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Abstract. The calibration and validation of remote sensing land cover products is highly dependent on accurate field reference 

data, which are costly and practically challenging to collect. We describe an optical method for collection of field reference 10 

data that is a fast, cost-efficient, and robust alternative to field surveys and UAV imaging. A light weight, water proof, remote 

controlled RGB-camera (GoPro) was used to take wide-angle images from 3.1 - 4.5 m altitude using an extendable monopod, 

as well as representative near-ground (< 1 m) images to identify spectral and structural features that correspond to various land 

covers at present lighting conditions. A semi-automatic classification was made based on six surface types (graminoids, water, 

shrubs, dry moss, wet moss, and rock). The method enables collection of detailed field reference data which is critical in many 15 

remote sensing applications, such as satellite-based wetland mapping. The method uses common non-expensive equipment, 

does not require special skills or education, and is facilitated by a step-by-step manual that is included in the supplementary 

material. Over time a global ground cover database can be built that can be used as reference data for wetland studies from 

satellites such as Sentinel 1 and 2 (10 m pixel size). 

1 Introduction 20 

Accurate and timely land cover data are important for e.g. economic, political, and environmental assessments, and for societal 

and landscape planning and management. The capacity for generating land cover data products from remote sensing is 

developing rapidly. There has been an exponential increase in launches of new satellites with improved sensor capabilities, 

including shorter revisit time, larger area coverage, and increased spatial resolution (Belward & Skøien 2015). Similarly, the 

development of land cover products is increasingly supported by the progress in computing capacities and machine learning 25 

approaches.  

At the same time it is clear that the knowledge of the Earth´s land cover is still poorly constrained.  A comparison between 

multiple state-of-the-art land cover products for West Siberia revealed disturbing uncertainties (Frey and Smith 2007) as 

estimated wetland areas ranged from 2 - 26% of the total area, and the correspondence with in situ observations for wetlands 
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was only 2 - 56%. For lakes, all products revealed similar area cover (2-3%), but the agreement with field observations was as 

low as 0-5%. Hence, in spite of the progress in technical capabilities and data analysis progress, there are apparently 

fundamental factors that still need consideration to obtain accurate land cover information. 

The West Siberia example is not unique. Current estimates of the global wetland area range from 8.6 to 26.9 x 106 km2 with 

great inconsistencies between different data products (Melton et al. 2013). The uncertainty in wetland distribution has multiple 5 

consequences, including being a major bottleneck for constraining the assessments of global methane (CH4) emissions, which 

was the motivation for this area comparison. Wetlands and lakes are the largest natural CH4 sources (Saunois et al. 2016) and 

available evidence suggest that these emissions can be highly climate sensitive, particularly at northern latitudes predicted to 

experience the highest temperature increases and melting permafrost – both contributing to higher CH4 fluxes (Yvon-Durocher 

et al. 2014; Schuur et al. 2009).  10 

CH4 fluxes from areas with different plant communities in northern wetlands can differ by orders of magnitude. Small wet 

areas dominated by emergent graminoid plants account for by far the highest fluxes per m2, while the more widespread areas 

covered by e.g. Sphagnum mosses have much lower CH4 emissions per m2 (e.g. Bäckstrand et al. 2010). The fluxes associated 

with the heterogeneous and patchy (i.e. mixed) land cover in northern wetlands is well understood on the local plot scale, 

whereas the large-scale extrapolations are very uncertain. The two main reasons for this uncertainty is that the total wetland 15 

extent is unknown and that present map products do not distinguish between different wetland habitats which control fluxes 

and flux regulation. As a consequence the whole source attribution in the global CH4 budget remains highly uncertain (Kirschke 

et al. 2013; Saunois et al. 2016).  

Improved land cover products being relevant for CH4 fluxes and their regulation are therefore needed to resolve this. The 

detailed characterization of wetland features or habitats requires the use of high resolution satellite data and sub-pixel 20 

classification that quantify percent, or fractional, land cover. A fundamental bottleneck for the development of fractional land 

cover products is the quantity and quality of the reference data used for calibration and validation (Foody 2013; Foody et al. 

2016). In fact, reference data can often be any data available at higher resolution than the data product, including other satellite 

imagery, airborne surveys, in addition to field observations. In turn, the field observations can range from rapid landscape 

assessments to detailed vegetation mapping in inventory plots, where the latter yields high resolution and high-quality data but 25 

is very expensive to generate in terms of time and manpower (Olofsson et al. 2014; Frey & Smith 2007). Ground-based 

reference data for fractional land cover mapping can be acquired using traditional methods, such as visual estimation, point 

frame assessment or digital photography (Chen et al. 2010). These methods can be applied using a transect approach to increase 

the area coverage in order to match the spatial resolutions of different satellite sensors (Mougin et al. 2014). 

The application of digital photography and image analysis software has shown promise for enabling rapid and objective 30 

measurements of fractional land cover that can be repeated over time for comparative analysis (Booth et al. 2006a). While 

several geometrical corrections and photometric setups are used, nadir (downward facing) and hemispherical view 

photography are most common, and the selected setup depends on the height structure of the vegetation (Chen et al. 2010). 

Most previous research has however focused on distinguishing between major general categories, such as vegetation and non-
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vegetation (Laliberte et al. 2007; Zhou & Liu 2015), and are typically not used to characterize more subtle patterns within 

major land cover classes. Many applications in literature have been in rangeland, while there is a lack of wetland classification. 

Furthermore, images have mainly been close-up images taken from a nadir view perspective (Booth et al. 2006a; Chen et al. 

2010; Zhou & Liu 2015), thereby limiting the spatial extent to well below the pixel size of satellite systems suitable for regional 

scale mapping. 5 

From a methano-centric viewpoint, accurate reference data at high enough resolution, being able to separate wetland (and 

upland) habitats with differing flux levels and regulation, is needed to facilitate progress with available satellite sensors. The 

resolution should preferable be better than 1 m2 given how the high emitting graminoid areas are scattered on the wettest spots 

where emergent plants can grow. Given this need, we propose a quick and simple type of field assessment adapted for the 10 

x 10 m pixels of the Sentinel 1 and 2 satellites. 10 

Our method uses true color images of the ground, followed by image analysis to distinguish fractional cover of key land cover 

types relevant for CH4 fluxes from northern wetlands, where we focus on few classes, that differ in their CH4 emissions. We 

provide a simple manual allowing anyone to take the photos needed in a few minutes per field plot. Land cover classification 

can then be made using the Red-Green-Blue (RGB) field images (sometimes also converting them to the Intensity-Hue-

Saturation (IHS) color space) by software such as e.g. CAN-EYE (Weiss & Baret 2010), VegMeasure (Johnson et al. 2003), 15 

SamplePoint (Booth et al. 2006b), or eCognition (Trimble commercial software). With this simple approach it would be quick 

and easy for the community to share such images online and to generate a global reference database that can be used for land 

cover classification relevant to wetland CH4 fluxes, of other purposes depending of the land cover classes used. We use our 

own routines written in Matlab due to the large field of view used in the method, in order to correct for the geometrical 

perspective when calculating areas (to speed up the development of a global land cover reference database, we can do the 20 

classification on request if all necessary parameters and images are available as given in our manual). 

2 Field work 

The camera setup is illustrated in Fig.1, with lines showing the spatial extent of a field plot. Our equipment included a 

lightweight RGB-camera (GoPro 4 Hero Silver; other types of cameras with remote control and suitable wide field of view 

would also work) mounted on an extendable monopod that allows imaging from a height of 3.1 - 4.5 meters. The camera had 25 

a resolution of 4000 x 3000 pixels with a wide field of view (FOV) of 122.6 x 94.4 deg. and was remotely controlled over 

Bluetooth using a mobile phone application that allows a live preview, making it possible to always include the horizon close 

to the upper edge in each image (needed for image processing later – see below). The camera had a waterproof casing and 

could therefore be used in rainy conditions, making the method robust to variable weather conditions. Measurements were 

made for about 200 field plots in northern Sweden in the period 6-8 September 2016. 30 
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Figure 1: A remotely controlled wide-field camera mounted on a long monopod captures the scene in one shot, from above the 

horizon down to nadir. After using the horizon image position to correct for the camera angle, a 10 x 10 m area close to the camera 

is used for classification. 

For each field plot, the following was recorded: 5 

• One image taken at > 3.1 m height (see illustration in Fig. 1) which includes the horizon coordinate close to the top 

of the image. 

• 3-4 close-up images of common surface cover in the plot (e.g. typical vegetation) and a very short note for each image 

indication what is shown, e.g. if a close-up image shows dry or wet moss (two of our classes) as there can be different 

colors within a class. 10 

• GPS position of the camera location (reference point) 

• Notes of the image direction relative to the reference point.  

The long monopod was made from two ordinary extendable monopods taped together, with a GoPro camera mount at the end. 

The geographic coordinate of the camera position was registered using a handheld Garmin Oregon 550 GPS with a horizontal 

accuracy of approximately 3 m. The positional accuracy of the images can be improved by using a differential GPS and by 15 

registering the cardinal direction of the FOV. The camera battery typically lasts for a few hours after a full charge, but was 

charged at intervals when not used, e.g. when moving between different field sites. 
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3 Image processing and models 

 

Figure 2: Correction of lens distortion. (A) Raw wide-field camera image. (B) After correction. 

As the camera had a very wide FOV, the raw images do have a strong lens distortion (Fig. 2). This can be corrected for many 

camera models (e.g., the GoPro series) using ready-made models in Adobe Lightroom or Photoshop, or by modelling the 5 

distortion for any camera using the camera calibrator application in Matlab’s computer vision system toolbox as described 

below. A checkboard pattern is needed for the modelling (Fig. 3), which should consist of black and white squares with an 

even number of squares in one direction and an odd number of squares in the other direction, preferably having a white boarder 

around the pattern. The next step is to take images of this pattern from 10-20 unique camera positions, providing many 

perspectives of the pattern with different angles for the distortion modelling (Fig. 3). In order to make accurate models it is 10 

important both to have sharp images with no motion blur (e.g. due to movement or poor lighting) and to include several images 

where the pattern is close to the edges of the image as this is where the distortion is greatest. An alternative but equivalent 

method, preferably used for small calibration patterns printed on a standard sheet of paper (e.g. letter or A4), is to mount the 

camera and instead move the paper to 10-20 unique positions having different angles to the camera. A quick way to do this 

with only one person present is by recording a video while moving the paper slowly and then selecting calibration images from 15 

the video afterwards. The illustration of camera positions used (Fig. 4) can also be displayed in the application as a mounted 

camera with different positions of the calibration pattern. The next step is to enter the size of a checkerboard square (mm, cm, 

or in) which is followed by an automatic identification of the corners of squares in the pattern (Fig. 3). Images with bad corner 

detection can now be removed (optional) to improve the modelling. As a last step, camera parameters can now be calculated 

by the press of a button and be saved as a variable in Matlab (cameraParams). This whole procedure only has to be done once 20 

for each camera and field-of-view setting used, meaning once for a data collection campaign or a project if the same camera 

model and field of view is used. Applying the correction to images is done using a single command in Matlab: img_corr = 

undistortImage(img, cameraParams). Here img and img_corr are variables for the uncorrected and corrected versions, 

respectively. 
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Figure 3: Modelling of lens distortion. Checkboard pattern used for calibrations. Red circles are used to mark automatically detected 

square corners while the yellow square marks the origin of the coordinate system. Images of the pattern are taken from 10-20 

different camera angles. 5 
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Figure 4. Illustration using Matlab’s Camera calibration application of the camera positions used when taking the calibration 

images. 

Using a distortion corrected calibration image, we then developed a model of the ground geometry by projecting and fitting a 

10 x 10 m grid on a parking lot with measured distances marked using chalk (Fig. 5). Such calibration of projected ground 

geometry only needs to be done when changing the camera model or field of view setting, and is valid for any camera height 5 

as long as the heights used in field and in the calibration imaging are known. It is done fast by drawing short lines every meter 

for distances up to 10 meters, and some selected perpendicular lines at strategic positions to obtain the perspective. At least 

one, preferably two, perpendicular distances should be marked at a minimum of two different distances along the central line 

(in Fig. 5 at 2 and 4 meters left of the central line at distances along the central line of 0 and 2.8 meters). The geometric model 

uses the camera FOV, camera height, and the vertical coordinate of the horizon (to obtain the camera angle). We find an 10 

excellent agreement between the modeled and measured grids (fits are within a few centimeters) for both camera heights of 

3.1 and 4.5 m. 

The vertical angle 𝛼 from nadir to a certain point in the grid with ground distance Y along the center line is given by 𝛼 =

arctan(𝑌/ℎ), where h is the camera height. For distance points in our calibration image (Fig. 5), using 0.2 m steps in the range 

0 – 1 m and 1 m steps from 1 to 10 m, we calculate the nadir angles 𝛼(Y) and measure the corresponding vertical image 15 

coordinates 𝑦𝑐𝑎𝑙𝑖𝑏(𝑌). 
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Figure 5: Calibration of projected geometry using an image corrected for lens distortion. Model geometry are shown as white 

numbers and a white grid, while green and red numbers are written on the ground using chalk (red lines at 2 and 4 m left of the 

center line were strengthened for clarity). The camera height in this calibration measurement is 3.1 m. 

In principle, for any distortion corrected image there is a simple relationship 𝑦𝑖𝑚𝑔(𝛼) = (𝛼(𝑌) − 𝛼0)/𝑃𝐹𝑂𝑉, where 𝑦𝑖𝑚𝑔 is 5 

the image vertical pixel coordinate for a certain distance 𝑌, 𝑃𝐹𝑂𝑉 the pixel field of view (deg pixel-1), and 𝛼0 the nadir angle 

of the bottom image edge. In practice, however, correction for lens distortion is not perfect so we have fitted a polynomial in 

the calibration image to obtain 𝑦𝑐𝑎𝑙𝑖𝑏(𝛼) from the known 𝛼 and measured 𝑦𝑐𝑎𝑙𝑖𝑏 . Using this function we can then obtain the 

𝑦𝑖𝑚𝑔  coordinate in any subsequent field image using 

𝑦𝑖𝑚𝑔 = 𝑦𝑐𝑎𝑙𝑖𝑏 (𝛼 + 𝑃𝐹𝑂𝑉ℎ𝑜𝑟 ∙ (𝑦𝑖𝑚𝑔
ℎ𝑜𝑟 − 𝑦𝑐𝑎𝑙𝑖𝑏

ℎ𝑜𝑟 )) (1) 

where 𝑦𝑖𝑚𝑔
ℎ𝑜𝑟  and 𝑦𝑐𝑎𝑙𝑖𝑏

ℎ𝑜𝑟  are the vertical image coordinates of the horizon in the field and calibration image, respectively. As the 10 

𝑃𝐹𝑂𝑉 varies by a small amount across the image due to small deviations in the lens distortion correction, we have used 

𝑃𝐹𝑂𝑉ℎ𝑜𝑟  which is the pixel field of view at the horizon coordinate. In short, the shift in horizon position between the field and 

calibration images is used to compensate for the camera having different tilts in different images. In order to obtain correct 

ground geometry it is therefore important to always include the horizon in all images. 
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The horizontal ground scale 𝑑𝑥 (pixels m-1) varies linearly with 𝑦𝑖𝑚𝑔, making it possible to calculate the horizontal image 

coordinate 𝑥𝑖𝑚𝑔 using 

𝑥𝑖𝑚𝑔 = 𝑥𝑐 + 𝑋 ∙ 𝑑𝑥 = 𝑥𝑐 + 𝑋 ∙ (𝑦𝑖𝑚𝑔
ℎ𝑜𝑟 − 𝑦𝑖𝑚𝑔) ∙

𝑑𝑥0

𝑦𝑐𝑎𝑙𝑖𝑏
ℎ𝑜𝑟 ∙

ℎ𝑐𝑎𝑙𝑖𝑏

ℎ𝑖𝑚𝑔

 (2) 

where 𝑑𝑥0 is the horizontal ground scale at the bottom edge of the calibration image, 𝑥𝑐 the center line coordinate (half the 

horizontal image size), 𝑋 the horizontal ground distance, and ℎ𝑐𝑎𝑙𝑖𝑏  and  ℎ𝑖𝑚𝑔 the camera heights in the calibration and field 

image, respectively. 5 

Thus, using Eqs. (1) and (2) we can calculate the image coordinates (𝑥𝑖𝑚𝑔, 𝑦𝑖𝑚𝑔) in a field image from any ground coordinates 

(𝑋, 𝑌). A model grid is shown in Fig. 5 together with the calibration image, illustrating their agreement. 

 

Figure 6: One of our field plots. (A) Image corrected for lens distortion, with a projected 10 x 10 m grid overlaid. (B) Image after 

recalculation to overhead projection (10 x 10 m). 10 

For each field image, after correction for image distortion, our Matlab script asks for the 𝑦 -coordinate of the horizon (which 

is selected using a mouse). This is used to calculate the camera tilt and to over-plot a distance grid projected on the ground 

(Fig. 6A). Using Eqs. (1) and (2) we then recalculate the image to an overhead projection of the nearest 10 x 10 m area (Fig. 

6B). This is done using interpolation, where a (𝑥𝑖𝑚𝑔 , 𝑦𝑖𝑚𝑔) coordinate is obtained from each (𝑋, 𝑌) coordinate, and the 

brightness in each color channel (𝑅, 𝐺, 𝐵) calculated using sub-pixel interpolation. The resulting image is reminiscent of an 15 

overhead image, with equal scales in both axes. There is however a small difference, as the geometry (due to line of sight) 

does not provide information about the ground behind high vegetation in the same way as an image taken from overhead. In 

cases with high vegetation (which is some of our 200 field plots), mostly high grass, we used a higher camera altitude to 

decrease obscured areas. Another possibility is to direct the camera towards nadir (see the manual in Supplementary material 

S1) to image areas -5 to +5 meters from the center of a plot, further decreasing the viewing angles from nadir. We did not have 20 
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any problems with shrub or brushwood as it was only a couple of decimeters high, and Birch trees did not grow on the mires. 

We also recommend using a camera height of about 6 meters to decrease obscuration and to increase the mapped area. 

4 Image classification 

After a field plot has been geometrically rectified, so that the spatial resolution is the same over the surface area used for 

classification, the script distinguishes land cover types by color, brightness and spatial variability. Aided by the close-up images 5 

of typical surface types also taken at each field plot (Fig. 7) and short field notes about the vegetation, providing further 

verification, a script is applied to each overhead-projected calibration field (Fig. 6B) that classifies the field plot into land cover 

types. This is a semi-automatic method that can account for illumination differences between images. In addition, it facilitates 

identification as there can for instance be different vegetation with similar color, and rock surfaces that have similar appearance 

as water or vegetation. After an initial automatic classification, the script has an interface that allows manual reclassification 10 

of areas between classes. The close-up images have high detail richness, allowing identification, and color and texture 

assignment of the different land cover classes during similar light and weather conditions as when the whole-plot image is 

taken. This makes results robust regarding different users collecting data, with respect to light conditions, times of day etc. 

The sensitivity is instead affected by the person defining the classes, just as with normal visual inspection. 

For calculations of surface-color we filter the overhead projected field-images using a running 3 x 3 pixel mean filter, providing 15 

more reliable statistics. Spatial variation in brightness, used as a measurement of surface roughness, is calculated using a 

running 3 x 3 pixel standard deviation filter. Denoting the brightness in each (red, green, and blue) color channel 𝑅, 𝐺 and 𝐵, 

respectively, we could for instance find areas with green grass using the green filter index 2𝐺/(𝑅 + 𝐵), where a value above 

1 indicates green vegetation. In the same way, areas with water (if the close-up images show blue water due to clear sky) can 

be found using a blue filter index 2𝐵/(𝑅 + 𝐺). If the close-up images show dark or gray water (cloudy weather) it can be 20 

distinguished from rock and white vegetation using either a total brightness index (𝑅 + 𝐺 + 𝐵)/3 or an index that is sensitive 

to surface roughness, involving 𝜎(𝑅), 𝜎(𝐺), or 𝜎(𝐵), where 𝜎 denotes the 3 x 3 pixels standard deviation centered on each 

pixel, for a certain color channel. 
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Figure 7: Close-up images in one of our 10 x 10 m field plots (Fig. 6). 

In this study we used six different land cover types of relevance for CH4 regulation: graminoids, water, shrubs, dry moss, wet 

moss, and rock. Examples of classified images are shown in Fig. 8. Additional field plots and classification examples can be 

found in supplementary material S2. Compared to the corrections for lens distortion and geometrical projection, the 5 

classification part often takes the longest time as it is semi-automatic and requires trial and error testing of which indices and 

class limits to use for each image as vegetation and lighting conditions might vary. After a number of images with similar 

vegetation and conditions have been classified the process goes much faster as the indices and limits will be roughly the same. 

It may also be needed to reclassify parts manually by moving a square region from one class to another based on visual 

inspection. The main advantage with this method of obtaining reference data is however that it is very fast in the field and 10 

works in all weather conditions. In a test study, we were able to make classifications of about 200 field plots in northern 

Sweden in a three-day test campaign despite rainy and windy conditions. For each field plot, surface area (m2) and coverage 

(%) were calculated for each class. The geometrical correction models (lens distortion and ground projection) was made in 

about an hour, while the classifications for all plots took a few days. 
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Figure 8: Classification of a field plot image (Fig. 6B) into the six main surface components. All panels have an area of 10 x 10 m. 

(A) Graminoids. (B) Water. (C) Shrubs. (D) Dry moss. (E) Wet moss. (F) Rock. 

5 Conclusions 

This study describes a quick method to document ground surface cover and process the data to make it suitable as reference 5 

data for remote sensing. The method requires a minimum of equipment that is frequently used by researchers and persons with 

general interest in outdoor activities, and image recording can be made easily and in a few minutes per plot without 

requirements of specific skills or education. In addition to covering large areas in a short time, it is a robust method that works 

in any weather using a waterproof camera. This provides an alternative to e.g. using small unmanned aerial vehicles (UAVs) 

which are efficient at covering large areas, but have the drawbacks of being sensitive to both wind and rain and typically 10 

having flight times of about 20 minutes, considerably lower than this when many takeoffs and landings are needed when 

moving between plots. The presented photographic approach is also possible using a mobile phone camera, although such 

cameras usually have a very small field of view compared to many adventure cameras (such as the GoPro, which is also 

cheaper than a mobile phone). We recommend using a higher camera altitude; a height of 6 meters would make mobile phone 

imaging of 10 x 10 meters possible (using a remote Bluetooth controller) and 20 x 20 meters mapping using a camera with a 15 

large field of view such as the GoPro. Hence, if the method gets widespread and a fraction of those who visits northern wetlands 
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(or other environments without dense tall vegetation where the method is suitable) contributes images and related information, 

there is a potential for rapid development of a global database of images and processed results with detailed land cover for 

individual satellite pixels. In turn, this could become a valuable resource supplying reference data for remote sensing. To 

facilitate this development, supplementary material S1 includes a complete manual and authors will assist with early stage 

image processing and initiate database development. 5 
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