

1	Aerobiology and passive restoration of biological soil crusts
2	
3	Running head: Biological soil crust restoration
4	
5	Authors and addresses:
6	Steven D. Warren (corresponding author: swarren02@fs.fed.us)
7	US Forest Service, Rocky Mountain Research Station
8	735 North 500 East
9	Provo, UT 84606-1856
10	USA
11	
12	Larry L. St. Clair
13	Department of Biology & Monte L. Bean Life Science Museum
14	Brigham Young University
15	Provo, UT 84602
16	USA
17	
18	Steven D. Leavitt
19	Department of Biology & Monte L. Bean Life Science Museum
20	Brigham Young University
21	Provo, UT 84602
22	USA
23	
24	Author contributions: Conceived and originally written by Warren. Edited and additional
25	material by St.Clair and Leavitt.
26	

- 27 Abstract: Biological soil crusts (BSCs) commonly occupy the surface of many arid and semiarid 28 soils, and disturbed soils in more mesic environments. BSCs perform many essential ecological 29 services. Substantial resources have been invested trying to restore BSCs that have been 30 damaged by anthropogenic disturbances, largely to no avail. The nexus of science related to 31 crust restoration and to aerobiology strongly suggests that crusts can become reestablished via 32 naturally occurring processes. Propagules of BSC organisms are found naturally in the 33 atmosphere, and are transported long distances. Whether restoration occurs naturally in this 34 way, or by costly attempts to produce and disseminate artificial inoculants, success is ultimately 35 moderated and governed by the timing and frequency of adequate precipitation relative to the 36 arrival of viable propagules on suitable substrate at an appropriate time of the year. For 37 greatest ecological benefit, efforts should focus primarily on minimizing the scope and scale of 38 anthropogenic disturbance of BSCs in arid ecosystems. 39
- 40
- 41 **Key words:** cyanobacteria, algae, lichens, bryophytes, airborne, reclamation, arid lands
- 42 Implications:
- 43

44 Biological soil crusts (BSCs) develop when various combinations of diminutive 45 cyanobacteria, algae, nonlichenized fungi, lichens, and/or bryophytes occupy the surface and 46 upper few millimeters of the soil. Historically, they have been referred to as cryptobiotic, 47 cryptogamic, microbiotic, microfloral, microphytic, and organogenic crusts. They can be present 48 in a wide range of ecological, successional, and climatic conditions when and where disturbance 49 and/or aridity have resulted in opportunities for colonization. However, they are most 50 prevalent in arid and semiarid ecosystems where vascular plant cover and diversity are 51 characteristically low, leaving large areas available for colonization by some combination of the 52 organismal groups mentioned above. The diversity and distribution of components of BSCs in 53 extreme environments is striking. For example, at least 18 species of cyanobacteria have been 54 documented in the soils of Death Valley National Monument in the Mojave Desert, USA, where 55 surface temperatures can reach 88° C (Durrell 1962), and, at the opposite end of the 56 temperature spectrum, BSC communities are common in interior Antarctica, where soil 57 temperature seldom exceeds 0° C (Green & Broady 2001). BSCs are also present in the 58 hyperarid Atacama Desert of northern Chile (Patzelt et al. 2014), where average annual 59 precipitation, depending on latitude, elevation, and distance from the Pacific coast, can be less 60 than 1 mm. 61 62 The ecological roles of BSCs are many and varied, and include the collection, 63 accumulation, and cycling of essential airborne and soil nutrients, redistribution of precipitated 64 water, and soil stabilization (Warren 1995; Belnap & Lange 2001; Weber et al. 2016). BSCs, and 65 their ecological functions, can be disturbed by a variety of factors, including, but not limited to, 66 livestock trampling (Warren & Eldridge 2001), off-road vehicular traffic (Wilshire 1983; Webb et

al. 1988), military training (Warren 2014), and fire (Johansen 2001). In spite of the overall

68 importance of BSCs and the well-documented effects of disturbance on these communities,

69 restoring degraded habitats has received proportionately little attention (Bowker 2007).

70 Reflection on the broader scope of BSC restoration can improve our perspective of how to

71 effectively manage important dryland regions, in addition to directing future research.

72

73 Artificial Restoration

74 It may seem intuitive to attempt to restore BSCs by inoculating disturbed sites with crust 75 organisms, but such applications have been relatively rare. St. Clair et al. (1986) inoculated 76 small plots with a soil slurry made by stripping BSCs from intact areas, mixing them with water, 77 and applying them on a site damaged by wildfire. Belnap (1993) stripped crusts from an intact 78 area, and used them as a dry inoculant on small plots where the original crust had been 79 removed. The inoculation of soil in petri dishes with dry and slurried inocula, plus additions of 80 water up to 5 times per week and sewage sludge, produced a modicum of establishment 81 (Maestre et al. 2006). Bu et al. (2014) inoculated soil in a greenhouse study with BSCs that had 82 been stripped from intact areas in the field in an attempt to accelerate crust restoration. They

83 found that frequent watering of the crusts in that setting enhanced growth, but field trials were 84 not conducted. In the Mojave Desert, USA, a somewhat similar approach was attempted using 85 crusts composed of cyanobacteria, lichens and bryophytes that had been salvaged from a road 86 construction site and subsequently stored for two years (Chiquoine et al. 2016). Cole et al. 87 (2010) transplanted soil cores with intact bryophyte crusts in the Mojave Desert, USA. The 88 cover and density of the bryophytes declined after transplantation, but at rates similar to the 89 parent population, suggesting that annual declines are natural even in intact populations. In 90 most of the aforementioned cases, inoculation hastened recovery of BSC organisms, 91 particularly in controlled laboratory settings, with some recovery also in field trials. However, 92 while the results were promising, the destruction of BSCs in one area to provide inoculants for 93 another area is counterproductive in the context of large-scale arid land reclamation. Use of 94 salvaged crusts from construction sites is promising for limited areas (Chiquione et al. 2016). It 95 is unlikely that providing sufficient supplemental water for successful large-scale reclamation in 96 arid environments will be feasible. 97 98 Related research has investigated the potential for ex situ laboratory-grown BSC 99 amendments for use in inoculating disturbed areas (Zhao et al. 2016). For example, Buttars et 100 al. (1998) incorporated laboratory-grown cyanobacteria into alginate pellets. The cyanobacteria 101 were unable to escape intact pellets; however, crushing the pellets, and applying them to 102 moistened soil in the laboratory resulted in significant increases in cyanobacterial biomass and 103 frequency, and nitrogen fixation. Incorporation of cyanobacteria into starch pellets was not 104 successful due to poor survival during the pelletization process (Howard & Warren 1998). 105 Kubečková et al. (2003) grew cyanobacteria and immobilized it on hemp cloth. Laboratory trials 106 indicated improved growth compared to alginate pellets, but in four of five field trials, there 107 was no significant crust recovery. The general lack of success was attributed, at least in part, to 108 the placement of the inoculants on the soil surface where some species can be negatively

109 affected by incident UV radiation (Garcia-Pichel & Castenholz 1991). If sensitive species occur at

a depth off 1-2 mm, UV radiation is attenuated (Dor and Danin 2001). When cyanobacterial
 inoculants have been applied to the soil surface, rather than incorporated into the surface layer

of the soil, mortality has been high. Bowker and Antoninka (2016) sucessfully grew mixed

113 cultures of the lichen *Collema* and the moss *Syntrichia* in the laboratory, but field applications

114 of the BSC organism mix have not been attempted. Moss protonema transplanted into the

115 sands of the Gurbantunggut Desert of China from laboratory-grown mosses has seen some

116 success when supplemented with liquid growth media (Xu et al. 2008). Mosses have been

117 successfully propagated in the laboratory with frequent watering and fertilization (Antoninka et

al. 2016) although field trials have not been conducted. The addition of laboratory grown

119 cyanobacteria to polyvinyl alcohol and a liquid soil tackifier appeared to accelerate the

120 formation of a BSC in a laboratory setting (Park et al. 2017).

121

Although some degree of success has been noted, large-scale field trials have not been attempted, and successful *ex situ* growth is not ubiquitous across BSC components. Given the general lack of success of artificial techniques to restore the BSC component, the levels of water required, and the per-acre costs, it is reasonable to question whether these approaches merit further consideration in arid areas except in critical situations where cost is not a constraint.

128 Passive Restoration

129 The fact that BSCs are found in almost all environments, ranging from mesic to 130 hyperarid, and from temperate to extremely hot or cold, justifies the question as to how crust 131 organisms became so spatially and climatically dispersed in the first place, and if the same 132 processes are still operating. In general, as the post-disturbance succession takes place, the 133 initial colonizers tend to be large filamentous cyanobacteria (Belnap & Eldridge 2001). As the 134 surface becomes stabilized, the next to appear are smaller cyanobacteria and green algae. They 135 are often followed by small lichens. Where climatic conditions permit, larger lichens and 136 mosses appear in later successional communities. The distribution and successful establishment 137 of these organisms is governed both by historical and contemporary factors (Leavitt and 138 Lumbsch 2016).

139

140 Estimates of the time required for natural recovery of BSCs following disturbance have 141 varied widely depending on the nature, periodicity, extent, and spatial and temporal 142 distribution of the disturbance, and soil and climatic conditions. Dohani et al. (2011) reported 143 significant recovery to a level beyond the pre-disturbance condition within one year (one moist 144 season) on the Succulent Karoo semi-desert of South Africa where the upper 10 mm of the soil 145 surface was removed. Five years following one-time human trampling, Cole (1990) noted a 146 nearly complete recovery of visible BSC cover, although the complex pinnacled surface 147 microtopography attributable to many crusts had not recovered to pre-disturbance levels. Read 148 et al. (2011) labeled as 'surprisingly fast' the recovery of biological soil crusts following livestock 149 removal from an area that had been previously heavily disturbed by livestock grazing in 150 Australia. Anderson et al. (1982) estimated that 14–18 years were adequate for recovery of a 151 BSC following exclusion of livestock grazing in the cool Great Basin Desert, USA. Johansen and 152 St. Clair (1986) recorded significant, albeit incomplete, recovery of BSC diversity and 153 abundance, in the Great Basin, USA, 7 years following the cessation of grazing on an areas with 154 a long history of heavy grazing. In contrast, there was little evidence of recovery during the first 155 10 years following cessation of grazing at another Great Basin Desert location (Jeffries & 156 Klopatek 1987). Recovery lagged 20 years following burning of a shrub community in the 157 transition zone between the Great Basin and Mojave Deserts in southwestern Utah, USA 158 (Callison et al. 1985). Belnap (1993) estimated that full recovery of BSCs in the Great Basin

159

- Desert, USA, including visual as well as functional characteristics, could require as long as 30-40 160 years for the cyanobacterial component, 45-85 years for lichens, and 250 years for mosses. 161 Fifty-six years following abandonment of a military training camp in the Sonoran Desert, USA, a 162 cyanobacterial crust had not recovered to levels typical of adjacent undisturbed areas (Kade & 163 Warren 2002). In the Mojave Desert, USA, according to measurements taken inside and outside 164 of tank tracks created during training for World War II, and assuming a worst-case linear 165 trajectory scenario, full recovery of the cyanobacterial component of the BSC was estimated to 166 require up to 85–120 years (Belnap & Warren 2002). 167 168 Similar temporal patterns of BSC recovery following disturbance have been recorded in 169 other regions. In Australia, near complete recovery was documented after 20 years on pastures 170 that had been grazed moderately, while heavily grazed pastures recovered at a much slower 171 rate (Read et al. 2011). Eldridge & Ferris (199) suggested that at least 60 years would be 172 required for full recovery of lichens at a nuclear test site in the Great Victoria Desert of 173 Australia. In an extreme case, Lalley & Viles (2008) estimated that full recovery of lichens in 174 badly disturbed truck ruts in the hyper-arid Namib Desert could take up to 530 years without 175 climatic or anthropogenic intervention. It is important to note, however, that the rate of 176 recovery is likely dependent on the arrival of viable propagules onto suitable substrates at 177 times consistent with adequate moisture. Such conditions may be episodic and infrequent, 178 particularly in the drier and hotter arid zones. We have personally witnessed significant 179 recovery of crust organisms within 2 years following wildfire in the Great Basin Desert, USA, 180 when suitable conditions prevailed.
- 181

182 Regardless of the timeframe required, recovery is dependent on several factors: (1) 183 arrival of suitable propagules, (2) existence of an appropriate substrate on which to establish, 184 including soil texture and chemistry, and (3) timing of the arrival of propagules in relation to 185 cyclical soil moisture conditions necessary for establishment. The failure of any one of the 186 necessary components may substantially delay successful reestablishment. 187

188 Aerobiology

189 As early as 1846, Charles Darwin collected dust from surfaces of HMS Beagle during one 190 of his voyages of exploration, and discovered 17 different organisms (Darwin 1846). Meier & 191 Lindbergh (1935) collected airborne organisms from a fixed-wing aircraft on a flight over the 192 Arctic from Maine to Denmark. Shortly thereafter, but not necessarily correlated with that 193 event, the field of aerobiology was established, originally emphasizing studies of airborne fungi, 194 bacteria, and viruses associated with respiratory illnesses from indoor environments 195 (Benninghoff 1991). Subsequently, the field began to evaluate other potential airborne 196 allergens including protozoans, minute arthropods, algae, and cyanobacteria in the 197 atmosphere, and began to evaluate the seasonality and other factors affecting their presence.

- 198 As a consequence, the presence of large numbers of cyanobacteria and algae have been 199 documented as being present in indoor and outdoor airborne environments ranging from low 200 to high altitudes above the Earth (Schlichting 1969; Sharma et al. 2007; Genitsaris et al. 2011; 201 Després et al. 2012; Tesson et al. 2016). Recent studies have revealed the presence of hundreds 202 of BSC taxa and thousands of individuals in dust samples collected from the external surfaces of 203 homes around the United States (Barberán et al. 2015). It has been recently suggested that 204 some organisms may go through multiple generations while in the atmosphere, such that the 205 atmosphere becomes a truly aerial habitat (Womack et al. 2010). Unsurprisingly, many of the 206 species documented in the atmosphere are also common in BSC communities.
- 207

208 Airborne BSC organisms may be deposited almost anywhere. For example, algae and 209 cyanobacteria have been reported to occur on high latitude and high elevation glaciers from 210 the Arctic to the Antarctic (Marshall & Chalmers 1997; Harding et al. 2011; Kvíderová 2012; 211 Takeuchi 2013; Vonnahme 2016). They have been collected from building facades (Samad & 212 Adhikary 2008; Sethi et al. 2012), stone monuments (Tomaselli et al. 2000; Macedo et al. 2009), 213 exposed rocks (Danin 1999) and plant surfaces (Sethi et al. 2012; McGorum et al. 2015). In 214 addition to algae and cyanobacteria, other BSC components can also be dispersed by wind. 215 These include non-lichenized fungi (Miller & McDaniel 2004; Golan and Pringle 2017), asexual 216 reproductive lichen fragments, soredia, and/or lichen-forming fungal spores (Marshall 1996; 217 Heinken 1999; Tormo et al. 2001; Bailey 1966; Leavitt and Lumbsch 2016), as well as spores, 218 gametophyte fragments, and specialized asexual diaspores of bryophytes (Stark 2003; Laaka-219 Lindberg et al. 2003; Pohjamo et al. 2006; Lönnell et al. 2012). This pattern of airborne dispersal 220 of BSC propagules has resulted in many species occurring in both the northern and southern 221 polar regions, Iceland, and extreme southern Chile (Piñeiro et al. 2012). 222

223 Atmospheric mixing and dispersion

224 A logical question may arise as to how BSC organisms are able to achieve airborne 225 status. Many people living in arid and hyperarid regions of the world have, at one time or 226 another, heard stories of, or personally witnessed, dust storms that develop when strong non-227 convective horizontal winds blowing over unconsolidated soil surfaces pick up large quantities 228 of soil. Although not at all limited to the Dust Bowl era, such conditions prevailed in the 1930's 229 in the North America (McLeman et al. 2014). Similarly, strong dust storms have been recorded 230 in Alaska (Nickling 1978), China (Wang et al. 2004), Australia (Ekström et al. 2004), Africa 231 (Prospero & Mayor-Bacero 2013), and the Middle East (Almuhanna 2015). On a smaller, but 232 much more common scale, dust may be lifted into the atmosphere by strong vertical vortices or 233 'dust devils' (Metzger et al. 2011; Horton et al. 2016). 234

Once airborne, dust particles and the BSC organisms that often accompany them, are
 subject to a variety of forces that carry them between hemispheres, continents, and climatic

237 zones (Griffin et al. 2002; Prospero & Lamb 2003; Kellogg & Griffin 2006; Uno et al. 2009). Near 238 the Earth's surface, airborne particles are carried predominantly by trade winds, which were 239 given their name because of the effect they had on global oceanic trade prior to the advent of 240 powered locomotion. Trade winds exist in six major belts which circle the globe. Between the 241 equator and 30 north or south latitude, the trade winds generally blow from east to west; 242 between 30 and 60 latitude, the winds shift to from west to east; between 60 north or south 243 latitude and the respective poles, easterly winds again prevail. The major jet streams exist at 244 about 9 – 15 km above the Earth's surface and blow from west to east (Lewis 2003). They 245 meander north or south, and may cross between the northern and southern hemispheres 246 (Rangarajan & Eapen 2012). Other than the trade winds and jet streams, a primary force mixing 247 the atmosphere within the southern and northern hemispheres are the global Hadley, Ferrel 248 and polar cells (Kjellsson & Döös 2012; Huang and McElroy 2014) which correspond latitudinally 249 with the trade wind belts. Hadley cells begin where warm air rises near the equator, generally 250 resulting in heavy rainfall. After reaching the upper atmosphere the Hadley cells carry the flow 251 of air poleward. At approximately 30° north and south latitude, the Hadley cells diverge 252 earthward, converging with the downward flow of the Ferrel cells bringing air masses from 253 higher latitudes. The result in both hemispheres is a very large body of descending dry air and 254 high pressure. As descending air masses typically offer little precipitation, the zones of 255 convergence correspond with some of the world's most recognized arid zones. The dry air 256 moves poleward after reaching the Earth's surface. As the Ferrel cells pass over the Earth's 257 surface, they collect moisture until they reach approximately 60° north and south latitude 258 where the air masses ascend after converging with the polar cells. In order to continue the 259 ascent, the air masses lose moisture, and precipitation increases. The polar cells descend 260 earthward near the poles, a region also widely known for aridity. 261

262 Given the forces mixing the atmosphere, and the likelihood for BSC propagules to be 263 present in it, there can be little doubt that organisms originating from almost any given location 264 have the potential to be deposited anywhere on Earth (Jungblut et al. 2010; Barberán et al. 265 2014; Herbold et al. 2014). Carson and Brown (1976) found little correlation between the 266 diversity of airborne algae, and soil algae at corresponding altitudes on the Island of Hawaii, 267 suggesting atmospheric mixing of airborne organisms. Evidence of mixing can also be seen on a 268 global scale by the similarity of BSC species in the Arctic and Antarctic (Jungblut et al. 2012; 269 Galloway & Aptroot 1995). Dust deposited in Antarctica originates in Patagonia, Australia, and 270 the Northern Hemisphere (Li et al. 2008). Dust originating during dust storms in China and the 271 Middle East has been documented as arriving in Japan within just a few days (Lee et al. 2006). 272 Dust from the Middle East has been recorded in the Caribbean (Doherty et al. 2008) and the 273 southeastern USA (Prospero 1999). Many BSC propagules carried with dust can survive long 274 periods of desiccation (Holzinger & Karsten 2013; Rajeev et al. 2013), thus becoming

immigrants to BSC communities globally (Rosselli et al. 2015; Rahav et al. 2016). For example,
lichen species of South African origin are now present in Australia and South America (Amo de
Paz et al. 2012). Similarity of BSC communities is better predicted by the so-called 'dust
highways' than by the proximity of source species (Muñoz et al. 2004). Dust and microbial
deposition are both seasonal (Sharma et al. 2006; Sahu & Tangutur 2015) and cyclical over time
(Rousseau et al. 2007).

281

282 The apparent airborne and global distribution of BSC propagules should not be 283 construed to imply that BSC species composition will be the same worldwide, nor that natural 284 recovery of BSC's will be necessarily rapid. The distribution of BSC propagules is shaped by the 285 dynamic interplay of a range of factors operating across multiple temporal scales. That many 286 propagules are distributed globally is apparently true. However, whether they will develop and 287 thrive is still dependent on being deposited on appropriate substrate, with appropriate being 288 defined as suitable in terms of chemistry, fertility, particle and pore size analysis, moisture 289 content and seasonality, and temperature. For example, it is hardly realistic to expect most BSC 290 species adapted to the frigid conditions of polar regions to survive and persist in hot deserts, 291 and vice versa.

292

293 The nexus of aerobiology and land reclamation

The use of corn stalk fences and wheat straw checkboard sand barriers to stabilize moving sands of sand dunes have been successfully used for years to stabilize moving sand dunes in China (Qiu et al. 2004; Zhang et al. 2004; Li et al. 2006). These barriers create turbulence in the flow of wind across the dune surfaces, and cause the deposition of sand particles and associated BSC organisms. Researchers have discovered that biological soil crust organisms precipitated in this fashion can successfully colonize stabilized dunes (Li et al. 2003; Guo et al. 2008; Zhang 2014).

301

302 One must bear in mind that while airborne BSC propagules may provide an answer to 303 the restoration of BSCs in many situations, their presence and composition depends on climatic 304 conditions in locations very far away. As discussed, BSC propagules may originate from distant 305 continents. BSC organisms from a specific soil type, chemistry, and alkalinity may not always be 306 suitable for other situations. The arrival of appropriate propagules is likely episodic, seasonal, 307 and less common than desired. There can be little doubt that airborne propagules are found in 308 the atmosphere circling the globe. That they will be deposited in sufficient quantities, and in 309 the right species composition, and at the right season for any specific area remains unknown. 310

- 510
- 311

312 Conclusions

313	Over the years, many hundreds of thousands of dollars have been expended on various
314	approaches of crust restoration, often culminating in the production and application of large
315	quantities of inoculants. Most approaches have failed to one degree or another. Those that did
316	not fail, have been so dependent on large quantities of water for production and application,
317	that they are not practical for broad-scale arid and semiarid environments. Several approaches
318	to restoration depended on the destruction of one area to restore another. A review of the field
319	of aerobiology seems to indicate that we may have been 'barking up the wrong tree'. Many
320	propagules of many, if not most BSC organisms are already present and circulating the globe in
321	the atmosphere. Perhaps, now we need to shift to a more natural approach of crust
322	restoration. Whether we artificially produce and apply inoculants, or rely on natural, passive
323	dispersal, the overall success depends on coordination of inoculation with appropriate
324	environmental conditions. At any given location, regardless of the mode of inoculation, success
325	depends on receiving adequate moisture at the right time of year, appropriate substrate, other
326	environmental factors, and some measure of better controlling anthropogenic disturbance to
327	BSC communities. We anticipate that incorporating principles of aerobiology and passive
328	dispersal into the BSC restoration paradigm will facilitate more effective and less costly
329	management of BSCs.
330	
331	Literature Cited
332	Almuhanna, E. A.: Dustfall associated with dust storms in the Al-Ahsa Oasis of Saudi Arabia,
333	Open J. Air Pollut., 4, 65-75, 2015
334	
335	Amo de Paz, G., Cubas, P., Crespo, A., Elix, J. A., and Lumbsch, H. T.: Transoceanic dispersal and
336	subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla
337	group (Ascomycota), PLOS ONE, 7, e39683, 2012
338	
339	Anderson, D. C., Harper, K. T., and Rushforth, S. R.: Recovery of cryptogamic soil crusts from
340	grazing on Utah winter ranges, J. Range Manage., 35, 355-359, 1982
341	
342	Antoninka, A., Bowker, M. A., Reed, S. C., and Doherty, K.: Production of greenhouse-grown
343	biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function, Restor.
344	Ecol., 24, 324-335, 2016
345	
346	Bailey, R. H.: Studies on the dispersal of lichen soredia. J. Linnean Soc. London, Bot., 59, 479-
347	490, 1966
348	
349	Barberan, A., Henley, J., Fierer, N., and Casamayor, E.O.: Structure, inter-annual recurrence, and
350	global-scale connectivity of airborne microbial communities, Science Total Environ., 487, 187-
351	195, 2014

352	
353	Barberán A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, and Fierer N.: Continental-
354	scale distributions of dust-associated bacteria and fungi. Proc. Nat. Acad. Sci., 112, 5756-5761,
355	2015
356	
357	Belnap, J.: Recovery rates of cryptobiotic crusts: inoculant use and assessment methods, Great
358	Basin Nat., 53, 89-95, 1993
359	
360	Belnap, J., and Eldridge, D.: Disturbance and recovery of biological soil crusts. In: Belnap J., and
361	Lange, O. L. (eds), Biological soil crusts: structure, function and management, Springer Verlag,
362	Berlin, Germany, 363-383, 2001
363	
364	Belnap, J., and Lange, O. L., (eds).: Biological soil crusts: structure, function and management,
365	Springer Verlag, Berlin, Germany, 2001
366	
367	Belnap, J., and Warren, S. D.: Patton's tracks in the Mojave Desert, USA: an ecological legacy,
368	Arid Land Res. Manage., 16, 245-258, 2002
369	
370	Benninghoff, W. J.: Aerobiology and its significance in biogeography and ecology, Grana, 30, 9-
371	15, 1991
372	
373	Bowker, M. A.: Biological soil crust rehabilitation in theory and practice: An underexploited
374	opportunity. Restor. Ecol., 15, 13-23, 2007
375	
376	Bowker, M. A., Antoninka, A. J.: Rapid ex situ culture of N-fixing soil lichens and biocrusts is
377	enhanced by complementarity. Plant Soil, doi: 10.1007/s11104-016-2929-7, 2016
378	
379	Bu, C., Wu, S., Yang, Y., and Zheng, M.: Identification of factors influencing the restoration of
380	cyanobacteria-dominated biological soil crusts, PLOS ONE, 9, e90049, 2014
381	
382	Buttars, S. M., St. Clair, L. L., Johansen, J. R., Sray, J. C., Payne, M. C., Webb, B. L., Terry, R. E.,
383	Pendleton, B. K., and Warren, S. D.: Pelletized cyanobacterial soil amendment: Laboratory
384	testing for survival, escapability, and nitrogen fixation. Arid Soil Res. Rehab., 12, 165-178, 1998
385	
386	Callison, J., Brotherson, J. D., and Bowns, J. E.: The effects of fire on the blackbrush [Coleogyne
387	ramosissima] community of southwestern Utah, J. Range Manage., 38, 535-538, 1985
388	
389	Carson, J. L., and Brown, R. M.: The correlation of soil algae, airborne algae, and fern spores
390	with meteorological conditions on the Island of Hawaii, Pac. Sci. 30, 197-205, 1976
391	

392	Chiquoine, L. P., Arbella, S. R., and Bowker, M. A.: Rapidly restoring biological soil crusts and
393	ecosystem functions in a severely disturbed desert ecosystem. Ecol. Appl., 26, 1260-1272, 2016
394	
395	Cole, C., Stark, L. R., Bonine, M. L., and McLetchie, D. N.: Transplant survivorship of bryophyte
396	soil crusts in the Mojave Desert, Restor. Ecol., 18, 198-205, 2010
397	
398	Cole, D. N.: Trampling disturbance and recovery of cryptogamic soil crusts in Grand Canyon
399	National Park, Great Basin Nat., 50, 321-325, 1990
400	
401	Danin, A.: Desert rocks as plant refugia in the Near East. Bot. Rev., 65(2), 93-170, 1999
402	
403	Darwin, C.: An account of the fine dust which often falls on vessels in the Atlantic Ocean. Q. J.
404	Geol. Soc. London, 2, 26-30, 1846
405	
406	Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-
407	Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U, and Jaenicke, R.: Primary biological aerosol
408	particles in the atmosphere: a review, Tellus, 64, 11598, 2012
409	
410	Doherty, O. M., Riemer, N., and Hameed, S.: Saharan mineral dust transport into the Caribbean:
411	Observed atmospheric controls and trends. J. Geophys. Res., 113, D07211, 2008
412	
413	Dojani, S., Büdel, S., Deutschewitz, K., and Weber, B.: Rapid succession of biological soil crusts
414	after experimental disturbance in the Succulent Karoo, South Africa. Appl. Soil Ecol., 48, 263-
415	269, 2011
416	
417	Dor, I., and Danin, D.: Life strategies of <i>Microcoleus vaginatus</i> : A crust forming cyanophyte on
418	desert soils, Nova Hedwigia, 123, 317-339, 2001
419	
420	Durrell, L. W.: Algae of Death Valley, Trans. Am. Microscop. Soc., 81, 267-273, 1962
421	
422	Ekström, M., McTainsh, G. H., and Chappell, A.: Australian dust storms: temporal trends and
423	relationships with synoptic pressure distributions (1960-00), Int. J. Climatol., 24, 1581-1599,
424	2004
425	
426	Eldridge, D. J., and Ferris, J. M.: Recovery of populations of the soil lichen <i>Psora crenata</i> after
427	disturbance in arid South Australia, Kangeland J., 21, 194-198, 1999
428	
429	Galloway, D. J., and Aptroot, A.: Bipolar lichens: a review. Cryptogamic Bot., 5, 184–191, 1995
430	

431

432 433	scytonemin, a cyanobacterial sheath pigment, J. Phycol., 27, 395-409, 1991
434 435	Genitsaris, S., Kormas, K. A., and Moustaka-Gouni, M.: Airborne algae and cyanobacteria: occurrence and related health effects, Front. Biosci., 3, 772-787, 2011
436	
437	Golan, J. J., and Pringle, A.: Long-distance dispersal of fungi. Microbiol. Spectrum, Jul;5(4),
438	21650497, doi: 10.1128/microbiolspec.FUNK-0047-2016, 2017
439	
440	Green, T. G., and Broady, P. A: Biological soil crusts of Antarctica. in Belnap, J., and Lange, O. L.
441	(eds), Biological soil crusts: structure, function, and management, Springer-Verlag, Berlin,
442	Germany, 133-139, 2001
443	
444	Griffin, D. W., Kellogg, C. A., Garrison, V. H., and Shinn, E. A.: The global transport of dust: An
445	intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth's
446	atmosphere. Am. Sci., 90, 228-235, 2002
447	
448	Guo, Y., Zhao, H., Zuo, X., Drake, S., and Zhao, X.: Biological soil crust development and its
449	topsoil properties in the process of dune stabilization, Inner Mongolia, China, Environ. Geol., 54,
450	653-662, 2008
451	
452	Harding, T., Jungblut, A. D., Lovejoy, C., and Vincent, W. F.: Microbes in high arctic snow and
453	implications for the cold biosphere. Appl. Environ. Microbiol., 77, 3234-3243, 2011
454	
455	Heinken, T.: Dispersal patterns of terricolous lichens by thallus fragments. Lichenologist, 31,
456	603-612, 1999
457	
458	Herbold, C. W., Lee, C. K., McDonald, I. R., and Cary, S. C.: Evidence of global-scale aeolian
459	dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat.
460	Commun., 5, 3875, 2014
461	Helpinger A and Keysten H. Designation styres and televenes in green slope, concerning
402	for ultrastructure, physiological, and molecular mechanisms. Front, Plant Sci. 4, article 227
405	101 ultrastructure, physiological, and molecular mechanisms. Front. Plant Sci., 4, article 327,
404	2013
405	Horton W. Miura H. Onishchenko, O. Couede I. Arnas, C. Escarguel A. Benkadda S. and
467	Fedun V : Dust devil dynamics I Geonbys Res : Atmos 121 2016
468	r caun, v., 2030 acvir aynamics, 3. Ocophys. Nes.: Atmos, 121, 2010
100	

Garcia-Pichel, F., and Castenholz, R. W.: Characterization and biological implications of

469	Howard, G.L., and Warren, S.D.: The incorporation of cyanobacteria into starch pellets and
470	determination of escapability rates for use in land rehabilitation. US Army Construc. Engin. Res.
471	Lab. Spec. Rep., 98/56, 1998
472	
473	Huang, J., and McElroy, M. B.: Contributions of the Hadley and Ferrel circulation to the
474	energetics of the atmosphere over the past 32 years, J. Climate, 17, 2656-2666, 2014
475	
476	Jeffries, D. L., and Klopatek, J. M.: Effects of grazing on the vegetation of the blackbrush
477	association, J. Range Manage., 40, 390-392, 1987
478	
479	Johansen, J. R.: Impacts of fire on biological soil crusts, in: Belnap, J., and Lange, O. L. (eds),
480	Biological soil crusts: structure, function, and management, Springer-Verlag, Berlin, Germany,
481	386-397, 2001
482	
483	Johansen, J. R., and St. Clair, L. L.: Cryptogamic soil crusts: recovery from grazing near Camp
484	Floyd State Park, Utah, USA, Great Basin Nat., 46, 632-640, 1986
485	
486	Jungblut, A. D., Lovejoy, C., and Vincent, W. F.: Global distribution of cyanobacterial ecotypes in
487	the cold biosphere, ISME J., 4, 191-202, 2010
488	
489	Jungblut, A. D., Vincent, W. F., and Lovejoy C.: Eukaryotes in Arctic and Antarctic cyanobacterial
490	mats, FEMS Microb. Ecol., 82, 416-428, 2012
491	
492	Kade, A., and Warren, S. D.: Soil and plant recovery after historic military disturbances in the
493	Sonoran Desert, USA, Arid Land Res. Manage., 16, 231-243, 2002
494	
495	Kellogg, C. A., and Griffin, D. W.: Aerobiology and the global transport of desert dust. Trends
496	Ecol. Evol., 21, 638-644, 2006
497	
498	Kjellsson, J., and Döös, K.: Lagrangian decomposition of the Hadley and Ferrel cells. Geophys.
499	Res. Lett., 39, L15807, 2012
500	
501	Kubečková, K., Johansen, J. R., and Warren, S. D., and Sparks, R.: Development of immobilized
502	cyanobacterial amendments for reclamation of microbiotic soil crusts. Algolog. Stud., 109, 341-
503	362, 2003
504	
505	Kvíderová, J.: Research on cryosestic communities in Svalbard: the snow algae of temporary
506	snowfields in Petuniabukta, Central Svalbard. Czech Pol. Rep., 2, 8-19, 2012
507	

508	Laaka-Lindberg, S., Korpelainen, H., and Pohjamo, M.: Dispersal of asexual propagules in
509	bryophytes. J. Hattori Bot. Lab., 93, 319-330, 2003
510	
511	Lalley, J. S., and Viles, H. A.: Recovery of lichen-dominated soil crusts in a hyperarid desert.
512	Biodivers. Conserv., 17, 1-20, 2008
513	
514	Leavitt, S. D., and Lumbsch, H. T.: (2016) Ecological biogeography of lichen-forming fungi. in
515	Druzhinina, I. S., and Kubicek, C. P. (eds): Environmental and microbial relationships. Springer
516	International Publishing, Cham, Switzerland, 15-37, 2016
517	
518	Lee, H. N., Igarashi, Y., Chiba, M., Aoyama, M., Hirose, K., and Tanaka, T.: Global model
519	simulation of the transport of Asian and Saharan dust: Total deposition of dust mass in Japan.
520	Water, Air, Soil Pollut., 169, 137-166, 2006
521	
522	Lewis, J. M.: Ooishi's observation viewed in the context of jet stream discovery. Bull. Am.
523	Meteorol. Soc., March, 357-369, 2003
524	
525	Li, F., Ginoux, P., and Ramaswamy, V.: Distribution, transport, and deposition of mineral dust in
526	the Southern Ocean and Antarctica: contribution of major sources. J. Geophys. Res., 113,
527	D10207, 2008
528	
529	Li, XR., Zhao, HY., Wang, XP., Zhu, YG., and O'Conner, P. J.: The effects of sand stabilization
530	and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert,
531	Northern China, Plant Soil, 251, 237-245, 2003
532	
533	Li, X. R., Xiao, H. L., He, M. Z., and Zhang, J. G.: Sand barriers of straw checkerboards for habitat
534	restoration in extremely arid desert regions, Ecol. Eng., 28, 149-157, 2006
535	
536	Lönnell, N., Hylander, K., Johnsson, B. G., and Sundberg, S.: The fate of the missing spores –
537	patterns of realized dispersal beyond the close vicinity of a sporulating moss. PloSONE, 7,
538	e31987, 2012
539	
540	Macedo, M. F., Miller, A. Z., Dionísio, A., and Saiz-Jimenez, C.: Biodiversity of cyanobacteria and
541	green algae on monuments in the Mediterranean Basin: an overview, Microbiol., 155, 3476-
542	3490, 2009
543	
544	Maestre, F.T., Martín, N., Díez, B., López-Poma, R., Santos, F., Luque, I., and Cortina, J.:
545	Watering, fertilization, and slurry inoculation promote recovery of biological crust function in
546	degraded soils. Microbial Ecol., 52, 365-377, 2006

547	
548	Marshall, W. A.: Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol., 134,
549	523-530, 1996
550	
551	Marshall, W. A.: Seasonality in Antarctic airborne fungal spores. Appl. Environ. Microbiol., 63,
552	2240-2245, 1997
553	
554	Marshall, W. A., and Chalmers, M. O.: Airborne dispersal of Antarctic terrestrial algae and
555	cyanobacteria. Ecograph., 20, 585-594, 1997
556	
557	McGorum BC, Pirie RS, Glendinning L, McLachlan G, Metcalf JS, Banack SA, Cox PA, and Codd
558	GA.: Grazing livestock are exposed to terrestrial cyanobacteria. Veterinary Research 46:16, 2015
559	
560	McLeman, R. A., Dupre, J., Berrang Ford, L., Ford, J., Gajewski, K., and Marchildon, G.: What we
561	learned from the Dust Bowl: lessons in science, policy, and adaptation. Popul. Environ., 35, 417-
562	440. 2014
563	
564	Meier, F. C., and Lindbergh, C. A.: Collecting microorganisms from the Arctic atmosphere: with
565	field notes and material. Sci. Mon., 40, 5-20, 1935
566	
567	Metzger, S. M., Balme, M. R., Towner, M. C., Bos, B. J., Ringrose, T. J., and Patel, M. R.; In situ
568	measurements of particle load and transport in dust devils loarus 214 766-772 2011
560	
570	Miller N. G. and McDaniel S. E. Bryonbyte dispersal inferred from colonization of an
570	inter duesd substratium on Mikitefe en Mauntain, New York, Are, L. Det. 01(0), 1172-1102, 2004
571	Introduced substratum on Whiteface Mountain, New York, Am. J. Bot., 91(8), 1173-1182, 2004
572	Muñez I. Felisisimo Á.M. Coheres F. Durgez A.D. and Martínez I. Mind es a long distance
575	Munoz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R., and Martinez, I.: Wind as a long-distance
5/4	dispersal vehicle in the Southern Hemisphere, Science, 304, 1144-1147, 2004
5/5	
5/6	Nickling, W. G.: Eolian sediment transport during dust storms: Slims River Valley, Yukon
577	Territory, Can. J. Earth Sci, 15, 1069-1084, 1978
578	
579	Park, CH., Li, X. R., Zhao, Y., Jia, R. L., and Hur, JS.: Rapid development of cyanobacterial crust
580	in the field for combating desertification, PLoS ONE, 12(6), e0179903, doi
581	10.1371/journal.pone.0179903, 2017
582	
583	Patzelt, D. J., Hodac, L., Friedl, T., Pietrasiak, N., and Johansen, J. R.: Biodiversity of soil
584	cvanobacteria in the hyper-arid Atacama Desert, Chile, J. Phycol., 50, 698-710, 2014
585	

586 587 588	Piñeiro, R., Popp, M., Hassel, K., Listl, D., Westergaard, K. B., Flatberg, K. I., Stenøien, H. K., and Brochmann, C.: Circumarctic dispersal and long-distance colonization of South America: the moss genus <i>Cinclidium</i> , J. Biogeog. 39, 2041-2051, 2012
589	
590 591 592	Pohjamo, M., Laaka-Lindberg, S., Ovaskainen, O., and Korpelainen, H.: Dispersal potential of spores and asexual propagules in the epixylic hepatic <i>Anastrophyll helleriannum</i> , Evol. Ecol., 20, 415-430, 2006
593	
594 595 596	Prospero, J. M.: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States, Proc. Nat. Acad. Sci., 96, 3396-3403, 1999
597	
598 599	Prospero, J. M., and Lamb, P. J.: African droughts and dust transport to the Caribbean: climate change implications, Science, 302, 1024-1027, 2003
600	
601 602	Prospero, J. M., and Mayor-Bracero, O. L.: Understanding the transport and impact of African dust on the Caribbean Basin, Bull. Am. Meteorol. Soc., September, 1329-1337, 2013
603	
604 605 606	Qiu, G. Y., Lee, IB., Shimizu, H., Gao, Y., and Ding, G.: Principles of sand dune fixation with straw checkerboard technology and its effect on the environment. J. Arid Environ., 56, 449-464, 2004
607	
608 609 610	Rahav, E., Paytan, A., Chien, CT., Ovadia, G., Katz, T., and Herut, B.: The impact of atmospheric dry deposition associated microbes on southeastern Mediterranean Sea surface water following an intense dust storm. Front. Marine Sci., 3, doi:10.3389/fmars.2016.00127, 2016
611	
 612 613 614 615 616 	Rajeev, L., Nunes da Rocha, U., Klitgord, N., Luning, E. G., Fortney, J., Axen, S. D., Shih, P. M., Bouskill, N. J., Bowen, B. P., Kerfeld, C. A., Garcia-Pichel, F., Brodie, E. L., Northen, T. R., and Mukhopadhyay, A.: Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. Int. Soc. Microb. Ecol. J., 7, 2178-2191, 2013
617 618	Rangarajan, C., and Eapen, C. D.: (2012) Estimates of interhemispheric transport of radioactive debris by the east African low level jet stream. Journal of Geophysical Research: Oceans (1978-

619 2012) 86:12153-12154, 2012

620	
621 622 623	Read CF, Duncan DH, Vesk PA, Elith J (2011) Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia, J. Veg. Sci., doi:10:1111/j.1654-1103.2011.01296.x, 2011
624	
625 626 627	Rosselli, R., Fiamma, M., Deligios, M., Pintus, G., Pellizzaro, G., Canu, A., Duce, P., Squartini, A., Muresu, R., and Cappuccinelli, P.: Microbial immigration across the Mediterranean via airborne dust, Sci. Rep., 5, 16306, 2015
628	
629 630 631 632	Rousseau, DD., Antoine, P., Kunesch, S., Hatté, C., Rossignol, J., Packman, S., Lang, A., Gauthier, C.: Evidence of cyclic dust deposition in the US Great plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA), Earth Planet. Sci. Lett., 262, 159-174, 2007
633	
634 635	Sahu, N., and Tangutur, A. D.: Airborne algae: overview of the current status and its implications on the environment, Aerobiology, 31, 89-97, 2015
636	
637 638	Samad, L. K., and Adhikary, S. P.: Diversity of micro-algae and cyanobacteria on building facades and monuments in India, Algae, 23, 91-114, 2008
639	
640 641	Schlichting, H. E.: The importance of airborne algae and protozoa, J. Air Pollut. Contr. Assoc., 19, 946-951, 1969
642	
643 644 645	Sethi, S. K., Samad, L. K., and Adhikary, S. P.: Cyanobacteria and micro-algae in biological crusts on soil and sub-aerial habitats of eastern and north eastern region of India, Phycos, 42, 1-9, 2012
646	
647 648	Sharma, N. K, Rai, A. K., and Singh, S.: Meteorological factors affecting the diversity of airborne algae in an urban atmosphere, Ecography, 29, 766-772, 2006
649	
650 651	Sharma, N. K., Rai, A. K., Singh, S., and Brown, R. M.: Airborne algae: Their present status and relevance, J. Phycol., 43, 615-627, 2007
652	
653	Stark, L. R.: Mosses in the desert, Fremontia, 31, 26-33, 2003

654	
655 656	St. Clair, L. L., Johansen, J. R., and Webb, B. L.: Rapid stabilization of fire-disturbed sites using a soil crust slurry: Inoculation studies, Reclam. Rehab. Res. 4, 261-269, 1986
657	
658 659	Takeuchi, N.: Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier in the Alaska range), Environ. Res. Lett., 8, 035002, 2013
660	
661 662	Tesson, S. V., Skjøth, C. A., Šanti-Temkiv, T., and Löndahl, J.: Airborne microalgae: Insights, opportunities, and challenges, Appl. Environ. Microbiol., 82, 1978-1991, 2016
663	
664 665	Tomaselli, L., Lamenti, G., Bosco, M., and Tiano, P.: Biodiversity of photosynthetic micro- organisms dwelling on stone monuments, Int. Biodeter. Biodegr., 46, 251-258, 2000
666	
667 668 669	Tormo, R., Recio, D., Silva, I., and Muñoz, A. F.: A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur. J. Phycol., 36, 385-390, 2001
670	
671 672 673	Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, Nat. Geosci., 2, 557-560, 2009
674	
675 676 677	Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M., and Elster J.: Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard, Biogeosciences, 13, 659-674, 2016
678	
679 680	Wang, X., Dong, Z., Zhang, J., and Liu, L.: Modern dust storms in China: an overview, J. Arid Environ., 58, 559-574, 2004
681	
682 683 684	Warren, S. D.: Ecological role of microphytic soil crusts in arid environments, in: Allsopp, D., Caldwell, R. R., and Hawksworth, D. L. (eds), Microbial diversity and function. CAB Int., Wellingford, UK, 199-209, 1995
685	

686 687	Warren, S. D.: Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations, Rev. Eng. Geol., 22, 177-186, 2014
688	
689 690 691	Warren, S. D., and Eldridge, D. J.: Biological soil crusts and livestock in arid ecosystems: Are they compatible? in: Belnap, J., and Lange, O. L. (eds), Biological soil crusts: structure, function and management, Springer-Verlag, Berlin, Germany, 401-415, 2001
692	
693 694 695	Webb, R. H., Steiger, J. W., and Newman, E. B.: The response of vegetation to disturbance in Death Valley National Monument, California. US Geol. Surv. Bull., 1793, 1988
696 697	Weber, B., Büdel, B., and Belnap, J. (eds): Biological soil crusts: an organizing principal in drylands, Springer International Publishing, Cham, Switzerland, 2016
698	
699 700	Wilshire, H. G.: The impact of vehicles on desert stabilizers, In: Webb, R. H., and Wilshire, H. G. (eds), Environmental effects of off-road vehicles, Springer-Verlag, New York, 31-50, 1983
701	
702 703	Womack, A. M., Bohannan, B. J. M., and Green, J. L.: Biodiversity and biogeography of the atmosphere, Trans. Royal Soc., 365, 3645-3653, 2010
704	
705 706	Xu, S., Yin, C., He, M., and Wang, Y.: A technology for rapid reconstruction of moss-dominated soil crusts. Env. Eng. Sci., 25, 1129-1137, 2008
707	
708 709 710	Zhang, J., Zhang, C., Ma, X., Zhou, N., Wang, H., and Rissler, P. S.: Dust fall and biological soil crust distribution as indicators of the aeolian environment in China's Shapatou railway protective system, Caten,a, 114, 107-118, 2014
711	
712 713 714	Zhang, TH., Zhao, HL., Li, SG., Li, LR., Shirato, Y., and Ohkuro, T.: A comparison of different measures for stabilizing moving sand dunes in the Horqin Sandy Land of Inner Mongolia, China, J. Arid Environ., 58, 203-214, 2004
715	
716	Zhao, Y., Bowker, M. A., Zhang, Y., and Zaady, E.: Enhanced recovery of biological soil crusts

- organizing principle in drylands, Springer International Publishing, Cham, Switzerland, 499-523,
- 719 2016