
 
Overall response to both reviewers 
 
We greatly thank both reviewers for the thorough and very helpful reviews.  Synthesizing the 
two reviews indicated that the manuscript had a lot of interesting information but was too dense 
to effectively communicate the key ideas.   In response, we have simplified the analysis so that it 
has fewer moving parts.  Our reanalysis also represents improvements to the data assimilation 
approach that have occurred since the manuscript was first submitted. 
 
We simplified and modified the analysis as follows: 

1) We removed the need for the 2-stage data assimilation.  Now there are two chains that 
assimilate all sites simultaneously: one that includes site-specific parameters for only the 
Duke site and one that does not include the site-specific parameters.  This modification 
allows the analysis to focus on why the parameters are different rather than focusing on 
the need to weight the Duke site differently.  Since we did not actually weigh the Duke 
site differently in the original analysis nor include a synthetic experiment that explores 
the influence of site weighing on parameter inference, we feel that the simplified, updated 
approach is more sound and easier to understand. 

 
The previous text on the two-stage vs. one-stage assimilation is now condensed to the 
following: 
 
In Methods: 
 
During preliminary analysis, we found that the Base assimilation predicted lower stem 
biomass than observed in the elevated CO2 plots in the Duke FACE study.  Further 
analysis investigating the cause of the bias in the CO2 plots showed that three 
parameters (wSx1000, ThinPower, and pCRS) were required to be unique to the Duke 
FACE study in order to reduce the bias.  Therefore, the Base assimilation included 
unique parameters for wSx1000, ThinPower, and pCRS parameters in all plots in the 
Duke FACE and US-DK3 studies.  To highlight the need for the site-specific parameters, 
we repeated the Base assimilation approach without the three additional parameters for 
the Duke studies (NoDkPars assimilation). 
 
In Results: 
 
The plots at the Duke Forest study had a higher carrying capacity of stem biomass before 
self-thinning (WSx1000), smaller self-thinning parameter (ThinPower), and lower 
allocation to coarse root (pCRS) than values optimized from the other plots across the 
region (Table 6). The DA approach without these three study specific parameters 
(NoDkPars) predicted significantly lower accumulation of stem biomass in response to 
elevated CO2 than observed (df = 4, p = 0.002; Figure 5).  The NoDKPars assimilation 
optimized the CO2 fertilization parameter (fCalpha700) to a value that predicted 45% 
less light-use efficiency at 700 ppm (1.13 in NoDKPar vs. 1.33 in Base; Table 6) than the 
Base assimilation. 
 



In Conclusions: 
 
Constraining the sensitivity to atmospheric CO2 differs from constraining the sensitivity 
to ASW because, unlike the multiple constraints on water sensitivity (drought, irrigation, 
and gradient studies), environmental conditions created by the few elevated CO2 plots 
provided unique constraint on parameters.  Our finding demonstrated that DA efforts 
should test for bias in unique ecosystem experiments before finalizing a set of model 
parameters used in optimization.  In particular, we found that the parameter governing 
the photosynthetic response to elevated CO2 (fCalpha700) was substantially lower when 
all parameters were assumed to be shared across all plots than when the CO2 
fertilization experiment was allowed to have unique parameters. The need for the three 
unique parameters at the Duke FACE study parameters can be explained by the 
constraint provided by multiple data streams and multiple plots. An assumption of the 
model was that an increase in stem biomass caused a decrease stem density through self-
thinning, unless the average tree stem biomass was below a parameterized threshold 
(WSx1000).  Therefore, an increase in photosynthesis and stem biomass through CO2 
fertilization could cause a decrease in stem density.  For a single study, it is 
straightforward to simultaneously fit the CO2 fertilization and self-thinning parameters to 
fit stem biomass and stem density observations for the site.  However, regional DA 
presents a challenge because the self-thinning parameters are well constrained by the 
stem biomass and stem density observations across the region but the CO2 fertilization 
parameters are not.  As a result of the regional DA, the self-thinning parameters caused 
a stronger decrease in stem density than observed in the Duke FACE study.  Therefore, 
the optimization favored a solution where there was a lower response to CO2, thus a 
smaller decrease in stem density.  Allowing the Duke FACE study to have unique self-
thinning parameters that resulted in lower rates of self-thinning and allowed for 
simulated stem biomass to respond to CO2 in a way that matched the observations 
without penalizing the optimization by degrading the fit to the stem density.   

 
Our finding that the Duke FACE study required unique self-thinning parameters to 
reduce bias in the simulated stem biomass suggests that when using DA to optimize 
parameters that are shared across plots, careful examination of prediction bias in key 
sites that provide unique constraint on certain parameters (like the Duke FACE) is 
critical.  Based on this example, we suggest that DA efforts using multiple studies and 
multiple experiment types identify whether particular experiments at limited number of 
sites have the potential to uniquely constrain specific parameters. In this case, additional 
weight or site-specific parameters may be needed to avoid having the signal of the unique 
experiment overwhelmed by the large amount of data from the other sites and 
experiments.  Additionally, the finding suggests that multi-site DA should consider using 
hierarchical approaches to predicting mortality, particularly because mortality is often 
not simulated as mechanistically as growth.  A hierarchical approach, where each plot 
has a set of mortality parameters that are drawn from a regional distribution, could 
avoid having unexplained variation in mortality rates lead to bias in the parameterization 
of growth related processes (i.e., growth responses to CO2, drought, nutrient fertilization, 
etc.).  The hierarchical approach to mortality could also highlight patterns in mortality 



rates across a region and allow for additional investigations in the mechanisms driving 
the patterns. 

 
2) We replaced the assimilations that separately removed the water and nutrient experiments 

with a single assimilation that removes all experiments (water, nutrient, and CO2).  We 
feel this is a better approach because the analysis included multi-factor experiments.  For 
example, in the previous analysis, the removal of nutrient experiments also removed CO2 
and drought treatments. Now we present two sets of optimized parameters: with and 
without experiments.  This allows us to more clearly address the question “how do the 
parameter distributions depend on the inclusion of ecosystem experiments in the data 
assimilation”.  Some of the figures were simplified in the process of this revision. 

 
The previous text because the assimilation with and without experiment is now condensed 
to the following: 
 

 Methods:  
 

We also evaluated how parameter distributions and the associated environmental 
sensitivity of model predictions depended on the inclusion of ecosystem experiments in 
data assimilation.  First, we repeated the Base assimilation, this time excluding the plots 
that included the manipulated treatments (NoExp).  We removed all manipulation types 
at once, rather than individual experimental types, because all experimental types were 
involved multi-factor studies. The NoExp assimilation had the same number of data 
streams as the Base assimilation because it included the control treatments from the 
experimental studies.  The NoExp assimilation represented the situation where only 
observations across environmental gradients were available.  Second, we compared the 
parameterization of the ASW, soil fertility, and atmospheric CO2 environmental 
modifiers from the Base to the NoExp assimilation. The modifiers equations are 
described in Supplemental Material Section 1.2 and 1.3.   Third, we repeated the same 
independent validation exercise for the 160 FMRC plots as described above for the Base 
assimilation. Fourth, we predicted the treatment plots in the irrigated, drought, nutrient 
addition (only plots where FR was assumed to be 1), and elevated CO2 plots.  As for the 
Base assimilation, we used a t-test to compare the experimental response between the 
NoExp assimilation and observed and between the NoExp and Base assimilations.  Since 
the experimental treatments were not used in the optimization, this was an independent 
evaluation of predictive capacity. 
 
Results: 
 
Excluding the experimental treatments from the data assimilation did not strongly 
influence the predictive capacity of the model.  The RMSE validation plots in NoExp 
assimilation decreased slightly compared to Base assimilation (21.8 to 18.0 Mg ha-1) 
while the bias slightly increased (-3.7 to -4.1%)(Figure 4b).  Excluding the experimental 
treatments resulted in a significantly lower response of stem biomass to elevated CO2 
than observed (df = 4, p < 0.001; Figure 5).  Furthermore, there was a slight negative 
response of stem biomass to CO2 in the NoExp assimilation because the parameter 



governing the change in foliage allocation at elevated CO2 (fCpFS700) was 
unconstrained by observations (Table 6).  This led to convergence on the lower bound of 
the prior distribution (0.5) where foliage allocation decreased with increased 
atmospheric CO2.  The predictions of irrigation, drought, and nutrient addition 
experiments were not significantly different between the Base and NoExp assimilations 
(Figure 5).   
 
The parameters and associated response functions in the 3-PG for nutrients, ASW, and 
atmospheric CO2 differed between the Base and NoExp assimilations (Figure 6). First, 
the parameterization of the soil fertility rating (FR) showed a stronger dependence on SI 
in the NoExp assimilation than in the Base assimilation (Figure 6a).  For a given SI there 
was a lower FR, thus stronger nutrient limitation, when experimental treatments were 
excluded from assimilation.  Second, the parameterization of the function relating 
photosynthesis and canopy conductance to ASW resulted in lower photosynthesis and 
maximum conductance when soil available water was less than 50% in the NoExp than 
Base assimilations (Figure 6b). Finally, the response of photosynthesis to atmospheric 
CO2 was functionally zero in the NoExp assimilation, thus highlighting the importance of 
the elevated CO2 treatments in the Duke FACE study for constraining the 
parameterization of the CO2 response function (Figure 6c). 
 
Discussion: 
 
The most important experimental manipulation for constraining model parameters was 
the Duke FACE CO2 fertilization study because the CO2 fertilization parameters 
(fCalpha700 and fCpFS700) converged on the lower bounds of their prior distributions 
when the experiments were excluded from the assimilation.  In contrast, excluding the 
nutrient fertilization, drought, and irrigation studies did not substantially alter the 
predictive capacity of the model.  This finding suggests that data assimilation using plots 
across environmental gradients alone can constrain parameters associated with water 
and nutrient sensitivity.  However, regardless of whether the experiments were included 
in the assimilation, the optimized model predicted higher sensitivity to drought than 
observed, highlighting that future studies should focus on improving the sensitivity to 
drought.  
 
The 3-PG model included a highly-simplified representation of interactions between the 
water and carbon cycles that resulted in parameterizations that may contain assumptions 
that require additional investigation. First, transpiration was modeled as a function of a 
potential canopy transpiration that occurred if leaf area was not limiting transpiration. 
The LAI at which leaf area was no longer limiting was a parameter that was optimized 
(LAIgcx in Table 5), resulting in a value of 2.2.  Interestingly, this optimized value is 
consistent with the scant literature on this topic.  In their analysis of multi-year 
measurements of transpiration in loblolly pine, Phillips and Oren (2001) observed that 
transpiration per unit leaf area was relatively insensitive to increases in leaf area above 
LAI of approximately 2.5.  Iritz and Lindroth (1996) reviewed transpiration data from a 
range of crop species and found only small increases in transpiration above LAI of 3-4.  
These authors suggest that the threshold-type responses observed were related to the 



range of LAI at which self-shading increases most rapidly, therefore limiting increases in 
transpiration.  The resulting model behavior of "flat" transpiration above 2.2 LAI, with 
gradually decreasing photosynthesis above that value, results in increasing water use 
efficiency at higher LAI values.   Second, the relationship between relative ASW and the 
modifier of photosynthesis and transpiration predicted a modifier value greater than zero 
when the relative ASW was zero. This resulted in positive values from photosynthesis and 
transpiration when the average ASW during the month was zero. In practice, the monthly 
ASW was rarely zero during simulations, which presents a challenge constraining the 
shape of the ASW modifier. The priors for the two ASW modifiers (SWconst and 
SWpower) had ranges that permitted the modifier to be zero. Therefore, additional data 
are likely needed during very dry conditions to develop a more physically based 
parameterization. Alternatively, the parameterization of a non-zero soil moisture 
modifier at zero ASW may be due to trees having access to water at soil depths deeper 
than the top 1.5 m of soil represented by the bucket in 3-PG. Overall, it is important to 
view the parameterization presented here as a phenomenological relationship that is 
consistent with observations from drought and irrigation experiments as well as 
observations across regional gradients in precipitation.   

 
3) In response to Reviewer #2, we evaluated how well the model predicts the different 

experimental types.  We now have a figure showing the observed and modeled 
experimental treatment responses for the data assimilation approaches. In the case of the 
data assimilation approach that did not include the experimental treatments, the 
comparison to the observed treatment responses are an independent validation of the 
model.  We found that the data assimilation approach without the experiments predicts 
the experimental responses reasonably well, except for the CO2 experiment. 

 
Reflecting this comment, the results section has been modified to the following: 
 
In Methods Section 2.4 
 
Finally, we compared the predicted responses to experimental manipulation to the 
observed responses. We focused the comparison on the percentage difference in stem 
biomass between the control and treatment plots.  We used a paired t-test to test for 
differences between the predicted and observed responses within an experimental type 
(irrigated, drought, nutrient addition, and elevated CO2).  We combined the single and 
multi-factor treatments for analysis.  For the analysis of the nutrient addition studies we 
only used plots where FR was assumed to be 1 so that we were able to simulate the 
treatments without requiring the optimization of a site-specific FR parameter. 
 
In Methods Section 2.6  
 
Fourth, we predicted the treatment plots in the irrigated, drought, nutrient addition (only 
plots where FR was assumed to be 1), and elevated CO2 plots.  As for the Base 
assimilation, we used a t-test to compare the experimental response between the NoExp 
assimilation and observed and between the NoExp and Base assimilations.  Since the 



experimental treatments were not used in the optimization, this was an independent 
evaluation of predictive capacity. 
 
In Result section 3.1 
 
Furthermore, the response of stem biomass to irrigation (df = 7, p = 0.18), nutrient 
addition (df = 26, p = 0.29), and elevated CO2 (df = 4, p = 0.43) was not significantly 
different between the observed and the Base assimilation (Figure 5).  The Base 
assimilation was significantly more sensitive to drought than observed (n = 31, p < 
0.001; Figure 5). 
 
In Results Section 3.2 
  
Excluding the experimental treatments from the data assimilation did not strongly 
influence the predictive capacity of the model.  The RMSE validation plots in NoExp 
assimilation decreased slightly compared to Base assimilation (21.8 to 18.0 Mg ha-1) 
while the bias slightly increased (-3.7 to -4.1%)(Figure 4b).  Excluding the experimental 
treatments resulted in a significantly lower response of stem biomass to elevated CO2 
than observed (df = 4, p < 0.001; Figure 5).  Furthermore, there was a slight negative 
response of stem biomass to CO2 in the NoExp assimilation because the parameter 
governing the change in foliage allocation at elevated CO2 (fCpFS700) was 
unconstrained by observations (Table 6).  This led to convergence on the lower bound of 
the prior distribution (0.5) where foliage allocation decreased with increased 
atmospheric CO2.  The predictions of irrigation, drought, and nutrient addition 
experiments were not significantly different between the Base and NoExp assimilations 
(Figure 5).   

 
4) In response to Anthony Walker’s helpful suggestion, we added an additional focus on 

regional predictions by simulating the regional response to nutrient addition, elevated 
CO2, and drought.  Our new analysis goes beyond the previous analysis by propagating 
the parameter uncertainty for all HUC12 units in the Southeastern U.S.   

 
Reflecting this comment, the results section has been modified to the following: 
 
In Methods Section 2.6  
 
To demonstrate the capacity of the data assimilation system to create regional 
predictions with uncertainty, we simulated the regional response to a decrease in 
precipitation, an increase in nutrient availability, and an increase in atmospheric CO2 
concentration, each as a single factor change from a 1985-2011 baseline.  Each 
prediction included uncertainty by integrating across the parameter posterior 
distributions using a Monte-Carlo sample of the parameter chains. Our region 
corresponded to the native range of loblolly pine and used the HUC12 (USGS 12-digit 
Hydrological Unit Code) watershed as the scale of simulation. For each HUC12 in the 
region we used the mean SI, 30-year mean annual temperature, ASW aggregated to the 
HUC12 level, and monthly meteorology from Abatzoglou (2013) as inputs (Figure 3).  



The SI of each HUC12 was estimated from biophysical variables in the HUC12 using the 
method described in Sabatia and Burkhart  (2014).  This SI corresponded to an estimated 
SI for stands without intensive silvicultural treatments or advanced genetics of planted 
stock.  
 
To sample parameter uncertainty, we randomly drew 500 samples from the Base 
assimilation MCMC chain and simulated forest development from a 1985 planting to age 
25 in 2011 in each HUC.  We choose age 25 as the final age because it is a typical age of 
harvest in the region.  For each sample, we repeated the regional simulation with 1) a 
30% reduction in precipitation, 2) FR set to 1, and 3) atmospheric CO2 increased by 200 
ppm.  Within a parameter sample, we calculated the percentage change in stem biomass 
at age 25 between control simulation and three simulations with the environmental 
changes.  We focused our regional analysis on the distribution of the percent change in 
stem biomass. 
 
In Results Section 3.3 
 
Regionally (i.e., the native range of loblolly pines), stem biomass at age 25 ranged from 
52 Mg ha-1 to 292 Mg ha-1 with the most productive areas located in the coastal plains 
and the interior of Mississippi and Alabama (Figure 7a).  The least productive locations 
were the western and northern extents of native range. The width of the 95% quantile 
interval for each HUC12 unit ranged from 6.2 to 29.8 Mg ha-1 with largest uncertainty 
located in most the productive HUC12 units and in the far western extent of the region 
(Figure 7b).   
 
The predicted change in stem biomass at age 25 associated with an additional 200 ppm 
of atmospheric CO2 over the 1985-2011 levels was similar to the change associated with 
a removal of nutrient limitation (by setting FR = 1) (Figure 8a,c).  The median change 
associated with elevated CO2 for a given HUC12 unit ranged from 19.2 to 55.7% with a 
regional median of 21.7% (Figure 8a).  The change associated the removal of nutrient 
limitation ranged from 6.9 to 303.7% for a given HUC12 unit, with regional median of 
24.1% (Figure 8b).  The response to elevated CO2 was more consistent across space 
than the response to nutrient addition.  The largest potential gains in productivity from 
nutrient addition were predicted in central Georgia, (Figure 3), the northern extent of the 
region, and the western extents, areas with the lowest SI (Figure 3).  
 
Stem biomass was considerably less responsive to a 30% decrease in precipitation.  The 
median change in stem biomass when precipitation was reduced from the 1985-2011 
levels ranged from -11.6 to – 0.1% for a given HUC12 unit with a regional median of -
5.1% (Figure 8c). Central Georgia was the most responsive to precipitation reduction 
reflecting the relatively low annual precipitation and warm temperatures (Figure 3). 
 
For a given location, the predicted response to elevated CO2 had larger uncertainty than 
the predicted response to precipitation reduction and nutrient limitation removal (Figure 
8c,d,f).  The uncertainty, defined as the width of the 95% quantile interval, was consistent 
across the region for the response to elevated CO2 (Figure 8b).  The uncertainty in the 



response to precipitation reduction and nutrient limitation removal was largest in the 
regions with the largest predicted change (Figure 8df).   
 
 

5) Our discussion section is re-worked to reflect the simplified analysis described above. 
 

The discussion has the following paragraphs 
- An overall of the findings (same paragraph as reviewed draft) 
- A paragraph about the hierarchical Bayesian approach (this paragraph is largely 

from the old methods section, as recommended by Walker) 
- A paragraph discussing that the CO2 response depended most strongly on the 

inclusion of ecosystem experiments in the data-assimilation 
- A paragraph discussing how the model predicted stronger sensitivity to drought 

than observed and what could be issues with the model 
- A paragraph discussing why unique parameters were needed for the Duke forest 

studies to get the CO2 fertilization response correct. (this is a more enriching 
discussion than the discussion about the 1-stage vs. 2-stage data-assimilation in the 
previous version 

-  A paragraph about caveats associated with the regional simulations. 
 
 

6) In response to comments by both reviewers to justify the set of parameters that were fit, 
we added six more parameters to the assimilation.  We also removed the confusing 
reference to a sensitivity study of model parameters (the methods describing it were 
buried in the footnote of a table) 

 
See table 3 for the parameters 

 
 

7) Sub-sections were added throughout to improve clarity. 
 

The sub-sections follow the three objectives: 
 
1) to present and evaluate a new DA approach that integrates diverse data from multiple 
locations and experimental treatments with an ecosystem model to estimate the 
probability distribution of model parameters,  2) to examine how the predictive capacity 
and optimized parameters differ between an assimilation approach that only uses 
environmental gradients and an assimilation approach that uses both environmental 
gradients and ecosystem manipulations, and 3) to demonstrate the capacity of the DA 
approach to predict, with uncertainty, regional forest dynamics by simulating how forest 
productivity responds to drought, nutrient fertilization, and elevated atmospheric CO2 
across the Southeastern U.S.   
 

8) We fixed some minor issues with the model structure as follows 
a. The density independent mortality now removes all the biomass of an average 

individual rather than a proportion of an average individual.  This was 



accomplished by not using the parameter mS (the proportion of an average 
individual that is lost through turnover) in the density independent mortality 
calculation.  Since density independent mortality represents random mortality it is 
more reasonable to not use mS in the calculation. 

b. The model now simulates throughfall experiments directly rather than just 
reducing rain. Now rain is intercepted by the canopy in the full amount but the 
rain that enters the soil is reduced when simulating the throughfall experiment.  
This is a small change that makes the comparison cleaner. 

c. FR is set to 1 in the fertilization studies that added nutrients at regular intervals.  
Many of these experiments were designed to fertilize to optimal nutrition so the 
assumption is well grounded and helps reduce the number of site level FR 
parameters that need to be optimized.   

d. The process error terms are allowed to be a linear function of the prediction.  This 
allows for the uncertainty to increase with the magnitude of the prediction.  This 
linear function is applied to stem biomass, GEP, and ET.  It allows for more 
confidence in predictions of lower values (like winter GEP and ET).   

9) There were improvements to the data assimilation algorithm under the hood that allowed 
for faster run times and convergence.  The cost function did not change (though we have 
described the cost function more clearly in the text). 

 
Overall, the updated manuscript is more streamlined (though with more explanation in the 
methods section) and represents the state-of-the-art for the DAPPER algorithm.   

 
  



 
Specific responses Reviewer #1 (Walker) below 
Our responses are in italics  

Thomas et al present a data-assimilation (DA) study using constraints from multiple data streams 
from multiple sites and experiments to optimise parameters in the monthly timestep PG-3 model 
of loblolly pine production. The study has three specific objec- tives. Stated on lns 170-171, 1) a 
new regional and hierarchical data assimilation sys- tem with the capacity to assimilate multiple 
data streams from multiple experiments; stated on ln 179-180, 2) the consequences for parameter 
estimation and prediction of including or not including ecosystem manipulation experiments 
(this could be more broadly stated as evaluation of the DA); and stated on ln 181 3) model 
predictions with the optimised parameter set of forest biomass changes in response to changes in 
nutrient addition of precipitation. This study is well thought out and implemented, presents a 
useful advance to the use of DA in ecosystem modelling and forecasting, and will likely be of 
interest to many readers of Biogeosciences.  

My main criticism is that the distinction between the three areas of this study is often not made 
explicitly throughout the manuscript and consequently the manuscript is not as readable or as 
clear as it could be.  

The majority of my comments are an attempt to help improve the organisation and presentation 
of the manuscript with the goal that this study will be as widely read and cited as possible.  

• With that in mind, I suggest organising the manuscript as much as possible by the three 
stated objectives. I suggest combining the sentence on lns 179-180 with the sentence on 
lns 170-171 and explicitly listing the three objectives together. The results and discussion 
section would benefit from organisation along the lines of the three stated objectives. I 
suggest breaking each into three subsections, each dealing with one of the objectives. 
Again the conclusions section should specifically address each objective.  

We have modified the structure of the manuscript so that the methods, results, and 
conclusion now have sections that address each of the three objectives. 

Abstract  

• It would be good to be specific about who the target audience is for this research. The 
research straddles a technical field that develops DA but the technique produces a tool at 
a level of maturity that could be used by foresters. These ultimate end users could be 
more explicitly targeted. 

The following text has been added:  

“Overall, we 1) demonstrated how three decades of research in southeastern U.S. 
planted pine forests can be used to develop data assimilation techniques that use multiple 
locations, multiple data streams, and multiple ecosystem experiment types to optimize 
parameters and 2) developed a tool for creating future predictions of forest productivity 



for natural resource managers that are consistent with a rich history of ecosystem 
research across a region.”   

Introduction  

• Is a bit long and could a page or so could be cut without loss of content. Paragraphs on 
lns 82-105 could be combined and reduced in length. The main point is that ecosystem 
experiments can help to reduce the problem of equifinality in DA.  

The paragraphs between 82 and 105 were shortened.  There is now a single paragraph 
that is the following: 

“Using DA to parameterize ecosystem models with observations from multiple locations 
that leverage ecosystem manipulation experiments and environmental gradients will 
allow for predictions to be consistent with the rich history of global change research in 
forest ecosystems. Ecosystem manipulation experiments provide a controlled 
environment in which data collected can be used to describe how forests acclimate and 
operate under altered environmental conditions (Medlyn et al., 2015) and can potentially 
allow for the optimization of model parameters associated with the altered environmental 
factor in the experiment. Furthermore, the assimilation of data from ecosystem 
manipulation experiments may increase parameter identifiability (reducing equifinality 
(Luo et al., 2009)), where two parameters have compensating controls on the same 
processes, by isolating the response to a manipulated driver. Observations that span 
environmental gradients include measures of forests ecosystem stocks and fluxes across a 
range of climatic conditions, nutrient availabilities, and soil water dynamics. These 
studies leverage time and space to quantify the sensitivity of forest dynamics to 
environmental variation.  However, covariation of environmental variation can pose 
challenges separating the responses to individual environmental factors.  Overall, 
assimilating observations from a region that includes environmental gradients and 
manipulation experiments is a useful extension of prior DA research focused on DA at a 
single site with multiple types of observations (Keenan et al., 2012; Richardson et al., 
2010; Weng and Luo, 2011). 

• The paragraph on lns 108-141 makes some nice points but could be substantially 
shortened without loss of content. Much of the paragraph is methods like.  

The paragraph in the comment has been combined with the prior paragraph which is 
provided above.   

• Weight to rare experiments (mentioned on ln 125) could also apply to rare data types. 
Later in the paragraph (ln 135-136) the authors state that data of different frequency is a 
problem in biasing the cost function toward high frequency data, but offer no solution 
other than a monthly timestep model. Rare data, or low frequency data, could also be 
given higher weights. Also high frequency data could be summarised at lower frequency.  

The discussion of the data weighting was removed. 



Methods  

Again long and could probably be made more concise. Also the organisation is tough to follow.  

• I suggest leading with the observations, the various sites, and measurement 
campaigns/projects.Many of these are not properly introduced. This will provide a 
comprehensive introduction to the system and what measurements actually go into this 
DA system. Observation sites and projects are mentioned on ln 409-410, but these are not 
introduced and need to be described in the observations section of the methods.  

We moved the section on the observations to the beginning of the methods section.  We 
structured the paragraph so that it gives an overview of all the measurement campaigns.  
The observations section (Section 2.1 is as follows) 

We used thirteen different data streams from 294 plots at 187 unique locations spread 
across the native range of loblolly pine trees to constrain model parameters (Table 1; 
Figure 1).  The data streams covered the period between 1981 to 2015. The Forest 
Modeling Research Cooperative (FMRC) Thinning Study provides the largest number of 
plots that span the region (Burkhart et al., 1985).  In this study, we only used the control 
plots that were not thinned.  The Forest Productivity (FPC) Cooperative Region-wide 18 
(RW18) study included control and nutrient fertilization addition plots that span the 
region (134.4 kg ha-1 N + 13.44 kg ha-1 P biannually) (Albaugh et al., 2015).  The 
PINEMAP study included four locations dispersed across the region that included a 
replicated factorial experiment with control, nutrient fertilization (224 kg ha-1 N + 27 kg 
ha-1 P + micronutrients once at project initiation), a throughfall reduction (30% 
reduction), and fertilization by throughfall treatments (Will et al., 2015).  The SETRES 
study was located at a single location and included replicated control, irrigation (~650 
mm of added water per year), nutrient fertilization (~100 kg N ha-1 + 17 kg P ha-1 with 
micronutrients applied annually with absolute amount depending on foliar nutrient 
ratios), and fertilization by irrigation treatments (Albaugh et al., 2004). The Waycross 
study was a single site with a non-replicated fertilization treatment. The annual 
application of fertilization focused on satisfying the nutrient demand by the trees was one 
of the most productive stands in the region (Bryars et al., 2013). These five studies 
included data streams of stand stem biomass (defined as the sum of stemwood, stembark 
and branches) and live stem density. Waycross and SETRES included LAI measurements 
from litterfall traps (Waycross) or estimates from LICOR LAI-2000 (SETRES).  SETRES 
also included fine root and coarse root measurements.  In the PINEMAP, SETRES, and 
RW18 studies we only used foliage biomass estimates from the control plots.  We 
excluded the foliage biomass estimates from the treatment plots because they were 
derived from allometric models that may not have captured changes in allometry due to 
the experimental treatment.  We did use LAI measurements from both control and 
treatment plots where available (SETRES). 

We also included observations from the Duke FACE study where the atmospheric CO2 
was increased by 200 ppm above ambient concentrations. Based on the data presented in 
McCarthy et al. (2010) the study included six control plots, four CO2 fumigated rings 



(including the unfertilized half of the prototype), two nitrogen fertilization treatments 
(115 kg N ha-1 yr-1 applied annually) , and one CO2 by nitrogen addition treatment 
(fertilized half of prototype). The Duke FACE study included observations of stem 
biomass (loblolly pine and hardwood), coarse root biomass (loblolly pine and 
hardwood), fine root biomass (combined loblolly pine and hardwood), stem density 
(loblolly pine only), leaf turnover (combined loblolly pine and hardwood), fine root 
production (combined loblolly pine and hardwood), and monthly LAI (loblolly pine and 
hardwood). 

Finally, we included two Ameriflux sites with eddy-covariance towers in loblolly pine 
stands. The US-DK3 site was located in the same forest as the Duke FACE site described 
above (Novick et al., 2015).  The US-NC2 site was located in coastal North Carolina 
(Noormets et al., 2010).  We used monthly gross ecosystem production (GEP; modeled 
gross primary productivity from net ecosystem exchange measured at an eddy-covariance 
tower) and evapotranspiration (ET) estimates from the sites.  The monthly GET and ET 
were gap-filled by the site PI. The GEP was a flux partitioned product created by the site 
PI. The biometric data from the US-DK3 site was assumed to be the same as the first 
control ring.  The biometric data from the US-NC2 site included of stem biomass 
(loblolly pine and hardwood), coarse root biomass (loblolly pine and hardwood), fine 
root biomass (combined loblolly pine and hardwood), stem density (loblolly pine only), 
leaf turnover (combined loblolly pine and hardwood), and fine root production 
(combined loblolly pine and hardwood). 

 

• I found section 2.3 very difficult to follow. I’m not expert on DA mathematical meth- ods 
but I have a reasonable conceptual handle on DA, and yet I was lost in the first 
paragraph. I also ran this section by a colleague who is expert in the mathematics 
underpinning DA and they agreed that this sections needs to be clearer. Their key 
criticism was that they could not see the derivation of Eq 7, perhaps the authors could add 
the derivation to an appendix. And that it is not clear how the MCMC was used to sample 
Eq 7. A clear description of the details of the MCMC procedure is necessary, along with 
the presentation of the cost function. Also the first term on the righthand side of Eq 7 is 
not the same as the righthand side of Eq 1, is this deliberate? And E is never defined.  

I strongly suggest reworking section 2.3 of the methods to be extremely clear about the 
DA process and how it was implemented. Start with a clear description of the goals of the 
DA – state estimation and estimation of parameter distributions. Then describe all the 
various sources of uncertainty and how the method accounts for them. Then take the 
reader step by step through the method. Perhaps a diagram would be useful. The 
following comments are an attempt to provide examples of where confusion arises but 
they are in no way comprehensive. The sentence on lns 281-283 is more or less stating 
the the same thing as the sentence on lns 284-285. I suggest fusing these together. Is the 
reference to a “latent model” really necessary, it is confusing with the mathematical 
model. Would “true” system states and fluxes convey the same meaning? Do not try to 
justify the method in comparison with previous methods (e.g. lns 286-291), in the 



methods this just confuses the description and this can be argued in the discussion. On lns 
291-293, this is state estimation right? That’s fine but is it really the focus of your 
method? None of the three stated objectives are for state estimation. How exactly was 
estimation of the latent state or flux the first step in the process when it includes the 
optimised parameters etc as described on lns 296-298? Seems like the statement on ln 
306-308 should come before the previous paragraph.  

We cleaned up the description of the cost function per the reviewer recommendation. (see 
Supplement to the review) 

We used a hierarchal Bayesian framework to estimate the posterior distributions of 
parameters, latent states of stocks and fluxes, and process uncertainty parameters.  The 
latent states represented a value of the stock or flux before uncertainty was added 
through measurement. The approach was as follows. 

 

 

Consider a stock or flux (m) for a single plot (p) at time t (qp,m,t).  qp,m,t is influenced by 
the processes represented in the 3-PG model and a normally distributed model process 
error term,  

 𝑞𝑝,𝑚,𝑡~ N(f(θ,FRp), 𝜎𝑚)   Equation 1 

 

where 𝜃 is a vector of parameters that are optimized, FRp is the site fertility, and 𝜎𝑚 is 
the model process error. Not shown are the vector of parameters that were not optimized 
(Supplemental Material Table 1), the plot ASW, an array climate inputs, and the initial 
conditions because these are assumed known and not estimated in the hierarchical 
model.  The process error assumed that the error linearly scales with the magnitude of 
the prediction:    

 

 𝜎𝑚2 = 𝛾𝑚 + 𝜌𝑚f(θ,FRp)    Equation 2 

 

While the structure of the Bayesian model allowed for all data streams to have process 
uncertainty that scales with the prediction, in this application we only allowed stem 
biomass, GEP, and ET process uncertainty to scale because they had large variation 
across space (stem biomass) and through time (i.e., there should be lower process 
uncertainty in the winter when GEP is lower).  For the other data streams, the linear 
scaling term was removed by fixing 𝜌m at 0. 



 

FRp did not have an explicit probability distribution. Rather the probability density 
evaluated to 1 if the plot was not fertilized, thus causing FRp to be estimated from SI and 
MAT (Supplemental Material Equation 15), or if it was a fertilized plot and has an FRp 
equal or higher than that of its non-fertilized control plot.  The probability density 
evaluated to 0 if the estimated FRp in a fertilized plot was less than the FRp in the control 
plot or FRp awas not contained in the interval between 0 and 1. 

 

FRp~

{
  
 

  
 

1 if non-fertilized, FRp ≥ 0, and FRp ≤ 1
1 if FRp = 1 and fertilization levels are assumed to remove nutrient deficiencies
0 if FRp < 1 and fertilization levels are assumed to remove nutrient deficiencies 

1 if fertilized but levels are not assumed to remove  deficiencies and FRp≥FR of control plot 
0 if fertilized but levels are not assumed to remove  deficiencies and FRp<FR of control plot

0  𝑖𝑓 FRp < 0 𝑜𝑟 FRp > 1

  

          Equation 3 

 

Our model included the effect of observational errors for measurements of stocks and 
fluxes.  For a single stocks or flux for a plot at time t there is an observation (yp,m,t).  The 
normally distributed observation error model was:  

 

 𝑦𝑝,𝑚,𝑡~ N(𝑞𝑝,𝑚,𝑡, 𝜏𝑝,𝑚,𝑡2 )  Equation 4    

 

where 𝜏𝑝,𝑚,𝑡2   represented the measurement error of the observed state or flux. By 
including the observational error model, qp,m,t represented the latent, or unobserved, 
stock or flux. The variance was unique to each observation because it was represented as 
a proportion of the observed value.  The  𝜏𝑝,𝑚,𝑡2   was assumed known (see Table 2) and 
not estimated in the hierarchical model (Table 2).   

 

The hierarchical model required prior distributions for all optimized parameters, 
including the parameters for the 3-PG model (𝜃), FRp, and the process error parameters.  
The prior distributions for 𝜃 are specified in Table 3.  Some parameters were informed by 
previous research in loblolly pine ecosystems while other parameters were ‘non-
informative’ with flat distributions (termed ‘vague’ in Table 3).    The prior distributions 



for the process error parameters were non-informative and had a uniform distribution 
with upper and lower bounds that spanned the range of reasonable error terms. 

 𝛾𝑚~𝑈(0.001,100) Equation 5 

 𝜌𝑚~𝑈(0,10) Equation 6 

 

By combining the data, process, and prior models, our joint posterior that includes all 
thirteen data streams, plots, months with observations, and fitted parameters was 

 

𝑝(𝜽, 𝜸, 𝝆, 𝒒|𝒚, 𝝉, 𝑝𝑟𝑖𝑜𝑟𝑠) ∝ 

∏∏∏N(𝑞𝑝,𝑚,𝑡|f(θ,FRp), 𝛾𝑚 + 𝜌𝑚f(θ,FRp))
𝑇

𝑡=1

𝑀

𝑚=1

𝑃

𝑝=1

 

∏∏∏N(𝑦𝑝,𝑚,𝑡|𝑞𝑝,𝑚,𝑡, 𝜏𝑝,𝑚,𝑡2 )
𝑇

𝑡=1

𝑀

𝑚=1

𝑃

𝑝=1

 

∏𝑝(𝐹𝑅𝑝)
𝑃

𝑝=1

∏𝑝(𝜃𝑓)∏𝑝(𝛾𝑚)∏𝑝(𝜌𝑚)
𝑀

𝑚=1

𝑀

𝑚=1

𝐹

𝑓=1

 

          Equation 7 

where bolded components represent vectors, P is the total number of plots, M is the total 
number of data streams, T is the total months with observations, and F is the total 
number of 3-PG parameters that are optimized. 

We numerically estimated the joint posterior distribution using the Monte-Carlo Markov 
Chain – Metropolis Hasting (MCMC-MH) algorithm (Zobitz et al., 2011). This approach 
has been widely used to approximate parameter distributions in ecosystem DA research 
(Fox et al., 2009; Trudinger et al., 2007; Williams et al., 2005; Zobitz et al., 2011). 
Briefly, the algorithm proposes new values for the model parameters, uncertainty 
parameters, latent states, and FR. The proposed values were generated using a random 
draw from a normal distribution with a mean equal to the previously accepted value for 
that parameter and standard deviation equal to the parameter-specific jumping size. The 
ratio of proposed calculation of Equation 7 to the previously accepted calculation of 
Equation 7 was used to determine if the proposed parameters are accepted.  If the ratio 
was greater than or equal to 1 the proposed values were always accepted.  If the ratio 
was less than 1, a random number between 0 and 1 was drawn and the proposed values 



are accepted if the ratio was greater than the random number.  This allowed less 
probable parameter sets to be accepted, thus sampling the posterior distribution.  We 
adapted the size of the jump size for each parameter to ensure the acceptance rate of the 
parameter set was between 22% and 43% (Ziehn et al., 2012) by adjusting the jump size 
if the acceptance rate for a parameter is outside the 22 – 43% range. All MCMC-MH 
chains were run for 30 million iterations with the first 15 million iterations discarded as 
the burn-in.  Four chains were run and tested for convergence using the Gelman–Rubin 
convergence criterion, where a value for the criterion less than 1.1 indicated an 
acceptable level of convergence.  We sampled every 1000th parameter in the final 15 
million iterations of the MCMC-MH chain and used this thinned chain in the analysis 
described below. The 3-PG model and MCMC-MH algorithm were programed in 
FORTRAN 90 and used OpenMP to parallelize the simulation of each plot within an 
iteration of the MCMC-MH algorithm. 

 

• Section 2.4 jumps around between objectives. Some text would fit better in section 2.3, 
for example lns 408-428. Text on lns 454-461 would be better organised if it were to 
follow the text on 430-444, then the regional simulations can be presented afterwards.  

We reorganized as suggested by the reviewer.  Section 2.1 is the observations, Section 2.2 
is the Ecosystem Mode, Section 2.3 is the data assimilation method, Section 2.4 is the 
data assimilation evaluation, Section 2.5 is the Sensitivity to the inclusion of ecosystem 
experiments, Section 2.6 is the Regional predictions with uncertainty. 

• I suggest defining sections 2.3, 2.4, and an additional 2.5 to be organised by the three 
stated objectives.  

We reorganized as suggested by the reviewer.  Section 2.1 is the observations, Section 2.2 
is the Ecosystem Mode, Section 2.3 is the data assimilation method, Section 2.4 is the 
data assimilation evaluation, Section 2.5 is the Sensitivity to the inclusion of ecosystem 
experiments, Section 2.6 is the Regional predictions with uncertainty. 

• Also, while commonly used by the modelling community, I do not agree that you can run 
“experiments” with models. Models make predictions from a specific set of mathemat- 
ical hypotheses and defined scenarios. An experiment is designed to test predictions and 
discriminate among hypotheses.  

We removed the ‘experiments’ language 

Results  

• Why were only 31 parameters optimised, can you describe why this set were chosen from 
the total 46?  



In the revised manuscript, we included more parameters that were optimized (six more). 
The eight parameters that were not optimized did not have specific data to use as a 
constraint (leaf boundary layer, conductance, canopy light extinction coefficient, etc).   

• Technically the parameters are not “sensitive” (ln 480), it is the model output that is 
sensitive to the parameter. “Influential” would be a better adjective to describe the 
parameters.  

To simplify the analysis and reduce the density of the manuscript we removed the 
sensitivity study and the reference to it in the text. 

• Lns 486 & 488 variability is described as being reduced but no data are provided. Can 
you quantify these statements. There are many statements like this throughout the results 
and they ought to be quantified (e.g. lns 502, 508). Also on 508, is mean correct, isn’t this 
the median of the parameter distribution?  

We added a column to the table that is the ratio of the size of the posterior 99% credible 
interval to the size of the prior 99% confidence interval.  This ratio illustrates how the 
uncertainty is reduced by the data assimilation. 

• Some kind of visual representation of the data in table 5 would be useful.  

Supplemental Material Figure 1 shows the PDF of the prior and posterior 

• Ln 492 what do you mean strong priors? Well defined from measurements and litera- ture 
with low variance? Could you quantify this?  

We removed this language from the manuscript to reduce confusion 

• Lns 494 the process uncertainty parameters are mentioned here and in the methods, but 
results are barely presented (only in the supplement) and are not discussed, or not that I 
noticed. This is a very interesting concept and I would like to see these data pre- sented a 
little more and at least a little discussed. What kind of impact does including these 
parameters have on the optimised parameter distributions? I understand you are already 
presenting a lot, but this is fairly novel as far as I’m aware and is of interest.  

We added a small discussion of the process error parameters to the discussion section 

• Figure 10 and 11 would be more in keeping with your stated goal of forecasting on lns 
65-68 if you removed the b panels in both plots. If you think that the parameter estimates 
when including the data from the manipulations gives a better estimate of those 
parameters then the data in panels b are not particularly useful for forecasts. In my view, 
and as stated on line 67 & 68 “provide information on both the expected future state of 
the forest and the probability distribution of those future states”, the final figures would 
be much stronger if the probability distribution of the future states shown on the a panels 
were represented on the b panels.  



We combined the Figure 10 and 11 into a single figure that has the median prediction on 
the left side and the uncertainty on the right side.  This allows the figures to represent the 
forecasting capacities of the data assimilation approach.  The paragraph is as follows: 

Our hierarchal approach (Equation 7) was designed to partition uncertainty that is 
attributable to uncertainty in parameters, model process, and measurements (Hobbs and 
Hooten, 2015). Previous forest ecosystem DA efforts have either focused on parameter 
uncertainty, by using measurement uncertainty as the variance term in a Gaussian cost 
function (Bloom and Williams, 2015; Keenan et al., 2012; Richardson et al., 2010) or on 
total uncertainty by directly estimating the Gaussian variance term (Ricciuto et al., 
2008). The latter combines measurement uncertainty and process uncertainty into the 
same parameter and is unable to be used for developing prediction intervals, as 
prediction intervals only include parameter and process errors (Dietze et al., 2013; 
Hobbs and Hooten, 2015). Our approach allows the estimation of the probability 
distribution of forest biomass before uncertainty is added through measurement.  
Considering that the method of assimilation can potentially have a large influences on 
posterior parameter distributions (Trudinger et al., 2007), future research should focus 
on comparing the hierarchal approach presented here to other approaches by using the 
same data constraints with alternative cost functions.  

 

• While it is interesting to show the consequences for prediction of inclusion of 
manipulations or not, and the opposite sign of the change in predictions when water and 
nutrient manipulations are included, you already show this in Figures 6 & 7. If you want 
to keep the b panels in 10 and 11 I suggest you add them as extra panels to figures 6 & 7, 
showing the absolute delta (or similar) from the simulations that include the manipulation 
delta. This will allow you to address the question: what are the consequences of not 
including data from manipulations? Without confounding the predictions from the most 
appropriate DA product for the scenarios tested. Also, the scale ought to be the same for 
the data presented in Figs 10 and 11.  

We cut panel b from these figure. 

• Was CO2 change included in the above projections of removal of nutrient limitation and 
precipitation reduction? Furthermore, it seems you have included data from water 
manipulation experiments, nutrient manipulation experiments, and CO2 manipulation 
experiments. But you have only made projections for nutrient and precipitation change. 
Why not CO2 change? CO2 projections would complete the study. 

We added a +200 ppm simulation to the set of regional predictions.  The predicted 
regional changes are for +200 ppm, -30% precipitation, and removal of nutrient 
limitation.  The uncertainty for each prediction is shown.  This changed the description of 
the regional results to be the following: 



Regionally (i.e., the native range of loblolly pines), stem biomass at age 25 ranged from 
52 Mg ha-1 to 292 Mg ha-1 with the most productive areas located in the coastal plains 
and the interior of Mississippi and Alabama (Figure 7a).  The least productive locations 
were the western and northern extents of native range. The width of the 95% quantile 
interval for each HUC12 unit ranged from 6.2 to 29.8 Mg ha-1 with largest uncertainty 
located in most the productive HUC12 units and in the far western extent of the region 
(Figure 7b).   

The predicted change in stem biomass at age 25 associated with an additional 200 ppm 
of atmospheric CO2 over the 1985-2011 levels was similar to the change associated with 
a removal of nutrient limitation (by setting FR = 1) (Figure 8a,c).  The median change 
associated with elevated CO2 for a given HUC12 unit ranged from 19.2 to 55.7% with a 
regional median of 21.7% (Figure 8a).  The change associated the removal of nutrient 
limitation ranged from 6.9 to 303.7% for a given HUC12 unit, with regional median of 
24.1% (Figure 8b).  The response to elevated CO2 was more consistent across space 
than the response to nutrient addition.  The largest potential gains in productivity from 
nutrient addition were predicted in central Georgia, (Figure 3), the northern extent of the 
region, and the western extents, areas with the lowest SI (Figure 3).  

 

Stem biomass was considerably less responsive to a 30% decrease in precipitation.  The 
median change in stem biomass when precipitation was reduced from the 1985-2011 
levels ranged from -11.6 to – 0.1% for a given HUC12 unit with a regional median of -
5.1% (Figure 8c). Central Georgia was the most responsive to precipitation reduction 
reflecting the relatively low annual precipitation and warm temperatures (Figure 3). 

For a given location, the predicted response to elevated CO2 had larger uncertainty than 
the predicted response to precipitation reduction and nutrient limitation removal (Figure 
8c,d,f).  The uncertainty, defined as the width of the 95% quantile interval, was consistent 
across the region for the response to elevated CO2 (Figure 8b).  The uncertainty in the 
response to precipitation reduction and nutrient limitation removal was largest in the 
regions with the largest predicted change (Figure 8df).   

 

Additional points 

• I think the title would benefit from the addition of “Loblolly Pine”.  

Added to title 

• Ln 50 Duke FACE experiment had 4 replicate plots, so where does the 5 come from on 
this line. An additional plot from the unreplicated prototype?  



We removed the language from the abstract and later in the text we clarified that the 
replicated prototype was used (per the data reported in McCarthy et al. 2010) 

• Ln 48 – 50 the sentence on this line would help flow if it were before the preceding 
sentence.  

Revised 

• Ln 65 I don’t think I would classify the three areas mentioned in the previous sentence as 
tools. They are more than tools, they are also knowledge.  

Removed the word ‘tools’ so that the sentence references the previous sentence 
terminology (‘sources of information’) 

• Ln 67 What do you mean by “based on” here. Can probably delete. Also while I think 
your methods could be used for “forecasting” you don’t really use the method in that 
sense.  

Removed the clause that contained ‘based on’ 

• Ln 73 insert “can” in between “that generate” 

Fixed in text 

• Ln 85 86 “carbon allocation and turnover” This is worded a little awkwardly  

Removed awkward language from text 

• Ln 97-99 awkward way to start a paragraph. 

Paragraph was removed during the shortening of the introduction 

• Ln 111 suggest replacing “important” with “useful” or something more descriptive  

Changed to ‘useful’ 

• Ln 155-157 suggest replacing “nutrients” with “nutrient addition”. Also suggest remov- 
ing hyphens.  

Changed in text 

• Ln 162-163 Awkward  

Removed ‘available’ to make less awkward 

• Ln 171 Again I think you need to call out loblolly pine here  



Changed in text when revision the statement of objectives 

• Ln 175 The authors chosen acronym, in my view, somewhat undersells what they are 
doing. The DA method is hierarchical and considers data from multiple sites and of 
multiple different types. The acronym gives not indication of this and suggests that the 
DA method is only suitable for Pine Plantations. Of course it is the authors’ choice 
though.  

Thank you for the suggestion to broaden the acronym.  We kept the same acronym but 
changed the words to “Data Assimilation to Predict Productivity for Ecosystems and 
Regions” to emphasize the multi-site aspect of the DA. 

• Ln 307 insert “considered” between “was a” 

Sentence was modified during revisions 

• Ln 446 replace “regional” with “region” 

Changed in text 

• Ln 522-524 I’m not sure what you mean here, could you clarify? 

Sentence removed during the revisions 

• Ln 528 delete “a” 

Done 

• Ln 576 replace “detangling” with “disentangling” 

Done 

• Ln 582 I think “synthesised” would be a better word to use than “organised”  

Done 

• Ln 591-591 I take your point about equifinality but can you really say this if predictions 
were not improved in some way? Just a thought. Is there a way that you can be sure that 
the mechanisms were correctly distinguished?  

We removed this sentence during revisions 

• Ln 633-634 Agreed, but did your method strictly weight the data? Wasn’t it more that the 
hierarchical method gave priority to the CO2 manipulation data?  

We removed this sentence during revisions 



• Ln 646 replace “than” with “that”  

Done 

• Ln 656 quantify this statement  

We removed this sentence during revisions 

• Ln 662-663 this was news to me when I read this sentence. I think this would become 
clearer once the methods can be clarified as suggested above.  

We clarified in the method section.  The method section more completely describes 
assumptions of the site index estimation.  The following text was added to Section 2.6 in 
the methods: 

The SI of each HUC12 was estimated from biophysical variables in the HUC12 using the 
method described in Sabatia and Burkhart  (2014).  This SI corresponded to an estimated 
SI for stands without intensive silvicultural treatments or advanced genetics of planted 
stock. 

• Ln 668 suggest changing “prior” to “previous”, just to maintain the meaning of prior in 
the Bayesian sense.  

  Done 

• Ln 673 you do not show any data on covariation of parameters.  

We removed this language 

• Ln 676-680 I like this statement, makes a lot of sense. But is it most appropriate here? 
This point should be made clearly in the methods.  

Moved to methods 

• Ln 685 suggest deleting “Multivariate Constructed Analogs (MACA)” it is not needed.  

Deleted 

• Ln 692-697 This is a good point but I’m curious why the change in biomass in response 
to precipitation reduction was small given the large change in parameter values when 
water manipulations were included in the DA. Can you try to explain this based on the 
process hypotheses embedded in the model.  

We cut this sentence during revisions 

• Ln 698 replace “reduced” with “reduction” Ln 707 insert “as a function of” 



Done 

• Ln 719 insert space in “fromadditional”  

Done 

• Ln 760 While I’m sure the methods and tools developed by this study could be used for 
ecological forecasting, strictly speaking this study is not ecological forecasting. The third 
objective, which concerns optimised model predictions, is a scenario analysis rather than 
a forecast.  

We removed the term ‘ecological forecast’ from the sentence and changed to: 

DA is increasingly used for developing predictions from ecosystem models that include 
uncertainty estimation, due to its ability represent prior knowledge, integrate 
observations into the parameterization, and estimate multiple components of uncertainty, 
including observation, parameter, and process representation uncertainty (Dietze et al., 
2013; Luo et al., 2011b; Niu et al., 2014). 

• Ln 769 no need to cite Medlyn et al 2015 here 

Removed citation 

  



Specific responses Reviewer #2 
Our responses are in italics  
 
 
Quinn Thomas et al. present a model-data fusion, or data assimilation, study that gathers 35 years 
of carbon cycle-related observations and manipulation experiments taken in Loblolly Pine 
ecosystems in the Southeastern US to optimize parameters of the 3-PG model within their new 
framework DAPPER. The authors examine the ability of the observations to constrain model 
parameters using a number of approaches for assimilating the different types of data, and they 
further examine the differences in model behavior/sensitivity and change in biomass stocks 
across the southeastern US as a result of the different experiments. 
 
The authors have carried out an impressive and exhaustive collection of data for con- straining 
the 3-PG model in this study. This, and their investigation into different approaches for 
assimilating different types of data, in particular manipulation experimental data, make this study 
a noteworthy contribution to model–data assimilation literature in forested ecosystems, and 
therefore I would recommend publication in Biogeosciences. However, as it stands the 
manuscript is quite long and dense, which is understandable given the amount of detail that is 
required to present such a wide array of data and experiments. This being said, I recommend that 
the authors try to edit the article following some of the suggestions below (and their own views) 
to improve the clarity and readability of the text before this article is published. 
 

• Overall, the objectives and key points of this study can get lost in the text. I think a few 
more sub-sections in the main text and supplementary, references and links between 
sections would help the reader to better follow and absorb the necessary amount of detail 
presented in the manuscript. I would also find it useful if the authors posed a few key 
scientific questions to help them highlight the main messages of the study. 

 
We clarified the last paragraph of the introduction to directly state the three objectives of 
the study.  We also added section to the Methods, Results, and Discussion that parallel 
the objectives 
 
The objectives paragraph is as follows: 
 
Using loblolly pine plantations across the southeastern U.S as a focal application, our 
objectives are to 1) present and evaluate a new DA approach that integrates diverse data 
from multiple locations and experimental treatments with an ecosystem model to estimate 
the probability distribution of model parameters,  2) examine how the predictive capacity 
and optimized parameters differ between an assimilation approach that only uses 
environmental gradients and an assimilation approach that uses both environmental 
gradients and ecosystem manipulations, and 3) demonstrate the capacity of the DA 
approach to predict, with uncertainty, regional forest dynamics by simulating how forest 
productivity responds to drought, nutrient fertilization, and elevated atmospheric CO2 
across the Southeastern U.S.   

 



• Some sections in the methods could do with more explanation for why certain approaches 
were used (see comments below) or better links to the supplementary material, as I have 
just mentioned.  

 
See comments below for response 

 
• The introduction and discussion are quite long and this can prevent some of the key 

points from being highlighted. I suggest the authors try to cut down the text where they 
see fit, including some sentences that essentially are repetitions of earlier statements. 

 
We cut the introduction and removed paragraphs  

 
• The paragraphs in the results section could be separate sections with sub-headings in 

order to guide the reader, while at the same time the results could benefit from stronger 
links between each section, especially before line 522, in particular comparing the 
between the 1st and 2nd stages, or the different 2-stage approaches with the 1- stage 
approach. At the moment, the results section before line 522 is a bit fragmented, making 
it harder to weave together a coherent story that brings out the key points. 

 
We added sub-sections to the results section 

 
• Reading this manuscript I found myself asking: What do you expect from each experi- 

ment/approach? What will you gain/lose? Which approach is the right approach, going 
forward? These questions were largely answered in the discussion, and therefore I have 
made a suggestion below that perhaps some of the results and discussion could be merged 
within the sub-sections suggested above. This is a personal style issue however. 

 
We hope that updated analysis and discussion section helps answer these questions more 
clearly.  There are now sub-sections in the results and discussion that help provide 
continuity between the sections.   

 
• Finally, the authors may consider cutting other sections of the discussion that are not 

fully pertinent to the results as the paper is already quite full of detail. I would like to 
stress that despite this suggestion I did find the discussion to be interesting and 
comprehensive, but I would like to see the key messages highlighted more and am 
concerned the length of the paper may overwhelm the reader. 

 
We have cut out the paragraphs that aren’t directly related to the results.  These include 
the paragraph about the connections to the Community Land Model and the paragraph 
about the connections to sap-flux measurements 
 

Introduction 
• Line 97: “relative contribution of each environmental control should be separated in or- 

der to correctly parameterize the sensitivity to changes in the environment”. I agree to 
some extent but this is very hard to do and should we be separating each environmen- tal 
control, as the interaction between different environmental changes may produce 



different outcomes than if each were treated separately? I would be interested to hear the 
authors thoughts on this and what they think the impact of assimilating manipulation 
experiments data separately has on their results. 

 
Per reviewer #1 comment to shorten this paragraph, this sentence is now removed from 
the manuscript.  
 

• Line 124-128: See previous studies Wutzler and Carvalhais (2014) and Section 2 of 
MacBean et al. (2016) for further discussion on debate of how to deal with the issue of 
weighting to account for the number of observations and/or using a multi-stage assim- 
ilation approach to address challenges of assimilating a diverse set of observations. Both 
issues are the subject of debate in the literature. On the issue of weighting by the number 
of observations, from a mathematical standpoint there would be no need if the error 
covariance matrix is properly characterized; however, this is difficult to achieve in 
practice. Similarly, a joint or simultaneous assimilation, in which all observations are 
assimilated together, is mathematically more rigorous as the error covariance between the 
observations can be properly taken into account. I appreciate that you have dis- cussed 
the benefit of weighting by the type of data in the discussion, but this debate in the 
literature (for and against weighting, due to the abovementioned reasons) should perhaps 
be referred to more clearly in this study. 

 
Per reviewer #1 comment to shorten this paragraph and review #2 comment that the 
discussion lacks of the data weighting lacks precision, we cut this discussion.  

 
• Line 129: It is true of course that to constrain changes in biomass monthly time-scale 

models are sufficient, but note that monthly time-scale models are not the only way to 
overcome computational challenges associated with inverting a complex ecosystem 
model. There are sophisticated yet simple algorithms that dramatically improve the 
sampling of parameter space in a limited number of iterations. See the work of Jasper 
Vrugt: https://scholar.google.co.uk/citations?user=zkNXecUAAAAJ&hl=en&oi=ao 

 
We cut the discussion about monthly time-step models while shortening the paragraph 
but will definitely look more closely into the work by Vrught.  Thanks for highlighting! 
 

Methods 
 

• Section 2.1 It would be good if you could refer to references and/or relevant sections in 
the Supplement in Section2.1 to depict between standard characteristics of the 3PG 
model specific additions or alternative choices you made and (and to explain why you 
made those choices). For example:  

 
Added subsections to the Supplemental Material and added the references to 
Supplemental Material to the main text 
 

• Line 201-202: Was this additional function based on a published study? 
 

https://scholar.google.co.uk/citations?user=zkNXecUAAAAJ&hl=en&oi=ao


The function was developed as part of this study 
 

• Line 209: Is the site-index a new addition to the model that you developed? If so, from 
where?  

 
The text now reads: 
 
For unfertilized plots, we used site index (SI), a measure of the height of a stand at a 
specified age (25 years), to estimate FR.  This approach is in keeping with previous 
efforts (Gonzalez-Benecke et al., 2016; Subedi et al., 2015) 
 
 

• Lines 218-220: Why did you remove the dependence of total root allocation on FR for 
the DA study?  

 
We removed the dependence of total root allocation on FR because we separated root 
allocation into the coarse and fine roots.  Therefore, the previous function was not 
applicable.  Future studies should investigate how best to build this function back in and 
ask whether we currently have the observational constraints to parameterize it. 
 

• Line 229-231: A reference for or further explanation of this modification would be good 
here. –  

 
Added text 
 

• Line 245: “implicit irrigation in very dry conditions.” Is this a realistic feature of these 
sites? How does this affect the results? Especially for the water availability manipulation 
experiments. 

 
We added text explain how this assumption could influence the results.  “This assumption 
may cause the model to be less sensitive to low soil availability but the optimized 
parameterization may compensate.  “ 
 

• Line 250: do you mean to say “mean monthly GPP”? 
 

GPP was a sum for each month so ‘monthly GPP’ is correct.  Mean monthly GPP might 
imply that multiple months are averaged.   
 

• Line 251-252: How did you select the 31 parameters to be optimized? 
 

In the revised manuscript, we included more parameters that were optimized (six more). 
The eight parameters that were not optimized did not have specific data to use as a 
constraint (leaf boundary layer, conductance, canopy light extinction coefficient, etc).   

The paragraph in the results section now reads as follows: 



Our multi-site, multi-experiment, multi-data stream DA approach (Base assimilation) 
increased confidence in the model parameters (Table 5).  Averaged across parameters, 
the posterior 99% quantile range from the Base assimilation was 60% less than the prior 
range.  The largest reduction in parameter uncertainty was for the parameters associated 
with light-use efficiency (alpha) and the conversion of GPP to NPP (y), which on average 
had ranges that were 85% lower in the posterior than the prior.  Parameters associated 
with allocation and allometry had a 63% reduction in the range while parameters 
associated with mortality processes had 70% reduction in the range.  Parameters 
associated with environmental modifiers had the least reduction in the range with a 40% 
decrease.  In addition to the parameters associated with the 3-PG model, the model 
process error parameters for each data stream were well constrained with large 
reductions in the range (> 99% decrease; Supplemental Material Table 2) 

 
• Table 1: Please can you give the equation for how the sensitivity is calculated? Also, 

please could you explain why there is both a number and “vague” given for the uncer 
tainty of some parameters? If “vague”, please can you detail how you defined the prior 
uncertainty/ranges in the text?  
 
We cut out the sensitivity analysis and added more parameters to the optimization. 
 

• Finally, I appreciate you have a lot of information to con- vey and the tables are large, but 
it might be good to have all optimized parameters here and just indicated which ones are 
referred to in the discussion.  

 
We expanded the table to include all optimized parameters 
 

• As a general comment, it is hard to find some of the information you refer to in the 
Supplement (e.g. the other optimized parameters you refer to in the caption of Table 1). 
Please could you split the Supplement into numbered/indexed sections and then refer 
specifically to the relevant section to help the reader? 

 
We added section divisions to the supplemental material 
 

• Line 255-265: How did you initiate the biomass pools? Based on site-level data for the 
start of the simulation period? Please detail with references. If no site data were available, 
how sensitive were your DA experiments on the method used to initiate the biomass 
pools? Later note: I see you have addressed this in Section 2.4. It might be useful to refer 
to that section here so the reader is not questioning this in this section. 

 
We moved the text on the initialization described to the section on the model description 
 

• Section 2.2 Table 2: Last column – Table 3 instead of Table 4. Also, please could uou 
explain, or give references, for why the SD for observations sometimes varied between 
10% and 2.5% of the observation. 

 



To reduce confusion, we used 10% for LAI observations.  Future applications of the 
method can focus more on the influence of data uncertainty on parameter estimates.   
 

• Section 2.3 Equation 4: Please explain why you picked a uniform distribution between 
0.001 and 100?  

 
We added text to state that the bounds of 0.001 to 100 were designed allow the priors to 
be vague.  The bounds include reasonable ranges of standard deviation parameters. 
 

• Lines 348-349: Please explain why (only) 3 MCMC chains were run? Was a convergence 
metric such as R-hat used? 

 
We re-ran our optimization with the updates described at the top of the response.  We ran 
4 chains and used the Gelman R criteria to test for convergence.  The methods section 
now includes the following text: 
 
Four chains were run and tested for convergence using the Gelman–Rubin convergence 
criterion, where a value for the criterion less than 1.1 indicated an acceptable level of 
convergence.   
 

• Section 2.4 Lines 398-399: Although I understand the reasoning that these sites are close 
together and the most data rich, I don’t understand why you lump the Duke CO2 
enrichment site with DK3 and NC2 in the 1st stage when you stated that you wanted to 
test the influence of the CO2 fertilization – why not just test the Duke CO2 enrichment 
site by itself in the 1st stage and the remaining sites/plots in the 2nd stage to answer this 
question? 

 
Addressing this comment was the one of the primary reasons that we re-ran and 
simplified our analysis.  Our updated analysis removed the need for a 2-step analysis. 
(see beginning of this response for more info).   
 
 

• Further to the above point, I appreciate the extra experiments to understand the influ- 
ence of the CO2 fertilization on the posterior parameters, and the further experiments to 
determine the influence of the water treatments and nutrient addition. But how de- 
pendent are your results on which type of observation and/or treatment is assimilated in 
the 1st stage vs 2nd stage? Would the results different if you reverse the stages you have 
in your current set-up? Again, see Wutzler and Carvalhais (2014) and/or MacBean et al. 
(2016) who discuss these issues (as well as the issue of the weight of different types of 
data, as you discuss below. A pseudo-test with synthetic observations would have been 
useful prior to assimilating real data to determine whether the exact set-up of a 2-stage 
assimilation is sensitive to the order of observation assimilation as well as to confirm if 
the assimilation system is able to constrain the parameters to their correct values. 

 
Our updated analysis removed the need for a 2-step analysis. (see beginning of this 
response for more info) 



 
• Lines 430-465: While the tests and approaches put forward here are interesting, the text is 

dense. Any efforts the authors could make to simplify the description of the experiments 
and simulations performed (perhaps with the use of a table and simula- tion/experiment 
code names?) would likely help the reader. 

 
We reorganized and clarified this text in response to this comment and comments from 
Reviewer 1.  We have a Base (all plots, three unique parameters for the Duke site), 
NoExp (no experimental treatments, three unique parameters for the Duke site) and 
NoDkPars (all plots, no unique parameters for the Duke site) 
 

• Lines 467-475: The cross-validation exercise presented here is a useful one. Was a 
similar test used to assess the validity of the posterior distributions of the manipulation 
experiments, even though there are fewer sites? 

 
We added a cross validation of the experiments treatments.  We now include optimized 
parameter set that did not include the experimentally treated plots in the assimilation.  
This parameter set is now used to predict the experimental treatments.   
 

Results 
• Line 480-484: Description of the sensitivity analysis and choice of parameters should be 

in the methods. Was this a one-at-a-time sensitivity analysis or a full global method? 
What is the justification for using this approach versus an existing global sensitivity 
analysis that accounts for correlations between parameters and explores the whole 
parameter space (unless I have misunderstood what was done)?  

 
We cut the reference to the sensitivity analysis 
 

• Why did you fix the light extinction coefficient as opposed to the quantum yield 
parameter? 

 
We fixed the light extinction coefficient because it was more known than the canopy 
quantum yield.   
 

• Supplemental Table 3 and Table 5: As mentioned above I would suggest having all the 
optimized parameters in one table. I would also suggest putting the prior min/max in 
Table 5 even though it might mean having an extra line/column per parameter and taking 
this information out of table 1 so it is easier to see how well the optimization has 
constrained the parameters. 

 
We moved all parameters to the table in the main text and added the range uncertainty in 
the priors to the same table 
 

•  Finally, I would suggest splitting up the parameter tables into the sections you refer to in 
the text, e.g. “temperature sensitivity of quantum yield” or “physiological parameters” 
etc. This will make it easier for the reader to refer to the tables when reading the text. 



 
Done 
 

• Which experiment do the supplemental figures correspond to? The “ALL” experiment? 
This should be detailed. 

 
The assimilation approaches have been renamed and clarified in the supplemental 
figures. 
 

• Are you talking about the 1st stage experiment in the first paragraph of the results? If so, 
it would be good to specify this, and I would further suggest splitting the results into 
sections to more easily guide the reader. 

 
We clarified by using the names of the data assimilation approaches.  Our results section 
is better organized in response to review 2. 

 
• Do you discuss DK+NC2-fert in the results, or have I missed it? Perhaps more needed on 

the 1-stage versus 1st and 2nd stages before you discuss the experiments with and 
without nutrient and water addition (i.e. before line 522)? 

 
Our updated analysis did not require the 2-stage approach so we no longer need to 
report the DK+NC2-fert results.  This helps simplify the description of the results. 
 

• Figure 5 comes before Figure 4 in the text – switch around? 
 

Fixed in text 
 

• Lines 507-515: I am a bit confused by the sentence “The two-stage assimilation was 
critical for constraining the CO2 quantum yield enhancement parameter (Calpha700)” as 
you then go on to say (and show, in Figure 5) that the 1 stage resulted in a narrower 
uncertainty interval? I guess you mean that despite the higher 95% confidence interval, 
the 2-stage approach results in a more realistic parameter value but I am not at all sure on 
that? Please could you clarify this in the text? 

 
Paragraph was modified in the revisions 
 

• Line 517: I would suggest putting the names of the soil fertility parameters in brackets to 
aid the reader, or again put sub-headings in the parameter tables. 

 
Paragraph was removed during revisions 
 

• As you did not have a strong difference in predictive capability between experiments 
with and without nutrient or water addition, even though you had different parameters, 
that presumably means you have a certain amount of model equifinality? You discuss and 
show the difference in model behavior as a result of the different approaches in Figures 5 
– 7, but you do not discuss which one you think leads to the right behav- ior? Do you 



have an idea? Perhaps a synthetic experiment with pseudo-observations taken from the 
model simulations might help with this (a so-called “observing system simulation 
experiment”, or OSSE)?  

 
This was a very insightful comment.  Our response reflects the updated analysis 
described above that has two assimilation approaches: with and without ecosystem 
experiments.  Our new Figure 5 (the bar graph with the experimental responses from the 
observations and model predictions) helps support the following: 
- Including experiments in the assimiliation substantially increases the predictive 

capacity of the model in the CO2 experiments. 
- The predictive capacity of drought, irrigation, and nutrient fertilization experiments 

did not substantially change whether experiments where included or not.   
 
We think that an OSSE would be a great follow on study that more specifically explores 
of the issues that are brought up in this analysis.  An OSSE could explore how locations 
of plots within a region and the different types of individual experiments influence the 
ability to retrieve known parameters.  Such a study would build on the description of the 
cost function and general approach presented in this manuscript.  Since we do not 
include an OSSE, we now try to avoid making general statements in the discussion that 
would require an OSSE to quantitatively support. 
 
 

• Lines 522 onwards show very interesting results. However, I would suggest that the 
patterns detailed in last two paragraphs (Lines 553-572) would benefit from explana- 
tions linking back a bit more (not just referring to figures) to the different model behav- 
ior/mechanisms identified and discussed in the RW-fert and RW-water sections just 
above.  

 
In response to Reviewer 1, we cut the results of the regional simulations from the RW-fert 
and RW-water simulations 

Discussion  

• First paragraph is more of a summary than a discussion and could be cut or added to 
conclusions.  

We prefer to provide a summary at the beginning of discussions to remind the reviewer of 
key points. 

• Although perhaps a little too long, this is a useful discussion that ties the results to- gether 
and answers some of the questions I raised in my comments on the results. Perhaps it 
would be useful to combine some of the summary points raised in the dis- cussion with 
relevant sections in the results with separate sub-headings as I mentioned above.  

We added subheadings to the discussion 



• Lines 650-652: Interesting point and in addition, as I have mentioned above, I think a 
synthetic experiment would also be very helpful in this regard.  

We agree that a synthetic experiment would be an excellent next study.  The synthetic 
experiment could create ‘fake’ region with different environmental gradients and explore 
the types of gradients that allow for the retrieval of parameters from the OSSE study. 

Minor comments  

• Line 87: Do you mean the “assimilation of manipulation experimental data”, rather than 
the “assimilation of experiments”?  

Yes. Fixed 

• Line 88: two or more  

Fixed 

MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schürmann, G.: Consistent as- 
similation of multiple data streams in a carbon cycle data assimilation system, Geosci. Model 
Dev., 9, 3569-3588, doi:10.5194/gmd-9-3569-2016, 2016 
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Abstract 36 

Predicting how forest carbon cycling will change in response to climate change and management 37 

depends on the collective knowledge from measurements across environmental gradients, 38 

ecosystem manipulations of global change factors, and mathematical models. Formally 39 

integrating these sources of knowledge through data assimilation, or model-data fusion, allows 40 

the use of past observations to constrain model parameters and estimate prediction uncertainty. 41 

Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from 42 

both environmental gradients and experimental studies to constrain model parameters. Here, we 43 

introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for 44 

Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, 45 

water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the 46 

Southeastern U.S. to constrain parameters in a modified version of the 3-PG forest growth 47 

model. The observations included major experiments that manipulated atmospheric carbon 48 

dioxide (CO2) concentration, water, and nutrients, along with non-experimental surveys that 49 

spanned environmental gradients across an 8.6 x 105 km2 region. We optimized regionally 50 

representative posterior distributions for model parameters, which dependably predicted data 51 

from plots withheld from the data assimilation.  While the mean bias in predictions of N 52 

fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, 53 

future work needs to focus modifications to model structure that decrease the bias in predictions 54 

of drought experiments. Predictions of how growth responded to elevated CO2 strongly 55 

depended on whether ecosystem experiments were assimilated and whether the assimilated field 56 

plots in the CO2 study were allowed to have different mortality parameters than the other field 57 

plots in the region.  We present predictions of stem biomass productivity under elevated CO2, 58 
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decreased precipitation, and increased nutrient availability that include estimates of uncertainty 86 

for the Southeastern U.S.  Overall, we: 1) demonstrated how three decades of research in 87 

southeastern U.S. planted pine forests can be used to develop DA techniques that use multiple 88 

locations, multiple data streams, and multiple ecosystem experiment types to optimize 89 

parameters, and 2) developed a tool for the development of future predictions of forest 90 

productivity for natural resource managers that leverage a rich dataset of integrated ecosystem 91 

observations across a region. 92 
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1 Introduction 101 

Forest ecosystems absorb and store a large fraction of anthropogenic carbon dioxide (CO2) 102 

emissions (Le Quere et al., 2015; Pan et al., 2011) and supply wood products to a growing 103 

human population (Shvidenko et al., 2005). Therefore, predicting future carbon sequestration and 104 

timber supply is critical for adapting forest management practices to future environmental 105 

conditions and for using forests to assist with the reduction of atmospheric CO2 concentrations. 106 

The key sources of information for developing these predictions are results from global change 107 

ecosystem manipulation experiments, observations of forest dynamics across environmental 108 

gradients, and process-based ecosystem models. The challenge is integrating these three sources 109 

into a common framework for creating probabilistic predictions that provide information on both 110 

the expected future state of the forest and the probability distribution of those future states. 111 

 112 

Data assimilation (DA), or data-model fusion, is an increasingly used framework for integrating 113 

ecosystem observations into ecosystem models (Luo et al., 2011; Niu et al., 2014; Williams et 114 

al., 2005). DA integrates observations with ecosystem models through statistical, often Bayesian, 115 

methods that can generate probability distributions for ecosystem model parameters and initial 116 

states. DA allows for the explicit accounting of observational uncertainty (Keenan et al., 2011), 117 

the incorporation of multiple types of observations with different time scales of collection 118 

(MacBean et al., 2016; Richardson et al., 2010), and the representation of prior knowledge 119 

through informed parameter prior distributions or specific relationships among parameters 120 

(Bloom and Williams, 2015).  121 

 122 

Using DA to parameterize ecosystem models with observations from multiple locations that 123 
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leverage ecosystem manipulation experiments and environmental gradients will allow for 142 

predictions to be consistent with the rich history of global change research in forest ecosystems. 143 

Ecosystem manipulation experiments provide a controlled environment in which data collected 144 

can be used to describe how forests acclimate and operate under altered environmental 145 

conditions (Medlyn et al., 2015) and can potentially allow for the optimization of model 146 

parameters associated with the altered environmental factor in the experiment. Furthermore, the 147 

assimilation of data from ecosystem manipulation experiments may increase parameter 148 

identifiability (reducing equifinality (Luo et al., 2009)), where two parameters have 149 

compensating controls on the same processes, by isolating the response to a manipulated driver. 150 

Observations that span environmental gradients include measures of forests ecosystem stocks 151 

and fluxes across a range of climatic conditions, nutrient availabilities, and soil water dynamics. 152 

These studies leverage time and space to quantify the sensitivity of forest dynamics to 153 

environmental variation.  However, covariation of environmental variation can pose challenges 154 

separating the responses to individual environmental factors.  Overall, assimilating observations 155 

from a region that includes environmental gradients and manipulation experiments is a useful 156 

extension of prior DA research focused on DA at a single site with multiple types of observations 157 

(Keenan et al., 2012; Richardson et al., 2010; Weng and Luo, 2011).  158 

 159 

Southeastern U.S. planted pine forests are ideal ecosystems for exploring the application of DA 160 

to carbon cycle and forest production predictions. These ecosystems are dominated by loblolly 161 

pine (Pinus taeda L.), thus allowing for a single parameter set to be applicable to a large region 162 

containing many soil types and climatic gradients. Loblolly pine represents more than one half of 163 

the standing pine volume in the southern United States (11.7 million ha) and is by far the single 164 



 

 6 

most commercially important forest tree species for the region, with more than 1 billion 165 

seedlings planted annually (Fox et al., 2007; McKeand et al., 2003). There is also a rich history 166 

of experimental research located across the region focused on global change factors that have 167 

included nutrient addition (Albaugh et al., 2016; Carlson et al., 2014; Raymond et al., 2016), 168 

water exclusion (Bartkowiak et al., 2015; Tang et al., 2004; Ward et al., 2015; Will et al., 2015), 169 

and water addition experiments (Albaugh et al., 2004; Allen et al., 2005; Samuelson et al., 2008). 170 

The region also includes a multi-year ecosystem CO2 enrichment study (McCarthy et al., 2010). 171 

Furthermore, many of these experiments are multi-factor with water exclusion by nutrient 172 

addition (Will et al., 2015), water addition by nutrient addition (Albaugh et al., 2004; Allen et al., 173 

2005; Samuelson et al., 2008), and CO2 by nutrients addition treatments (McCarthy et al., 2010; 174 

Oren et al., 2001). Beyond experimental treatments, Southeastern U.S. loblolly pine ecosystems 175 

include at least two eddy-covariance sites with high frequency measurements of C and water 176 

fluxes along with biometric observations over many years (Noormets et al., 2010; Novick et al., 177 

2015), and sites with multi-year sap flow data (Ewers et al., 2001; Gonzalez-Benecke and 178 

Martin, 2010; Phillips and Oren, 2001). Finally, there are studies that include plots that span the 179 

regional environmental gradients and extend back to the 1980s (Burkhart et al., 1985). Overall, 180 

the multi-decadal availability of observations of C stocks (or biomass), leaf area index (LAI), C 181 

fluxes, water fluxes, and vegetation dynamics in plots with experimental manipulation and plots 182 

across environmental gradients, is well suited to potentially constrain model parameters and 183 

predictions of how carbon cycling responds to environmental change.  184 

 185 

Using loblolly pine plantations across the southeastern U.S as a focal application, our objectives 186 

were to 1) develop and evaluate a new DA approach that integrates diverse data from multiple 187 
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locations and experimental treatments with an ecosystem model to estimate the probability 188 

distribution of model parameters,  2) examine how the predictive capacity and optimized 189 

parameters differ between an assimilation approach that only uses environmental gradients and 190 

an assimilation approach that uses both environmental gradients and ecosystem manipulations, 191 

and 3) demonstrate the capacity of the DA approach to predict, with uncertainty, regional forest 192 

dynamics by simulating how forest productivity responds to drought, nutrient fertilization, and 193 

elevated atmospheric CO2 across the Southeastern U.S.   194 

 195 

2 Methods 196 

 197 

2.1 Observations 198 

We used thirteen different data streams from 294 plots at 187 unique locations spread across the 199 

native range of loblolly pine trees to constrain model parameters (Table 1; Figure 1).  The data 200 

streams covered the period between 1981 to 2015. The Forest Modeling Research Cooperative 201 

(FMRC) Thinning Study provides the largest number of plots that span the region (Burkhart et 202 

al., 1985).  In this study, we only used the control plots that were not thinned.  The Forest 203 

Productivity Cooperative (FPC) Region-wide 18 (RW18) study included control and nutrient 204 

fertilization addition plots that span the region (134.4 kg ha-1 N + 13.44 kg ha-1 P biannually) 205 

(Albaugh et al., 2015).  The PINEMAP study included four locations dispersed across the region 206 

that included a replicated factorial experiment with control, nutrient fertilization (224 kg ha-1 N + 207 

27 kg ha-1 P + micronutrients once at project initiation), throughfall reduction (30% reduction), 208 

and fertilization by throughfall treatments (Will et al., 2015).  The SETRES study was located at 209 

a single location and included replicated control, irrigation (~650 mm of added water per year), 210 
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nutrient fertilization (~100 kg N ha-1 + 17 kg P ha-1 with micronutrients applied annually with 211 

absolute amount depending on foliar nutrient ratios), and fertilization by irrigation treatments 212 

(Albaugh et al., 2004). The Waycross study was a single site with a non-replicated fertilization 213 

treatment. The annual application of nutrient fertilization was focused on satisfying the nutrient 214 

demand by the trees and resulted in one most productive stands in the region (Bryars et al., 215 

2013). These five studies included data streams of stand stem biomass (defined as the sum of 216 

stemwood, stembark and branches) and live stem density. Waycross and SETRES included LAI 217 

measurements from litterfall traps (Waycross) or estimates from LICOR LAI-2200 (SETRES).  218 

SETRES also included fine root and coarse root measurements.  In the PINEMAP, SETRES, and 219 

RW18 studies we only used foliage biomass estimates from the control plots.  We excluded the 220 

foliage biomass estimates from the treatment plots because they were derived from allometric 221 

models that may not have captured changes in allometry due to the experimental treatment.  We 222 

did use LAI measurements from both control and treatment plots where available (SETRES). 223 

 224 

We also included observations the Duke FACE study where the atmospheric CO2 was increased 225 

by 200 ppm above ambient concentrations. Based on the data presented in McCarthy et al. 226 

(2010) the study included six control plots, four CO2 fumigated rings (including the unfertilized 227 

half of the prototype), two nitrogen fertilization treatments (115 kg N ha-1 yr-1 applied annually) , 228 

and one CO2 by nitrogen addition treatment (fertilized half of prototype). The Duke FACE study 229 

included observations of stem biomass (loblolly pine and hardwood), coarse root biomass 230 

(loblolly pine and hardwood), fine root biomass (combined loblolly pine and hardwood), stem 231 

density (loblolly pine only), leaf turnover (combined loblolly pine and hardwood), fine root 232 

production (combined loblolly pine and hardwood), and monthly LAI (loblolly pine and 233 



 

 9 

hardwood). 234 

 235 

Finally, we included two Ameriflux sites with eddy-covariance towers in loblolly pine stands. 236 

The US-DK3 site was located in the same forest as the Duke FACE site described above (Novick 237 

et al., 2015).  The US-NC2 site was located in coastal North Carolina (Noormets et al., 2010).  238 

We used monthly gross ecosystem production (GEP; modeled gross primary productivity from 239 

net ecosystem exchange measured at an eddy-covariance tower) and evapotranspiration (ET) 240 

estimates from the sites.  The monthly GET and ET were gap-filled by the site PI. The GEP was 241 

a flux partitioned product created by the site PI. The biometric data from the US-DK3 site was 242 

assumed to be the same as the first control ring.  The biometric data from the US-NC2 site 243 

included observations of stem biomass (loblolly pine and hardwood), coarse root biomass 244 

(loblolly pine and hardwood), fine root biomass (combined loblolly pine and hardwood), stem 245 

density (loblolly pine only), leaf turnover (combined loblolly pine and hardwood), and fine root 246 

production (combined loblolly pine and hardwood). 247 

 248 

2.2 Ecosystem Model 249 

We used a modified version of the Physiological Principles Predicting Growth (3-PG) model to 250 

simulate vegetation dynamics in loblolly pine stands (Bryars et al., 2013; Gonzalez-Benecke et 251 

al., 2016; Landsberg and Waring, 1997). 3-PG is a stand-level vegetation model that runs at the 252 

monthly time-step and includes vegetation carbon dynamics and a simple soil water bucket 253 

model (Figure 2). While a complete description of the 3-PG model and our modifications can be 254 

found in the Supplemental Material Section 1, the key concept for interpreting the results is that 255 

gross primary productivity (GPP) was simulated using a light-use efficiency approach where the 256 
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absorbed photosynthetically active radiation (APAR) was converted to carbon based on a 261 

quantum yield (Supplemental Material Section 1.1). Quantum yield was simulated using a 262 

parameterized maximum quantum yield (alpha) that was modified by environmental conditions 263 

including atmospheric CO2, available soil water (ASW) and soil fertility (Supplemental Material 264 

Section 1.2-1.3). The ASW and soil fertility modifiers were values between 0 and 1, while the 265 

atmospheric CO2 modifier had a value of 1 at 350 ppm (thus values greater than 1 at higher CO2 266 

concentrations).   267 

 268 

Elevated CO2 modified tree physiology by increasing quantum yield, based on an increasing but 269 

saturating relationship with atmospheric CO2 (Supplemental Material Section 1.2). Based on 270 

initial results from the data assimilation, we also added a function where the allocation to foliage 271 

relative to stem biomass decreased as atmospheric CO2 increased (Supplemental Material Section 272 

1.2). ASW and quantum yield were positively related through a logistic relationship between 273 

relative ASW and the quantum yield modifier, where relative ASW was the ratio of simulated 274 

ASW to a plot-level maximum ASW. Soil fertility and quantum yield were proportionally 275 

related, where quantum yield was scaled by an estimate of relative stand-level fertility (a value of 276 

1 was the maximum fertility). The fertility modifier (FR) was constant throughout a simulation 277 

of a plot and was either based on site characteristics or directly optimized as a stand-level 278 

parameter (Supplemental Material Section 1.3). For plots with nutrient fertilization, FR was a 279 

directly optimized parameter or set to 1, depending on the level of fertilization (see below).  For 280 

unfertilized plots, we used site index (SI), a measure of the height of a stand at a specified age 281 

(25 years), to estimate FR.  This approach is in keeping with previous efforts (Gonzalez-Benecke 282 

et al., 2016; Subedi et al., 2015); however, SI does not solely represent nutrient availability of an 283 
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ecosystem. For a given climate SI captures differences in soil fertility, where a lower SI 304 

corresponded to a site with lower fertility, but regional variation in SI also included the influence 305 

of climate on growth rates that were already accounted for in the other environmental modifiers 306 

in the 3-PG model. When a climate term is not used in the empirical FR model, FR is relative to 307 

the highest SI in the region, which does not occur in the northern extent of the region even in 308 

fertilized plots due to climatic constraints. Thus, we also included the historical (1970-2011) 35-309 

year mean annual temperature (MAT) as an additional predictor, resulting in an empirical 310 

relationship that predicted FR as an increasing, but saturating, function of SI within areas of 311 

similar long-term temperature.  For our application of the 3-PG model using DA, we removed 312 

the previously simulated dependence of total root allocation on FR (Bryars et al., 2013; 313 

Gonzalez-Benecke et al., 2016) because we separated coarse and fine roots. Other environmental 314 

conditions influenced GPP, including temperature, frost days, and vapor pressure deficit (VPD). 315 

A description of these modifiers can be found in Supplemental Material Section 1.2. 316 

 317 

Each month, net primary production (a parameterized and constant proportion of GPP) was 318 

allocated to foliage, stem (stemwood, stembark, and branches), coarse roots, and fine roots 319 

(Supplemental Material Section 1.4). Differing from previous applications of 3-PG to loblolly 320 

pine ecosystems, we modified the model to simulate fine roots and coarse roots separately. 3-PG 321 

also simulated simple population dynamics by including stem density as a state variable. Stem 322 

density and stem biomass pools were reduced by both density-dependent mortality, based on the 323 

concept of self-thinning (Landsberg and Waring, 1997), and density-independent mortality, a 324 

new modification where a constant proportion of individuals die each month (Supplemental 325 

Material Section 1.5). Finally, we added a simple model of hardwood understory vegetation to 326 
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enable the assimilation GEP and ET observations from eddy-covariance tower studies with 352 

significant understories (Supplemental Material Section 1.7).  353 

 354 

The water cycle was a simple bucket model with transpiration predicted using a Penman-355 

Monteith approach (Bryars et al., 2013; Gonzalez-Benecke et al., 2016; Landsberg and Waring, 356 

1997)(Supplemental Material Section 1.6). The canopy conductance used in the Penman-357 

Monteith subroutine was modified by environmental conditions. The modifiers included the 358 

same ASW and VPD modifier as used in the GPP calculation. Maximum canopy conductance 359 

occurred when simulated LAI exceeded a parameterized value of LAI (LAIgcx). Evaporation 360 

was equal to the precipitation intercepted by the canopy. Runoff occurred when the ASW 361 

exceeded a plot-specific maximum ASW.  As in prior applications of 3-PG, ASW was not 362 

allowed take a value below a minimum ASW, resulting in an implicit irrigation in very dry 363 

conditions.  This assumption may cause the model to be less sensitive to low ASW but the 364 

optimized parameterization may compensate.   365 

 366 

The 3-PG model used in this study simulated the monthly change in eleven state variables per 367 

plot: four stocks for loblolly pines, five stocks for understory hardwoods, loblolly pine stem 368 

density (stems ha-1), and ASW. The key fluxes that were used for DA included monthly GEP, 369 

monthly ET, annual root turnover, and annual foliage turnover. In total, 46 parameters were 370 

required by 3-PG. The model required mean daily maximum temperature, mean daily minimum 371 

temperature, mean daily PAR, total frost days per month, total rain per month, annual 372 

atmospheric CO2, and latitude. Each plot also required maximum ASW, SI, MAT, and the initial 373 

condition of the eleven state variables as model inputs (Figure 3).  374 

 375 
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We used the first observation at the plot as the initial conditions for the loblolly pine vegetation 403 

states (foliage biomass, stem biomass, coarse root biomass, fine root biomass, and stem number). 404 

When observations of coarse biomass and fine root biomass were not available, these stocks 405 

were initialized as a mean region-wide proportion of the observed stem biomass. However, the 406 

value of initial root biomass in plots without observations was not important because root 407 

biomass did not influence any other functions in the model. The hardwood understory stocks at 408 

US-DK3 and US-NC2 were also initialized using the first set of observations. Initial fine root 409 

and coarse biomass were distributed between loblolly pine and hardwoods based on their relative 410 

contribution of total initial foliage biomass. The initialized ASW was assumed to be equal to the 411 

maximum ASW because most plots were initialized in winter months when plant demand for 412 

water was minimal. The maximum ASW in each plot was extracted from the SSURGO soils 413 

dataset (Staff, 2016). The value we used corresponded to the maximum ASW for the top 1.5 m 414 

of the soil. We assumed that the minimum ASW was zero. Because we focused on a region-wide 415 

optimization, we used region-wide 4-km estimates of observed monthly meteorology as inputs 416 

and to calculate the 35-year MAT for each plot (Abatzoglou, 2013). SI was based on height 417 

measurements at age 25 in each plot or calculated by combining observations of height at 418 

younger ages with an empirical model (Dieguez-Aranda et al., 2006). 419 

 420 

We simulated ecosystem manipulation experiments in the 3-PG model by altering the 421 

environmental modifiers or by modifying the environmental inputs. Nutrient addition 422 

experiments were simulated by setting FR equal to 1 for the studies that applied nutrients at 423 

regular interval to remove nutrient deficiencies (RW18, SETRES, Waycross).  FR was directly 424 

estimated for fertilized plots in two of the studies either because nutrients were only added once 425 
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at the beginning of the study (PINEMAP), thus potentially not removing nutrient limitation, or 563 

nitrogen was the only element added (Duke FACE), thus allowing the potential for nutrient 564 

limitation by other elements. For these plots, we also assumed that the FR of the fertilized plot 565 

was equal to or larger than the control plot. Throughfall exclusion experiments were simulated 566 

by decreasing the throughfall by 30% in the treatment plots. The SETRES irrigation experiments 567 

were simulated by adding 650 mm to ASW between April and October. CO2 enrichment 568 

experiments were simulated by setting the atmospheric CO2 input equal to the treatment mean 569 

from the elevated CO2 rings (570 ppm). One plot (US-NC2) included a thinning treatment during 570 

the period of observation. We simulated the thinning by specifying a decrease in the stem count 571 

that matched the proportion removed at the site, with the biomass of each tree equivalent to the 572 

average of trees in the plot. 573 

 574 

2.3 Data assimilation method 575 

We used a hierarchal Bayesian framework to estimate the posterior distributions of parameters, 576 

latent states of stocks and fluxes, and process uncertainty parameters.  The latent states 577 

represented a value of the stock or flux before uncertainty was added through measurement. The 578 

approach was as follows. 579 

 580 

Consider a stock or flux (m) for a single plot (p) at time t (qp,m,t).  qp,m,t is influenced by the 581 

processes represented in the 3-PG model and a normally distributed model process error term,  582 

 583 

 &',),*~	N(f θ,FRp , 1))   Equation 1 584 
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where 3 is a vector of parameters that are optimized, FRp is the site fertility, and 1) is the model 601 

process error. Not shown are the vector of parameters that were not optimized (Supplemental 602 

Material Table 1), the plot ASW, an array climate inputs, and the initial conditions because these 603 

were assumed known and not estimated in the hierarchical model.  The process error assumed 604 

that the error linearly scales with the magnitude of the prediction:    605 

 606 

1)4 = 6) + 8)f θ,FRp     Equation 2 607 

 608 

While the structure of the Bayesian model allowed for all data streams to have process uncertainty 609 

that scales with the prediction, in this application we only allowed stem biomass, GEP, and ET 610 

process uncertainty to scale because they had large variation across space (stem biomass) and 611 

through time (i.e., there should be lower process uncertainty in the winter when GEP is lower).  612 

For the other data streams, the linear scaling term was removed by fixing 8m at 0.	613 

	614 

 FRp did not have an explicit probability distribution. Rather the probability density evaluated to 615 

1 if the plot was not fertilized, thus causing FRp to be estimated from SI and MAT (Supplemental 616 

Material Equation 15), or if it was a fertilized plot and has an FRp equal or higher than that of its 617 

non-fertilized control plot.  The probability density evaluated to 0 if the estimated FRp in a 618 

fertilized plot was less than the FRp in the control plot or FRp was not contained in the interval 619 

between 0 and 1. 620 

 621 
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FRp~

1 if non-fertilized,	FRp ≥ 0, and FRp ≤ 1
1 if FRp = 1 and fertilization levels are assumed to remove nutrient deficiencies
0 if FRp < 1 and fertilization levels are assumed to remove nutrient deficiencies 

1 if fertilized but levels are not assumed to remove  deficiencies and FRp≥FR of control plot 
0 if fertilized but levels are not assumed to remove  deficiencies and FRp<FR of control plot

0		if	FRp < 0	or	FRp > 1

  622 

          Equation 3 623 

 624 

Our model included the effect of observational errors for measurements of stocks and fluxes.  625 

For a single stocks or flux for a plot at time t there was an observation (yp,m,t).  The normally 626 

distributed observation error model was:  627 

 628 

C',),*~	N(&',),*, D',),*4 )  Equation 4    629 

 630 

where D',),*4   represented the measurement error of the observed state or flux. By including the 631 

observational error model, qp,m,t represented the latent, or unobserved, stock or flux. The variance 632 

was unique to each observation because it was represented as a proportion of the observed value.  633 

The  D',),*4   was assumed known (Table 1) and not estimated in the hierarchical model. 634 

 635 

The hierarchical model required prior distributions for all optimized parameters, including the 636 

parameters for the 3-PG model (3), FRp, and the process error parameters.  The prior 637 

distributions for 3 are specified in Table 3.  Some parameters were informed by previous 638 

research in loblolly pine ecosystems while other parameters were ‘non-informative’ with flat 639 

distributions (termed ‘vague’ in Table 3).    The prior distributions for the process error 640 

parameters were non-informative and had a uniform distribution with upper and lower bounds 641 



 

 17 

that spanned the range of reasonable error terms. 642 

6)~E 0.001,100  Equation 5 643 

8)~E(0,10) Equation 6 644 

 645 

By combining the data, process, and prior models, our joint posterior that includes all thirteen 646 

data streams, plots, months with observations, and fitted parameters was 647 

 648 

G H, I, J, K L, M, GNOPNQ) ∝ 649 

N(&',),*|f θ,FRp , 6) + 8)f θ,FRp )
T
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          Equation 7 653 

where bolded components represent vectors, P is the total number of plots, M is the total number 654 

of data streams, T is the total months with observations, and F is the total number of 3-PG 655 

parameters that are optimized. 656 

 657 

We numerically estimated the joint posterior distribution using the Monte-Carlo Markov Chain – 658 

Metropolis Hasting (MCMC-MH) algorithm (Zobitz et al., 2011). This approach has been widely 659 

used to approximate parameter distributions in ecosystem DA research (Fox et al., 2009; 660 

Trudinger et al., 2007; Williams et al., 2005; Zobitz et al., 2011). Briefly, the algorithm proposed 661 
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new values for the model parameters, uncertainty parameters, latent states, and FR. The proposed 662 

values were generated using a random draw from a normal distribution with a mean equal to the 663 

previously accepted value for that parameter and standard deviation equal to the parameter-664 

specific jumping size. The ratio of the proposed calculation of Equation 7 to the previously 665 

accepted calculation of Equation 7 was used to determine if the proposed parameter was 666 

accepted.  If the ratio was greater than or equal to 1 the proposed value was always accepted.  If 667 

the ratio was less than 1, a random number between 0 and 1 was drawn and the proposed value 668 

was accepted if the ratio was greater than the random number.  This allowed less probable 669 

parameter sets to be accepted, thus sampling the posterior distribution.  We adapted the size of 670 

the jump size for each parameter to ensure the acceptance rate of the parameter set was between 671 

22% and 43% (Ziehn et al., 2012) by adjusting the jump size if the acceptance rate for a 672 

parameter was outside the 22 – 43% range. All MCMC-MH chains were run for 30 million 673 

iterations with the first 15 million iterations discarded as the burn-in.  Four chains were run and 674 

tested for convergence using the Gelman–Rubin convergence criterion, where a value for the 675 

criterion less than 1.1 indicated an acceptable level of convergence.  We sampled every 1000th 676 

parameter in the final 15 million iterations of the MCMC-MH chain and used this thinned chain 677 

in the analysis described below. The 3-PG model and MCMC-MH algorithm were programed in 678 

FORTRAN 90 and used OpenMP to parallelize the simulation of each plot within an iteration of 679 

the MCMC-MH algorithm. 680 

 681 

2.4 Data assimilation evaluation 682 

Using the observations, model, and hierarchical Bayesian method described above, we 683 

assimilated both the non-manipulated and manipulated plots (Base assimilation; Table 4). We 684 
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assessed model performance first by calculating the RMSE and bias of stem biomass predictions 687 

(the most common data stream).  In the evaluation, we only used the most recent observed values 688 

to increase the time length between initialization and validation. Second, we assessed the 689 

predictive capacity by comparing model predictions to data not used in the parameter 690 

optimization in a cross-validation study. In this evaluation, we repeated the Base assimilation 691 

without 160 FMRC thinning study plots (Table 2), predicted the 160 plots using the median 692 

parameter values, and calculated the RMSE and bias stem biomass of the independent set of 693 

plots.  Rather than holding out all 160 plots from a single assimilation and not generating a 694 

converged chain, we divided the 160 plots into four unique sets of 40 plot and repeated the 695 

assimilation for each set. Finally, we compared the predicted responses to experimental 696 

manipulation to the observed responses. We focused the comparison on the percentage 697 

difference in stem biomass between the control and treatment plots.  We used a paired t-test to 698 

test for differences between the predicted and observed responses within an experimental type 699 

(irrigated, drought, nutrient addition, and elevated CO2).  We combined the single and multi-700 

factor treatments for analysis.  For the analysis of the nutrient addition studies we only used plots 701 

where FR was assumed to be 1 so that we were able to simulate the treatments without requiring 702 

the optimization of a site-specific FR parameter. 703 

 704 

During preliminary analysis, we found that the Base assimilation predicted lower stem biomass 705 

than observed in the elevated CO2 plots in the Duke FACE study.  Further analysis investigating 706 

the cause of the bias in the CO2 plots showed that three parameters (wSx1000, ThinPower, and 707 

pCRS) were required to be unique to the Duke FACE study in order to reduce the bias.  708 

Therefore, the Base assimilation included unique parameters for wSx1000, ThinPower, and 709 
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pCRS parameters in all plots in the Duke FACE and US-DK3 studies.  To highlight the need for 710 

the site-specific parameters, we repeated the Base assimilation approach without the three 711 

additional parameters for the Duke studies (NoDkPars assimilation). 712 

 713 

2.5 Sensitivity to inclusion of ecosystem experiments 714 

We also evaluated how parameter distributions and the associated environmental sensitivity of 715 

model predictions depended on the inclusion of ecosystem experiments in data assimilation.  716 

First, we repeated the Base assimilation, this time excluding the plots that included the 717 

manipulated treatments (NoExp).  We removed all manipulation types at once, rather than 718 

individual experimental types, because all experimental types involved multi-factor studies. The 719 

NoExp assimilation had the same number of data streams as the Base assimilation because it 720 

included the control treatments from the experimental studies.  The NoExp assimilation 721 

represented the situation where only observations across environmental gradients were available.  722 

Second, we compared the parameterization of the ASW, soil fertility, and atmospheric CO2 723 

environmental modifiers from the Base to the NoExp assimilation. The modifiers equations are 724 

described in Supplemental Material Section 1.2 and 1.3.   Third, we repeated the same 725 

independent validation exercise for the 160 FMRC plots as described above for the Base 726 

assimilation. Fourth, we predicted the treatment plots in the irrigated, drought, nutrient addition 727 

(only plots where FR was assumed to be 1), and elevated CO2 plots.  As for the Base 728 

assimilation, we used a t-test to compare the experimental response between the NoExp 729 

assimilation and observed and between the NoExp and Base assimilations.  Since the 730 

experimental treatments were not used in the optimization, this was an independent evaluation of 731 

predictive capacity. 732 
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 733 

2.6 Regional predictions with uncertainty 734 

To demonstrate the capacity of the data assimilation system to create regional predictions with 735 

uncertainty, we simulated the regional response to a decrease in precipitation, an increase in 736 

nutrient availability, and an increase in atmospheric CO2 concentration, each as a single factor 737 

change from a 1985-2011 baseline.  Each prediction included uncertainty by integrating across 738 

the parameter posterior distributions using a Monte-Carlo sample of the parameter chains. Our 739 

region corresponded to the native range of loblolly pine and used the HUC12 (USGS 12-digit 740 

Hydrological Unit Code) watershed as the scale of simulation. For each HUC12 in the region we 741 

used the mean SI, 30-year mean annual temperature, ASW aggregated to the HUC12 level, and 742 

monthly meteorology from Abatzoglou (2013) as inputs (Figure 3).  The SI of each HUC12 was 743 

estimated from biophysical variables in the HUC12 using the method described in Sabatia and 744 

Burkhart  (2014).  This SI corresponded to an estimated SI for stands without intensive 745 

silvicultural treatments or advanced genetics of planted stock.  746 

 747 

To sample parameter uncertainty, we randomly drew 500 samples from the Base assimilation 748 

MCMC chain and simulated forest development from a 1985 planting to age 25 in 2011 in each 749 

HUC.  We chose age 25 as the final age because it is a typical age of harvest in the region.  For 750 

each sample, we repeated the regional simulation with 1) a 30% reduction in precipitation, 2) FR 751 

set to 1, and 3) atmospheric CO2 increased by 200 ppm.  Within a parameter sample, we 752 

calculated the percent change in stem biomass at age 25 between control simulation and the three 753 

simulations with the environmental changes.  We focused our regional analysis on the 754 

distribution of the percent change in stem biomass. 755 
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 869 

3 Results 870 

3.1 Data assimilation evaluation 871 

Our multi-site, multi-experiment, multi-data stream DA approach (Base assimilation) increased 872 

confidence in the model parameters (Table 5).  Averaged across parameters, the posterior 99% 873 

quantile range from the Base assimilation was 60% less than the prior range.  The largest 874 

reduction in parameter uncertainty was for the parameters associated with light-use efficiency 875 

(alpha) and the conversion of GPP to NPP (y), which on average had ranges that were 85% lower 876 

in the posterior than the prior.  Parameters associated with allocation and allometry had a 63% 877 

reduction in the range while parameters associated with mortality processes had 70% reduction 878 

in the range.  Parameters associated with environmental modifiers had the least reduction in the 879 

range with a 40% decrease.  In addition to the parameters associated with the 3-PG model, the 880 

model process error parameters for each data stream were well constrained with large reductions 881 

in the range (> 99% decrease; Supplemental Material Table 2) 882 

 883 

The Base assimilation reliably predicted data from the regionally distributed non-manipulated 884 

plots that were not used in the optimization.  The mean bias in stem biomass of the cross-885 

validation was -3.7 % and the RMSE was 21.8 Mg ha-1 (Figure 4a). Furthermore, the response of 886 

stem biomass to irrigation (df = 7, p = 0.18), nutrient addition (df = 26, p = 0.29), and elevated 887 

CO2 (df = 4, p = 0.43) was not significantly different between the observed and the Base 888 

assimilation (Figure 5).  The Base assimilation was significantly more sensitive to drought than 889 

observed (n = 31, p < 0.001; Figure 5). 890 

 891 
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The plots at the Duke Forest study had a higher carrying capacity of stem biomass before self-921 

thinning (WSx1000), smaller self-thinning parameter (ThinPower), and lower allocation to 922 

coarse root (pCRS) than values optimized from the other plots across the region (Table 6). The 923 

DA approach without these three study specific parameters (NoDkPars) predicted significantly 924 

lower accumulation of stem biomass in response to elevated CO2 than observed (df = 4, p = 925 

0.002; Figure 5).  The NoDKPars assimilation optimized the CO2 fertilization parameter 926 

(fCalpha700) to a value that predicted 45% less light-use efficiency at 700 ppm (1.13 in 927 

NoDKPar vs. 1.33 in Base; Table 6) than the Base assimilation. 928 

 929 

3.2 Sensitivity to inclusion of ecosystem experiments 930 

 931 

Excluding the experimental treatments from the data assimilation did not strongly influence the 932 

predictive capacity of the model.  The RMSE validation plots in NoExp assimilation decreased 933 

slightly compared to Base assimilation (21.8 to 18.0 Mg ha-1) while the bias slightly increased (-934 

3.7 to -4.1%)(Figure 4b).  Excluding the experimental treatments resulted in a significantly lower 935 

response of stem biomass to elevated CO2 than observed (df = 4, p < 0.001; Figure 5).  936 

Furthermore, there was a slight negative response of stem biomass to CO2 in the NoExp 937 

assimilation because the parameter governing the change in foliage allocation at elevated CO2 938 

(fCpFS700) was unconstrained by observations (Table 6).  This led to convergence on the lower 939 

bound of the prior distribution (0.5) where foliage allocation decreased with increased 940 

atmospheric CO2.  The predictions of irrigation, drought, and nutrient addition experiments were 941 

not significantly different between the Base and NoExp assimilations (Figure 5).   942 

 943 
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The parameters and associated response functions in the 3-PG for nutrients, ASW, and 944 

atmospheric CO2 differed between the Base and NoExp assimilations (Figure 6). First, the 945 

parameterization of the soil fertility rating (FR) showed a stronger dependence on SI in the 946 

NoExp assimilation than in the Base assimilation (Figure 6a).  For a given SI there was a lower 947 

FR, thus stronger nutrient limitation, when experimental treatments were excluded from 948 

assimilation.  Second, the parameterization of the function relating photosynthesis and canopy 949 

conductance to ASW resulted in lower photosynthesis and maximum conductance when soil 950 

available water was less than 50% in the NoExp than Base assimilations (Figure 6b). Finally, the 951 

response of photosynthesis to atmospheric CO2 was functionally zero in the NoExp assimilation, 952 

thus highlighting the importance of the elevated CO2 treatments in the Duke FACE study for 953 

constraining the parameterization of the CO2 response function (Figure 6c).  954 

 955 

3.3 Regional predictions with uncertainty 956 

Regionally (i.e., the native range of loblolly pines), stem biomass at age 25 ranged from 52 Mg 957 

ha-1 to 292 Mg ha-1 with the most productive areas located in the coastal plains and the interior of 958 

Mississippi and Alabama (Figure 7a).  The least productive locations were the western and 959 

northern extents of the native range. The width of the 95% quantile interval for each HUC12 unit 960 

ranged from 6.2 to 29.8 Mg ha-1 with largest uncertainty located in most the productive HUC12 961 

units and in the far western extent of the region (Figure 7b).   962 

 963 

The predicted change in stem biomass at age 25 from an additional 200 ppm of atmospheric CO2
 964 

(over the 1985-2011 concentrations) was similar to the change associated with a removal of 965 

nutrient limitation (by setting FR = 1) (Figure 8a,c).  The median change associated with 966 
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elevated CO2 for a given HUC12 unit ranged from 19.2 to 55.7% with a regional median of 982 

21.7% (Figure 8a).  The change associated the removal of nutrient limitation ranged from 6.9 to 983 

303.7% for a given HUC12 unit, with regional median of 24.1% (Figure 8b).  The response to 984 

elevated CO2 was more consistent across space than the response to nutrient addition.  The 985 

largest potential gains in productivity from nutrient addition were predicted in central Georgia, 986 

the northern extent of the region, and the western extents, areas with the lowest SI (Figure 3).  987 

 988 

Stem biomass was considerably less responsive to a 30% decrease in precipitation, than to 989 

nutrient addition and an increase in atmospheric CO2. The median change in stem biomass when 990 

precipitation was reduced from the 1985-2011 levels ranged from -11.6 to – 0.1% for a given 991 

HUC12 unit with a regional median of -5.1% (Figure 8c). Central Georgia was the most 992 

responsive to precipitation reduction reflecting the relatively low annual precipitation and warm 993 

temperatures (Figure 3). 994 

 995 

For a given location, the predicted response to elevated CO2 had larger uncertainty than the 996 

predicted response to precipitation reduction and nutrient limitation removal (Figure 8c,d,f).  The 997 

uncertainty, defined as the width of the 95% quantile interval, was consistent across the region 998 

for the response to elevated CO2 (Figure 8b).  The uncertainty in the response to precipitation 999 

reduction and nutrient limitation removal was largest in the regions with the largest predicted 1000 

change (Figure 8df).   1001 

 1002 

4 Discussion 1003 

Using DA to parameterize models for predicting ecosystem change requires disentangling the 1004 
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vegetation responses to temperature, precipitation, nutrients, and elevated CO2. To address this 1012 

challenge, we introduced a regional-scale hierarchical Bayesian approach (DAPPER) that 1013 

assimilated data across environmental gradients and ecosystem manipulation experiments into a 1014 

modified version of the 3-PG model. Furthermore, we synthesized observations of carbon stocks, 1015 

carbon fluxes, water fluxes, vegetation structure, and vegetation dynamics that spanned 35 years 1016 

of forest research in a region (Table 1, Figure 1) with large and dynamic carbon fluxes (Lu et al., 1017 

2015). By combining the DAPPER system with the regional set of observations, we were able to 1018 

estimate parameters in a model with high predictive capacity (Figure 4) and with quantified 1019 

uncertainty on parameters (Table 5) and regional simulations (Figures 7 and 8).  1020 

 1021 

Our hierarchical approach (Equation 7) was designed to partition uncertainty among parameters, 1022 

model process, and measurements (Hobbs and Hooten, 2015).  Separating the parameter and 1023 

process uncertainty is required to estimate prediction intervals, as prediction intervals only 1024 

include parameter and process errors (Dietze et al., 2013; Hobbs and Hooten, 2015).   Previous 1025 

forest ecosystem DA efforts have either focused on parameter uncertainty, by using 1026 

measurement uncertainty as the variance term in a Gaussian cost function (Bloom and Williams, 1027 

2015; Keenan et al., 2012; Richardson et al., 2010) or on total uncertainty by directly estimating 1028 

the Gaussian variance term (Ricciuto et al., 2008). Our approach allowed the estimation of the 1029 

probability distribution of forest biomass before uncertainty is added through measurement.  1030 

Considering that the method of DA can potentially have a large influence on posterior parameter 1031 

distributions (Trudinger et al., 2007), future research should focus on comparing the hierarchical 1032 

approach presented here to other approaches by using the same data constraints with alternative 1033 

cost functions.  1034 
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 1066 

4.1 Sensitivity to inclusion of ecosystem experiments 1067 

The most important experimental manipulation for constraining model parameters was the Duke 1068 

FACE CO2 fertilization study because the CO2 fertilization parameters (fCalpha700 and 1069 

fCpFS700) converged on the lower bounds of their prior distributions when the experiments 1070 

were excluded from the assimilation.  In contrast, excluding the nutrient fertilization, drought, 1071 

and irrigation studies did not substantially alter the predictive capacity of the model.  This 1072 

finding suggests that data assimilation using plots across environmental gradients alone can 1073 

constrain parameters associated with water and nutrient sensitivity.  However, regardless of 1074 

whether the experiments were included in the assimilation, the optimized model predicted higher 1075 

sensitivity to drought than observed, highlighting that future studies should focus on improving 1076 

the sensitivity to drought.  1077 

 1078 

The 3-PG model included a highly-simplified representation of interactions between the water 1079 

and carbon cycles that resulted in parameterizations that may contain assumptions that require 1080 

additional investigation. First, transpiration was modeled as a function of a potential canopy 1081 

transpiration that occurred if leaf area was not limiting transpiration. The LAI at which leaf area 1082 

was no longer limiting was a parameter that was optimized (LAIgcx in Table 5), resulting in a 1083 

value of 2.2.  Interestingly, this optimized value is consistent with the scant literature on this 1084 

topic.  In their analysis of multi-year measurements of transpiration in loblolly pine, Phillips and 1085 

Oren (2001) observed that transpiration per unit leaf area was relatively insensitive to increases 1086 

in leaf area above LAI of approximately 2.5.  Iritz and Lindroth (1996) reviewed transpiration 1087 

data from a range of crop species and found only small increases in transpiration above LAI of 3-1088 
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4.  These authors suggest that the threshold-type responses observed were related to the range of 1099 

LAI at which self-shading increases most rapidly, therefore limiting increases in transpiration.  1100 

The resulting model behavior of "flat" transpiration above 2.2 LAI, with gradually decreasing 1101 

photosynthesis above that value, results in increasing water use efficiency at higher LAI values.   1102 

Second, the relationship between relative ASW and the modifier of photosynthesis and 1103 

transpiration predicted a modifier value greater than zero when the relative ASW was zero. This 1104 

resulted in positive values from photosynthesis and transpiration when the average ASW during 1105 

the month was zero. In practice, the monthly ASW was rarely zero during simulations, which 1106 

presents a challenge constraining the shape of the ASW modifier. The priors for the two ASW 1107 

modifiers (SWconst and SWpower) had ranges that permitted the modifier to be zero. Therefore, 1108 

additional data are likely needed during very dry conditions to develop a more physically based 1109 

parameterization. Alternatively, the parameterization of a non-zero soil moisture modifier at zero 1110 

ASW may be due to trees having access to water at soil depths deeper than the top 1.5 m of soil 1111 

represented by the bucket in 3-PG. Overall, it is important to view the parameterization presented 1112 

here as a phenomenological relationship that is consistent with observations from drought and 1113 

irrigation experiments as well as observations across regional gradients in precipitation.   1114 

 1115 

Constraining the sensitivity to atmospheric CO2 differs from constraining the sensitivity to ASW 1116 

because, unlike the multiple constraints on water sensitivity (drought, irrigation, and gradient 1117 

studies), environmental conditions created by the few elevated CO2 plots provided unique 1118 

constraint on parameters.  Our finding demonstrated that DA efforts should test for bias in 1119 

unique ecosystem experiments before finalizing a set of model parameters used in optimization.  1120 

In particular, we found that the parameter governing the photosynthetic response to elevated CO2 1121 
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(fCalpha700) was substantially lower when all parameters were assumed to be shared across all 1205 

plots than when the CO2 fertilization experiment was allowed to have unique parameters. The 1206 

need for the three unique parameters at the Duke FACE study parameters can be explained by 1207 

the constraint provided by multiple data streams and multiple plots. An assumption of the model 1208 

was that an increase in stem biomass caused a decrease stem density through self-thinning, 1209 

unless the average tree stem biomass was below a parameterized threshold (WSx1000).  1210 

Therefore, an increase in photosynthesis and stem biomass through CO2 fertilization could cause 1211 

a decrease in stem density.  For a single study, it is straightforward to simultaneously fit the CO2 1212 

fertilization and self-thinning parameters to fit stem biomass and stem density observations for 1213 

the site.  However, regional DA presents a challenge because the self-thinning parameters are 1214 

well constrained by the stem biomass and stem density observations across the region but the 1215 

CO2 fertilization parameters are not.  As a result of the regional DA, the self-thinning parameters 1216 

caused a stronger decrease in stem density than observed in the Duke FACE study.  Therefore, 1217 

the optimization favored a solution where there was a lower response to CO2, thus a smaller 1218 

decrease in stem density.  Allowing the Duke FACE study to have unique self-thinning 1219 

parameters that resulted in lower rates of self-thinning and allowed for simulated stem biomass 1220 

to respond to CO2 in a way that matched the observations without penalizing the optimization by 1221 

degrading the fit to the stem density.   1222 

 1223 

Our finding that the Duke FACE study required unique self-thinning parameters to reduce bias in 1224 

the simulated stem biomass suggests that when using DA to optimize parameters that are shared 1225 

across plots, careful examination of prediction bias in key sites that provide unique constraint on 1226 

certain parameters (like the Duke FACE) is critical.  Based on this example, we suggest that DA 1227 
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efforts using multiple studies and multiple experiment types identify whether particular 1228 

experiments at limited number of sites have the potential to uniquely constrain specific 1229 

parameters. In this case, additional weight or site-specific parameters may be needed to avoid 1230 

having the signal of the unique experiment overwhelmed by the large amount of data from the 1231 

other sites and experiments.  Additionally, the finding suggests that multi-site DA should 1232 

consider using hierarchical approaches to predicting mortality, particularly because mortality is 1233 

often not simulated as mechanistically as growth.  A hierarchical approach, where each plot has a 1234 

set of mortality parameters that are drawn from a regional distribution, could avoid having 1235 

unexplained variation in mortality rates lead to bias in the parameterization of growth related 1236 

processes (i.e., growth responses to CO2, drought, nutrient fertilization, etc.).  The hierarchical 1237 

approach to mortality could also highlight patterns in mortality rates across a region and allow 1238 

for additional investigations in the mechanisms driving the patterns. 1239 

 1240 

4.2 Regional predictions with uncertainty  1241 

Our predictions of how stem biomass responses to elevated CO2, nutrient addition, and drought 1242 

were designed to illustrate the capacity of the DAPPER approach to simulate the uncertainty in 1243 

future predictions.  By using DA, our regional predictions and the uncertainty are consistent with 1244 

observations but are associated with key caveats.  First, only parameter uncertainty was 1245 

presented in the regional simulations.  There is additional uncertainty associated with model 1246 

process error.  We showed the parameter uncertainty because it isolated the capacity to 1247 

parameterize the individual environmental response functions in the model.  Second, the 1248 

response to drought may be too strong because of the bias in the model predictions of the 1249 

drought studies. However, there is potential that the drought studies underestimated the 1250 
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sensitivity to ASW since they are relatively short term (< 5 years) and manipulate local ASW 1251 

without manipulating large scale ASW (i.e., regional water tables). Third, the large responses to 1252 

N fertilization at the western and northern extents of the study region may be too high.  The large 1253 

responses are attributed to the low SI and the low predicted site fertility index (FRp).  The low SI 1254 

may be attributable to water limitation and temperature limitation that is not fully accounted for 1255 

in the parameterization.  Additional nutrient addition experiments in the northern and western 1256 

extent along with further development of the representation of nutrient availability in the 3-PG 1257 

model may allow for a more robust representation of soil fertility.  Finally, the baseline fertility 1258 

used in our regional analysis was derived from an empirical model of SI that was developed 1259 

using field plots with minimal management (Sabatia and Burkhart, 2014). Subsequently our 1260 

estimate of baseline fertility is likely on the low end of forest stands currently in production and 1261 

the response to nutrient addition may be higher than a typical stand under active management. 1262 

 1263 

5 Conclusions 1264 

DA is increasingly used for developing predictions from ecosystem models that include 1265 

uncertainty estimation, due to its ability represent prior knowledge, integrate observations into 1266 

the parameterization, and estimate multiple components of uncertainty, including observation, 1267 

parameter, and process representation uncertainty (Dietze et al., 2013; Luo et al., 2011; Niu et 1268 

al., 2014). Our application of DA to loblolly pine plantations of the southeastern U.S 1269 

demonstrated that these ecosystems are well suited as a test-bed for the development of DA 1270 

techniques, particularly techniques for assimilating ecosystem experiments. We found that 1271 

assimilating observations across environmental gradients can provide substantial constraint on 1272 

many model parameters but that ecosystem manipulative experiments, particularly elevated CO2 1273 
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studies, were critical for constraining parameters associated forest productivity in a more CO2 1292 

enriched atmosphere. This highlights the importance of whole-ecosystem manipulation CO2 1293 

experiments for helping to parameterize and evaluate ecosystem models.  Finally, we present an 1294 

approach for the development of future predictions of forest productivity for natural resource 1295 

managers that leverage a rich dataset of integrated ecosystem observations across a region.  1296 

 1297 

6 Data availability 1298 

Observations used in the DA can be found in the following: Duke FACE study can be found in 1299 

McCarthy et al. (McCarthy et al., 2010), the PINEMAP studies are available through the TerraC 1300 

database (http://terrac.ifas.ufl.edu), the US-DK3 eddy-flux tower data are available through the 1301 

Ameriflux database (http://ameriflux-data.lbl.gov), the Waycross data can be found in Bryars et 1302 

al. (2013), the US-NC2 data are available upon request from Asko Noormets, the FMRC and 1303 

FPC are available through membership with the cooperatives. The parameter chains and 3-PG 1304 

model code are available upon request from R. Quinn Thomas. 1305 
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 1569 

Table 1. Regional observational data streams used in data assimilation. 
Data 
stream 

Measurement 
frequency 

Measurement 
or estimation 
technique  

Uncertainty   Stream ID for 
Table 3 

Foliage biomass 
(Pine)  

Annual or less Allometric 
relationship 

Based on propagating the 
allometric model uncertainty 
in Gonzalez-Benecke et al. 
2014. Varied by observation.  

1 

Foliage biomass 
(hardwood) 

Annual or less Allometric 
relationship 

Assumed zero 2 

Stem biomass (pine) Annual or less Allometric 
relationship 

Based on propagating the 
allometric model uncertainty 
in Gonzalez-Benecke et al. 
2014. Varied by observation.  

3 

Stem biomass 
(hardwood) 

Annual or less Allometric 
relationship 

Assumed zero 4 

Coarse root biomass 
(combined) 

Annual or less Allometric 
relationship 

Assumed zero* 5 

Fine root biomass 
(combined) 

Annual or less Allometric 
relationship 

SD = 10% of observation 6 

Foliage biomass 
production 
(combined) 

Annual Litterfall traps SD = 10% of observation 7 

Fine root biomass 
production 
(combined) 

Annual Mini-
rhizotrons 

SD = 10% of observation 8 

Pine stem density Annual or less Counting 
individuals 

1% (assumed small) 9 

Leaf area index 
(pine) 

Monthly to 
annual 

Litter traps or 
LI 2000 

SD = 10% of observation  
 

10 

Leaf area index 
(hardwood) 

Monthly to 
annual 

Litter traps or 
LI 2000 

SD = 10% of observation 11 

Leaf area index 
(combined) 

Only used if not 
separated into 
pine and 
hardwood 

Litter traps or 
LI 2000 

SD = 10% of observation 12 

Gross Ecosystem 
Production 

Monthly Modeled from 
flux eddy-
covariance net 
ecosystem 
exchange 

SD = 10% of observation 13 

Evapotranspiration Monthly Eddy-
covariance 

SD = 10% of observation 14 

*the relatively low number of observations prevented convergence when using the observational uncertainty model 1571 
so observational uncertainty was assumed to be zero to allow convergence. 1572 
  1573 
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Table 2. Descriptions of the studies used in data assimilation. 
Study name Number 

of 
locations 

Number 
of plots 
per site 

Experimental 
treatments 
(plots) 

Data 
streams 
(Table 2) 

Measurement 
Years 

Measurement 
Stand Ages 
(years) 

Reference 

FMRC1 
Thinning 
Study 
 

163 1 None 1, 3,9 1981 - 2003 8 - 30 (Burkhart et al., 
1985) 

FPC2 
Region-
wide 18 
 

18 2 Nutrient 
addition 

1, 3,9 2011-2014 12-21 (Albaugh et al., 
2015)  

PINEMAP3 4 16 Nutrient 
addition, 30% 
throughfall, 
Nutrient x 
throughfall 
 

1, 3,9 2011-2015 3 – 13  (Will et al., 2015) 

Waycross 1 2 Nutrient 
addition 
 

 3,9,10 1991-2010 4-23 (Bryars et al., 2013) 

SETRES4 1 16 Nutrient 
addition, 
irrigation, 
nutrient x 
irrigation 
 

1,3,5,6,9,
10 

1991-2006 8 - 23 (Albaugh et al., 
2004) 

Duke 
FACE5 and 
US-DK3 
Flux 

1 12 CO2, nutrient 
addition, CO2 
x nutrient 
addition 
 

2,3,4,5,6,
7,8,9,10,
11,13,14 

1996-2004 13-22 (McCarthy et al., 
2010; Novick et al., 
2015) 

NC2 Flux 1 1 None 2,3,4,5,6,
7,9,10,11
,12,13,14 
 

2005-2014 12-22 (Noormets et al., 
2010) 

Total 187 294   1981 - 2014 4 - 30  
1Forest Modeling Research Cooperative; 2 Forest Productivity Cooperative; 3 Pine Integrated Network: Education, 1601 
Mitigation, and Adaptation project (PINEMAP); 4 Southeast Tree Research and Education Site; 5 Free Air Carbon 1602 
Enrichment 1603 
  1604 
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 1615 
Table 3. The prior distributions of all 3-PG model parameters optimized using data assimilation 
Parameter Parameter description Units Prior 

distribution  
Prior parameters Reference 

for prior 
Allocation and structure     
pFS2 Ratio of foliage to stem 

allocation at stem diameter = 
2 cm 

- 
 

uniform min = 0.08 
max = 1.00 
 

vague 

pFS20 Ratio of foliage to stem 
allocation at stem diameter = 
20 cm 

- uniform min = 0.10 
max =1.00 
 

vague 

pRF Ratio of fine roots to foliage 
allocation 

- uniform min = 0.05 
max = 2.00 

vague 

pCRS Ratio of coarse roots to stem 
allocation 

- uniform min = 0.15 
max = 0.35 

1 

SLA0 Specific leaf area at stand age 
0 

m2 kg-1  mean =5.53 
sd = 0.44 

2 

SLA1 Specific leaf area for mature 
aged stands 

m2 kg-1 normal mean = 3.58 
sd = 0.11 

2 

tSLA Age at which specific leaf 
area = 1⁄2(SLA0 + SLA1) 

Years normal mean = 5.97 
sd = 2.15 

2 

fCpFS700 Proportional decrease in 
allocation to foliage between 
350 and 700 ppm CO2 

- uniform min = 0.50 
max = 1.00 

vague 

StemConst Constant in stem mass vs. 
diameter relationship 

- normal mean = 0.022 
sd = 0.005 

3 

StemPower Power in stem mass vs. 
diameter relationship 

- normal mean = 2.77 
sd = 0.2 

3 

Canopy photosynthesis, autotrophic respiration, and transpiration  
alpha Canopy quantum efficiency 

(pines) 
mol C  
mol PAR-1 

uniform min = 0.02 
max = 0.06 

vague 

y Ratio NPP/GPP - uniform min = 0.30 
max= 0.65 

4 

MaxCond Maximum canopy 
conductance 

m s-1 uniform min = 0.005 
max = 0.03 

2 

LAIgcx Canopy LAI for maximum 
canopy conductance 

- uniform min = 2 
max = 5 

2,5,6 

Environmental modifiers of photosynthesis and transpiration  
kF Reduction rate of production 

per degree Celsius below 
zero 

- normal mean = 0.18 
sd = 0.016 

2 

Tmin Minimum monthly mean 
temperature for growth 

°C normal mean = 4.0 
sd = 2.0 

2,5,6 

Topt Optimum monthly mean 
temperature for growth 

°C normal mean = 25.0 
sd = 2.0 

2,5,6 

Tmax Maximum monthly mean 
temperature for growth 

°C normal mean = 38.0 
sd = 2.0 

2,5,6 

SWconst Moisture ratio deficit when 
downregulation is 0.5 

- uniform min = 0.01 
max = 1.8 

vague 

SWpower Power of moisture ratio 
deficit 

- uniform min = 1 
max= 13 

vague 

CoeffCond Defines stomatal response to 
VPD 

mbar-1 normal mean = 0.041 
sd = 0.003 

2 
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fCalpha700 Proportional increase in 
canopy quantum efficiency 
between 350 and 700 ppm 
CO2 

- uniform min = 1.00 
max = 1.8 

vague 

MaxAge Maximum stand age used to 
compute relative age 

Years uniform min = 16 
max =200 

vague 

nAge Power of relative age in fage - uniform min = 0.2 
max = 4.0 

vague 

rAge Relative age to where fage = 
0.5 

- uniform min = 0.01 
max = 3.00 

vague 

FR1 Fertility rating parameter 1 
(mean annual temperature 
coefficient) 

- uniform min = 0.0 
max = 1.0 

vague 

FR2 Fertility rating parameter 2 
(site index age 25 coefficient) 

- uniform min = 0.0 
max = 1.0 

vague 

Mortality  
wSx1000 Maximum stem mass per tree 

at 1000 trees/ha 
kg tree-1 normal mean = 235 

sd = 25 
2,5,6 

ThinPower Power in self thinning law - uniform min = 1.0 
max = 2.5  

2,5,6 

ms Fraction of mean stem 
biomass per tree on dying 
trees 

- uniform min = 0.1 
max = 1.0 

vague 

Rttover Average monthly root 
turnover rate 

Month-1 uniform min = 0.017 
max = 0.042 

7 

MortRate	 Density independent 
mortality rate (pines) 

Month-1 uniform min = 0.0002 
max = 0.004 

vague 

Understory hardwoods 
alpha_h Canopy quantum efficiency 

(understory hardwoods) 
mol C  
mol PAR-1 

uniform min = 0.005 
max = 0.07 

vague 

pFS_h Ratio of foliage to stem 
partitioning (understory 
hardwoods) 

- uniform min = 0.2 
max = 3.0 
 

vague 

pR_h Ratio of foliage to fine roots 
(understory hardwoods) 

- uniform min = 0.05 
max = 2 

vague 

SLA_h Specific leaf area (understory 
hardwoods) 

m2 kg-1 normal mean = 16 
sd = 3.8 

8 

fCalpha700
_h 

Proportional increase in 
canopy quantum efficiency 
between 350 and 700 ppm 
CO2 (understory hardwood) 

- uniform min = 1.00 
max = 2.5 

vague 

 1616 
1(Albaugh et al., 2005); 2(Gonzalez-Benecke et al., 2016);  3(Gonzalez-Benecke et al., 2014) 4(DeLucia et al., 2007);5(Bryars et al., 1617 
2013);6(Subedi et al., 2015);7(Matamala et al., 2003); 8(LeBauer et al., 2010) 1618 
  1619 



 

 43 

 1620 
Table 4. Description of the different data assimilation approaches used. 
Simulation Name Treatments included in assimilation Number of plots 
Base All plots and experiments in the region were used 

simultaneously. Includes unique pCRS, wSx1000, and 
ThinPower parameters for plots in the Duke FACE study 

294 

NoExp Same as Base assimilation but excluding all plots with 
experimental manipulations.  Includes control plots that are part 
of experimental studies. 

208 

NoDkPars Same as Base assimilation but without pCRS, wSx1000, and 
ThinPower parameter for plots in the Duke FACE and US-DK3 
studies  

294 
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  1639 
Table 5.  The optimized medians, range of the 99% quantile intervals of the posterior distributions and the 99% 
quantile range for priors with normally distributed priors or the range of the upper and lower bounds for priors with 
uniform distributions. 
Parameter Posterior median Posterior 99% 

C.I. range 
Prior 
range 

Posterior/Prior 
Range 

 

Allocation and structure  Parameter group mean = 0.38 
pFS2 0.58 0.55 - 0.61 0.08 – 

1.00 
0.06  

pFS20 0.57 0.55 - 0.59 0.10 – 
1.00 

0.05 

pR 0.11 0.07 - 0.15 0.05 – 
2.00 

0.04 

pCRS 0.26 0.25 - 0.27 0.15 - 
0.35 

0.11   

pCRS 
(Duke) 

0.21 0.18 - 0.23 0.15 - 
0.35 

0.20 

SLA0 8.44 7.67 - 9.25 4.4 - 6.66 0.70 
SLA1 2.84 2.72 - 2.96 3.59 - 

4.16 
0.43 

tSLA 4.13 3.88 - 4.41 0.43 - 
11.51 

0.05 

fCpFS700 0.74 0.60 - 0.90 0.50 – 
1.00 

0.60 

StemConst 0.022 0.009 - 0.035 0.009 - 
0.035 

1.00 

StemPowe
r 

2.78 2.29 - 3.27 2.25 - 
3.29 

0.95 

Canopy photosynthesis, autotrophic respiration, and transpiration Parameter group mean = 0.14 
alpha 0.029 0.026 - 0.031 0.02 - 

0.06 
0.14 

y 0.50 0.47 - 0.53 0.30 - 
0.65 

0.15 

MaxCond 0.011 0.01 - 0.012 0.005 - 
0.03 

0.09 

LAIgcx 2.2 2.0 - 2.48 2.0 - 5 .0  0.16 
Environmental modifiers of photosynthesis and 
transpiration 

 Parameter group mean = 0.61 

kF 0.16 0.12 - 0.2 0.14 - 
0.22 

1.04 

Tmin -5.56 -8.88 - -2.69 -1.15 - 
9.15 

0.60 

Topt 23.42 21.1 - 26.31 19.85 - 
30.15 

0.51 

Tmax 39.56 34.71 - 44.39 32.85 - 
43.15 

0.94 

SWconst 1.09 0.91 - 1.56 0.01 - 1.8 0.36 

SWpower 8.86 3.39 - 12.98 1.00 – 
13.00 

0.80 

CoeffCond 0.036 0.029 - 0.043 0.034 - 
0.048 

0.91 

fCalpha70
0 

1.33 1.18 - 1.52 1.0 - 1.80 0.43  

MaxAge 151.5 54.4 - 199.6 16.0 - 200 
.0  

0.79  
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nAge 3.35 1.77 - 3.99 1.00 – 
4.00 

0.74   

rAge 2.25  0.81 - 2.99 0.01 – 
3.00 

0.73 

FR1 0.073 0.061 - 0.086 0.00 – 
1.00 

0.03   

FR2 0.17 0.15 - 0.19 0.0 – 1.0 0.04  
Mortality  Parameter group mean = 0.37 
wSx1000 176.9 169.6 - 184.4 165.6 - 

294.4 
0.15  

wSx1000 
(Duke) 

243.3 196.89 - 
305.02 

165.6 - 
294.4 

0.76 

ThinPower 1.68 1.60 - 1.78 1.00 - 2.5 0.12  
ThinPower
v(Duke) 
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Rttover 0.023 0.017 - 0.031 0.017 - 
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MortRate	 0.001 9e-04 - 0.0011 2e-04 - 
0.004 

0.06 

Understory hardwoods  Parameter group mean = 0.28 
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0.07 
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pR_h 0.21 0.06 - 0.43 0.05 – 

2.00 
0.19 

SLA_h 16.3 14.1 – 19.0 6.2 - 25.8   0.25   

fCalpha70
0_h 

1.84 1.58 - 2.17 1.0 – 2.50 0.74 
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Table 6.  Median and range of the 99% quantile intervals of the posterior distributions for the parameters in the NoExp 
and NoDkPars assimilations 
Parameter NoExp median NoExp 99% range NoDkPars 

median 
NoDkPar 99% 

Allocation and structure   
pFS2 0.63 0.61 - 0.68 0.57 0.55 - 0.60 

pFS20 0.63 0.60 - 0.65 0.57 0.55 - 0.59 
pR 0.11 0.06 - 0.16 0.11 0.08 - 0.15 

pCRS 0.29 0.27 - 0.30 0.26 0.25 - 0.27 
pCRS (Duke) 0.25 0.23 - 0.28 N/A N/A 

SLA0 7.47 6.57 - 8.41 8.56 7.73 - 9.32 
SLA1 3.00 2.88 - 3.12 2.89 2.79 - 2.99 
tSLA 4.75 4.30 - 5.26 4.12 3.90 - 4.38 
fCpFS700 0.50 0.50 - 0.53 0.94 0.83 – 1.00 
StemConst 0.022 0.01 - 0.04 0.02 0.01 - 0.04 
StemPower 2.79 2.27 - 3.26 2.77 2.28 - 3.30 
Canopy photosynthesis, autotrophic respiration, and transpiration   
alpha 0.030 0.028 - 0.033 0.029 0.026 - 0.031 
y 0.48 0.45 - 0.51 0.49 0.46 - 0.52 
MaxCond 0.017 0.015 - 0.021 0.011 0.011 - 0.012 
LAIgcx 4.4 3.9 – 5.0 2.1 2.0 - 2.5 
Environmental modifiers of photosynthesis and transpiration   
kF 0.15 0.11 - 0.20 0.16 0.11 - 0.20 
Tmin -7.8 -10.97 - -4.95 -6.04 -9.06 - -3.03 
Topt 21.55 19.15 - 24.39 22.71 20.54 - 25.42 
Tmax 40.56 36.51 - 45.62 39.82 35.62 - 44.56 
SWconst 0.93 0.8 - 1.1 1.14 0.91 - 1.62 

SWpower 6.27 2.98 - 11.49 7.99 3.29 - 12.95 
CoeffCond 0.041 0.034 - 0.047 0.036 0.030 - 0.042 

fCalpha700 1.01 1.0 0- 1.06 1.15 1.10 - 1.25 
MaxAge 152.84 54.18 - 199.5 152.0 49.2 - 199.3 
nAge 3.36 1.93 - 3.99 3.36 1.89 - 3.99 
rAge 2.26 0.80 - 2.99 2.24 0.83 - 2.99 
FR1 0.12 0.09 - 0.14 0.08 0.07 - 0.09 
FR2 0.20 0.16 - 0.24 0.17 0.15 - 0.19 
Mortality   
wSx1000 191.6 180.2 - 210.2 181.32 173.26 - 196.32 
wSx1000 (Duke) 235.1 175.0 - 297.5 N/A N/A 
ThinPower 1.76 1.61 - 1.92 1.59 1.46 - 1.72 
ThinPower 
(Duke) 

1.42 1.01 - 2.02 N/A N/A 

mS 0.54 0.33 - 0.80 0.5 0.25 - 0.71 
Rttover 0.019 0.02 - 0.03 0.022 0.017 - 0.030 
MortRate	 0.0013 0.0011 - 0.0014 0.0011 9e-04 - 0.0013 

Understory hardwoods   
alpha _h 0.031 0.025 - 0.040 0.02 0.017 - 0.023 
pFS_h 2.39 1.86 - 2.96 1.79 1.59 - 2.09 
pR_h 0.25 0.05 - 0.67 0.21 0.06 - 0.41 
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SLA_h 12.37 9.96 - 15.07 16.42 14.37 - 18.55 

fCalpha700_h 1.08 1.00 - 1.83 1.83 1.56 - 2.15 

 2053 
  2054 
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 2055 
Figure 1. Map of loblolly pine distribution, plot locations used in data assimilation, and the 2056 
experiment type associated with each plot. The control-only treatments were plots without any 2057 
associated experimental treatment or flux measurements. Fertilized were plots with nutrient 2058 
additions. CO2 were plots with free-air concentration enrichment treatments. The flux treatments 2059 
were plots with eddy-covariance measurements of ecosystem-scale carbon and water exchange. 2060 
The water treatments included throughfall exclusion and irrigation experiments. 2061 
  2062 

Moved (insertion) [19]
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 2063 
 2064 

  2065 
Figure 2. A diagram of the monthly time-step 3-PG model used in this study. The stocks are 2066 
represented by the boxes and the fluxes by the arrows. An influence of a stock on a flux that is 2067 
not directly related to that stock is represented by the dotted lines. The environmental influences 2068 
on a flux is described using italics. A description of the model can be found in the supplemental 2069 
information. 2070 
 2071 
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 2072 
Figure 3. Key climatic and stand characteristic inputs to the regional 3-PG simulations: (a) Mean 2073 
annual temperature (1979-2011) as a summary of the gradient in monthly temperature inputs 2074 
used in simulations, (b) maximum available soil water for the top 1.5 meters of soil from 2075 
SSURGO, (c) mean annual precipitation (1979-2011) as a summary of the gradient in monthly 2076 
precipitation inputs used in simulations, and (d) site index. The area shown is the natural range of 2077 
loblolly pine (Pinus taeda L.). 2078 
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 2101 

 2102 
Figure 4. Model evaluation of stem biomass when assimilating (a) observations across 2103 
environmental gradients and ecosystem manipulation experiments (Base; Table 4), and (b) 2104 
assimilation only observations across environmental gradients (NoExp; Table 4).  The gray 2105 
circles correspond to predictions where all plots were used in data assimilation. The black 2106 
triangles correspond to predictions where 160 plots were not included in data assimilation and 2107 
represent an independent evaluation of model predictions (out-of-bag validation). For each plot, 2108 
we used the measurement with the longest interval between initialization and measurement for 2109 
evaluation. 2110 
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 2118 
Figure 5.  The mean response, expressed as a percentage change in stem biomass from the 2119 
control treatment, for irrigation, drought (as a reduction in throughfall), nutrient addition, and 2120 
elevated CO2 experiments.  The observed response and the response simulated by the Base, 2121 
NoExp, and NoDkPars assimilation approaches are shown.  # signifies that value below was 2122 
significantly different from the observed (p < 0.05).  * signifies that value was significantly from 2123 
the Base assimilation (p<0.05).  Error bars are ±1 standard deviation. 2124 
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 2126 
 2127 
 2128 

 2129 
Figure 6. Optimized environmental response functions in the 3-PG model for the (a) soil fertility 2130 
influence on photosynthesis), (b) available soil water influence on photosynthesis and 2131 
conductance, and (c) atmospheric CO2 influence on photosynthesis.  The function shapes were 2132 
derived from the parameters in the Base, NoExp, and NoDkPars assimilations (Table 4).       2133 
 2134 
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 2136 

 2137 
Figure 7. (a) Regional predictions of stem biomass stocks for a 25-year-old stand planted in 2138 
1985. Parameters used in the predictions were from the Base assimilation approach described in 2139 
Table 5.   (b) The width of the 95% quantile interval associated with uncertainty in model 2140 
parameters. 2141 
  2142 
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 2155 
 2156 
Figure 8.  Predictions of the percentage change in stem biomass at age 25 in response to (a,b) a 2157 
200 ppm increase in atmospheric CO2 over 1985-2011 concentrations, (c,d) a 30% reduction in 2158 
precipitation from 1985-2011 levels, and (e,f) a removal of nutrient limitation by setting the soil 2159 
fertility rating in the model equal to 1.  The left column is the median prediction and the right 2160 
column is the width of the 95% quantile interval associated with parameter uncertainty.  The 2161 
predictions used the Base assimilation. 2162 

Moved (insertion) [20]

Deleted:  change in stem biomass of a 25-year stand when 2163 
nutrient limitation is completely removed through nutrient 2164 
addition (simulated by setting FR = 1). Predictions from data 2165 
assimilation that included nutrient addition experiments are 2166 
shown in (a) and prediction data assimilation that did not 2167 
include nutrient addition experiments are shown in (b). The 2168 
focal site in Georgia highlighted in Figures 5c and 6b is 2169 
represented by the circle containing the dot. 2170 ... [125]



Page 4: [1] Deleted Revisions 5/22/17 1:33:00 PM 

Forest ecosystems absorb and store a large fraction of anthropogenic carbon dioxide (CO2) 

emissions (Le Quere et al., 2015; Pan et al., 2011) and supply wood products to a growing 

human population (Shvidenko et al., 2005). Therefore, predicting future carbon sequestration and 

timber supply is critical for adapting forest management practices to future environmental 

conditions and for using forests to assist with reduction of atmospheric CO2 concentrations. The 

key sources of information for developing these predictions are results from global change 

ecosystem manipulation experiments, observations of forest dynamics across environmental 

gradients, and process-based ecosystem models. The challenge is integrating these three tools 

into a common framework for creating probabilistic predictions, or forecasts (based on (Luo et 

al., 2011a)), that provide information on both the expected future state of the forest and the 

probability distribution of those future states. 

 

Data assimilation (DA), or data-model fusion, is an increasingly used framework for integrating 

ecosystem observations into ecosystem models (Luo et al., 2011a; Niu et al., 2014; Williams et 

al., 2005). DA integrates observations with ecosystem models through statistical, often Bayesian, 

methods that generate probability distributions for ecosystem model parameters and initial states. 

DA allows for the explicit accounting of observational uncertainty (Keenan et al., 2011), the 

incorporation of multiple types of observations with different time scales of collection 

(Richardson et al., 2010), and the representation of prior knowledge through informed parameter 

prior distributions or specific relationships among parameters (Bloom and Williams, 2015). 

Using DA to parameterize ecosystem models with observations from multiple locations that 

leverage environmental gradients and from ecosystem manipulation experiments will allow for 

forecasts to be consistent with the rich history of global change research in forest ecosystems. 



 

Ecosystem manipulation experiments provide a controlled environment in which data collected 

can be used to describe how forests acclimate and operate under altered environmental 

conditions (Medlyn et al., 2015). These data may be used to constrain model parameters that are 

associated with specific physiological functions associated with, for example, carbon allocation 

and turnover as related to the controlled manipulation. Furthermore, the assimilation of 

experiments may increase parameter identifiability (reducing equifinality (Luo et al., 2009)), 

where two parameters have compensating controls on the same processes, by isolating the 

response to a manipulated driver. For example, carbon assimilation and primary productivity can 

be modeled as a light and temperature controlled process that is adjusted by nutrients, water, and 

atmospheric CO2 concentration. In this case, the productivity may mathematically be equal 

between a parameterization that has high potential conversion of light to photosynthesis (high 

quantum yield) but low relative nutrient availability and a parameterization with low quantum 

yield but high relative nutrient availability. Therefore, the challenge is that the same rate of 

production can emerge from different contributions of environmental controls.  

 

For future predictions with changing environmental conditions, the relative contribution of each 

environmental control should be separated in order to correctly parameterize the sensitivity to 

changes in the environment. Key examples of existing and past ecosystem experiments that have 

the potential to isolate specific parameters in DA include CO2 enrichment, water manipulation, 

nutrient addition, and elevated soil temperature experiments. Many of these experiments are 

common, particularly when including nutrient addition experiments in managed forests. Other 

types of experiments are less common, but the few sites with the experiments, such as whole-



ecosystem CO2 enrichment, include intensive measurements of numerous carbon pools and 

fluxes required for model optimization.  

 

 

Developing optimized parameters that apply to a region requires assimilating observations that 

span environmental gradients to support the application of model predictions to a range of 

climatic conditions, nutrient availabilities, and soil water dynamics. Therefore, the DA of 

multiple research sites across a region is an important extension of prior DA research focused on 

DA at a single site with multiple types of observations (Keenan et al., 2012; Richardson et al., 

2010; Weng and Luo, 2011). Incorporating multiple locations that include global change 

experiments in DA is associated with numerous challenges. First, prior research has 

demonstrated that high frequency observations (i.e., daily, or more frequent, net ecosystem 

exchange observations) can overwhelm the contribution of low frequency observations (i.e., 

annual tree diameter measurements) to the cost-function used for optimization (Richardson et al., 

2010), resulting in a parameter set that predominately represents the high-frequency dynamics. 

DA of ecosystem experiments and regional observations can present similar issues because key 

contrasts isolated in an ecosystem experiment with relatively few plots may be overwhelmed by 

the contribution of more numerous regional observations from non-manipulated plots. For 

example, whole ecosystem CO2 enrichment experiments are uncommon but are the only 

observations representing ecosystem dynamics in an environment with over 550 ppm 

atmospheric CO2 (McCarthy et al., 2010). Therefore, DA techniques may be required that assign 

additional weight to unique, but rare, experiments in the DA approach. As an example, a multi-

stage Bayesian approach could be used where the observations from the unique experiment are 



assimilated first and the posteriors from that assimilation are used as priors for the assimilation 

of the remaining observations. Second, DA requires using highly simplified ecosystem models 

because many DA methods use millions of iterations to explore parameter distributions and these 

iterations have to be applied to both control and manipulated treatments. However, in tension 

with the need for simple models in DA, more complex models that simulate carbon, water, and 

nutrient dynamics are also needed to fully leverage the diversity of ecosystem manipulation 

experiments. Monthly time-scale models of ecosystem processes may be well suited to overcome 

these challenges for application to predicting changes in biomass over decades in response to 

global change. First, the contribution of monthly flux and annual biomass measurements to the 

optimized cost function is more similar in monthly than daily models (12:1 vs. 365:1). Second, 

they are computationally more efficient than daily models commonly used in DA, allowing data 

spanning hundreds of plots and multiple decades to be assimilated. Finally, DA is able to 

calibrate parameters associated with carbon, nitrogen, and water cycles so that they are 

appropriate for an aggregated monthly time step, helping prevent potential issues associated 

when applying daily parameterizations to coarser temporal time-steps.  

 

Southeastern U.S. planted pine forests are ideal ecosystems for exploring the application of DA 

to carbon cycle and forest production predictions. These ecosystems are dominated by loblolly 

pine (Pinus taeda L.), thus allowing for a single parameter set to be applicable to a large region 

containing many soil types and climatic gradients. Loblolly pine represents more than one half of 

the standing pine volume in the southern United States (11.7 million ha) and is by far the single 

most commercially important forest tree species for the region, with more than 1 billion 

seedlings planted annually (Fox et al., 2007; McKeand et al., 2003). There is also a rich history 



of experimental research focused on global change factors including region-wide nutrient 

addition (Albaugh et al., 2016; Carlson et al., 2014; Raymond et al., 2016), water exclusion 

(Bartkowiak et al., 2015; Tang et al., 2004; Ward et al., 2015; Will et al., 2015), and water 

addition experiments (Albaugh et al., 2004; Allen et al., 2005; Samuelson et al., 2008). The 

region also includes a long-term ecosystem CO2 enrichment study (McCarthy et al., 2010). 

Furthermore, many of these experiments are multi-factor with water exclusion-by-nutrients (Will 

et al., 2015), water addition-by-nutrients (Albaugh et al., 2004; Allen et al., 2005; Samuelson et 

al., 2008), and CO2-by-nutrients treatments (McCarthy et al., 2010; Oren et al., 2001). Beyond 

experimental treatments, Southeastern U.S. loblolly pine ecosystems include at least two eddy-

covariance sites with high frequency measurements of carbon and water fluxes along with 

biometric observations over many years (Noormets et al., 2010; Novick et al., 2015), and sites 

with multi-year sap flow data (Ewers et al., 2001; Gonzalez-Benecke and Martin, 2010; Phillips 

and Oren, 2001). Finally, there are available studies that include plots that span the regional 

environmental gradients and extend back to the 1980s (Burkhart et al., 1985). Overall, the high 

availability of observations of biomass stocks, leaf area index (LAI), carbon fluxes, water fluxes, 

and vegetation dynamics that span the past 35 years in loblolly pine ecosystems, including plots 

with experimental manipulation and plots across environmental gradients, is well suited to 

potentially constrain model parameters and predictions of how carbon cycling responds to 

environmental change.  

 

Our objective was to develop a DA approach that integrated diverse data from multiple locations, 

including ecosystem experiments, for predicting how forest productivity may respond to global 

change. We applied DA techniques to optimize a monthly-time step, simple forest productivity 



model using southeastern U.S.-wide experimental (nutrient addition, CO2 enrichment, and water 

manipulations) and non-experimental data from 35 years of loblolly pine plantation research in 

the region. Our DA approach, DAPPER (Data Assimilation of Pine Plantation Ecosystem 

Research), is unique in its focus on simultaneously assimilating observations from multiple 

locations, experimental types, and data streams into a simple ecosystem model that includes 

carbon, water, and (implicitly) nutrients using a hierarchal Bayesian technique to develop 

parameter distributions. We used the DAPPER system to evaluate the sensitivity of biomass 

predictions and parameter distributions to the inclusion of ecosystem experiments in DA and to 

predict the regional sensitivity of forest production to nutrient fertilization and drought.  
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The water cycle was a simple bucket model with transpiration predicted using a Penman-

Monteith approach (Bryars et al., 2013; Gonzalez-Benecke et al., 2016; Landsberg and Waring, 

1997). The canopy conductance used in the Penman-Monteith subroutine was modified by 

environmental conditions. The modifiers include the same available soil water and vapor 

pressure deficit modifier as used in the GPP calculation. Maximum canopy conductance 

occurred when simulated LAI exceeded a parameterized value of leaf area index (LAI). 

Evaporation was equal to the precipitation intercepted by the canopy. Runoff occurred when the 

available soil water exceeded a plot-specific maximum available soil water. As in prior 

applications of 3-PG, available soil water was not allowed take a value below a minimum 

available soil water, resulting in an implicit irrigation in very dry conditions. 
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2.2 Observations 

We used thirteen different data streams from 294 plots at 187 unique locations spread across the 



region to constrain model parameters (Table 2; Figure 3). 
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All data streams were not available in all plots (Table 2; Table 3). The most common set of data 

streams were annual or less frequent observations of stand stem biomass (defined as the sum of 

stemwood, stembark and branches), winter foliage biomass, and living tree counts. The stem and 

foliage biomass were optimized using regional allometric models based on measurements of tree 

diameter, height, and plot level-stem size distributions (Gonzalez-Benecke et al., 2014). The 

most comprehensive set of data streams was from Duke Forest where annual measurements and 

allometric-based estimates were made of stem biomass (loblolly pine and hardwood), coarse root 

biomass (loblolly pine and hardwood), fine root biomass (combined loblolly pine and 

hardwood), stem count (loblolly pine only), leaf turnover (combined loblolly pine and 

hardwood), and fine root production (combined loblolly pine and hardwood). The Duke Forest 

dataset (DK3 combined with the Duke FACE CO2 fertilization study) also included monthly 

observations of LAI, gross ecosystem production (GEP; modeled gross primary productivity 

from net ecosystem exchange measured at an eddy-covariance tower), and ET. The set of data 

streams associated with a particular site and experimental design is shown in Table 3. The 

measurement uncertainty associated with each data stream is listed in Table 2. Since the model 

used a monthly time-step, and plots with only biomass and stem density observations were more 

common than plots with monthly flux estimates, the data used in the optimization cost function 

were not dominated by high frequency data streams (GEP and ET). 
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We used a hierarchal Bayesian framework to approximate the posterior probability distributions 

of model parameters in Table 1, the model process uncertainty parameters, and the latent model 



states and fluxes. The latent model states represented the ‘true’ stock or flux before measurement 

uncertainty was included in the observation. Our hierarchal approach was designed to partition 

uncertainty that is attributable to uncertainty in parameters, model process, and measurements 

(Hobbs and Hooten, 2015). Previous forest ecosystem DA efforts have either focused on 

parameter uncertainty, by using measurement uncertainty as the variance term in a Gaussian cost 

function, or on total uncertainty by directly estimating the Gaussian variance term. The latter 

combines measurement uncertainty and process uncertainty into the same parameter and is 

unable to be used for developing prediction intervals, as prediction intervals only include 

parameter and process errors (Dietze et al., 2013; Hobbs and Hooten, 2015). Here, our focus was 

on estimating the probability distribution of forest biomass before uncertainty is added through 

measurement.  

 

First, we estimated the probability of a latent state or flux (zi,m,p) for each data point (i) from each 

data stream (m) in a plot (p) using the 3-PG model with the plot FR . This included the optimized 

parameters (!F), fixed parameters (!C), soil characteristic inputs (S), climate inputs (C), site 

index (SI), fertility (FRp), and initial conditions (I) required by the 3-PG to simulate each plot, 

f(!F,	!c,C,S,I,FRp). The latent state (zi,m,p) was assumed to be normally distributed with the mean 

from the 3-PG simulation and an optimized, data stream-specific, process variance σ$,('()*+,,)	.  

 

p process process parameters)=  

P zi,m,p f θF,θC,C,S,I,FRp ,σm process
2  

~Normal zi,m,p f θF,θC,C,S,I,FRp ,σm (process)
2     Equation 1 

 



The unobserved true state related to the observed state through a data observation model. In the 

sampling model, the measured state (y0,$,') was a random sample from a normal distribution 

with a mean of the true state and a data point-specific standard deviation (σ0,$,'. ).  

 

p data process,data parameters = 

P yi,m,p zi,m,p,σi,m,p
2 ~Normal yi,m,p zi,m,p,σi,m,p

2    
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This standard deviation (σ0,$,'. ) represented measurement uncertainty and was similar to the 

denominator in least-squares approach that is commonly used in DA (Bloom and Williams, 

2015; Keenan et al., 2011).  

 

Each parameter (!F) that was optimized using the Bayesian method had a prior probability that is 

specified in Table 1. The prior distribution for the standard deviation σ$,('()*+,,)	. parameters 

were uniformly distributed:  

 

p process parameters priors)×p priors = P σm
2 ×P θF     Equation 3 

 

where 

 

P σm
2 ~unif(0.001,100)         Equation 4 

 

and 



 

P θF ~See Supplemental Table 1       Equation 5 

 

Finally, following the description of the plot specific FRp described above, the probability for 

fertilized treatments was based on a comparison to the control treatment FR.  

 

P FRp|θF,E =
1 if non-fertilized

1 if fertilized and FRp≥FR of control plot 
0 if fertilized and FRp<FR of control plot

     Equation 6 

 

Our complete Bayesian model for estimating the posterior distributions for the parameters (!F), 

process uncertainty (σ$,('()*+,,)	. ), and unobserved true states (zi,m,p) was: 

 

P θF,σm
2 ,zi,m,p yi,m,p,σi,m,p

2 ,θC,S,C,SI,I �  

P(z0,$,'|f θ6, θ7, FR', E , σ$. )P(y0,$,'|z0,$,', σ0,$,'. )P FR'|θ6, E P θ6 P σ$.   Equation 7 
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We numerically estimated the  
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posterior distributions using the Monte-Carlo Markov Chain – Metropolis Hasting 

(MCMC-MH) algorithm (Zobitz et al., 2011). This approach has been widely used to 

approximate parameter distributions in ecosystem DA research (Fox et al., 2009; 

Trudinger et al., 2007; Williams et al., 2005; Zobitz et al., 2011). We adapted the size of the 

jump for each parameter (i.e., how far a proposed new value can potentially be from the 



current value) to ensure the acceptance rate of the parameter set is between 22% and 43% 

(Ziehn et al., 2012). 
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 All MCMC-MH chains were run for 30 million iterations with the first 15 million 

iterations discarded as the burn-in.  
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Three chains were run and compared for convergence and we sampled every 1000th 

parameter in the final 15 million iterations of the MCMC-MH chain. This thinned chain 

was used in the analysis described below.  
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The 3-PG model and MCMC-MH algorithm were programed in FORTRAN 90 and used 

OpenMP to parallelize the simulation of each plot within an iteration of the MCMC-MH 

algorithm. 
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2.4 Model simulations  

Each plot simulated required initial conditions for each model state, climate inputs, soil 

characteristic inputs, and site index.  
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We used the first observation at the plot as the initial conditions for the loblolly pine vegetation 

states (foliage biomass, stem biomass, coarse root biomass, fine root biomass, and stem number). 

When observations of coarse biomass and fine root biomass were not available, these stocks 

were initialized as a mean region-wide proportion of the observed stem biomass.  
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contribute to the root cost function and root biomass does not  
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In the two plots with flux observations (US-Dk3 and US-NC2),  
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(Staff, 2016). We assumed that the minimum available soil water was zero. 

 

Page 13: [17] Deleted Revisions 5/22/17 1:33:00 PM 

mean annual temperature for each plot (Abatzoglou, 2013) 
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directly estimating FR, rather than calculating from Equation 2, and by requiring the optimized 

FR in the fertilized plot to be  
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 plot (US-NC2) included a thinning treatment during the period of observation. We simulated the 

thinning by specifying a decrease in the stem count that matched the proportion removed at the 

site, with the biomass of each tree equivalent to the average of trees in the plot. 
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 Model experiments and analysis 

Our analysis focused on comparing parameter distributions and predictions among 

simulations that used different experimental treatments to estimate the posterior 

distributions (Table 4). To examine the influence of the Duke FACE CO2 fertilization, we 

compared a one stage vs. a two-stage data assimilation process. The one stage process 

assimilated all observations in all plots and experiments simultaneously. In this approach, 

the elevated CO2 plots only represented 5 of the 294 plots across the region and thus a 

relatively minor contribution to the likelihood (cost-function) calculation. The two-stage 



process used the observations from Duke FACE, US-Dk3 flux site, the other flux site in 

North Carolina (US-NC2) to estimate parameter posteriors using the priors in Table 1 and 

SI  

2.3  

Page 21: [21] Deleted Revisions 5/22/17 1:33:00 PM 

These sites were grouped together because they were the most data rich, had the high frequency 

data streams (monthly GEP, ET, and LAI), and were relatively close in geography. FR was 

directly estimated for all plots in the first stage, with the FR of a fertilized plot required to be 

equal to or higher than its control plot. The FR of the CO2 experiment was equal to the 

corresponding control plot estimated FR. The FR of the control plot was required to be greater 

than 0 and, if associated with a nutrient fertilization plot, less than the FR of the fertilized plot.  

 

For the second DA stage, the posterior distributions from the first stage were used as priors for 

the assimilation of the region-wide observations from the PINEMAP, FPC RW 18, FMRC 

Thinning, SETRES, and Waycross studies (Table 4). We compared the CO2 quantum yield 

enhancement parameter (Calpha700) between the one and two stage approaches to evaluate how 

the estimation of CO2 fertilization of plant growth depended on how the Duke FACE data are 

used in data assimilation. We also estimated the distribution of the percentage increase in net 

primary productivity (NPP) associated with the elevated CO2 treatment using the one and two 

stage data assimilation approaches. The distribution of the percentage increase in NPP was 

calculated by randomly selecting 1000 parameter sets, with replacement, from the 1-stage 

converged MCMC chains. This calculation was repeated using the 2-stage approach. 

 

Based on the results from comparing the one and two stage approaches (see results below), we 

proceeded using the two-stage approach to examine the influence of the water manipulation and 



nutrient fertilization experiments on posterior distributions and predictions. To evaluate the 

influence of water manipulation experiments, we repeated the second stage of the data 

assimilation without the plots where water was added or subtracted. To evaluate the influence of 

the nutrient manipulation experiments, we first repeated the first stage of data assimilation 

without the nutrient addition plots in the Duke FACE experiment and used those posteriors as 

priors to the second stage. This ensured that the priors to the second stage of data assimilation 

did not include information from nutrient addition experiments. The second stage then excluded 

the other  
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manipulation experiments in the region.  

 

To examine how the exclusion of the water manipulation experiments influenced parameter 

inference and predictions, we first examined how the parameter distributions changed from 

initial priors through the two assimilation stages. With respect to the water manipulation 

experiments, we focused on the shape of the relationship between available soil water and the 

quantum yield and stomatal conductance modifier (governed by parameters SW1 and SW2) with 

and without assimilating the water manipulation experiments. To illustrate the capacity to 

estimate the probability distribution of predictions using the posterior uncertainty in parameters, 

we analyzed a focal site in Georgia, near the center of the loblolly pine range (circle in Figure 2). 

At the focal site, we predicted the sensitivity of stem biomass at age 25 (hereby referred to as 

STEM25) to a 30% 
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and a 30% decrease in annual precipitation with and without assimilating the water experiments. 

A 30% percent decrease in precipitation mirrors the magnitude of reduction in the experimental 



throughfall reduction studies used in DA (Table 3 and Figure 3). Our prediction distributions 

were calculated  
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as inputs (Figure 2). We simulated forest development from 1989 to 2014 using actual 

precipitation and again with a 30% reduction in precipitation. We focused our analysis on the 

percent change in STEM25 between the two simulations 
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To examine how the exclusion of the nutrient addition experiment influenced parameter 

inference and prediction, we focused on the difference in maximum quantum yield parameter (;) 

and the relationship between site index and soil fertility modifier (FR) with and without 

assimilating the nutrient experiments. Additionally, we simulated how stem biomass at age 25 

(STEM25) responded to a complete removal of nutrient limitation (FR = 1) for the focal site in 

Georgia. As in the precipitation sensitivity described above, we represented the percentage 

change in STEM25 between simulations with estimated FR and FR =1 as a distribution by 

integrating across parameter uncertainty. We predicted the regional response to nutrient 

fertilization by setting the FR at all HUC12 units (see previous paragraph) equal to 1 using the 

median posterior parameter values from data assimilation where nutrient addition experiments 

were either included or not. We focused on the regional pattern in the percentage change in stem 

biomass with the predicted FR (current level fertility) and FR = 1 (nutrient limitation removed).  

 

Finally, we assessed overall model performance of the 2-stage approach for data assimilation 

with all experimental types included in DA, excluding the nutrient addition experiments, and 

excluding the nutrient addition experiments using an out-of-sample approach. The approach held 

40 random FMRC thinning study plots (Table 3) out from the assimilation, predicted the 40 plots 



using the median parameter values, and compared the predicted stem biomass to the observed 

stem biomass. These were plots without any manipulations of nutrients or water, were located 

throughout the region, and had measurement ages up to 30 years old. For each plot, we only used 

the most recent observed values to increase the time length between initialization and validation. 

We repeated the validation for four unique sets of 40 FMRC thinning study plots.  
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Our multi-site, multi-experiment, multi-data stream DA approach was able to constrain most 

parameters in the 3-PG model (31 of 46 parameters were optimized; Table 6; Supplemental 

Table 3; Supplemental Figure 1-3). The 31 optimized parameters were the most sensitive 

parameters in the 3-PG model, defined by the change in total biomass at age 25 for the focal site 

in Georgia to a 10% change in the parameter (Table 1; Supplemental Table 1). One exception 

was the light extinction coefficient (k), which showed high sensitivity but was assumed to be 

fixed because it strongly co-varied with the quantum yield parameter (;). Parameters associated 

with biomass allocation had priors with large variance but DA was able to provide posteriors 

with relatively low variance (pFS2, pFS20, pR, and pCRS; Supplemental Figure 1; Supplemental 

Table 3). The DA process also produced posterior distributions that had less variability than the 

prior distribution for the important parameters associated with light-use efficiency (;, y, FR1, 

and FR2; Table 5). DA did not change the parameter distributions, i.e., the posterior and prior 

distributions were similar, for the parameters that governed the temperature sensitivity of 

quantum yield, the VPD sensitivity of quantum yield, and the maximum canopy conductance 

(Supplemental Figure 1-2; Supplemental Table 3). These parameters had strong priors supported 

by previous research on loblolly pine physiology. Finally, the DA approach was able to estimate 

the distributions of the process uncertainty parameters (Supplemental Figure 3; Supplement 



Table 4). 

 

The addition of the second stage of assimilation that used region-wide observations and 

posteriors from the DK+NC2 assimilation modified the distributions of the parameters that 

related to allocation and mortality but did not provide additional constraint on the physiological 

parameters (Table 5). In particular, the parameters associated with the self-thinning curve and 

allocation of coarse roots had non-overlapping 95% credible intervals between the DK+NC2 and 

RW assimilation. The larger estimate for Wsx1000 and lower value for thinPower in the 

DK+NC2 indicated self-thinning was lower at the sites in the DK+NC2 assimilation than the 

average of the other sites in the region. The lower value for the pCRS parameter indicated that 

less NPP was allocated to coarse roots in the DK+NC2 assimilation than the RW assimilation.  

 

The two-stage assimilation was critical for constraining the CO2 quantum yield enhancement 

parameter (Calpha700). Both the mean of the posterior distribution and the range of the 95% 

credible interval were smaller for fCalpha700 when all observations were assimilated 

simultaneously (1-stage approach) than the distribution estimated using the 2-stage approach 

(Duke and NC2 assimilated before the region-wide assimilation) (Figure 5a; Table 5). Despite 

the same data used in both approaches, the differences in fCalpha700 led to a predicted lower 

enhancement of NPP associated with elevated CO2 in the experiment. The 1-stage assimilation 

approach had a median increase in NPP between the control and elevated CO2 treatments of 15% 

compared to a 27% in the two-stage approach (Figure 5b).  

 

The RW assimilation constrained the soil fertility parameters that were necessary to enable 



regional simulations. Our regional model using the 2-stage approach performed well compared 

to stem biomass data not used in the assimilation. The mean bias in stem biomass of the four out-

of-sample validation sets was -6.7 % and the RMSE was 21.2 Mg ha-1 (Figure 4). 

 

Excluding the nutrient addition experiments from the DA increased the simulated level of 

nutrient limitation but did not change the predictive capacity of the independent non-manipulated 

validation set. DA without nutrient fertilization experiments had a greater and more uncertain 

value for the maximum quantum yield parameter (;; Figure 6a; Table 5).	This parameter was 

shared across all plots and modified by the environmental conditions at each plot. To compensate 

for the higher ; parameter when nutrient fertilization experiments were excluded from DA, the 

two soil fertility parameters (FR1 and FR2) combined to predict a 10% lower FR values for a 

given site index and mean annual temperature (Figure 6b). Subsequently, the prediction for the 

percentage change in STEM25 associated with maximum fertilization (i.e., setting FR = 1) at the 

focal site in Georgia was 7% higher and had greater uncertainty when nutrient fertilization 

experiments were excluded from the DA (Figure 6c). The RMSE and mean bias of the non-

manipulated validation set was 20.4 Mg ha-1 and -4.8 %, respectively (SI Figure 1a) 

 

Excluding the water manipulation experiments from the DA reduced the sensitivity to available 

soil water but, similar to the inclusion of the nutrient addition experiments, did not change the 

predictive capacity of the independent non-manipulated validation set. The combined differences 

in the SW1 and SW2 parameters between the DA with and without the water manipulation 

experiments decreased the sensitivity of quantum yield and canopy conductance to a reduction in 

available soil water (Figure 7a). For example, at an available soil water to maximum available 



soil water ratio of 0.50, the quantum yield and canopy conductance modifier decreased from 0.95 

without water experiments to 0.8 with water experiments (Figure 7a). At the focal site in 

Georgia, the sensitivity of STEM25 to a reduction in annual precipitation (Figure 7b) was larger 

when the water experiments were included in the DA (-8.5% median change in STEM25 for a 

30% reduction in precipitation) than when the experiments were excluded (-4.1% median change 

in STEM25 for a 30% reduction in precipitation). Similarly, the predictions of STEM25 change 

associated with a 30% increase in precipitation (median: 3.8%) were higher when water 

experiments were included than when not included (median: 1.1%). The magnitude of 

uncertainty in the predictions did not differ substantially between forecasts with and without 

water experiments (Figure 7b). The RMSE and mean bias of the non-manipulated validation set 

was 19.3 Mg ha-1 and -5.8 %, respectively (SI Figure 1b) 

 

 

Page 25: [27] Deleted Revisions 5/22/17 1:33:00 PM 

 

The sensitivity of forest production to a 30% reduction in precipitation varied across the region. 

The most sensitive areas, the Piedmont of Georgia and the western edge of the region, predicted 

up to a 13.1% decline in STEM25 (Figure 11a). These were warm areas with relatively low 

precipitation before the 30% reduction (Figure 2c). The least sensitive area was the interior of the 

gulf coast (<1% decline; Figure 11a), the area with the highest precipitation in the region (Figure 

2c). The regional mean reduction in STEM25 associated with a 30% decrease in precipitation was 

5.7% (Figure 11a). Excluding the water manipulation experiments from DA reduced the regional 

mean sensitivity to 1.7% (Figure 11b). 
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We found that including nutrient and water manipulation experiments aided in distinguishing the 



mechanisms driving patterns in biomass across the region. Including these experiments in the 

data-assimilation did not improve the predictive capacity of the independent validation set of 

non-manipulation plots. However, including nutrient and water manipulation did change the 

underlying mechanisms explaining the patterns in stem biomass. Without the nutrient and water 

manipulation experiments, the same biomass predictions were attributable to a higher level of 

nutrient limitation and a lower level of water limitation. This resulted in differing sensitivities to 

changes in nutrient or water availability.  Overall, this finding highlights a key challenge when 

parameterizing ecosystem models that will be used for global change predictions, that different 

combinations of environmental drivers can produce similar predictions of current observations. 

Ecosystem manipulation experiments are an important tool for addressing this challenge. 

 

Parameter and process identifiability, or equifinality, presents a challenge when parameterizing 

ecosystem models using DA (Luo et al., 2009). One important source of equifinality is the 

tradeoff between parameters governing the potential productivity of the vegetation and the 

downregulation of productivity due to nutrient limitation. When using observational data at a 

single site, a single parameter is often optimized to set a photosynthetic rate per absorbed light, 

i.e., a quantum yield. This single parameter combines the potential photosynthesis set by climate 

and the influence of nutrient limitation on photosynthesis into a single parameter. However, 

separating these two processes into two or more parameters is challenging because a high 

potential quantum yield parameter (a) and high nutrient limitation (FR) can mathematically yield 

the same photosynthetic rate as low potential quantum yield and low nutrient limitation. The 

former implies a larger potential response to nutrient addition than the latter. We found that 

including nutrient addition experiments in DA helped overcome this challenge. In the case of the 



3-PG model used in this study, the maximum quantum parameter (a) and soil fertility parameters 

(FR1 and FR2) were more constrained and inferred lower levels of nutrient limitation across the 

region when nutrient fertilization experiments were included in the DA. This finding likely 

extends to other models that include the concept of potential productivity and productivity 

downregulated by nutrient limitation. For example, the applications of the Data Assimilation 

Link Ecosystem Carbon (DALEC) model (Williams et al., 2005) to DA often assumed nine of 

the ten parameters associated with photosynthesis were fixed, thus using a single parameter to 

represent both the quantum yield (defined as nitrogen use efficiency in DALEC) and the 

magnitude of nitrogen limitation of a site (Fox et al., 2009). The use of a single parameter, rather 

than using nutrient addition experiments to separate into multiple parameters, is appropriate 

when assuming nutrient availability is static. Applications of DA to predictions of ecosystems 

with changing nutrient availability, either through management, elevated CO2, or nitrogen 

addition, would benefit from using nutrient addition studies to quantify the magnitude of nutrient 

limitation. Studies of known nutrient gradients could be used in lieu of nutrient addition studies, 

but effort must be made to account for confounding abiotic factors, such as available soil water 

or climatic conditions, that may co-vary with nutrient availability. 

 

Another challenge in DA is deciding how to weigh different types of data used in model fitting 

(Gao et al., 2011; Wutzler and Carvalhais, 2014). Here we demonstrate that DA efforts should 

also consider how to weigh different types of ecosystem experiments. In our analysis, we 

included three types of experiments: nutrient addition, water manipulation, and CO2 fertilization. 

The nutrient addition and water manipulation experiments were represented by multiple sites 

across the region while the CO2 fertilization only occurred at a single location (Figure 3). We 



found that the parameter that represents the increase in maximum quantum yield under elevated 

CO2 was substantially lower when all observations, sites, and experiments were assimilated 

simultaneously than when the CO2 fertilization experiment was given greater weight. The greater 

weight was applied by first assimilating the CO2 fertilization experiment and using the posteriors 

as priors for assimilating the remaining observations. Providing additional weight on the single 

site with unique environmental conditions (i.e., atmospheric CO2 at 570 ppm) using a two-stage 

data-assimilation, we were able to more accurately represent the observed differences in NPP 

between the ambient and elevated CO2 treatments at the Duke site (McCarthy et al., 2010). 

Given than only a few of the parameters were significantly different between the Duke site and 

the other studies across the region, it may be possible to optimize one parameter for the Duke site 

and another parameter for the other studies in a 1-stage approach that combines all the plots into 

a single assimilation. However, the 2-stage approach was required to identify which parameters 

were different between the Duke site and the other studies. Overall, we suggest that DA efforts 

using multiple studies and multiple experiment types identify whether particular experiments at 

limited number of sites have the potential to uniquely constrain specific parameters. In this case, 

additional weight may be needed to avoid having the signal of the unique experiment 

overwhelmed by the large amount of data from the other sites and experiments.  

 

Our analysis highlights that nutrient limitation of productivity was widespread across the region. 

The largest potential gains in productivity from nutrient addition were predicted in central 

Georgia, an area with warm annual temperatures but poor soils, as expressed in the low site 

index. The baseline fertility used in our regional analysis was derived from an empirical model 

of site index that was developed using field plots with minimal management (Sabatia and 



Burkhart, 2014). Subsequently our estimate of baseline fertility is likely on the low end of forest 

stands currently in production. Further, we recognize that the site index model had uncertainty 

that could be formally incorporated into the hierarchal Bayesian approach in future applications.  

 

The soil fertility modifier has commonly been used to calibrate the 3-PG for applications to a 

single site, with recent work focused on developing an approach to predicting the soil fertility 

modifier from environmental conditions (Gonzalez-Benecke et al., 2016; Subedi et al., 2015). 

We have extended prior efforts to develop a simple predictive model of FR in two ways. First, 

we simultaneously calibrated the parameters in the empirical FR model alongside the other 

parameters in the 3-PG model. Prior studies have assumed fixed values for the 3-PG model 

parameters, fitted FR for plots with observations, and developed a relationship between FR and 

site index. Our Bayesian approach to simultaneously calibrating the 3-PG parameters and the FR 

model allowed for the estimation of uncertainty and covariation among parameters in the 3-PG 

and FR models. Second, we included a climate term (mean annual temperature) in the 

relationship between site index and FR. This resulted in a lower FR for a given site index in 

warmer locations. By including the climate term, FR can be interpreted as relative to the climate 

at a given location and the potential productivity of a plot can be optimized by setting FR equal 

to 1. When a climate term is not used in the empirical FR model, FR is relative to the greatest 

site index in the region, which does not occur in the northern extent of the region even in 

fertilized plots due to climatic constraints.  

 

Our simulations show that loblolly pine productivity was not strongly sensitive to changes in 

precipitation at present day temperatures and atmospheric CO2. We simulated a 30% reduction in 



annual precipitation and found a maximum of a 13.1% reduction in productivity. A 30% 

reduction in precipitation is plausible but is more extreme than most Multivariate Adaptive 

Constructed Analogs (MACA) downscaled climate model projections for the Representative 

Concentration Pathway (RCP) 8.5 scenario from the CMIP5 Project (comparing the 1971-2000 

period to the 2070-2099) (Abatzoglou and Brown, 2012; Taylor et al., 2012). Central Georgia 

was the most responsive to precipitation reduction, paralleling the spatial patterns in the response 

to nutrient addition, suggesting that the region is able to support high productivity but is sensitive 

to nutrient and precipitation levels. The simulated sensitivity was likely due to poor soils (low 

site index) and low baseline precipitation relative to the warm climate. Our predictions of low 

sensitivity to precipitation reduction or addition were derived from assimilating observations 

from throughfall exclusion and irrigation experiments across the region. Prior publications from 

the studies used in DA also reported low sensitivities to water manipulations, indicating that our 

predictions are likely not biased (Albaugh et al., 2004; Samuelson et al., 2014; Ward et al., 2015; 

Wightman et al., 2016). For example, the throughfall exclusion experiment at the focal site in 

Georgia, reported a 13% reduction in stem production during a dry year but a 0% reduced during 

a wet year, resulting in a 7% reduction of productivity over a 2-year period in response to a 30% 

reduction in throughfall (Samuelson et al., 2014). Our predicted 8.5% reduction to a 30% 

reduction in precipitation compares well to the observed change, noting that our sensitivity 

integrated over a 25-year rotation and included a mix of relatively wet and dry years.  
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Beyond the specifics of the 3-PG modeling efforts, the DA of regional observations into a 

monthly, computationally tractable ecosystem model can potentially inform Earth system 

modeling efforts. While the details of physiology differ between 3-PG and global land-surface 



models, the concepts governing NPP allocation are similar. Therefore, DA using the 3-PG model 

can be used to parameterize the allocation patterns of similar plant types in a global model. One 

land-surface model, the Community Land Model (CLM), includes parameters that govern the 

ratio of stem to leaf allocation, ratio of coarse root to stem allocation, and the ratio of leaf to fine 

root allocation, parameters that are also optimized in DAPPER. As an example, the ratio of fine 

root to leaf allocation in CLM 4.0 and 4.5 for temperate pine plant function type is set to 1, 

resulting in equal annual allocation of carbon to foliage and fine roots (Oleson et al., 2013). In 

contrast, we found that the median ratio of fine root to foliage allocation was substantially lower 

at 0.13 (Table 6). Therefore, simulations in the CLM with the lower value of root allocation 

would have higher allocation to aboveground tissues if the loblolly pine parameters from our 

analysis were used. This would increase carbon accumulation in woody tissues and could alter 

predictions of nutrient limitation because stems have higher C:N ratios. Other parameters, 

including the stem to coarse root ratio, are closer to the values used in the CLM.  

 

5  
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DA is increasingly used for ecological forecasting due to its ability represent prior knowledge, 

integrate observations into the parameterization, and estimate multiple components of 

uncertainty, including observation, parameter, and process representation uncertainty (Dietze et 

al., 2013; Luo et al., 2011b; Niu et al., 2014). Our application of DA to loblolly pine plantations 

of the southeastern U.S demonstrated that these ecosystems are well suited as a test-bed for the 

development of DA techniques, particularly techniques for assimilating ecosystem experiments. 

Further, we found that assimilating ecosystem manipulative experiments into a simple ecosystem 

model changed predictions quantifying how forest productivity responds to environmental 



change, highlighting the importance of networks of ecosystem manipulation experiments for 

helping to parameterize and evaluate ecosystems models (Medlyn et al., 2015).  

 

6 Data availability 

Observations used in the DA can be found in the following: Duke FACE study can be 

found in McCarthy et al. (McCarthy et al., 2010) 
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2011a. 

Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S., Clark, J. S. and Schimel, D. S.: 
Ecological forecasting and data assimilation in a data-rich era, Ecological Applications, 21(5), 
1429–1442,  
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; Canopy quantum 
efficiency (pines) 

mol C  
mol 
PAR-1 

0.84 Uniform Min = 0.02 
Max = 0.1 

Vague 

y Ratio NPP/GPP - 0.84 Uniform Max= 0.66 
Min = 0.30  

1 

fCalpha700 Proportional increase in 
canopy quantum 
efficiency between 350 
and 700 ppm CO2 

- 0.08 Uniform Min = 1.05 
Max = 2.0 
 

Vague 

fCpFS700 Proportional decrease in 
allocation to foliage 
between 350 and 700 ppm 
CO2 

- 0.00# Uniform Min = 0.50 
Max = 1.00 

Vague 

SWconst Moisture ratio deficit 
when downregulation is 
0.5 

- 0.06 Uniform Min = 0.6 
Max = 1.8 

2, Vague 

SWpower Power of moisture ratio 
deficit 

- 0.06 Uniform Min = 1 
Max= 13 

2, Vague 

FR1 Fertility rating parameter 
1 (mean annual 
temperature coefficient) 

- 0.23 Uniform Min = 0.0 
Max = 1.0 

Vague 

FR2 Fertility rating parameter 
2 (site index age 25 
coefficient) 

- 0.39 Uniform Min = 0.0 
Max = 1.0 

Vague 

wSx1000 Maximum stem mass per 
tree at 1000 trees/ha 

kg tree-1 0.43 Normal Mean = 235 
Sd = 25 

3,4 

thinPower Power in self thinning law - 0.25 Uniform Min = 1.1 3,4 



Max = 1.80  
pCRS Ratio of coarse roots to 

stem allocation 
- 0.08 Uniform Min = 0.15 

Max = 0.35 
5 

 
1(DeLucia et al., 2007);2(Landsberg and Waring, 1997), 3(Bryars et al., 2013),4(Gonzalez-Benecke et al., 2016), 5(Albaugh et al., 2005) 
* Sensitivity is 1 when a 10% increase in the parameter results in a 10% change in total biomass. #Sensitivity is 0 when a 10% increase in the 
parameters does not change total biomass by a value greater than 0.01%. 
  



 
Table 2. Regional observational data streams used in data assimilation. 
Data stream Measurement 

frequency 
Measurement 
or estimation 
technique  

Uncertainty Stream ID 
for Table 
4 
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If litter trap method: SD = 2.5% of observation  
If LI-2000 method:  
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If litter trap method: SD = 2.5% of observation  
If LI-2000 method:  
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If litter trap method: SD = 2.5% of observation  
If LI-2000 method:  
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DK+NC2 1st stage of 2-stage assimilation. All plots at the Duke eddy flux 
(DK3), Duke Free Air CO2 Enrichment Study, and NC2 eddy 
flux site; includes CO2 enrichment and nutrient addition 
experiments at the Duke site 

13 

DK+NC2-
fertNoExp 

1st stage of 2-stageSame as Base assimilation. Same as 
DK+NC2 but without nutrient fertilizationexcluding all plots 
with experimental manipulations.  Includes control plots that are 
part of experimental studies. 
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RW-fert 2nd stage of 2-stage assimilation. Same as RW but without 
nutrient addition experiments; uses the posteriors of the 
DK+NC2-fert simulation as priors 
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RW-water 2nd stage of 2-stage assimilation. Same as RW but without water 
manipulation experiments 
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Table 5. Posterior means and 95% credible intervals for parameters listed in Table 1 using the data assimilation 
approaches listed in Table 4. 
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Figure 3. 
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 change in stem biomass of a 25-year stand when nutrient limitation is completely removed 
through nutrient addition (simulated by setting FR = 1). Predictions from data assimilation that 
included nutrient addition experiments are shown in (a) and prediction data assimilation that did 
not include nutrient addition experiments are shown in (b). The focal site in Georgia highlighted 
in Figures 5c and 6b is represented by the circle containing the dot.  
  



 
Figure 11. Regional predictions of the change in stem biomass of a 25-year stand when annual 
precipitation is reduced by 30%. Predictions from data assimilation that included water 
manipulation experiments are shown in (a) and prediction data assimilation that did not include 
water manipulation experiments are shown in (b). The focal site in Georgia highlighted in 
Figures 6c and 7b is represented by the circle containing the dot.  
 

 


