, 13–22, 1995.

Paw U, K.T., Qiu, J., Su, H.-B, Watanabe, T., Brunet, Y.: Surface renewal analysis: a new method to obtain scalar fluxes, Agric. For. Meteronl., 74(1), 119–137, 1995. . Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.:

Estimating impacts of lichens and bryophytes on global biogeochemical cycles, Global Biogeochem. Cy., 28, 71–85, 2014.

Deleted: Paw U, K.T., Qiu, J., Su, H.-B, Watanabe, T., Brunet, Y.: Surface renewal analysis: a new method to obtain scalar fluxes, Agric. For. Meteorol., 74(1), 119–137, 1995.

Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating impacts of lichens and bryophytes on global biogeochemical cycles, Global Biogeochem. Cy., 28, 71–85, 2014. N.: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO₂ trends, Glob. Change Biol., 19, 2117–2132, 2013.

Pos, W. H., Riemer, D. D., and Zika, R. G.: Carbonyl sulfide (OCS) and carbon monoxide (CO) in natural waters: evidence of a coupled production pathway, Mar. Chem., 62, 89–101, 1998.
Preiswerk, D. and Najjar, R. G.: A global, open-ocean model of carbonyl sulfide and its air-sea flux,

- <u>Global Biogeochem. Cycles</u>, 14(2), 585–598, 2000.
 Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and terrestrial carbon cycle changes after the last ice age, New Phytol., 189, 988–998, 2011.
- Protoschill-Krebs, G. and Kesselmeier, J.: Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants. Botanica Acta 105, 206-212, 1992.
- Radford-Knoery, J. and Cutter, G. A.: Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection, Anal. Chem., 65, 976–976, 1993.
- Radford-Knery, J. and Cutter, G. A.: Biogeochemistry of dissolved hydrogen sulfide species and
 carbonyl sulfide in the western North Atlantic Ocean, Geochim. Cosmochim. Ac., 58, 5421–5431,
 1994.
 - Rasmussen, R. A., Khalil, M. A., Dalluge, R. W., Penkett, S. A., and Jones, B.: Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens, Science, 215, 665–667, 1982.
- Rastogi, B., Berkelhammer, M., Wharton, S., Whelan, M. E., Meinzer, F. C., Noone, D., and Still, C. J.:
 Ecosystem fluxes of carbonyl sulfide in an old-growth forest: temporal dynamics and responses to diffuse radiation and heat waves, Biogeosciences Discuss., 2018, Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D, Smyth, R. L.,
- Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J., A., Pierson, D. C., Brookes, J. D., Laas, A., Wu, C. H.: Lake size dependency of wind shear and convection as controls on gas exchange, Geophys.
 Res. Lett., 39, L09405, 2012.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
- 30 Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, 2005.
- Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., Galbraith, D., Imbuzeiro, H., Martins, G., da Araujo, A. C., Malhi, Y. S., Zeng, X., Moorcroft, P., and Saleska,
- 35 S. R.: Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison, Glob. Change Biol., 23, 191–208, 2017.
- Rice, H., Nochumson, D. H., and Hidy, G. M.: Contribution of anthropogenic and natural sources to atmospheric sulfur in parts of the United States, Atmos. Environ., 15, 1–9, 1981.
 Richards, S. R., Kelly, C. A., and Rudd, J. W. M.: Organic volatile sulfur in lakes of the Canadian
- 40 Shield and its loss to the atmosphere, Limnol. Oceanogr., 36, 468–482, 1991.
- Richards, S. R., Rudd, J. W. M., and Kelly, C. A.: Organic volatile sulfur in lakes ranging in sulfate and dissolved salt concentration over five orders of magnitude, Limnol. Oceanogr., 39, 562–572, 1994.

48

Deleted: Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating impacts of lichens and bryophytes on global biogeochemical cycles, Global Biogeochem. Cy., 28, 71–85, 2014.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Protoschill-Krebs, G., Wilhelm, C., and Kesselmeier, J.: Consumption of carbonyl sulphide by Chlamydomonas reinhardtii with different activities of carbonic anhydrase (CA) induced by different CO₂ growing regimes, Plant Biol., 108, 445–44{ ... [215]</sub>

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S.: Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains, Agric. Ecosyst. Environ., 213, 209– 218, 2015. -

Formatted: Font:(Default) Calibri

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, 2013.

- Rinsland, C. P., Goldman, A., Mahieu, E., Zander, R., Notholt, J., Jones, N. B., Griffith, D., Stephen, T. M., and Chiou, L. S.: Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements, J. Geophys. Res.-Atmos., 107, doi: 10.1029/2002JD002522, 2002.
- 5 Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Rayner, P. J., Enting, I., Mulvaney, R., Steele, L. P., Langenfelds, R. L., Sturges, W. T., Curran, M. A. J., and Smith, A. M.: Low atmospheric CO₂ levels during the Little Ice Age due to cooling-induced terrestrial uptake, Nat. Geosci., 9, 691–694, 2016.
- Sandoval-Soto, L., Stanimirov, M., Von Hobe, M., Schmitt, V., Valdes, J., Wild, A., and Kesselmeier,
 J.: Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO₂), Biogeosciences, 2, 125–132, 2005.
- Sandoval-Soto, L., Kesselmeier, M., Schmitt, V., Wild, A. and Kesselmeier, J.: Observations of the uptake of carbonyl sulfide (COS) by trees under elevated atmospheric carbon dioxide concentrations, Biogeosciences, 9, 2935–2945, 2012,
 - Sauze, J., Ogée, J., Maron, P.-A., Crouzet, O., Nowak, V., Wohl, S., Kaisermann, A., Jones, S. P. and Wingate, L.: The interaction of soil phototrophs and fungi with pH and their impact on soil CO₂, CO ¹⁸O and OCS exchange, Soil Biol. Biochem., 115, 371–382, 2017.
- 20 Sawyer, G.M., Carn, S.A., Tsanev, V.I., Oppenheimer, C., and Burton, M.: Investigation into magma degassing at Nyiragongo volcano, Democratic Republic of the Congo, Geochem. Geophy. Geosy., 9, doi:10.1029/2007GC001829, 2008.

Schenk, S., Kesselmeier, J. and Anders, E.: How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?, Chem.-Eur. J., 10, 3091–3105, 2004.

- 25 Seibt, U., Kesselmeier, J., Sandoval-Soto, L., Kuhn, U. and Berry, J. A.: A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation, Biogeosciences, 7, 333–341, 2010.
- Simmons, J. S.: Consumption of atmospheric carbonyl sulfide by coniferous boreal forest soils, J. Geophys. Res., 104, 11569–11576, 1999.
- 30 Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Boulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12, 653–679,
- 35 2015.
- Smeulders, M. J., Barends, T. R. M., Pol, A., Scherer, A., Zandvoort, M. H., Udvarhelyi, A., Khadem, A. F., Menzel, A., Hermans, J., Shoeman, R. L., Wessels, H. J. C. T., van den Heuvel, L. P., Russ, L., Schlichting, I., Jetten, M. S. M., and Op den Camp, H. J. M.: Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon, Nature, 478, 412–416, 2011.
- 40 Smith, N. A. and Kelly, D. P.: Oxidation of carbon disulphide as the sole source of Energy for the autotrophic growth of *Thiobacillus thioparus* strain TK-m, Microbiology, 134, 3041–3048, 1988.

49

Deleted: Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R.: Amazon forests green-up during 2005 drought, Science, 318, 612, 2007.

Formatted: Font:(Default) +Theme Body (Times New Roman)

Moved down [29]: Schenk, S., Kesselmeier, J. and Anders, E.: How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?, Chem.-Eur. J., 10, 3091– 3105, 2004.

Moved (insertion) [29]

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: An Analysis of Global Change, Academic Press, Waltham, 2012.

- Staubes, R. and Georgii, H.-W.: Biogenic sulfur compounds in seawater and the atmosphere of the Antarctic region, Tellus B Chem. Phys. Meteorol., 45, 127–137, 1993.
- Steinbacher, M., Bingemer, H. G., and Schmidt, U.: Measurements of the exchange of carbonyl sulfide (OCS) and carbon disulfide (CS₂) between soil and atmosphere in a spruce forest in central Germany, Atmos. Environ., 38, 6043–6052, 2004.
- Germany, Atmos. Environ., 38, 6043–6052, 2004.
 Steudler, P. A. and Peterson, B. J.: Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature, 311, 455–457, 1984.
- Steudler, P. A. and Peterson, B. J.: Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh, Atmos. Environ., 19, 1411–1416, 1985.
- 10 Stickel, R. E., Chin, M., Daykin, E. P., Hynes, A. J., Wine, P. H., and Wallington, T. J.: Mechanistic studies of the hydroxyl-initiated oxidation of carbon disulfide in the presence of oxygen, J. Phys. Chem., 97, 13653–13661, 1993.
- Stimler, K., Nelson, D., and Yakir, D.: High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide using mid-IR quantum cascade laser, Glob. Chang. Biol., 16(9), 2496–2503, 2010a.
- Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y., and Yakir, D.: Relationships between carbonyl sulfide (COS) and CO₂ during leaf gas exchange, New Phytol., 186, 869–878, 2010b.
 Stimler K. Derrender S. A. Martelle, S. A. Martelle, S. A. Martelle, D. Angeler and M. S. Martelle, S. Martelle, S. A. Martelle, S. A. Martelle, S. A. Martelle, S. Martelle,
- Stimler, K., Berry, J. A., Montzka, S. A., and Yakir, D.: Association between carbonyl sulfide uptake and 18Δ during gas exchange in C3 and C4 leaves, Plant Physiol., 157(1), 509–517, 2011.
- 20 Stimler, K., Berry, J. A., and Yakir, D.: Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance1[OA], Plant Physiol., 158, 524–530, 2012.
- Sturges, W. T., Penkett, S. A., Barnola, J.-M., Chappellaz, J., Atlas, E. and Stroud, V.: A long-term record of carbonyl sulfide (COS) in two hemispheres from firn air measurements, Geophys. Res. Lett., 28, 4095–4098, 2001,
- 25 Suntharalingam, P., Kettle, A. J., Montzka, S. M., and Jacob, D. J.: Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake, Geophys. Res. Lett., 35, doi:10.1029/2008GL034332, 2008.
- Sun, W., Maseyk, K., Lett, C. and Seibt, U.: A soil diffusion–reaction model for surface COS flux: COSSM v1, Geosci. Model Dev., 8, 3055–3070, 2015.
- 30 Sun, W., Maseyk, K., Lett, C., and Seibt, U.: Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland, J. Geophys. Res.-Biogeosciences, 121, doi:10.1002/2015JG003149, 2016.
- Sun, W., Kooijmans, L. M. J., Maseyk, K., Chen, H., Mammarella, I., Vesala, T., Levula, J., Keskinen, H., and Seibt, U.: Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland, Atmos. Chem. Phys. Discuss., 1–24, 2017.
- Symonds, R.B., Reed, M.H., and Rose, W.I.: Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes, Geochim. Cosmochim. Ac., 56, 633-657, 1992.
- Thornton, D. C., Bandy, A. R., Blomquist, B. W. and Anderson, B. E.: Impact of anthropogenic and
 biogenic sources and sinks on carbonyl sulfide in the North Pacific troposphere, J. Geophys. Res.,
 101, 1873–1881, 1996.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Spence, C., Rouse, W. R., Worth, D., and Oswald, C.: Energy budget processes of a small northern lake, J. Hydrometeorol., 4, 694–701, 2003.

Deleted: Steudler, P. A. and Kijowski, W.: Determination of reduced sulfur gases in air by solid adsorbent preconcentration and gas chromatography, Anal. Chem., 56, doi:10.1021/ac00272a051, 1984.

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J.-Y., McCarthy, H. R., Kim, H.-S., Oishi, A. C., and Oren, R.: Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: A wavelet analysis, Tree Physiol., 25, 887–902, 2005.

- Toon, G. C., Blavier, J.-F. L. and Sung, K.: Atmospheric carbonyl sulfide (OCS) measured remotely by FTIR solar absorption spectrometry, Atmos. Chem. Phys., 18(3), 1923–1944, 2018.
- Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P.: OCS, stratospheric aerosols and climate, Nature, 283, 283–285, 1980.
- 5 Uher, G.: Distribution and air-sea exchange of reduced sulphur gases in European coastal waters, Estuar. Coast. Shelf S., 70, 338–360, 2006.
- Uher, G. and Andreae, M. O.: Photochemical production of carbonyl sulfide in North Sea water: A process study, Limnol. Oceanogr., 42, 432–442, 1997.
- Ulshöfer, V. S., Uher, G., and Andreae, M. O.: Evidence for a winter sink of atmospheric carbonyl sulfide in the northeast Atlantic Ocean, Geophys. Res. Lett. 22, 2601-2604, 1995
- <u>Ulshöfer, V. S., Flock, O. R., Uher, G. and Andreae, M. O.: Photochemical production and air-sea</u> exchange of carbonyl sulfide in the eastern Mediterranean Sea, Mar. Chem., 53(1-2), 25–39, 1996.
 <u>Ulshöfer, V. S. and Andreae, M. O.: Carbonyl Sulfide (COS) in the Surface Ocean and the Atmospheric</u> COS Budget, Aquat. Geochem., 3(4), 283–303, 1998.
- 15 Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., and Morris, C. E.: The Phyllosphere: Microbial Jungle at the Plant–Climate Interface, Annu. Rev. Ecol. Evol. S., 47, 1–24, doi:10.1146/annurev-ecolsys-121415-032238, 2016.
- Van Diest, H., and Kesselmeier, J.: Soil atmosphere exchange of carbonyl sulfide (COS) regulated by diffusivity depending on water-filled spore space, Biogeosciences, 5, 475–483, 2008.
- 20 Velazco, V. A., Toon, G. C., Blavier, J.-F. L., Kleinböhl, A., Manney, G. L., Daffer, W. H., Bernath, P. F., Walker, K. A., and Boone, C.: Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles, J. Geophys. Res., 116, D06306, 2011. Vincent, R. A. and Dudhia, A.: Fast retrievals of tropospheric carbonyl sulfide with IASI, Atmos.
- Chem. Phys., 17, 2981–3000, 2017.
 25 Von Clarmann, T., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Tsidu, G. M., Milz, M., Steck, T., Stiller, G. P., Wang, D. Y., Fischer, H., Funke, B., Gil-López, S., and López-Puertas, M.: Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding
- spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), J. Geophys. Res.-Atmos., 108, doi: 10.1029/2003JD003602, 2003.
 30 Von Hobe, M., Kettle, A. J. and Andreae, M. O.: Carbonyl sulphide in and over seawater: summer data from the northeast Atlantic Ocean, Atmos. Environ., 33(21), 3503–3514, 1999.
- Von Hobe, M., Cutter, G. A., Kettle, A. J., and Andreae, M. O.: Dark production: A significant source of oceanic COS, J. Geophys. Res., 106, 31217–31226, 2001.
- Vorholt, J. A.: Microbial life in the phyllosphere, Nat. Rev. Microbiol., 10, 828–840, 2012.
 Wang, L., Zhang, F., and Chen, J.: Carbonyl sulfide derived from catalytic oxidation of Carbon
- disulfide over atmospheric particles, Environ. Sci. Technol., 35, 2543–2547, 2001. Wang, Y., Deutscher, N. M., Palm, M., Warneke, T., Notholt, J., Baker, I., Berry, J., Suntharalingam,
- Wang, T., Deutschel, N. M., Fam, M., Wantek, T., Nonor, J., Baker, E., Berry, J., Summarangam, P., Jones, N., Mahieu, E., Lejeune, B., Hannigan, J., Conway, S., Mendonca, J., Strong, K., Campbell, J. E., Wolf, A., and Kremser, S.: Towards understanding the variability in biospheric CO₂
 fluxes: Using FTIR spectrometry and a chemical transport model to investigate the sources and
- sinks of carbonyl sulfide and its link to CO₂, Atmos. Chem. Phys., 16, 2123–2138, 2016.

5	1

-	Deleted:

- Formatted: Font:(Default) +Theme Body (Times New Roman)
 Deleted:
- Deleted:
- Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto, Pattern: Clear

Formatted: Normal, Indent: Left: 0", Hanging: 0.25", Line spacing: single

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto, Pattern: Clear

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto, English (US)

Formatted: Normal1, Indent: Left: 0", Hanging: 0.25" Formatted: Font:(Default) +Theme Body (Times New

Roman), 12 pt, Font color: Auto, English (US)

Formatted: Font:

Formatted: Font:English (US)

Formatted: Font:English (US)

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Indent: Left: 0", Hanging: 0.25"

Formatted: Font:(Default) + Theme Body (Times New Roman), 12 pt, Font color: Auto

Formatted: Font:(Default) +Theme Body (Times New Roman)

5	 Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779, 2000. Wehr, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Davidson, E. A., Wofsy, S. C., and Saleska, S. R.: Seasonality of temperate forest photosynthesis and daytime respiration, Nature, 534, 680–683, 2016. Wehr, R., Commane, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Saleska, S. R., and Wofsy, S. C.: Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake, Biogeosciences, 14, 389, 2017. Weisenstein, D. K., Yue, G. K., Ko, M. K. W., Sze, ND., Rodriguez, J. M., and Scott, C. J.: A two- 	
10	dimensional model of sulfur species and aerosols, J. Geophys. ResAtmos., 102, 13019–13035,	
	 Weiss, P. S., Andrews, S. S., Johnson, J. E. and Zafiriou, O. C.: Photoproduction of carbonyl sulfide in South Pacific Ocean waters as a function of irradiation wavelength, Geophys. Res. Lett., 22(3), 215–218, 1995 	 Formatted: Font:(Default) + Theme Body (Times New Roman), 12 pt, Font color: Auto
15	Welte, C. U., Rosengarten, J. F., de Graaf, R. M., and Jetten, M. S. M.: SaxA-mediated isothiocyanate	 Roman)
	metabolism in phytopathogenic pectobacteria, Appl. Environ. Microb., 82, 2372–2379, 2016.	
	Whelan, M. E. and Rhew, R. C.: Carbonyl sulfide produced by abiotic thermal and photo-degradation of	 Deleted:
	10.1002/2014JG002661, 2015.	
20	Whelan, M. E. and Rhew, R. C.: Reduced sulfur trace gas exchange between a seasonally dry grassland	
	and the atmosphere, Biogeochemistry, 128, 267–280, 2016.	
	Atmos Environ 73 131–137 2013	
	Whelan, M. E., Hilton, T. W., Berry, J. A., Berkelhammer, M., Desai, A. R., and Campbell, J. E.:	
25	Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake, Atmos. Chem.	
	Phys., 16, 3711–3726, 2016. White M. L. Zhou V. Busso, P. S. Mao, H. Talbot, P. Varnar, P. K. and Siya, P. C.: Carbonyl	
	sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO ₂ . Atmos.	
	Chem. Phys., 10, 547–561, 2010.	
30	Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.: A	
	comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget eddy covariance and catchment water balance. Agr. Forest Meteorol. 106, 153–168	
	2001.	
	Wohlfahrt, G., Brilli, F., Hörtnagl, L., Xu, X., Bingemer, H., Hansel, A., and Loreto, F.: Carbonyl	
35	sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance:	
	Potential and limitations, Plant Cell Environ., 55, 657–667, 2012.	
	Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important	
	atmospheric gases and aerosols, Philos. Trans. A Math. Phys. Eng. Sci., 369, 2073-2086, 2011,	 Formatted: Font:(Default) +Theme Body (Times New
40	Xie, H., Moore, R. M., and Miller, W. L.: Photochemical production of carbon disulphide in seawater,	 Koman)
	J. Geopnys. Kes., 105, 5655–5644, 1998.	photosynthesis and their implication for photosynthesis research from leaf to globe, Plant Cell Environ., 38, 2500-2507, 2015.

	Xie, H., Scarratt, M. G., and Moore, R. M.: Carbon disulphide production in laboratory cultures of marine phytoplankton. Atmos. Environ. 33, 3445–3453, 1999.		
	Xu, X., Bingemer, H. G., Georgii, HW., Schmidt, U. and Bartell, U.: Measurements of carbonyl sulfide (COS) in surface seawater and marine air, and estimates of the air-sea flux from observations		Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto
5	during two Atlantic cruises, J. Geophys. Res. D: Atmos., 106(D4), 3491–3502, 2001, Xu, X., Bingemer, H. G., and Schmidt, U.: The flux of carbonyl sulfide and carbon disulfide between		Formatted: Font:(Default) +Theme Body (Times New Roman)
	the atmosphere and a spruce forest, Atmos. Chem. Phys. Discuss., 2, 181–212, 2002. Yamasaki, M., Matsushita, Y., Namura, M., Nyunoya, H., and Katayama, Y.: Genetic and		
10	immunochemical characterization of thiocyanate-degrading bacteria in lake water, Appl. Environ. Microb., 68, 942–946, 2002.		
	Yi, Z. and Wang, X.: Carbonyl sulfide and dimethyl sulfide fluxes in an urban lawn and adjacent bare soil in Guangzhou, China, J. Environ. Sci., 23, 784–789, 2011.		
	Yi, Z., Wang, X., Sheng, G., Zhang, D., Zhou, G., and Fu, J.: Soil uptake of carbonyl sulfide in subtropical forests with different successional stages in south China, J. Geophys. Res., 112, D08302,		
15	2007.		
	Yi, Z., Wang, X., Sheng, G., and Fu, J.: Exchange of carbonyl sulfide (OCS) and dimethyl sulfide		
	(DMS) between rice paddy fields and the atmosphere in subtropical China, Agr. Ecosyst. Environ.,		
	123, 116–124, 2008. Vienness S. Senderal Sete L. Karalassier L. Kala H. Vien Hele, M. Walie D. and Karashing.		
20	Yonemura, S., Sandoval-Soto, L., Kesselmeier, J., Kuhn, U., Von Hobe, M., Yakir, D. and Kawashima,		
20	5.: Uptake of carbonyl suinde (COS) and emission of dimethyl suinde (Divis) by plants, Phyton, 45, 17, 24, 2005		
	$\frac{17-24,2003}{2}$		
	Chamical Divisios Lattars 660, 43, 38, 2016		Formatted: Font: (Default) +Theme Body (Times New
	C_{rend} G_{rend} A_{rend} $M_{\text{o}} \sim Factors affecting the photochemical production of carbonyl sulfide in$		Roman)
25	seawater, Geophys. Res. Lett., 21(25), 2813–2816, 1994.	······	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto
	flux, Mar. Chem., 61, 127–142, 1998.	and the second	Formatted: Font:(Default) +Theme Body (Times New Roman)
	Zumkehr, A., Hilton, T. W., Whelan, M. E., Smith, S., and Campbell, J. E.: Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S., J. Geophys. Res		
30	Atmos., 122, doi:10.1002/2016JD025550, 2017		Deleted: •
	Zumkehr, A., Hilton, T. W., Whelan, M. E., Smith, S., Kuai, L., Worden, J., and Campbell, J. E.: Global		
	Gridded Anthropogenic Emissions Inventory of Carbonyl Sulfide, Atmos. Env., 2018.		
	<u>د</u>	\leq	Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt
		And	Formatted: Indent: Left: 0", Hanging: 0.25", Line spacing: single

Formatted: Font:(Default) +Theme Body (Times New Roman)

Deleted: developed

non-wetland ecosystems

wetlands ocean anthropogenic hinmace hurning

Figure 2. Frequency distribution (bars) and a log-normal fit (solid line) to published values (n = 53) of the leaf relative uptake rate of C3 species. The vertical line indicates the median (1.68). Published data are from Berkelhammer et al., (2014); Sandoval-Soto et al., (2005); Seibt et al., (2010); and Stimler et al., (2010b, 2011, 2012).

5

Formatted: Font:(Default) +Theme Body (Times New Roman)

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Formatted: Font:(Default) + Theme Body (Times New Roman) Formatted: Font:(Default) + Theme Body (Times New Roman)

2 0 0

Deleted:

Formatted

2

[... [218]

[... [219]]

Studies denoted "S" indicated a soil-only observation, and "S+V" denotes a soil and vegetation observation. Points show reported averages and error bars show either reported uncertainty or the full

5 <u>range of observations</u>. Note that some earlier observations using sulfur-free air as chamber sweep air have been excluded due to overestimation (Castro and Galloway, 1991).

calculated in Sun et al., (2015),

Figure 6. Comparison of published hydrolysis rates for OCS based on laboratory experiments with artificial water (Elliott et al., 1989; Kamyshny et al., 2003), and under oceanographic conditions using filtered seawater (Radford-Knoery et al., 1994). The graph is replotted using equations from original papers at a pH of 8.2.

Deleted: s

Deleted:

Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt, Font color: Auto Formatted: Font:(Default) +Theme Body (Times New Roman)

Figure 8. Marine contribution to the atmospheric OCS loading from direct and indirect (CS_2) emissions. The sea surface concentration determines the magnitude of the oceanic emissions, and the uncertainty in global emissions decreases with increasing numbers of measurements. The understanding of processes

5 is important to extrapolate from small-scale observations to a regional or global scale and varies between a low level of understanding for CS₂ (i.e. few process studies available) to a medium level of understanding for OCS (i.e. several process studies available, but considerable spread in quantifications across different locations). We recommend reconsidering the contribution of oceanic DMS emissions.

Figure 9. Comparison of OCS photoproduction rates (averages for surface mixed layer, pmol(OCS) L⁻¹ h⁻¹) modeled using different approaches and demonstrating discrepancies between methods: (a) Hovmöller (latitude-time) plot of rates calculated using the approach described in Lennartz et al. (2017). (b) Th same Hovmöller plot generated with the approach described in Launois et al. (2015) and two

5 different formulations for CDOM absorption coefficients from Preiswerk and Najjar (2000) and Morel and Gentili (2004). (c) The same Hovmöller plots generated with the photochemical model of Fichot and Miller (2010) and the published spectral apparent quantum yields of Weiss et al. (1995), Zepp and Andreae (1994), and Cutter et al. (2004).

Deleted: A Deleted: B Deleted: S Deleted: C Deleted: S

Figure 10. Decimal logarithm of the OCS/CO_2 ratios plotted against the reciprocal of the emission temperature of the gases for volcanos. The red dots refer to the analytical data published by Belviso et al. (1986) and the red line corresponds to the linear model used in that study to evaluate the volcanic

15 contribution to the atmospheric OCS budget. The blue dots refer to measurements published by others since 1986 (Chiodini et al., 1991; Notsu and Toshiya, 2010; Sawyer et al., 2008; Symonds et al., 1992). The better fit through all measurements is obtained using a polynomial of the third order (R² = 0.89, n = 31).

Figure 11. Smoothed seasonal cycles of OCS (right) and CO_2 (left) monthly mean mixing ratios, simulated at Alert station, Canada, obtained after removing the annual trends. Simulations are obtained with the LMDz transport model using two flux scenarios for the vegetation uptake of OCS, calculated with the GPP of ORCHIDEE and CLM4CN models; the other OCS flux components are identical (see

Launois et al. (2015)). Observations (red) are from the NOAA-ESRL global monitoring network (Montzka et al., 2007) averaged from 2007 to 2010.

10

.

photosynthetically active radiation (PAR, bottom panel) for context, including May through October of 2012 and 2013. Lines connect the mean values of each 2 h bin. The grey bands depict standard errors in the means as estimated from the variability within each bin. Adapted from Wehr et al. (2017), which discusses the dawn storage measurement artifact indicated here by the blue circle.

Deleted: 4 Deleted: retriev Deleted: ed OCS from Formatted: Line spacing: 1.5 lines Deleted: (Deleted:) Deleted: Deleted: and **Deleted:** (total column). A $20^{\circ} \times 20^{\circ}$ spatial smoothing has been applied to TES and MIPAS data. The IASI spatial patterns are of Deleted: and are Moved (insertion) [9] **Deleted:** For comparison, Fig. 14b shows the seasonal upper tropospheric OCS patterns at 250 hPa obtained using MIPAS Level-2 swath OCS retrievals from 2002 to 2011. The MIPAS swath data have been averaged to the same TES 5° longitude \times 4° latitude grid boxes and have also been smoothed to a 20°×20° spatial boxes and have also been smoothed to a 20 ×20 spatial resolution?[]: 14e shows two-month averages of the day-time total column OCS obtained using IASI OCS retrievals in 2014. IASI also provides total column OCS over the polar region, which we do not discuss here. IASI has much higher spatial sampling than TES, and the patterns shown in Fig. 14c have a high spatial resolution of 0.5°

Moved (insertion) [10]

	N 0	1 11 1 1		
	May–Oct	observed during subsequent		
	2013	summers.	D 1 11	
Populous, Pinus; Niwot	Aug 13–18,	Leaf chamber flux near 0 at night to	Berkelhammer	Formatted: Font:(Default) +Theme Body (Times New Roman)
Ridge, Colorado, USA	2012	a peak at \sim -50; soil flux between 0	et al., (2014)	
		and -7.		
Picea; Solling Mountair	ns, summer,	Relaxed eddy accumulation, -	Xu et al.,	Formatted: Font:(Default) +Theme Body (Times New Poman)
Germany;	fall, 1997–	93±11.7 uptake; large night_time	(2002)	Tomany
	1999	emissions		
Pinus; 3 sites Israel	growing	Eddy flux covariance, at 3 pine	Asaf et al.,	Formatted: Font:(Default) +Theme Body (Times New Roman)
	season 2012	forests on a precipitation gradient,	(2013)	Tomany
		daylight averages were -22.9±23.5, -		
		33.8±33.1, and -27.8±38.6.		
Pinus; Boreal forest,	June-	Nighttime fluxes -6.8 ± 2.2 (radon-	Kooijmans et	Formatted: Font:(Default) +Theme Body (Times New Roman)
Hyytiälä, Finland;	November	tracer method) and -7.9 ± 3.8 (eddy	al., (2017)	romany
	2015	covariance), daytime fluxes -20.8		
		(eddy covariance).		
Cover; Location	OCS concentration	Reference		
ake, surface, Canada	1.1 nmol L ⁻¹	Richards et al. (1991)		Formatted: Font:(Default) +Theme Body (Times New
ake, surface, China	$910 \pm 73 \text{ pmol L}^{-1}$	Du et al. (2017)		Roman)
iver, 0.25 m depth	$636 \pm 14 \text{ pmol L}^{-1}$	Radford-Knoery and Cutter (1993)		Formatted: Font:(Default) + Theme Body (Times New Roman)
iver, 3.84 m depth	$415 \pm 13 \text{ pmol L}^{-1}$	Radford-Knoery and Cutter (1993)		Formatted: Font:(Default) +Theme Body (Times New
ake, whole water	90 to 600 pmol L ⁻¹	Richards et al. (1991)		Roman)
olumn, Canada				Roman)
ake, hypolimnion,	233 to 316 pmol L ⁻¹	Deprez et al. (1986)		Formatted: Font:(Default) +Theme Body (Times New
Antarctica				Roman)
Eastern Pacific Ocean	$28.3 \pm 19.7 \text{ pmol L}^{-1}$	Lennartz et al. (2017)		Roman)
ndian Ocean	$9.1 \pm 3.5 \text{ pmol L}^{-1}$	Lennartz et al. (2017)		Formatted: Font:(Default) +Theme Body (Times New
ake, hypolimnion,	detected	Fritz and Bachofen (2000)		Koman)
Switzerland	"occasionally"			Roman)
				Formatted: Font:(Default) +Theme Body (Times New Roman)
				Formatted: Font:(Default) +Theme Body (Times New

Formatted: Font:(Default) +Theme Body (Times New Roman)____

Table 3. Measurements of OCS water concentration at the ocean surface (0-5 m) in open ocean, coastal, shelf, and estuary waters. ^aConverted from ng L⁻¹ with a molar mass of OCS of 60.07g. ^bConverted from ng S L⁻¹ with a molar mass of S of 32.1g. ^cContinuous measurements.

Region	Time	Water concentration of OCS mean \pm SD (pmol L ⁻¹)	No. of samples	References	_	
Open Ocean						Formatted: Font:(Default) +Theme Body (Times New Roman)
Indian Ocean	Mar/May	19.9 ± 0.5^{a}	20	Mihalopoulos et		Formatted: Font:(Default) +Theme Body (Times New
	1986 Jul 1987	19.9 ± 1.0^{a}	14	al. (1992)		Roman)
Southern Ocean	Nov–Dec	109 ^b	126	Staubes and		Formatted: Font:(Default) +Theme Body (Times New
	1990			Georgii (1993)		Roman)
North Atlantic Ocean	Apr/May	14.9 ±6.9	118	Ulshöfer et al.		Formatted: Font:(Default) +Theme Body (Times New
	1992	5.3 ±1.6	120	(199 <u>5</u>)		Roman)
	Jan 1994 Sep 1994	19.0 ±8.3	235			Formatted: Font:(Default) +Theme Body (Times New Roman)
Northeastern Atlantic	Jan 1994	6.7 (4–11)	120	Flöck and		Formatted: Font:(Default) +Theme Body (Times New
•				Andreae (1996)		Roman)
Western Atlantic	Mar 1995	8.1 ±7.0	323	Ulshöfer and		Formatted: Font:(Default) +Theme Body (Times New
				Andreae (199 <u>8</u>)		Roman)
Northeastern Atlantic	Jun/Jul 1997	23.6 ± 16.0	940	Von Hobe et al.		Formatted: Font:(Default) +Theme Body (Times New
Ocean				(1999)	and the second	Roman)
Atlantic (meridional	Aug 1999	21.7 ±19.1	783	Kettle et al.		Formatted: Font:(Default) +Theme Body (Times New Roman)
transect)				(2001)	and the second	Formatted: Font:(Default) +Theme Body (Times New
North Atlantic	Aug 1999	8.6 ±2.8	518	Von Hobe et al.		Roman)
				(2001)		Formatted: Font:(Default) + Theme Body (Times New Roman)
Atlantic (meridional	Oct/Nov 1997	14.8 ±11.4	306	Xu et al. (2001)		Formatted: Font:(Default) +Theme Body (Times New
transect)	May/Jun 1998	18.1 ±16.1	440			Koman)
Indian Ocean	Jul/Aug 2014	9.1 ±3.5	c	Lennartz et al. (2017)		Formatted: Font:(Default) +Theme Body (Times New Roman)

Coastal, shelf, and estuary	waters				 Formatted: Font:(Default) +Theme Body (Times New
Western North Atlantic	Jun/Jul 1990			Cutter et al.	 Formatted: Font:(Default) +Theme Body (Times New
Shelf	Aug 1990	400	15	(1993)	 Roman)
Estuary	C	300-12,100	?		
Indian Ocean,	Dec 1989-	400-70,300	336	Mihalopoulos et	 Formatted: Font:(Default) +Theme Body (Times New
Mediterranean Sea,	1990			al. (1992)	Roman)
French Atlantic Coast					
	May 1987				
averages of several	averages of	112	157	Andreae and	 Formatted: Font:(Default) +Theme Body (Times New
cruises (shelf+coast)	several			Ferek (1992)	Roman)
	cruises				
Mediterranean Sea (shelf)	Jul 1993	43 ±24	34	Ulshöfer et al.	 Formatted: Font:(Default) +Theme Body (Times New
				(1996)	Roman)
North Sea (shelf)	Sep 1992	49.1 ±11.7	69	Uher et al. (1997)	 Formatted: Font:(Default) +Theme Body (Times New
Chesapeake Bay (coast)	Oct 1991–	320.0 ±351	23	Zhang et al.	 Formatted: Font:(Default) +Theme Body (Times New
	May 1994			(1998)	Roman)
Eastern tropical South	Oct 2015	40.5 ±16.4	с	Lennartz et al.	 Formatted: Font:(Default) +Theme Body (Times New
Pacific (shelf)				(2017)	koman)
					 Formatted: Font:(Default) +Theme Body (Times New Roman)

			1	Deleted: See text for description of calculations.]
				Formatted	[[221]]
Table 4. Total bottom-up at	nospheric OCS budget.		- / //	Deleted: 22001800]
Component	OCS global flux Gg S year ⁻¹	Data source		Formatted Table]
Forests	-430370	Dum source	• Mar /	Deleted: 1700	
	500 200			Deleted: 660	
Grasslands	-500,200,			Formatted	[222]
Deserts	- <u>24</u> (?)	No field data exists for deserts.		Deleted: 170	
Agricultural excluding	-150 - +13		and the second second	Formatted	[223]
rice	-150 - 115			Deleted: See Table 5.	
Freshwater	+0.8 - +12		and the second sec	Formatted	[[224]]
E	21 0		/	Deleted: %	{
Fungus/Lichen/Mosses	-21,8,	*		Formatted	[225]
Wetlands	-150 - +290		- // / / / / / / / / / / / / / / / / /	Formatted	[225]
Ocean	Total: +265 +210	Lennartz et al. (2017) see Sect	1111/	Deleted: 8	([220])
Section	OCS direct: +130 + 80	2.3_	/////	Deleted: 21	
	OCS from oc CS_{2} : +135 +130		////	Deleted: See calculation below	j
	OCS from oc. $DMS: 0 (+80)$			Formatted	[[226]]
	0C3 Hom 0C. DIVIS. 0 (+80)			Formatted	[[227]]
Anthropogenic	$+400 \pm 180$	For the year 2012, Zumkehr et		Formatted	[[229]]
F. 0		al (2018)		Formatted	[230]
Biomass Burning	+116 + 52	Campbell et al. (2015)	///	Deleted: for discussion	
Volcanoes	+25 - +43		///	Formatted	[[231]]
Tropospheric destruction	-13082	Berry et al. (2013) Kettle et al.	<i>Y</i> / /	Deleted: 4	{
by OH radical	150 02	(2002) and Watts (2000)	F // /	Eormatted	
Stratespheric destruction	80 30 or 50 \pm 15	(2002) and watts $(2000)Barklay at al. (2008) Chin and$	1/ //	Formatted	[[232]]
by photolysis	$-3030 01 - 50 \pm 15$	Darkley et al., (2008), Cliffi and	<i>J</i> /// /	Deleted: See Sect 2.6	[[233]]
by photolysis		Davis (1993), Cluizell (1970), En col on d Sohmidt (1904)		Formatted	[234]
		Engel and Schmidt (1994),		Deleted: 82	
		Krysztonak et al., (2015) , Turco		Deleted: 130	
		et al. ₂ (1980), and Weisenstein		Formatted	[[235]]
		et al., (1997)		Deleted: 3	
Remains in the	<u>2-5</u>			Deleted: 8	
atmosphere				Formatted	[[236]
Total Range	1100 +900		and the second	Deleted: Total	
	- <u>1</u> 100 - <u>12</u> 00		\sim	Formatted	[[237]]
A			·····	Deleted: 4	
			and the second second	Deleted: -12	
				Formatted	[[238]]

Table 5. GPP and OCS exchange estimates by biome. ^aFor the purpose of this estimate, we use the soil fluxes from temperate forests. ^bRange of values from Castro and Galloway (1991), Steinbacher et al., (2004), White et al. (2010), and Yi et al. (2007). 5 ^cThe average reported here is the average and one standard deviation from non-vegetated plots in a boreal forest, defined as plots having less than 10% vegetation cover (Simmons, 1999). ^dRange from Whelan and Rhew (2016). The error estimate here is different from the one reported because a different LRU was used. Kitz et al. (2017) found soil-only OCS production of +60 pmol m^{-2} s⁻¹ in an alpine grassland. ¹⁰ ^cIn a laboratory incubation study, Whelan et al. (2016) found that desert soils exhibit a very small uptake. No field measurements have been published to our knowledge. ^fThe smaller production is from De Mello and Hines (1994). The larger production is an average estimate from Fried et al. (1993). ^gPost-harvest soil exchange estimate from the wheat field (Billesbach et al., 2014) investigated further 15 in Whelan and Rhew (2015). ^hSee Table 1. ⁱFrom Simmons et al. (1999). ^jRange from Whelan and Rhew (2016), encompassing observations of a grass field by Yi and Wang (2011). 20 ^kRange reported in DeMello and Hines (1994), encompassing values observed by a bog microcosm by Fried et al. (1993). ¹High value for cotton, low value for wheat in Asaf et al. (2013). Daily fluxes for a wheat field investigated by Billesbach et al. (2014) were -21 during the growing season and +18 after harvest.

Agricultural soils have been shown to emit a large portion of OCS compared to plant uptake under hot 25 and dry conditions (Whelan et al., 2016; Whelan and Rhew, 2015).

Biome	GPP estimate	Biome area	Anticipat ed F _{OCS} ,	F _{OCS} , soil	F _{OCS} , ecosystem	F _{OCS} , ecosystem Field observations
	d by	(10^9)	plants	(pmol	By GPP	$(pmol m^{-2} s^{-1})$
	Beer et	ha)	from	$m^{-2} s^{-1}$)	method (pmol	
	al.		GPP		$m^{-2} s^{-1}$)	
	(2010)		estimate			
	in Pg C		(pmol m ⁻			
	y ⁻¹		2 s ⁻¹)			

Tropical	40.8	1.75	- <u>75</u>	No data ^a	- <u>83</u> <u>73</u>	No data		Deleted: 102
forests								Formatted: Font:(Default) +Theme Body (Times New Roman)
Temperate	9.9	1.04	- <u>30</u>	-8 to	- <u>38</u> <u>29</u>	~0 to 93 ^h		Deleted: 110
forests				1.45 ^b				Deleted: 100
Boreal	83	1 37	10	1.2 to	18 16	0 to 22^{i}		Deleted: 40
forests	0.5	1.57	-12	3.8°	<u>-14</u> -10	010-22	/ //	Formatted: Font:(Default) +Theme Body (Times New Roman)
Tropical	31.3	2 76	-36	No data	-6129	No data	<i>\$1 \</i>	Deleted: 42
savannas	51.5	2.70	<u> </u>	i to data	<u>01</u> 27	110 uuu	<i>f // /</i> //	Deleted: 50
and								Formatted: Font:(Default) +Theme Body (Times New Roman)
grasslands							// //	Deleted: 27
Temperate	8.5	1.78	-15	-25 to	-408	-26 growing		Deleted: 26
grasslands				7.3 ^d		season; +6.1 non-	J ///	Deleted: 23
and						growing season ^j		Formatted: Font:(Default) +Theme Body (Times New Roman)
shrublands							- <u>- </u>	Deleted: 2
Deserts	6.4	2.77	-7 <u>,</u>	0 (?) ^e	-7,(?)	No data		Deleted: 57
T	1.6	0.50	0	5 27 4	4 10	15.4. 1k		Deleted: 5
Iundra	1.0	0.56	-9,	27.6 ^f	- <u>4</u> - 1 <u>8</u>	-15 to -1-	/ //	Formatted: Font:(Default) +Theme Body (Times New Roman)
								Deleted: 21
Croplands	14.8	1.35	-35	-18 to	- <u>53</u> - 5	-22 to -16, +18		Deleted: 6
				40^{g}		during non-growing		Deleted: 13
T-4-1	101.7	12.20				season ¹		Formatted: Font:(Default) +Theme Body (Times New Roman)
Iotal	121.7	13.38						Deleted: 6
								Deleted: 6
								Formatted [239]
								Deleted: 13
								Deleted: 8
								Deleted: 5

[... [240] [... [241]]

[... [242]

[... [243]]

Formatted Formatted Deleted: 48 Deleted: 66 Deleted: -8 Formatted

Deleted: -291 Deleted: -44 to 80 Deleted: -370 - -200 Formatted

Component	Notes	Critical Data Gaps		Formatted Table
Vascular plant	Vascular plant leaves have a well-	Nocturnal uptake and role of	1	Deleted: ,
leaves	established exchange of OCS that	phyllosphere is not well characterised		Deleted: critical data gaps
	follows stomatal conductance. OCS is	and "mesophyll" conductance to COS is		Formatted: Font:(Default) +Theme Body (Times New
	destroyed by both RuBisCO and CA in	not well constrained		Roman)
	plant leaves, though it most often			
	encounters CA first. The point of			
	destruction is different for OCS and			
	CO ₂ , though the correlation between			
	their uptakes is consistent under high			
	light conditions.			
	x			Deleted: Nocturnal uptake and role of phyllosphere is not well
Non-vascular	Few studies have addressed non-	Activities to support scaling up OCS		constrained
plants and	vascular plants. Bryophytes and lichen	fluxes for non-vascular plants are		Formatted: Font:(Default) +Theme Body (Times New
lichen	have been found to take up OCS	needed for the assessment of their		Roman)
	depending on their water content,	importance to ecosystem fluxes		
	sometimes regardless of light level.			
Soil	Most soils are generally small sinks of	It is unknown what controls the		Formatted: Font:(Default) +Theme Body (Times New Roman)
	OCS, making up less than 10% of the	magnitude of the soil source term.		Kondily
	total ecosystem flux Non-desert soils			
	exhibit large OCS emissions under hot			
	and dry conditions. These OCS-emitting			
	soils include both agricultural soils and			
T	some uncultivated soils.	No to lie Constitution de la constitu	******	source term.
Terrestrial	Ecosystem-scale flux measurements are	No studies from the tropics and only one		Formatted: Font:(Default) +Theme Body (Times New
ecosystem	available only from a handful of studies	study in boreal forests have been		Roman)
	during relatively short rania de of time	published.		Deleted: No studies from the tropics and only one study in bor
Designal	The highly mechanistic leaf any me	The minimum emotion and terms and		forests nave been published.
Kegional	line nighty mechanistic lear-enzyme	The minimum spatial and temporal		Roman)
terrestrial	stmographeric OCS evolutions violded	scales at which the constant LRU		Deleted: . and the minimum spatial and temporal scales at whi
	aimilar regults to the mechanistically	Uncertainties in non-plant OCS fluxes	1	the constant LRU approximation is viable are unknown.
	simula I BLI approach when focusing on	norticularly from soils, remain under	1	Uncertainties in non-plant OCS fluxes, particularly from soils, remain under-constrained at regional spatial scales
	the peak of the North American growing	particularly from sons, remain under-	1	Formatted: Font:(Default) +Theme Body (Times New
	the peak of the North American growing	constrained at regional spatial scales.	17	Roman)
	studios demonstrate that I PU is not		$U_{\rm c}$	Deleted: Consistent surface measurements using different
	studies demonstrate that LKO is not	/	//	detection methods are needed, but generally data are sparse for
Surface coor	While the surface economic concretity	More continuous measurements	γ_{i}	Deleted: (currently ca. ~6000 samples)
surface ocean	thought to be a source of OCS to the	covering full diurnal cycles are needed	//	Formatted: Font:(Default) +Theme Body (Times New Roman)
	atmosphere, surface measurements of	especially for the Pacific Indian	$\ $	Deleted: : more continuous mossuremente acuaring 6.11 Junio
	OCS are relatively sparse	Southern and Arctic oceans	97	cycles are needed especially for the Pacific, Indian, Southern, an
	OCS are relatively sparse.	Soundin, and Arene Oceans.		Arctic oceans.

Deep ocean	Concentration profiles have been	More data is necessary to make clear		Formatted: Font:(Default) +Theme Body (Times New
	reported from only very few stations in	predictions of the relationship between	l	Roman)
	the Atlantic Ocean (e.g. Cutter et al.,	deep and surface ocean OCS fluxes.		
	2004; Flöck and Andreae, 1996; Von			
	Hobe et al., 2001). Understanding			
	deeper ocean OCS production could			
	allow us to model OCS ocean surface			
	fluxes more accurately.			
Regional ocean	Surface measurements comprise	Especially, data from the Arctic and		Formatted: Font:(Default) +Theme Body (Times New
	different oceanic regimes including	Southern oceans are missing.	l	Roman)
	several meridional Atlantic transects and			
	oligotrophic and upwelling regions.			Deleted: Especially, data from the Arctic and Southern oceans are
Freshwaters	There are few, quite small datasets of	No OCS fluxes from freshwater bodies		missing.
	OCS concentrations in lakes and rivers.	currently exist.		Formatted: Font:(Default) + Theme Body (Times New Roman)
Global, modern	Global satellite products currently lack	A new satellite and data product would		Deleted: No OCS fluxes from freshwater bodies currently exist
	coverage over the land, and the location	be necessary to distinguish surface		Formatted: Font:(Default) +Theme Body (Times New
	of TCCON sites are purposely chosen to	fluxes, e.g. anthropogenic and ocean		Roman)
	observe atmospheric background.	OCS sources		Deleted: A new satellite and data product would be necessary to
Global, paleo	Recent advances have allowed better	OCS observations from ice cores in the		use OCS to answer questions about climate-carbon feedbacks
	interpretation of OCS in firn and ice air.	Northern Hemisphere are critical to GPP		Ecrmatted: East: (Default) +Thoma Body (Times Now
	There are still only a handful of cores	interpolar comparisons		Roman)
	that have been analyzed for OCS.			
A				Formatted: Font:(Default) +Theme Body (Times New Roman)
.				Formatted: Font:(Default) +Theme Body (Times New Roman), 12 pt

Page 5: [1] Deleted	Mary Whelan	3/14/18 4:44:00 PM
Although OCS has been studied	d mostly as a proxy for photosynthes	sis, OCS uptake by vegetation
is actually governed mechanist	ically by (i) the series of diffusive co	onductances of OCS into the
leaf, and (ii) the reaction rate co	pefficient for OCS destruction by CA	A (Wohlfahrt et al., 2012). CA
is present both in plant leaves a	nd soils, although soil uptake tends t	to be proportionally much
lower than plant uptake. Over s	oils, OCS uptake provides informati	on about CA activities within
diverse microbial communities	. OCS uptake over plants integrates i	information about the
sequential components of the d	iffusive conductance (the leaf bound	ary layer, stomatal, and
mesophyll conductances) and a	bout CA activity, all important aspec	cts of plant and ecosystem
function. Stomatal conductance	e in particular is a prominent research	n focus in its own right, as it
couples the carbon and water c	ycles via transpiration and photosynt	hesis.

Page 5: [2] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 5: [3] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 5: [4] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 6: [5] Deleted	Mary Whelan	3/5/18 2:06:00 PM
Our understanding of the OCS balance in	the atmosphere has evolved as new	observations have
become available. The major atmosphere-	based sinks of OCS are reaction wi	thin the troposphere
and photolysis in the stratosphere.		

Page 6: [6] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body	(Times New Roman), 12 pt	
Page 6: [7] Deleted	Mary Whelan	3/14/18 4:49:00 PM

Spatial and temporal trends of atmospheric OCS variations also reflect changes of OCS fluxes, including the oceanic and anthropogenic sources, and the biospheric sink.

The spatial and temporal variations in

Page 6: [8] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 6: [9] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font: (Dofault) + Thoma Pody (Timas Nov	(Roman)	

Font:(Default) +Theme Body (Times New Roman)

Page 6: [10] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 6: [11] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 6: [12] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Page 6: [12] FormattedFont:(Default) +Theme Body (Times New	Mary Whelan 7 Roman)	4/5/18 11:32:00 AM
Page 6: [12] Formatted Font:(Default) +Theme Body (Times New Page 6: [13] Deleted	Mary Whelan 7 Roman) Mary Whelan	4/5/18 11:32:00 AM 3/14/18 4:50:00 PM

Page 6: [14] Deleted	Mary Whelan	3/14/18 4:50:00 PM
----------------------	-------------	--------------------

has served as a basis for understanding the distribution and seasonality of OCS concentrations in both hemispheres at Earth's surface and, from regular aircraft profiles, through much of the troposphere over North America.

Page 6: [15] Deleted	Mary Whelan	3/15/18 10:39:00 AM
These lines of evidence all supp	port the notion that OCS is primar	rily removed from the
atmosphere via terrestrial plants	s during the growing season.	

Page 6: [16] Deleted	Mary Whelan	3/15/18 10:24:00 AM
. Within the accuracy of those measure	ments there was no significa	ant trend detected in
stratospheric OCS until 2005. Updates	of these records, reanalyzed	with methods to increase
accuracy (Kremser et al., 2015; Lejeun	e et al., 2017) do suggest a tr	rend in OCS columns.

Page 6: [17] Moved to page 7 (Move #13)	Mary Whelan	3/15/18 10:31:00 AM
Smaller datasets of OCS vertical profiles c	ould be used to validate these broad	der trends, e.g. Kato
et al. (2011).		

Page 6: [18] Deleted	Mary Whelan	3/15/18 10:47:00 AM
The generally smaller trends in the	e stratosphere indicate that the trend	ls are driven by processes
within the troposphere (Lejeune e	t al., 2017). Campbell et al. (2015) j	presented an inventory of
anthropogenic CS ₂ (rayon industry	y) and OCS emissions. The OCS tre	ends observed with FTIR
column measurements show close	resemblance with global rayon pro	duction, which decreased
until 1990, then stayed mostly cor	istant until 2002 and increased after	that.

Page 7: [19] Deleted	Mary Whelan	3/15/18 10:54:00 AM
With the commercially available quart	ntum cascade laser spectro	meter (Commane et al., 2013;
Kooijmans et al., 2016; Stimler et al.,	, 2010a), continuous atmos	pheric concentration
measurements of OCS allow for region	onal source and sink studie	es (Belviso et al., 2016;

Kooijmans et al., 2016). In situ vertical profile measurements of OCS have been obtained in the altitude range from 14 to 30 km at tropical and polar latitudes using the SPIRALE, a tunable diode laser spectrometer (Krysztofiak et al., 2015). The uncertainty of the in situ OCS measurements increases with decreasing pressures (higher altitude), ranging from 3.3% below 18 km to more than 30% above 26 km. As more data become available, the OCS budget will become better understood, clarifying the in situ tropospheric and stratospheric sinks for OCS.

Page 7: [20] Deleted	Mary Whelan	3/15/18 1:36:00 PM
Uptake by land plants is thought	to represent the most important sink	c for OCS, estimated to account
for 50-82% of the global sink s	strength, followed by soil (Launoi	s et al., 2015b, and references
therein). The yearly average net	and flux rate in recent modeling	studies of global budgets (i.e.
plant and soil uptake minus soil	emissions) ranges from -2.5 to -12.9	$9 \text{ pmol m}^{-2} \text{ s}^{-1}$ (Fig. 2). Relative
to the many published site-level	studies, this is a small range (Fig.	2). The available observations
are limited in time and do not co	over tropical ecosystems, which co	ontribute almost 60% of global
GPP (Beer et al., 2010). The on	ly study reporting year-round OCS	S flux measurements is from a
mixed temperate forest, which w	vas a sink for OCS with a net flux	of -4.7 pmol $m^{-2} s^{-1}$ during the
observation period (Commane e	et al., 2015). Daily average OCS fl	luxes during the peak growing
season are available from a large	er selection of studies and cover the	e range from -8 to -23 pmol m-
2 s-1, excluding Xu et al., (2002) which found a surprisingly high	uptake $(-97 \pm 11.7 \text{ pmol m}^{-2} \text{ s}^{-1})$
¹) from the relaxed eddy accumu	lation method (Fig. 2).	

Page 7: [21] Deleted	Mary Whelan	3/15/18 1:46:00 PM
F _{CO2} is often equated with GPP, howev	er photorespiration in	C ₃ plants confuses the matter
(Wohlfahrt and Gu, 2015).		
Page 8: [22] Moved to page 9 (Move #15)	Mary Whelan	3/15/18 1:53:00 PM
Relatively little is known regarding CA	activity (Wehr at al	2017) while changes in stomatal

Relatively little is known regarding CA activity (Wehr et al., 2017), while changes in stomatal and leaf internal conductances in response to environmental stresses are well known (e.g. Brilli et al., 2011).

Page 8: [23] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New Roman)		
Page 9: [24] Moved to page 9 (Move #17)	Mary Whelan	3/15/18 2:08:00 PM

More year-round measurements from a larger number of biomes, in particular those presently underrepresented, are required to provide reliable bottom-up estimates of the total net land OCS flux (see Fig. 1).

Page 9: [25] Deleted	Mary Whelan	3/15/18 2:10:00 PM
, whether reflective of difference	es in environmental conditions or c	lifferences between plant
species (e.g. in leaf internal con	ductance for OCS or in carbonic ar	hydrase activity), are still
poorly understood and		

Page 9: [26] Deleted	Mary Whelan	3/15/18 2:11:00 PM
, while changes in stomatal and	d leaf internal conductances in response	e to environmental stresses
are well known (e.g. Brilli et a	1., 2011)	

Page 11: [27] DeletedMary Whelan3/5/18 2:41:00 PMGrasslands cover ~20% of the terrestrial surface and store ~30% of the world's soil carbon(Hungate et al., 1997; Scurlock and Hall, 1998). Although grasslands store less carbon per areathan forests, they are more ubiquitous and contain a larger portion of the terrestrial carbon pool(Parton et al., 1995). Grasslands generally are considered to behave as carbon sinks or be carbon-neutral but appear highly sensitive to drought and heat waves and can rapidly shift fromto elevated CO2 suggest that the sink strength temporarily increases. Because much of thiscarbon is stored as labile pools, it is unclear whether the effect has long-term consequences(Hungate et al., 1997). The lability of these pools and their dynamics are difficult to study andpoint to important uncertainties and challenges in projecting the role these ecosystems will playin a changing carbon cycle. Existing work highlights the need for additional studies on primaryproductivity in grassland ecosystems, which could be addressed with OCS observations.

Studies of OCS exchange in native or restored grasslands have been limited (see Fig. 2).

Page 11: [28] Deleted	Mary Whelan	3/15/18 2:42:00 PM
In an early field-based study on the top	ic, Mihalopoulos et al	. (1989) noted uptake of OCS when
winds passed over a coastal grassland in	n northwestern France	e. More recently,

Page 11: [29] Deleted Mary Whelan 3/15/18 2:43:00 PM
--

Individual flux estimates ranged from -75 pmol m⁻² s⁻¹ to +7 pmol m⁻² s⁻¹, indicating a wide range of possible fluxes. During the dry season, simulated rain led to a reduced sink or an increased source.

Page 11: [30] Deleted	Mary Whelan	3/15/18 2:52:00 PM
While this study did not some	to soil and plant common ants of the flux 1	

While this study did not separate soil and plant components of the flux, l

Page 11: [31] Deleted	Mary Whelan	3/5/18 2:44:00 PM
used transparent chambers over	a temperate grassland soil with plants removed	. This study found
high production of OCS (up to 6	50 pmol $m^{-2} s^{-1}$) and revealed the dominant influ	ence of radiation,
as opposed to moisture, on the s	oil flux. Although positive fluxes from grasslan	nd soils have been
noted elsewhere with both opaq	ue and transparent chambers (Berkelhammer et	al., 2014;
Maseyk et al., 2014; Whelan and	d Rhew, 2016), the magnitude of the OCS emis	sions from bare
soils significantly exceeded mea	asurements made elsewhere. Kitz et al. (2017)	

Page 11: [32] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt, Italic	
Page 11: [33] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 11: [34] Deleted	Mary Whelan	3/15/18 5:11:00 PM
Existing studies suggest a pressing need to	o understand how soil OCS fluxes e	volve in grasslands
during seasonal changes in leaf area index	(i.e. changes in surface exposure to	o radiation).
Page 11: [35] Deleted	Mary Whelan	3/15/18 5:10:00 PM
Page 11: [35] DeletedThis would involve sustained chamber m	Mary Whelan easurements as well as total ecosyst	3/15/18 5:10:00 PM tem flux
Page 11: [35] Deleted This would involve sustained chamber m measurements. An issue that has not been	Mary Whelan easurements as well as total ecosyst addressed in previous work, but is a	3/15/18 5:10:00 РМ tem flux critical, is that g
Page 11: [35] Deleted This would involve sustained chamber m measurements. An issue that has not been	Mary Whelan easurements as well as total ecosyst addressed in previous work, but is	3/15/18 5:10:00 PM tem flux critical, is that g
Page 11: [35] Deleted This would involve sustained chamber m measurements. An issue that has not been Page 11: [36] Deleted	Mary Whelan easurements as well as total ecosyst addressed in previous work, but is Mary Whelan	3/15/18 5:10:00 PM tem flux critical, is that g 3/15/18 2:56:00 PM
Page 11: [35] DeletedThis would involve sustained chamber mmeasurements. An issue that has not beenPage 11: [36] Deleted(see Sect. 2.1 introduction) and are expect	Mary Whelan easurements as well as total ecosyst addressed in previous work, but is Mary Whelan ted to have unique ecosystem relati	3/15/18 5:10:00 PM tem flux critical, is that g 3/15/18 2:56:00 PM ve uptake (ERU)
Page 11: [35] DeletedThis would involve sustained chamber mmeasurements. An issue that has not beenPage 11: [36] Deleted(see Sect. 2.1 introduction) and are expectvalues. Therefore, with seasonal variation	Mary Whelan easurements as well as total ecosyst addressed in previous work, but is Mary Whelan ted to have unique ecosystem relati s in climate, there will be changes in	3/15/18 5:10:00 PM tem flux critical, is that g 3/15/18 2:56:00 PM ve uptake (ERU) n photosynthetic

Page 12: [37] Deleted	Mary Whelan	3/15/18 2:31:00 PM

2.2.2 Forests

Forests mediate land-atmosphere fluxes of carbon and water (Alkama and Cescatti, 2016) and how forests will respond to climate change is an area of active debate (Metcalfe et al., 2017). OCS has the potential to overcome many difficulties in studying the carbon balance of forest ecosystems. To make flux measurements using eddy flux covariance or vertical concentration gradients, tall forest canopies require even taller towers. To partition carbon fluxes, respiration is often quantified at night when photosynthesis has ceased and turbulent airflow is reduced (Reichstein et al., 2005). This method has important uncertainties, e.g. less respiration happens during the day than at night (Wehr et al., 2016). Partitioning with OCS is based on daytime data and does not rely on modeling respiration with limited nighttime flux measurements and associated uncertainty.

As expected, forests are daytime net sinks for atmospheric OCS when photosynthesis is occurring in the canopy (Table 1). While the relative uptake of OCS to CO₂ by leaves appears to be stable in high light conditions, the ratio changes in low light when the net CO₂ uptake is reduced (Stimler et al., 2011; Wehr et al., 2017). Forest soil interaction with OCS has been found to be small (Castro and Galloway, 1991; Steinbacher et al., 2004; White et al., 2010; Xu et al., 2002; Yi et al., 2007) and straightforward to correct (Wehr et al., 2017). Sun et al. (2016) noted that litter was the most important component of soil OCS flux in an oak woodland, composing up to 90% of the small surface sink. Otherwise, forest ecosystem OCS uptake appears to be dominated by tree leaves, both during the day and at night (Kooijmans et al., 2017).

The OCS tracer approach is particularly useful in high humidity or foggy environments like the tropics, where traditional estimates of carbon uptake variables via water vapor exchange are ineffective (Campbell et al., 2017b). So far, all forest OCS investigations on the ecosystem scale have been in the temperate and boreal zones. There are no published studies from the tropical latitudes, though some studies are underway. The application of the OCS tracer in tall canopies poses difficulties because turbulence can be limited in canopies and complicate many traditional methods of trace gas flux measurements (Blonquist et al., 2011; Kooijmans et al., 2017). A possible solution is using the "surface renewal" approach (Paw U et al., 1995), but it has not been attempted for OCS. Regional scale modeling with OCS appears to sidestep site-level problems, as in Hilton et al., (2017). With more OCS observing towers upstream and downstream of large forested areas, OCS may be able to resolve the daily or weekly carbon uptake by forest ecosystems, a large and crucial component in understanding future climate-carbon feedbacks.

Page 14: [38] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (7	Fimes New Roman)	

Page 14: [39] DeletedMary Whelan3/15/18 8:27:00 PMThe contribution of soils to the atmospheric budget of OCS has been studied for a few decades in
both the field and the laboratory. The soil-atmosphere exchange of OCS has been measured in a
range of environments, and these m

Page 14: [40] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 14: [41] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 16: [42] Deleted	Mary Whelan	3/16/18 11:24:00 AM
Soil redox potential is an indicator of soil oxidation-reduction status and is positively related to		

oxygen content in the soil column (Patrick and DeLaune, 1977).

OCS exchange rates in wetland soils may

Page 16: [43] Moved to page 17 (Move #18)Mary Whelan3/16/18 11:25:00 AMIf OCS produced by microbes accumulates in isolated soil pore spaces during inundation,
subsequent ventilation can lead to abrupt release of OCS, which may appear as high variability in
surface OCS emissions. However, the interaction between production and transport processes in
driving OCS exchange variability remains poorly understood. Known abiotic contributions, e.g.
the role of solubility, are detailed in Sect. 2.3.3 Abiotic processes.

Page 16: [44] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 16: [45] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 16: [46] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 16: [47] Commented	Laura Meredith	3/28/18 11:30:00 AM
Go ahead and cut this out or cut down if you like.		
Page 16: [48] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 16: [49] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	(Roman)	
Page 16: [50] Deleted	Mary Whelan	3/16/18 11:28:00 AM

Recent field and laboratory studies have shown that OCS production is also occurring in oxic soils. Substantial OCS production has been observed in a temperate grassland under both wet and dry conditions (Kitz et al., 2017) and in a wheat field under dry conditions (Maseyk et al., 2014). Related strongly to temperature (Maseyk et al., 2014) and radiation (Kitz et al., 2017), OCS fluxes of up to +30 and +60 pmol m⁻² s⁻¹ were Related strongly to temperature (Maseyk et al., 2014) and radiation (Kitz et al., 2017),observed in the wheat field and grassland, respectively. These production rates are similar, or even exceed, those seen in waterlogged environments. OCS fluxes from rice paddies were ca. +10 pmol m⁻² s⁻¹, but sometimes exceeded +40 pmol m⁻² s⁻¹ (Kanda et al., 1992; Yi et al., 2008), and from vegetated salt marshes are +40– +120 pmol m⁻² s⁻¹ (Aneja et al., 1981; Whelan et al., 2013). However, saline wetlands cover a small portion of the Earth's surface (roughly 10^4 km²) whereas agricultural areas are widespread (more than 10^7 km²).

Soil OCS production has been investigated through laboratory incubations [MW1](Bunk et al., 2017; Whelan et al., 2016; Whelan and Rhew, 2015), revealing that most soils experience abiotic OCS emissions. Whelan et al. (2016) measured OCS soil fluxes from six disparate study sites: Soils from a temperate forest, a tropical forest, a savannah, and two agricultural fields > 800 km apart all exhibited net OCS emissions under hot and dry conditions. Desert soil samples generated no emissions and only small OCS uptake. Whelan and Rhew (2015) compared sterilized to living soil samples from the agricultural study site originally investigated in Maseyk et al. (2014), finding that all samples emitted considerable amounts of OCS under high ambient temperature and radiation, with even higher emissions after sterilization. Recently, Bunk et al. (2017) showed that net OCS emissions can occur from agricultural soils at all water contents.

The recent evidence of soil OCS emissions led Launois et al. (2015b) to include an emissions term in their soil flux estimates by upscaling biome-specific emissions. For global fluxes, Launois et al. (2015b) used ranges typically measured for anoxic soil emissions reported by Whelan et al. (2013), which had dependencies on temperature and flooded state. Using a map of estimated anoxic soils used for methane emission estimates (Wania et al., 2010), OCS production was assessed and allowed to vary by $\pm 30\%$ in optimization. Typically, peatlands were probable net emitters of OCS, with a mean value of 25 pmol m⁻² s⁻¹. Some ecosystems, such as rice

paddies, shift from a net source to net sink depending on the flooding state of the soil. Because the reported range of fluxes was centered on 0, Launois et al. (2015b) considered these fields to have net emissions of zero. Peatlands are mainly located in the northernmost regions (above 60° N) and were expected to contribute about $101 \pm 30\%$ Gg S y⁻¹ to total emissions combining the wetland extent from Wania et al., (2010) and the estimated mean peatland flux. Seasonality was also indirectly included in soil fluxes because frozen soil was assumed to have a 0 net OCS flux. In the simulation, emission estimates dominated in some extratropical regions of the Northern Hemisphere, turning them into a net source of OCS in late autumn and winter.

Page 16: [51] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 16: [52] Moved to page 16 (Move #26)	Mary Whelan	3/27/18 1:49:00 PM

Page 16: [53] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 16: [54] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 16: [55] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman)	
Page 16: [56] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 16: [57] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman)	
Page 16: [58] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 16: [59] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman)	
Page 16: [60] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 16: [61] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 16: [62] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 16: [63] Formatted	Mary Whelan	4/5/18 2:55:00 PM

Font:(Default) +Theme Body (Times New Roman), 12 pt

Page 16: [64] FormattedMary Whelan4/5/18 2:55:00 PMFont:(Default) +Theme Body (Times New Roman)

Font. (Default) + Theme Body (Thiles New Kolhall)

Page 16: [65] DeletedMary Whelan3/16/18 11:51:00 AMusing diffusion-reaction equations (Ogée et al., 2016; Sun et al., 2015)demonstrate good skill in

Page 17: [66] DeletedMary Whelan3/16/18 11:53:00 AMThe mechanistic models that resolve the diffusion process thus have the advantage overempirical models of more realistic evaluation of OCS exchange. The models demonstrate goodskill in simulating observed features of soil OCS exchange, such as the responses of OCS uptaketo soil water content (Ogée et al., 2016; Sun et al., 2015) and temperature (Ogée et al., 2015) andthe transition from OCS sink to source at high soil temperature (Sun et al., 2015).

Page 17: [67] Moved to page 16 (Move #19)	Mary Whelan	3/16/18 11:51:00 AM
demonstrate good skill in simulating obse	erved features of sc	oil OCS exchange, such as the
responses of OCS uptake to soil water con	ntent (Ogée et al., 2	2016; Sun et al., 2015) and
temperature (Ogée et al., 2015) and the tra	ansition from OCS	sink to source at high soil
temperature (Sun et al., 2015).		

Page 17: [68] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), Italic	
Page 17: [69] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 17: [70] Deleted	Mary Whelan	3/16/18 12:03:00 PM
However, the interaction between production and transport processes in driving OCS exchange		
variability remains poorly understood. Known abiotic contributions, e.g. the role of solubility,		
are detailed in Sect. 2.3.3 Abiotic processe	es.	

Page 17: [71] DeletedMary Whelan3/5/18 3:29:00 PMIt is hoped that future studies may integrate the mechanistic frameworks of soil OCS exchangeinto global land models (e.g. Community Land Model or Simple Biosphere Model) to simulatesoil OCS fluxes for a better estimate of the global soil OCS budget.

Page 17: [72] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 17: [73] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman)	
Page 17: [74] Formatted	Mary Whelan	4/5/18 2:55:00 PM

Font:(Default) +Theme Body (Times New Roman), 12 pt

Page 17: [75] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times	s New Roman), 12 pt	
Page 17: [76] Deleted	Mary Whelan	3/16/18 12:07:00 PM
Microbes are key drivers of OCS exc	change in terrestrial ecosyste	m components such soil (Sect.
2.3.2) and in association with plants	and other non-vascular photo	oautotrophic communities
(2.3.1). Cyanobacteria, micro-algae,	bacteria, and fungi can contr	ribute to net OCS uptake (Gries
et al., 1994; Kusumi et al., 2011; Oga	awa et al., 2013; Protoschill-	Krebs et al., 1995; Smith and
Kelly, 1988, Bunk et al., 2017).		

Page 17: [77] Moved to page 17 (Move #20)	Mary Whelan	3/16/18 12:10:00 PM
Fusarium and Trichoderma spp. that hav	ve been isolated from	the surfaces of sandstones from
ancient monuments and forest soil exhibit	ited OCS uptake (Li	et al., 2010; Masaki et al., 2016).
Cultured bacteria have been observed to	consume OCS, inclu	ding Thiobacillus thioparus,
Mycobacterium spp., and Streptomyces s	spp. (Kusumi et al., 20	011; Ogawa et al., 2016; Smith and
Kelly, 1988). Some free-living saprophy	te Sordariomycete fu	ngi and Actinomycetale bacteria,
dominant in many soils, are also capable	of degrading OCS (I	Harman et al., 2004; Nacke et al.,
2011). Bacterial OCS degradation in ster	rilized soil inoculated	with Mycobacterium sp. showed
surprising ability to take up OCS (Kato e	et al., 2008). In additi	on, cell-free extract of Acidianus
sp. also showed significant catalysed hyd	drolysis of OCS (Sme	ulders et al., 2011). Performing
fungi inhibition experiments in whole so	ils, Bunk et al., (2017	y) showed that fungi might be the
dominant player in soil OCS uptake.		

Page 17: [78] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 17: [79] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 17: [80] Deleted	Mary Whelan	3/16/18 12:11:00 PM

Page 17: [81] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 17: [82] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 17: [83] Deleted	Mary Whelan	3/27/18 2:07:00 PM
	1. 11 .*	

purified from soil environments or from culture collections,

·

Page 17: [84] Deleted	Mary Whelan	3/16/18 12:12:00 PM

In addition to the uptake of OCS at atmospheric concentrations, OCS degradation of ppm-level concentrations has been detected in various fungi and bacteria purified from various environments. For example, 38 out of 43 fungi isolated from soil degraded 30 ppm OCS in around 24 hours without any prior acclimation to the high OCS concentrations (Masaki et al., 2016). A change in activity between ambient or ppt-level and ppb-level OCS concentrations suggests that different microbial communities are responsible for OCS consumption in the high and low concentration regimes (Conrad and Meuser, 2000).

Fusarium and *Trichoderma* spp. that have been isolated from the surfaces of sandstones from ancient monuments and forest soil exhibited OCS uptake (Li et al., 2010; Masaki et al., 2016). Cultured bacteria have been observed to consume OCS, including *Thiobacillus thioparus*, *Mycobacterium* spp., and *Streptomyces* spp. (Kusumi et al., 2011; Ogawa et al., 2016; Smith and Kelly, 1988).

Page 17: [85] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 17: [86] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), Font color: Black	
Page 17: [87] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 17: [88] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	Roman), Italic	
Page 17: [89] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 17: [90] Deleted	Mary Whelan	3/27/18 2:11:00 PM
Performing fungi inhibition experiments i	n whole soils, Bunk et al., (2017) sh	nowed that fungi
might be the dominant player in soil OCS	uptake.	

Page 18: [91] Deleted Mary Whelan 3/16/18 12:44:00 PM

2.3.3 Non-vascular and epiphytic phototrophic communities

Many land surfaces host photoautotrophic communities known as cryptogamic covers, assemblies of bryophytes (mosses, liverworts, and hornworts), lichens, algae, and cyanobacteria. In contemporary terrestrial ecosystems, these communities contribute significantly to the biogeochemical cycling of carbon and nitrogen (e.g. Lindo et al., 2013; Maestre et al., 2013), but global estimates of OCS uptake by these communities currently do not exist. Unlike vascular plants, bryophytes and lichens lack responsive stomata and protective cuticles to control water losses. As a result, their tissue hydration and physiological activity oscillate more dramatically with variations in ambient moisture than neighbouring vascular plants. In these organisms, photosynthetic CO₂ uptake is limited by moisture availability and diel and seasonal variations in light. OCS uptake, on the other hand, continues in the dark even when photosynthesis ceases (Gimeno et al., 2017; Gries et al., 1994; Kuhn et al., 1999; Kuhn and Kesselmeier, 2000).

At the global scale, our findings so far suggest that quantifying the contribution of cryptogamic covers to the OCS budget is not a straightforward task. This is because CO₂ and OCS fluxes are not necessarily coupled in lichens and bryophytes, and therefore OCS exchange cannot be modeled following the same approach as for vascular plants. Fortunately, the emission component from these organisms seems to be primarily driven by temperature (Gimeno et al., 2017) and the geographical extent of their contribution is limited to areas where cryptogamic covers constitute a non-negligible biomass fraction or contribute significantly to other ecosystem biogeochemical cycles (Elbert et al., 2012). A first approach toward estimating the contribution of these communities would require compiling sensitivity parameters (to air moisture, temperature, and other variables as in Porada et al., 2014) to predict OCS exchange from climatic drivers for dominant species, functional types, or even whole communities from these regions.

In addition to the contribution of crypotogamic covers to OCS uptake, there exist hyperdiverse microbial communities that colonise the surface of plant leaves or the "phyllosphere" (Vacher et al., 2016). The phyllosphere is an extremely large habitat (estimated in 1 billion km²) hosting microbial population densities ranging from 10⁵ to 10⁷ cells cm⁻² of leaf surface (Vorholt, 2012). With respect to OCS, it has already been shown that plant-fungal interactions can cause OCS emissions (Bloem et al., 2012). Assuming that these epiphytic microbes are capable of consuming and emitting OCS, they likely play a role in ecosystem OCS budgets.

Page 18: [92] DeletedMary Whelan3/5/18 3:42:00 PMEmission to the atmosphere can also be generated by swings in redox potential and thermal- or

photo-degradation of organic matter, both in soil and in the surface ocean.

Page 19: [93] Formatted	Mary Whelan	4/5/18 2:54:00 PM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 19: [94] Deleted	Mary Whelan	3/5/18 3:36:00 PM

OCS consumption and production in precipitation does not play a significant role in OCS ecosystem fluxes. Two precipitation studies found both snow and rain were supersaturated with OCS (Belviso et al., 1989; Mu et al., 2004). Mu et al. suggested that this excess OCS may be due to photochemical reactions with sulfur-containing compounds scavenged by the water droplets. These reactions can continue after the precipitation. The highest observed OCS concentration in precipitation was 48 ng OCS/L or 14 pmol OCS/mol H₂O. The densest cloud water content is about 3 gH₂O m⁻³. For 1 m³ of air, there are $2*10^{-12}$ excess moles of OCS. For 1 m³ of dry ambient air at 500 ppt OCS, there are $2*10^{-8}$ moles OCS. This potential flux is described further in Campbell et al., (2017b). Even in the densest supersaturated clouds, the OCS in the air would represent 99.99% of the OCS present.

Page 19: [95] Formatted	Mary Whelan	4/5/18 2:54:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 19: [96] Formatted	Mary Whelan	4/5/18 2:54:00 PM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 19: [97] Formatted	Mary Whelan	4/5/18 2:54:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 19: [98] Deleted	Mary Whelan	3/5/18 3:41:00 PM

Redox potential has long been known to play a role in the production of reduced sulfur gases, including OCS. All wetland soils observed in the field produced OCS (see Fig. 4). OCS was emitted from soils in lab studies where redox was manipulated (Devai and DeLaune, 1995). Watts (2000) divided all soils into "oxic" and "anoxic," where low-oxygen soils generally produced OCS. However, recent studies question this simple framework.

Most oxic soils investigated act as small sinks of OCS (see review in Fig. 3 of Whelan et al., 2013), but a few oxic soils observed under field and laboratory conditions have released large amounts of OCS under high temperatures or light conditions (Kitz et al., 2017; Maseyk et al.,

2014; Whelan et al., 2016). This is attributed to the thermal- and photo-decomposition of organic matter (Whelan and Rhew, 2015). Whelan et al. (2016) determined that dried soils will exhibit net OCS emission following an exponential curve with temperature. Of six soils from vastly different ecosystems, only the sample from a desert showed no emissions when air-dried and heated. Sterilized soils exhibited a higher baseline of OCS emissions, suggesting that OCS production was abiotic and some of the OCS produced was consumed by in situ microbes (Whelan and Rhew, 2015). It could be that soils containing organic matter will emit OCS under hot and dry conditions, but that most ecosystems never experience the low soil moisture and high temperature combination in the field. Regardless, it is necessary to take this flux contribution into account when modeling potential soil OCS fluxes (Sun et al., 2015).

Page 19: [99] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 19: [100] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 19: [101] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 19: [102] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 19: [103] Deleted	Mary Whelan	3/13/18 1:38:00 PM
A missing source of about 600–800 Gg S	y ⁻¹ in the atmospheric budget of OC	S has recently been
A missing source of about 600–800 Gg S identified by several top-down approaches	y ⁻¹ in the atmospheric budget of OC (Berry et al., 2013; Glatthor et al.,	S has recently been 2015; Kuai et al.,
A missing source of about 600–800 Gg S identified by several top-down approaches 2015; Suntharalingam et al., 2008; Wang et al.	y ⁻¹ in the atmospheric budget of OC (Berry et al., 2013; Glatthor et al., et al., 2016). Satellite data have sho	S has recently been 2015; Kuai et al., wn that
A missing source of about 600–800 Gg S identified by several top-down approaches 2015; Suntharalingam et al., 2008; Wang e tropospheric OCS is elevated above the Ne	y ⁻¹ in the atmospheric budget of OC (Berry et al., 2013; Glatthor et al., et al., 2016). Satellite data have show orth Indian and northwest tropical P	S has recently been 2015; Kuai et al., wn that Pacific oceans, and
A missing source of about 600–800 Gg S identified by several top-down approaches 2015; Suntharalingam et al., 2008; Wang of tropospheric OCS is elevated above the No inverse models using enhanced oceanic en	y ⁻¹ in the atmospheric budget of OC (Berry et al., 2013; Glatthor et al., et al., 2016). Satellite data have show orth Indian and northwest tropical P nissions reproduced a similar pattern	S has recently been 2015; Kuai et al., wn that Pacific oceans, and n (Kuai et al.,

for this missing source.

Page 19: [104] Deleted	Mary Whelan	4/4/18 3:14:00 PM
and, potentially, dimethyl sulfide (DMS), most likely photochemical products	of biogenic
compounds		

Page 19: [105] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (T	imes New Roman)	
Page 19: [106] Formatted	Mary Whelan	4/5/18 2:55:00 PM
$\mathbf{E}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} \left(\mathbf{D}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} \right) + \mathbf{T}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}} \left(\mathbf{T}_{\mathbf{r}} \right)$		

Font:(Default) +Theme Body (Times New Roman)

on whether oceanic emissions represent the missing source of OCS

Page 19: [108] Deleted	Mary Whelan	3/13/18 1:54:00 PM
Bottom-up emission estimates	from global oceans have been obtain	ined from simulations with
models of different levels of con	mplexity. Lennartz et al. (2017, 130	0±80 Gg S y ⁻¹) predict highest
emissions in high latitudes cons	istent with previous observations, v	whereas Launois et al. (2015a,
813 Gg S y ⁻¹) predict highest en	nissions in the tropical oceans with	the 3D oceanic model
NEMO-PISCES. The latter corr	oborates the emissions needed to a	ccount for the missing source,
but requires OCS surface water	concentrations one order of magnitude	tude higher than the majority
of open ocean observations. The	e discrepancies between bottom-up	oceanic emission estimates,
and between top-down and bott	om-up approaches, indicate the nee	ed to reduce uncertainties in
the global marine OCS flux from	n direct and indirect sources, requi	ring new field measurements
and process studies.		

Page 19: [109] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 19: [110] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 19: [111] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), Not Bold	
Page 19: [112] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman), Not Bold	
Page 19: [113] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 19: [114] Deleted	Mary Whelan	3/16/18 1:29:00 PM

2.4.1 Surface ocean OCS measurements

Although in situ measurements of OCS in the surface ocean remain relatively scarce, they span a range of oceanic regimes and seasons.

Page 19: [115] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New Roman)		
Page 19: [116] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New Roman)		
Page 20: [117] Formatted	Mary Whelan	4/5/18 2:55:00 PM

Font:(Default) +Theme Body (Times New Roman)

Mary Whelan

Page 20: [117] Formatted	Mary Whelan	4/5/18 2:55:00 PM
Font:(Default) +Theme Body (Times New	w Roman)	
Page 20: [118] Deleted	Mary Whelan	3/16/18 1:16:00 PM
, and t		
Page 20: [118] Deleted	Mary Whelan	3/16/18 1:16:00 PM
, and t		
Page 20: [118] Deleted	Mary Whelan	3/16/18 1:16:00 PM
, and t		
Dara 20, [110] Dalatad	Maria Whales	2/10/10 1.10.00 PM
and t	Mary Whelan	3/10/18 1:10:00 PM
, and t		
Page 20: [118] Deleted	Mary Whelan	3/16/18 1:16:00 PM
, and t		
Page 20: [118] Deleted	Mary Whelan	3/16/18 1:16:00 PM
, and t		
Page 20: [119] Deleted	Mary Whelan	3/16/18 1:21:00 PM
The OCS photo-production term remains	poorly constrained.	
Page 20: [119] Deleted	Mary Whelan	3/16/18 1:21:00 PM
The OCS photo-production term remains	poorly constrained.	
Page 20: [119] Deleted	Mary Whelan	3/16/18 1:21:00 PM
The OCS photo-production term remains	poorly constrained.	
Page 20: [119] Deleted	Mary Whelan	3/16/18 1:21:00 PM
The OCS photo-production term remains	poorly constrained.	
Page 20: [119] Deleted	Mary Whelan	3/16/18 1:21:00 PM
The OCS photo-production term remains	poorly constrained.	
	-	
Page 20: [120] Moved to page 20 (Move #21)	Mary Whelan	3/16/18 1:24:00 PM
Here, we propose that refining estimates	and uncertainty bounds for OCS ph	oto-production
could be facilitated by (1) a comprehensive study of the variability of the spectrally resolved		
AQYs across contrasting marine environments, determined using laboratory-based		
photochemical experiments done under very controlled illumination conditions: (2) the use of a		

photochemical model that utilizes AQYs, fully accounts for the spectral and depth dependence of photochemical processes in the surface ocean, and facilitates calculations on a global scale by

capturing the variability in solar irradiance and chromophoric dissolved organic matter (Fichot and Miller, 2010); and (3) the cross-validation of the depth-resolved modeled rates with direct in situ measurements of photo-production rates and/or with rates derived from field observations of surface OCS concentrations (e.g. Lennartz et al., 2017).

Page 20: [121] Deleted	Mary Whelan	3/16/18 1:25:00 PM
Dark production remains similarly	poorly constrained.	

Page 20: [121] Deleted	Mary Whelan	3/16/18 1:25:00 PM
Dark production remains similar	ly poorly constrained.	

Page 20: [122] DeletedMary Whelan3/16/18 1:28:00 PMThe acquisition of vertical profiles of OCS concentrations within and below the euphotic zonewould help reduce this uncertainty. Continuous concentration measurements from researchvessels can be used to calculate dark production rates assuming an equilibrium betweenhydrolysis and dark production during nighttime. Different processes undoubtedly require furtherdedicated process studies to assess their importance.

Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [123] Formatted	Mary Whelan	4/5/18 2:56:00 PM
Font:12 pt, Italic		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM

Here, we propose that r

Γ

Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		
Page 20: [124] Deleted	Mary Whelan	3/16/18 1:30:00 PM
Here, we propose that r		

Page 22: [125] Deleted	Mary Whelan	3/13/18 2:05:00 PM
Bottom-up analysis of the global	anthropogenic inventory estimate	es a source of 500 ± 220 Gg S
y^{-1} for the year 2012. The large u	incertainty is primarily due to lim	ited observations of emission
factors, particularly for the rayon	, pulp, and paper industries. An in	ndependent approach using a
top-down method estimated that	the average source for the years 2	2011 through 2013 was 230 to
350 Gg S y^{-1} (Campbell et al., 20	015). One possible reason for the g	gap between these estimates is
that the top-down study used a co	onstrained optimization approach	in which the optimization was
limited to the a priori range, which	ch at the time of that study was 15	50 to 364 Gg S y^{-1} . These two
estimates are considerably larger	than the older gridded inventory	estimate of 180 Gg S y ⁻¹
(Kettle et al., 2002), which was u	used in all recent global atmosphe	ric modeling studies. Also, the
Kettle inventory failed to capture	e the concentration of global emis	sions in China that is revealed
in the updated inventory. The up	ward revision of the anthropogeni	ic source suggests that some of
the missing source in the global l	budget could be accounted for by	anthropogenic emissions.

Font:(Default) +Theme Body (Times New Roman)

Page 22: [127] Moved to page 29 (Move #2) Mary Whelan

3/19/18 2:18:00 PM

The spatial and temporal trends in these inventories have multiple implications for applying OCS as a carbon cycle tracer. First, most of the anthropogenic source is located in China, while most of the atmospheric OCS monitoring is located in North America (Campbell et al., 2015). The spatial separation allows regional applications of OCS to North America to control for most of the anthropogenic influence through observed boundary conditions (Campbell et al., 2008; Hilton et al., 2015, 2017). Second, the anthropogenic source has large inter-annual variations (Campbell et al., 2015), which suggests that applications of the OCS tracer to inter-annual carbon cycle analysis will require careful consideration of anthropogenic variability.

Page 22: [128] Deleted	Mary Whelan	3/16/18 1:56:00 PM
Biomass burning is generally accounted as	s a separate category.	

Page 23: [129] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 23: [130] Deleted	Mary Whelan	3/27/18 2:51:00 PM

has shown that OCS is also emitted into the atmosphere by volcanism

Page 23: [131] Deleted	Mary Whelan	3/14/18 10:32:00 AM
This finding is consistent with our cur	rent understanding of th	ne chemical reactivity of OCS in the
troposphere.		

Page 23: [132] Deleted	Mary Whelan	3/13/18 10:33:00 AM
The first compilation of OCS/CO	2 ratios in volcanic gases of vario	ous volcanoes was published in

the mid-1980s

Page 23: [133] Deleted	Mary Whelan	3/13/18 10:29:00 AM
In light of the variability of the	OCS/CO ₂ ratio in volcanic gases, it v	was possible to evaluate

Page 23: [134] Deleted	Mary Whelan	3/13/18 10:31:00 AM

. The authors gathered data from 11 volcanoes covering nearly the whole range of volcanic temperatures (100–1100°C) and encompassing the main types of terrestrial volcanisms. They reported a statistically significant linear relationship between the logarithm of the OCS/CO₂ ratios and the reciprocal of the emission temperature of the gases, and pointed out that this experimental relationship was consistent with thermodynamical calculations.

Page 23: [135] Deleted	Mary Whelan	3/13/18 10:27:00 AM

Although most of the results showed that the OCS/CO₂ ratio of volcanic gases was closely related to their emission temperature, samples collected at Merapi Volcano did not match well with the linear model.

Page 23: [136] Deleted	Mary Whelan	3/13/18 10:28:00 AM
, whereas for temperatures over 70	0°C, typical of eruptive and po	ost-eruptive volcanoes, the
former model underestimated the ra	atios by less than an order of r	magnitude

Page 23: [137] DeletedMary Whelan3/13/18 10:36:00 AM. For a more complete description of the outgassing state of active volcanoes the reader isreferred to Belviso et al. (1986). In the latter, the e

Page 23: [138] Deleted	Mary Whelan	3/13/18 10:28:00 AM
already represented a negligible proportion	on of the total OCS volcani	c source strength: now they

Page 23: [139] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), Italic	
Page 23: [140] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 23: [141] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 24: [142] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 27: [143] Deleted	Mary Whelan	3/19/18 11·09·00 AM

This demonstrates a critical gap in understanding of the terrestrial carbon cycle and suggests a need for independent information, such as that provided by OCS observations, to further constrain models.

There are two approaches to performing this application. One uses a biosphere model to simulate the CO_2 and OCS biospheric fluxes with the mechanism described above, which is the so-called "bottom up" method. Berry et al. (2013) employed the Simple Biosphere Model (SiB3) to estimate coupled CO_2 and OCS land fluxes, and designed an experiment to examine the different responses in photosynthesis and respiration under different soil hydrology and water stress. Berry et al. compared the drawdown of CO_2 and OCS under different conditions and in different regions and the results indicated that additional information on separating the responses of photosynthesis and respiration to environmental forcing could be provided with the help of OCS. Launois et al. (2015) and Campbell et al. (2017a) used a simpler approach to simulate OCS fluxes from several land surface models, based on the simulated GPP and LRU. They further used an atmospheric transport model to evaluate the potential biases in the simulated GPP and respiration fields, comparing simultaneously the simulated OCS and CO₂ concentrations to observed atmospheric mixing ratios (see Sect. 3.1.1). Recent work by Hilton et al. (2017) combined both approaches to constrain the spatial distribution of GPP in North America.

The second method relies on obtaining the biosphere fluxes of CO_2 and OCS from gradients in measured atmospheric concentrations using inverse modeling, which is the "top-down" method. Atmospheric inverse modeling with CO_2 measurements alone is only able to constrain the total net flux of CO_2 and it is unable to distinguish between the underlying fluxes arising from photosynthesis and respiration. Adding atmospheric OCS measurements to the analysis will allow gross carbon fluxes to be calculated, from which biospheric responses to climate variations can be better described. Currently, there is a need for more surface measurements to the mid or upper troposphere cannot well distinguish spatial variations of surface fluxes, e.g. exactly where a potential ocean source is located.

There are uncertainties shared by both approaches. While OCS observations show promise as an independent GPP tracer, there are smaller terrestrial OCS sources and sinks from soils (Kesselmeier et al., 1999; Kettle et al., 2002; Maseyk et al., 2014; Ogée et al., 2016; Sun et al., 2015; Whelan et al., 2015) and industrial activities (Campbell et al., 2015; Kettle et al., 2002; Zumkehr et al., 2017) that must be considered (see Sect. 2). For studies relying on LRU, laboratory and field work has shown that LRU varies under different conditions, such as low light (Stimler et al., 2010b). Although there are uncertainties in the OCS sources and sinks, OCS observations are useful even with an unbalanced global budget because the uncertainty introduced by LRU variation and potential soil OCS emissions is much smaller than the uncertainty of our current understanding of regional carbon balance (Hilton et al., 2015). Here we describe the work that is underway or has already been done to use OCS observations to glean more information about ecosystem functioning, specifically GPP, on different spatial and temporal scales. With the bottom up approach, generating maps

Page 27: [144] Deleted

, allowing us to evaluate the representation of carbon uptake in our current suite of biosphere models

Page 27: [145] DeletedMary Whelan3/19/18 11:10:00 AMWe also explore the potential of using OCS to understand carbon cycle changes under extremeevents.

 Page 27: [146] Formatted
 Mary Whelan
 4/5/18 11:32:00 AM

 Font:(Default) +Theme Body (Times New Roman), 12 pt
 Page 27: [147] Deleted
 Mary Whelan
 3/19/18 12:44:00 PM

without carefully chosen OCS component fluxes, especially at small spatial scales

Page 27: [148] Moved to page 34 (Move #7)Mary Whelan3/19/18 3:40:00 PMUsing aircraft OCS observations from the NOAA Global Greenhouse Gas Reference Networks
aircraft program (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html, an update of results
published in Montzka et al., 2007),

Page 27: [149] DeletedMary Whelan3/14/18 10:41:00 AMthey derived OCS plant fluxes from differing GPP models' spatial placement of North AmericanGPP and used a chemical transport model to compare these to the aircraft observations. Thestudy used multiple estimates of OCS soil fluxes, OCS anthropogenic fluxes, and continentalboundary fluxes, supporting three different approaches to modeling the relationship of OCS andCO2 plant uptake. Each of these contributes uncertainty to using OCS as a GPP tracer. By usingthese multiple estimates of each uncertainty, Hilton et al. (2017) quantitatively estimated eachuncertainty source as well as the sources' combined, comprehensive uncertainty.

Page 27: [150] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 28: [151] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 28: [152] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), 12 pt, English (UK)	
Page 28: [153] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), English (UK)	
Page 28: [154] Formatted	Mary Whelan	4/5/18 11:32:00 AM

Font:(Default) +Theme Body (Times New Roman), 12 pt, English (UK)

3/19/18 11:10:00 AM

Mary Whelan

Page 28: [155] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), English (UK)	
Page 28: [156] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	V Roman), 12 pt, English (UK)	
Page 28: [157] Deleted	Mary Whelan	3/19/18 12:51:00 PM
however, they rely on the robustness of the	e global OCS modeling framework	and in particular
the choice of the LRU values (assumed co	onstant in time) and the parameteriz	ation of soil OCS
uptake (i.e. with small seasonal variations)).	

Page 28: [158] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New Roman)		
Page 28: [159] Deleted	Mary Whelan	3/14/18 1:16:00 PM

3.1.2 Extreme events and the carbon cycle

Climate extremes have strong impacts on ecosystems by rapidly altering the stable state (Reichstein et al., 2013). OCS observations can be used to discern how extreme events affect the carbon cycle. Taking drought as an example, the mechanisms affecting carbon balance triggered by droughts can be described conceptually; however, the individual processes are difficult to quantify with CO₂ measurements alone. Most studies conclude that drought ought to decrease an ecosystem's respiration rates and photosynthetic production. However, the net effect of drought is challenging to assess, and different studies can be contradictory (Phillips et al., 2009). Figure 12 shows the impacts of drought on the ecosystem CO₂ and OCS exchange. With a mild drought (Fig. 12, blue arrows), the soil surface might dry out, reducing soil respiration and thus total ecosystem respiration. Plant roots would still be able to reach enough water, GPP would be unchanged or decreases slightly, and the net ecosystem production would increase. For a severe drought (Fig. 12, red arrows), GPP would be reduced because plants close stomata in order to conserve water, and the net ecosystem production would likely decrease. Additionally, some studies have shown an increased GPP during drought events, resulting from increased availability of sunlight (Huete et al., 2006; Saleska et al., 2007), which makes the overall effect even more complex.

Adding OCS to climate extremes studies would provide additional information on the biospheric processes. During drought events (Fig. 12), the OCS uptake changes along with GPP, since both processes are controlled by stomatal conductance. That results in an unchanged or slightly

decreased OCS uptake during a mild drought and a largely reduced OCS uptake in a severe drought. With a given ratio between GPP and OCS uptake, the changes in GPP can be quantified for both mild and severe droughts.

Page 28: [160] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 28: [161] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 28: [162] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 28: [163] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 28: [164] Deleted	Mary Whelan	3/19/18 2:28:00 PM
(i.e. sources and sink that are compatible	with the atmospheric budget)	

Page 29: [165] Deleted Mary Whelan	3/19/18 2:18:00 PM
------------------------------------	--------------------

More precisely quantified OCS surface fluxes should improve our knowledge of terrestrial photosynthesis and hence GPP (Sandoval-Soto et al., 2005). Improved knowledge of the global OCS budget will help constrain OCS surface flux components (vegetation, soil, ocean, anthropogenic). Current OCS surface flux budgets are mostly bottom-up estimates derived from leaf-scale or terrestrial-scale experiments (Berry et al., 2013; Campbell et al., 2008; Kettle et al., 2002; Suntharalingam et al., 2008). In addition to a better global OCS budget, atmospheric OCS measurements can also be used to further constrain bottom-up or mechanistic estimates. Such "top-down" estimates use observed spatial and temporal gradients of OCS in the atmosphere to adjust an independent estimate of surface fluxes (usually called the "prior" estimate).

Only a few top-down attempts have been made with the sparse flask sampling network results (i.e. mainly from NOAA). Launois et al. (2015b) used the measurements at 10 surface stations to optimize global scalars of all surface OCS flux components in order to obtain a closed global OCS budget (i.e. sources and sink that are compatible with the atmospheric budget) and to highlight the main contributing surface flux components to the trend and seasonal cycle of atmospheric OCS as well as to the inter-hemispheric gradient.

Recent satellite-based OCS measurements can be used to derive top-down estimates at continental to regional scales. Kuai et al. (2015) proposed to estimate the OCS surface flux from NASA's Tropospheric Emission Spectrometer (TES) ocean-only observations using a Bayesian inversion technique, which can be thought of as a time-independent version of the 4D-VAR assimilation (Liu et al., 2016). Their results implied a large ocean OCS source over the Indo-Pacific region, and the total ocean source budget was consistent with the global budget proposed by Berry et al. (2013). A similar conclusion was obtained by Glatthor et al. (2015), who showed that the OCS global seasonal cycle observed by MIPAS was more consistent with the seasonal cycles modeled using the Berry et al. global budget than using the global budget proposed earlier by Kettle et al. (2002).

Page 29: [166] Deleted	Mary Whelan	3/19/18 2:15:00 PM		
Among the four satellite OCS products, only TES OCS data have been used for OCS surface				
flux inversions. As the TES OC	S product is limited to over ocear	n only, the inversion of the OCS		
terrestrial sinks in Kuai et al. (20	015) may be subject to large unce	ertainties. Thus, for consistency,		
TES OCS over land may be highly desired. Spectral retrieval over land requires exact details of				
surface properties, including sur	face altitude, temperature, emissi	ivity, reflectance, snow cover,		
etc., which have been considered	d in the IASI OCS retrieval (Cam	ny-Peyret et al., 2017; Vincent		
and Dudhia, 2017). A similar re-	trieval algorithm for TES OCS is	currently under development.		
The accuracy of the surface flux	inversion can be further improve	ed by using simultaneous OCS		
observations from more satellite	es, e.g. TES and MIPAS, to provide	de more constraints on the		
horizontal and vertical OCS dist	ribution in different parts of atmo	osphere. Satellite products need to		
be compared to tower or airborne d	lata, perhaps determining how well t	the upper troposphere can reflect		
surface fluxes. This effort is furth	nered by better estimates of surface	ce fluxes, in particular		
observations of OCS emissions	from the oceans in areas where w	ve assume a large source region		
might exist (Kuai et al., 2015). 7	Thus better "bottom-up" surface f	flux estimates constrained by		
more numerous atmospheric obs	servations can provide powerful c	constraints on OCS surface		
fluxes, and thus GPP.				

Page 29: [167] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (T	imes New Roman), 12 pt	
Page 29: [168] Formatted	Mary Whelan	4/5/18 11:32:00 AM
East: (Dafault) Thama Dady (T	mag Navy Damag) 12 mt	

Font:(Default) +Theme Body (Times New Roman), 12 pt
Page 29: [169] Formatted	Mary Whelan	4/5/18 11:32:00 AM

Font:(Default) +Theme Body (Times New Roman)

Page 29: [170] Deleted

3/19/18 3:06:00 PM Mary Whelan Measurements of OCS in Antarctic ice core and firn air samples have been used to explore long-

term trends in GPP.

Page 30: [171] Moved to page 5 (Move #8)	Mary Whelan	3/14/18 4:26:00 PM
--	-------------	--------------------

Although OCS has been studied mostly as a proxy for photosynthesis, OCS uptake by vegetation is actually governed mechanistically by (i) the series of diffusive conductances of OCS into the leaf, and (ii) the reaction rate coefficient for OCS destruction by CA (Wohlfahrt et al., 2012). CA is present both in plant leaves and soils, although soil uptake tends to be proportionally much lower than plant uptake. Over soils, OCS uptake provides information about CA activities within diverse microbial communities. OCS uptake over plants integrates information about the sequential components of the diffusive conductance (the leaf boundary layer, stomatal, and mesophyll conductances) and about CA activity, all important aspects of plant and ecosystem function. Stomatal conductance in particular is a prominent research focus in its own right, as it couples the carbon and water cycles via transpiration and photosynthesis.

Page 30: [172] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 30: [173] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 30: [174] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 30: [175] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 31: [176] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), 12 pt, Italic, Font color: A	uto
Page 31: [177] Deleted	Mary Whelan	3/19/18 3:17:00 PM
A powerful and more general approach we	ould be to combine OCS measurement	nts with other
constraints in an ecosystem model framew	ork. OCS uptake can serve as a glue	that binds other

measurable quantities within a model, because

Page 31: [178] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 32: [179] Deleted	Mary Whelan	3/27/18 6:12:00 PM

To use the OCS GPP tracer to its full potential, surface OCS estimates over land and ocean are needed to evaluate ocean and ecosystem fluxes to the atmosphere at the global scale. Current satellite retrievals are sensitive to OCS concentrations much higher in the troposphere, and FTIR or tower data have limited coverage. Currently, the most used surface OCS dataset is from the NOAA Flask Network, where gas samples are often collected twice a day. Coordinating satellite retrievals with ground-based measurement efforts is important to realize greater data coverage and accuracy.

Page 33: [180] Deleted

Mary Whelan

3/14/18 1:32:00 PM

Fig. 14a shows the tropospheric OCS patterns obtained using TES Level-2 swath OCS retrievals in 2006, averaged over four seasons (March to May, June to August, September to November, and December to February). The TES swath data have been averaged to 5° longitude × 4° latitude grid boxes, but due to low TES spatial sampling, these OCS patterns have been further smoothed to a 20° × 20° spatial resolution. Only those swath data that pass quality flags, such as high signal-to-noise ratio, cloud clearance, and high goodness-to-fit (Kuai et al., 2014), are used in the grid box averages. The tropospheric OCS variability ranges from 520 to 570 ppt over the latitudes between ±40°. There is constant high OCS abundance over the tropics for all seasons, especially over the Indo-Pacific region and the Caribbean Sea, indicating the effect of tropical convection, which brings high-OCS air near the ocean surface to the mid-troposphere and may be due to an OCS ocean source. In contrast, over the Cold Tongue region in the eastern Pacific, the observed OCS is low due to the strong subsidence over there.

Page 33: [181] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 33: [182] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
	· · · ·	
Page 33: [183] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Page 33: [183] FormattedFont:(Default) +Theme Body (Times New	Mary Whelan Roman)	4/5/18 11:32:00 AM
Page 33: [183] FormattedFont:(Default) +Theme Body (Times NewPage 33: [184] Moved to page 66 (Move #9)	Mary Whelan Roman) Mary Whelan	4/5/18 11:32:00 AM 3/14/18 1:34:00 PM

obtained using MIPAS Level-2 swath OCS retrievals from 2002 to 2011. The MIPAS swath data

have been averaged to the same TES 5° longitude \times 4° latitude grid boxes and have also been smoothed to a 20°×20° spatial resolution

Page 33: [185] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Time	es New Roman), 12 pt	
Page 33: [186] Deleted	Mary Whelan	3/14/18 1:33:00 PM
. MIPAS also provides OCS abunda	ance over the polar region, b	ut we focus only on the tropical
region to facilitate comparison. Sim	ilar to TES, the MIPAS retr	ievals also reveal high OCS
abundance over the tropics. However	er, MIPAS also shows signit	ficantly higher OCS abundance in
subtropical regions compared to the	TES observations, indicatir	ng the effect of poleward
transport in the upper troposphere.	The MIPAS observations als	so reveal lower OCS abundance
over the continents, especially over	South America and Africa.	These continental OCS-low areas
strongly suggest the offects of yearst	tation sinks which unfortun	ataly are not seen in TES

strongly suggest the effects of vegetation sinks, which unfortunately are not seen in TES observations because of the unavailability of TES retrievals over land.

Fig. 14c shows two-month averages of the day-time total column OCS obtained using IASI OCS retrievals in 2014. IASI also provides total column OCS over the polar region, which we do not discuss here. IASI has much higher spatial sampling than TES, and the patterns shown in Fig. 14c have a high spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$. The IASI OCS observations over land generally agree with the MIPAS observations, showing large sinks over South America and Africa. The high spatial resolution also helps reveal more clearly the land OCS sources over Asia, which are not seen in TES nor MIPAS observations. Furthermore, the relatively low OCS abundance over the Inter-Tropical Convergence Zone is only apparent in IASI data.

Figure 15 shows the summertime (June–August) latitudinal distribution of OCS observed by MIPAS (Glatthor et al., 2017). The distributions in other seasons are similar due to the long atmospheric OCS lifetime. In the troposphere, the tropical OCS is ~520 ppt, while the polar OCS is ~480 ppt. The vertical transport by convection over the Indo-Pacific region is clearly seen. The main source of OCS is in the troposphere and it is destroyed in the stratosphere; the abundance above the tropopause decreases rapidly as altitude increases. The mid-stratospheric OCS is significantly higher in the tropical region than in the polar region because of the upwelling Brewer-Dobson branch at the equator that transports OCS from the lower stratosphere upward.

Furthermore, the OCS abundance is significantly lower (close to zero) over the winter poles due to downwelling over the polar vortex.

Page 33: [187] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 33: [188] Moved to page 66 (Move #10)	Mary Whelan	3/14/18 1:35:00 PM

retrievals in 2014. IASI also provides total column OCS over the polar region, which we do not discuss here. IASI has much higher spatial sampling than TES, and the patterns shown in Fig. 14c have a high spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$.

Page 33: [189] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 33: [190] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 33: [191] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman), 12 pt	
Page 33: [192] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 33: [193] Deleted	Mary Whelan	3/19/18 3:29:00 PM

OCS is an important tool to constrain GPP, and more resources are needed to improve the accuracy of current satellite products. Measurement campaigns need to be put in motion that will allow us to measure OCS reliably from space. The next generations of high-quality satellite instruments may target measuring OCS in the lower troposphere and/or near the boundary layer with better land surface coverage, which would improve the surface flux inversion. Optimal requirements of the instrumental designs (e.g. maximum spectral resolutions, maximum footprint dimensions, minimum signal-to-noise ratios, and choice of orbits) to achieve a lower tropospheric sensitivity can be tested using a set of representative atmospheric conditions, such as those provided by NASA's Observing System Simulation Experiments.

Page 33: [194] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), 12 pt	
Page 33: [195] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 33: [196] Deleted	Mary Whelan	3/19/18 3:43:00 PM

OCS concentrations can be retrieved for all historical spectra and some additional data are available by request [to whom?].

Page 33: [197] Deleted	Mary Whelan	4/4/18 12:00:00 PM
As with comparing in situ atmospheric observations, it is important to note how disparate		
datasets are calibrated.		
Page 33: [198] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (7	Times New Roman)	
Page 36: [199] Deleted	Mary Whelan	3/14/18 1:49:00 PM
The discussion in Aydin et al. (2016) identifies the records that are derived from more ideal		

The discussion in Aydin et al. (2016) identifies the records that are derived from more ideal conditions.

Page 36: [200] Deleted	Mary Whelan	3/19/18 4:23:00 PM
T1 10 + 1 COCC	1 • 4 • • • •	

The ultimate goal of OCS tracer research is to constrain our estimates of global carbon-climate feedbacks. To this end, we need to perform the modeling studies necessary to determine the location, distribution, and feasibility of a tall tower network that would support regional-scale GPP estimates based on OCS uptake. In support of regional studies, our understanding of processes should be refined: in particular, lab-based studies with water or nutrient-stressed plants are needed. On the global scale, our understanding of the OCS budget needs to be reconciled, determining whether a large missing source is from the oceans or from anthropogenic activity. With these advances, OCS could become an essential tracer of plant CO_2 uptake that operates on temporal and spatial scales where there are currently large knowledge gaps.

There are many questions yet to be answered about OCS fluxes between the Earth surface and the atmosphere.

Page 36: [201] Deleted	Mary Whelan	3/14/18 2:00:00 PM
This may be from incomplete know	vledge of the tropical ocean	source, incomplete observations
of anthropogenic sources, or an unl	likely overestimation of the j	plant sink.

Page 36: [202] Deleted	Mary Whelan	3/19/18 4:24:00 PM
were intended to be conducted from many	different sites across the U.S. If th	is were realized it

Page 36: [203] Formatted	Mary Whelan	4/5/18 2:57:00 PM
Font:(Default) +Theme Body (Times New Roman)	
Page 36: [204] Deleted	Mary Whelan	3/19/18 4:24:00 PM
and inform us about COS from different processes that would likely be relevant on larger		

, and inform us about COS from different processes that would likely be relevant on larger scales.

Page 36: [205] Formatted	Mary Whelan	4/5/18 2:57:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 36: [206] Formatted	Mary Whelan	4/5/18 2:57:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 36: [207] Formatted	Mary Whelan	4/5/18 2:57:00 PM
Font:(Default) +Theme Body (Times New	v Roman)	
Page 36: [208] Formatted	Mary Whelan	4/5/18 2:57:00 PM
Font:(Default) +Theme Body (Times New	(Roman)	
Page 36: [209] Deleted	Mary Whelan	3/19/18 3:59:00 PM

While there is still much work to be done, our collective knowledge has developed enough to warrant substantial investment in infrastructure to make OCS measurements from a coordinated network of tall towers, supporting and supported by satellite observations.

Page 36: [210] Deleted	Mary Whelan	3/14/18 2:03:00 PM

The OCS tracer gives us information on the instantaneous and integrated carbon flux into plants.

For regional and global-scale studies, it can be used to answer questions about large-scale

perturbations and carbon-climate feedbacks, e.g. regional droughts. Most importantly, t

Page 41: [211] Deleted	Mary Whelan	3/20/18 2:54:00 PM	
 Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K.: Carbon dioxide supersaturation in the surface waters of lakes, Science, 265, 1568–1570, 1994. Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer, Agr. Forest Meteorol., 54, 107–136, 1991. 			
Page 43: [212] Deleted	Mary Whelan	3/20/18 3:01:00 PM	
 Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, R.: Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405, 2006. Hungate, B. A., Holland, E. A., Jackson, R. B., Stuart Chapin, F., Mooney, H. A., and Field, C. B.: The fate of carbon in grasslands under carbon dioxide enrichment, Nature, 388, 576–579, 1997. 			
Page 44: [213] Deleted	Mary Whelan	3/20/18 3:02:00 PM	
Iordan, S. L., Kraczkiewicz-Dov to grow on carbon disulfide, Jung, M., Reichstein, M., Margo A., Bernhofer, C., Bonal, D. Lasslop, G., Law, B. E., Lin	wjat, A. J., Kelly, D. P., and Wood, Arch. Microbiol., 163, 131–137, olis, H. A., Cescatti, A., Richardso , Chen, J., Gianelle, D., Gobron, M droth, A., Merbold, L., Montagna	d, A. P.: Novel eubacteria able 1995. on, A. D., Arain, M. A., Arneth, N., Kiely, G., Kutsch, W., ni, L., Moors, E. J., Papale, D.,	
Sottocornola, M., Vaccari, F	F., and Williams, C.: Global patter	ns of land-atmosphere fluxes of	

Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res. Biogeo., 116, doi: 10.1029/2010JG001566, 2011.

Page 46: [214] Deleted	Mary Whelan	3/20/18 3:11:00 PM
Meredith, L. K., Ogée, J., Boy Whelan, M.E., Pang, E., k exchange rates of COS an their carbonic anhydrase e Metcalfe, D. B., Ricciuto, D., S., Shi, X., Näsholm, T., O Informing climate models Change Biol., 23, 2130–2	 ⁷e, K., Singer, E., Wingate, L., von Leiluweit, M., Brüggemann, N., Ben d CO¹⁸O shift with the diversity of enzymes, In prep. Palmroth, S., Campbell, C., Hurry, Dhlsson, K. E. A., Blackburn, M., T with rapid chamber measurements 139, 2017. 	Sperber, C., Sengupta, A., rry, J., Welander, P.V.: Soil microbial communities and V., Mao, J., Keel, S. G., Linder, Thornton, P. E., and Oren, R.: of forest carbon uptake, Glob.
Page 48: [215] Deleted	Mary Whelan	3/20/18 3:17:00 PM
 Protoschill-Krebs, G., Wilhelt Chlamydomonas reinhard different CO₂ growing reg Protoschill-Krebs, G., Wilhelt (COS) by higher plant car Raatikainen, M. and Kuusisto 102, 97–110, 1990. 	n, C., and Kesselmeier, J.: Consum tii with different activities of carbon times, Plant Biol., 108, 445–448, 19 m, C., and Kesselmeier, J.: Consum bonic anhydrase (CA), Atmos. Env , E.: The number and surface area c	iption of carbonyl sulphide by nic anhydrase (CA) induced by 995. Iption of carbonyl sulphide viron., 30(18), 3151–3156, 1996. of the lakes in Finland, Terra,
Page 49: [216] Deleted	Mary Whelan	3/20/18 3:23:00 PM
 Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: An Analysis of Global Change, Academic Press, Waltham, 2012. Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A. E., and Worthy, D.: A regional high-resolution carbon flux inversion of North America for 2004, Biogeosciences, 7, 1625–1644, 2010. Scurlock, J. M. O. and Hall, D. O.: The global carbon sink: a grassland perspective, Glob. Change Biol., 4, 229–233, 1998. Seefeldt, L. C., Rasche, M. E. and Ensign, S. A.: Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase, Biochemistry, 34, 5382– 5389, 1995. 		
Page 50: [217] Deleted	Mary Whelan	3/20/18 3:25:00 PM
 Stoy, P. C., Katul, G. G., Sique C., and Oren, R.: Variabili scales at adjacent pine and 2005. Stoy, P. C., Richardson, A. D. Reichstein, M., Detto, M., H., Montagnani, L., Paw U exchange of CO₂ in relation Biogeosciences, 6, 2297–22 	eira, M. B. S., Juang, JY., McCar ity in net ecosystem exchange from hardwood forests: A wavelet analy , Baldocchi, D. D., Katul, G. G., St Law, B. E., Wohlfahrt, G., Arriga, J. K. T., Sevanto, S., and Williams, on to climate: A cross-biome analys 2312, 2009.	thy, H. R., Kim, HS., Oishi, A. hourly to inter-annual time ysis, Tree Physiol., 25, 887–902, tanovick, J., Mahecha, M. D., N., Campos, J., McCaughey, J. , M.: Biosphere-atmosphere sis across multiple time scales,
Page 56: [218] Deleted	Mary Whelan	3/26/18 9:57:00 AM

Figure 3. Frequency distribution (bars) of and log-normal fit (solid line) to published values (n = 53) of the leaf relative uptake rate of C3 species. The vertical line indicates the median (1.68). Published data are from: Berkelhammer et al., 2014; Sandoval-Soto et al., 2005; Stimler et al., 2010b, 2011, 2012.

Page 56: [219] Formatted	Mary Whelan	4/5/18 11:32:00 AM	
Font:(Default) +Theme Body (Times New Roman), 12 pt			
Page 56: [219] Formatted	Mary Whelan	4/5/18 11:32:00 AM	
Font:(Default) +Theme Body (Times New Roman), 12 pt			
Page 64: [220] Deleted	Mary Whelan	3/14/18 1:25:00 PM	

Figure 12. The impacts of droughts on biosphere processes and atmospheric CO_2 and OCS. Blue arrows show the impacts of mild droughts; red arrows show impacts of severe droughts. Plus signs show positive impacts; minus signs show negative impacts. The relative strength of the impacts is shown by the size of the signs.

Page 71: [221] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [222] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [223] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [224] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [225] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [226] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman), 12 pt	
Page 71: [227] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [228] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [229] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	r Roman)	
Page 71: [230] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [231] Formatted	Mary Whelan	4/5/18 11:32:00 AM

Font:(Default) +Theme Body (Times New Roman)

Page 71: [232] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [233] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [234] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [235] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [236] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [237] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 71: [238] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 73: [239] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 73: [240] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman), Superscript	
Page 73: [241] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 73: [242] Formatted	Mary Whelan	4/5/18 11:32:00 AM
Font:(Default) +Theme Body (Times New	Roman)	
Page 73: [243] Formatted	Mary Whelan	4/5/18 11:32:00 AM

Font:(Default) +Theme Body (Times New Roman)