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Abstract. Biogeochemical models that simulate realistic lower trophic levels dynamics, including the representation of main 

phytoplankton and zooplankton functional groups, are valuable tools for improving our understanding of natural and 

anthropogenic disturbances in marine ecosystems. Previous three-dimensional biogeochemical modeling studies in the 15 

northern and deep Gulf of Mexico (GoM) have used only one phytoplankton and one zooplankton type. To advance our 

modeling capability of the GoM ecosystem and to investigate the dominant spatial and seasonal patterns phytoplankton 

biomass, we configured a 13-component biogeochemical model that explicitly represents nanophytoplankton, diatoms, 

micro-, and mesozooplankton. Our model outputs compare reasonably well with observed patterns in chlorophyll, primary 

production, and nutrients over the Louisiana-Texas shelf and deep GoM region. Our model suggests silica limitation of 20 

diatom growth in the Deep GoM during winter, and near the Mississippi delta during spring. Model nanophytoplankton 

growth is weakly nutrient limited in the Mississippi delta year-round, and strongly nutrient limited in the deep GoM during 

summer. Our examination of primary production and net phytoplankton growth from the model indicates that the biomass 

losses, mainly due to zooplankton grazing, play an important role modulating the simulated seasonal biomass patterns of 

nanophytoplankton and diatoms. Our analysis further shows that the dominant physical process influencing the local rate of 25 

change of model phytoplankton is horizontal advection in the northern shelf, and vertical mixing in the deep GoM. This 

study highlights the needs for an integrated analysis of biologically and physically driven biomass fluxes to better understand 

phytoplankton biomass phenologies in the GoM. 

1 Introduction 

The Gulf of Mexico (GoM) is characterized by large spatial differences in plankton productivity and biomass, ranging from 30 

the oligotrophic Loop Current to the highly productive northern shelf. Productivity in this last region is strongly influenced 



2 
 

by river run-off. The Mississippi-Atchafalaya (MS-A) River System is the largest river input with a mean river discharge of 

21,524 m3 s-1 (Aulenbach et al., 2007), contributing more than 80% of the entire dissolved inorganic nitrogen (DIN) load into 

the northern GoM (Xue et al., 2013). The large plankton production and vertical stratification driven by the MS-A river 

system discharge promotes the development of a hypoxic bottom layer a few meters thick off Louisiana and Texas during 

summer (Obenour et al., 2013). This hypoxic layer can negatively impact metabolism and growth of fish and invertebrates 5 

(Rosas et al., 1998; Craig and Crowder, 2005), and disturb species distribution and composition (Craig, 2012). The influence 

of river runoff on plankton production substantially decreases offshore (Green and Gould, 2008). In the oligotrophic deep 

GoM, the spatiotemporal patterns in phytoplankton biomass are mainly associated with seasonal changes in thermal 

stratification and mesoscale ocean dynamics (e.g. Muller-Karger et al., 2015). 

Multiple ocean-biogeochemical modeling studies have been conducted in the northern GoM to understand the drivers of 10 

phytoplankton biomass variability, carbon export, nutrient cycling, and bottom hypoxia variability. Green et al. (2008) 

configured a zero-dimensional Lagrangian model of the Mississippi (MS) river plume, which included two types of 

phytoplankton (small and large size), two types of zooplankton (micro- and mesozooplankton), bacteria, detritus, ammonium 

and nitrate. This study derived distinct production patterns for small and large size phytoplankton production, concluding 

that primary production was mainly limited by physical dilution of nitrate, light attenuation, and the sinking of diatoms 15 

(large phytoplankton). More complex modeling efforts for the region include a series of three-dimensional (3-D), fully 

coupled ocean-biogeochemical models, based on Fennel’s biogeochemical model (Fennel et al., 2006). The original Fennel’s 

model formulation included ammonium, nitrate, phytoplankton, chlorophyll, zooplankton (representing mesozooplankton), 

and two detritus types as state variables. Fennel et al. (2011) examined the underlying factors determining seasonal patterns 

in phytoplankton biomass in the Louisiana-Texas shelf, and concluded that phytoplankton production was not nitrogen 20 

limited near the MS delta. They also showed that zooplankton grazing played an important role in defining phytoplankton 

biomass changes, and speculated that physical transport of phytoplankton could impact biomass seasonality. Xue et al. 

(2013) configured Fennel’s model for the entire GoM, describing main spatiotemporal patterns in plankton biomass and DIN 

in the coastal and oceanic domains. However, since they did not investigate underlying drivers (production, biomass losses) 

of phytoplankton biomass as was done in Fennel et al. (2011), less is know about the factors modulating the seasonality of 25 

phytoplankton in the deep GoM.  

Significant differences in plankton production and carbon export can be expected between food webs dominated by 

small-size (nanophytoplankton, microzooplankton) and large-size (diatoms, mesozooplankton) plankton components. 

Sedimentation rates are enhanced (decreased) in diatom (small phytoplankton) based food webs, and therefore changes in 

phytoplankton composition could influence bottom remineralization processes (Dortch and Whiteledge, 1992; Dagg et al., 30 

2003; Green et al., 2008; Zhao and Quigg, 2014). In addition, changes in phytoplankton composition may modulate 

trophodynamics, which can impact the reproductive success of upper trophic levels, and therefore modulate marine 

population abundance (Rykaczewski and Checkley, 2008). In the GoM, 3-D regional ocean-biogeochemical models that 

include more than one plankton functional group have been implemented only for the western Florida shelf (Walsh et al., 
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2003). New modeling efforts are required to examine spatiotemporal patterns of main phytoplankton functional groups 

across the northern and deep GoM.. A key modeling aspect is the characterization of diatoms and nanophytoplankton 

growth. It is well known that: 1) nanophytoplankton uptake nutrients more efficiently than diatoms; 2) diatoms can achieve 

greater growth rates than nanophytoplankton in nutrient-rich environments; and 3) diatoms require silicate as an additional 

nutrient for frustule formation (Litchman et al., 2006; Falkowski and Oliver, 2007). These differences should be considered 5 

when simulating phytoplankton responses to changes in nutrient availability.  

The present study explores underlying factors determining spatial and seasonal patterns in phytoplankton biomass across 

the coastal and ocean domains in the GoM, using an ocean-biogeochemical model that explicitly simulates small- and large-

size plankton groups. After validating the model results with available observations, we examine main seasonal patterns of 

phytoplankton biomass. Our main goals are: 1) to describe the spatiotemporal patterns in growth limitation for diatoms and 10 

nanophytoplankton; and 2) to evaluate the coupled role of biological (phytoplankton production and biological losses) and 

physical (advection and turbulent diffusion of biomass) processes as drivers of phytoplankton seasonality. This study 

complements Fennel et al. (2011) on phytoplankton variability in the northern GoM, by adding complexity to the modeled 

lower-trophic level dynamics, extending the description of phytoplankton growth-limitation patterns to the deep GoM, and 

quantifying the role of advection and diffusion. 15 

2 Data and model 

2.1 Data 

Monthly mean composite fields of SeaWiFS (1998-2011) and MODIS (2003-2014) chlorophyll-a were retrieved from the 

Institute for Marine and Remote Sensing, University of South Florida (http://imars.usf.edu). These data were processed using 

the NASA OC4 and OC3 band ratio algorithms (O’Reilly et al., 2000). All products followed the latest implementation of 20 

the atmospheric correction based on Ding and Gordon (1995). In situ observations of chlorophyll and nutrients for the 

Louisiana-Texas shelf were obtained from the Coastal Waters Consortium (Rabalais, 2015; Smith, 2015; Parson et al, 2015). 

Chlorophyll observations in the deep GoM were derived from APEX profiling floats measurements collected during the 

Lagrangian Approach to Study the Gulf of Mexico Deep Circulation project (Hamilton and Leidos, 2017). Nutrient 

observations in the deep GoM were obtained from water samples collected in the Gulf of Mexico and East Coast Carbon 25 

Cruises (GOMECC, Wanninkhof et al., 2014). Observed primary production rates are derived from measurements collected 

by Lehrter et al. (2009) in the delta and Texas shelf, and Biggs (1992) and Sanchez (1992) in the deep GoM. 

2.2 Model description 

We use a 13-component biogeochemical model (hereinafter refer to as GoMBio) that simulates nitrogen (N) and silica (Si) 

cycling. The model includes nitrate (NO3), ammonium (NH4), nanophytoplankton (small phytoplankton, PS), diatom (large 30 

phytoplankton, PL), chlorophyll of nanophytoplankton and diatom (ChlS and ChlL), microzooplankton (small zooplankton, 
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ZS), mesozooplankton (large zooplankton, ZL), small and large detritus (DS and DL), opal, labile dissolved organic nitrogen 

(DON), and silicate (SiOH4). Small detritus is particulate nitrogen linked to SZ egestion and small plankton (PS + ZS) 

mortality, while large detritus is particulate nitrogen associated with LZ egestion and large plankton (PL + ZL) mortality. 

Opal is non-living particulate Si linked to diatom mortality and zooplankton egestion. The state variables NO3, NH4, PS, PL, 

ZS, ZL, DS, DL, and DON are simulated in terms of mmol N m-3, silicate and opal in terms of mmol Si m-3, and ChlS and 5 

ChlL in terms mg chlorophyll m-3. The model does not include phosphate as limiting nutrient for phytoplankton growth. 

Although previous studies have indicated the existence of phosphate limitation near the MS-A deltas during May-July 

(Sylvan et al. 2006, 2007; Laurent et al., 2012; Laurent and Fennel, 2014; Fennel and Laurent, 2017), we focus here on the 

role of N and Si, as observational studies suggest that N and Si can modulate phytoplankton production and composition 

across the northern GoM (Dortch and Whitledge, 1992; Nelson and Dortch, 1996; Lohrenz et al., 1997; 2008; Rabalais et al., 10 

2002; Zhao and Quigg, 2014). 

GoMBio describes the following processes: 1) phytoplankton growth as a function of temperature, light, NO3 and NH4, 

including NH4 inhibition of NO3 uptake; 2) silicate limitation of PL growth; 3) photo-acclimation, 4) phytoplankton 

exudation, 5) ZS grazing on PS and PL, 6) ZL grazing on PS and PL, and predation on ZS, 7) zooplankton egestion and 

zooplankton excretion, 8) phytoplankton and zooplankton mortality, 9) nitrification, 10) detritus, DON and opal 15 

remineralization, 11) detritus, diatoms, and opal sinking, and 12) sediment coupled nitrification/denitrification (instantaneous 

remineralization. Processes 1, 3, 9, and 12 follow Fennel et al. (2006; 2011) formulations, while processes 2, 4-8, and 10-11 

follow Kishi et al. (2007) formulations. Descriptions of the model equations and parameters are included in the 

Supplementary Material. Model parameter values are presented in Table 1.  

The model domain encompasses the entire GoM and is based on the Regional Ocean Model System (ROMS) 20 

(Shchepetkin and McWilliams, 2005). The model’s horizontal resolution is about 8 km and has 37 sigma-coordinate 

(bathymetry-following) vertical levels. Boundary conditions are Flather (Flather, 1976) and Chapman (Chapman, 1985) for 

the barotropic velocity and free surface, respectively, and a combination of radiation and nudging for the baroclinic velocity 

and tracers (Marchesiello et al., 2001). Tidal constituents were not included in the model. The open boundary nudging 

timescale is 4 days for the incoming signal and 90 days for the outgoing signal. A third order upstream scheme and a fourth 25 

order Akima scheme are used for horizontal and vertical momentum advection, respectively. Multidimensional positive 

definitive advection transport algorithm (MPDATA) is used for horizontal and vertical tracer advection (Smolarkiewicz and 

Margolini, 1998). Horizontal viscosity and diffusivity are set to 1 m2 s-1, increasing gradually to 4 m2 s-1 in a 100 km wide 

sponge layer at the open boundaries to reduce signal reflection problems. Mellor and Yamada 2.5-level closure scheme is 

used for vertical turbulence (Galperin et al., 1988). Initial and open boundary conditions are derived from a 25 km-resolution 30 

Modular Ocean Model basin-scale model for the Atlantic Ocean (Liu et al., 2015), which includes the Tracers of Ocean 

Phytoplankton with Allometric Zooplankton (TOPAZ) as biogeochemical model (Dunne et al., 2010). Since TOPAZ does 

not include zooplankton as state variable, we assumed zooplankton correspond to 20% of the total phytoplankton biomass, 

assigning 30% to mesozooplankton and 70% to microzooplankton, assuming that the microzooplankton is the dominant 
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zooplankton component near the model open boundaries for the Gulf of Mexico. Sensitivity simulations indicated that 

changes to those allocations do not affect greatly the derived plankton biomass patterns.  

The model is forced with monthly surface water flux, daily shortwave and longwave radiation, and 6-hourly resolution 

air temperature, sea level pressure, humidity, and winds from the European Center for Medium Range Weather Forecast 

(ECMWF) ERA-Interim reanalysis product (0.75° resolution, Dee et al., 2011). Surface net heat flux and wind stress are 5 

estimated using bulk parameterization. River runoff from 54 river sources (35 in the US) is explicitly represented. Daily 

water discharges from US rivers were retrieved from the US Geological Survey (USGS) river gauges 

(https://waterdata.usgs.gov). Climatologies from Mexican river discharges were derived from He et al. (2011), Munoz-

Salinas and Castillo (2015), and Martinez-Lopez and Zavala-Hidalgo (2009). Monthly observations of dissolved inorganic 

nutrients (nitrate, ammonia, silicate) and organic nitrogen in the MS-A Rivers were retrieved from the USGS 10 

(http://toxics.usgs.gov; Aulenbach et al., 2007). Following Yu et al. (2015), the MS-A particulate organic nitrogen (PON) 

was determined as the difference between unfiltered and filtered total Kjendahl nitrogen (TKN), while the dissolved organic 

nitrogen (DON) was estimated as the difference between filtered TKN and ammonia. Only 10% of the estimated DON was 

incorporated into the model as labile DON, considering that most of the observed MS-A DON corresponds to refractory 

material (Green et al., 2006). Riverine PON was assigned to the small detritus pool. For river sources other than the MS-A, 15 

dissolved inorganic nutrients and organic nitrogen concentrations are prescribed as climatological averages (USGS; Dunn, 

1996; He et al., 2011; Livingstone, 2015). Because Submarine Groundwater Discharge (SGD) is a significant source of 

nitrogen off the west Florida shelf (Hu et al., 2006), we included SGD-NH4 fluxes based on rates reported by Swarzenski et 

al. (2007). We assumed that SGD-NH4 fluxes occurred in regions shallower than 30 m, decreasing exponentially from 0.694 

mmol m-2 day-1 at 10 m (minimum model depth) to 0.069 mmol m-2 day-1 at 30 m. Surface photosynthetically active 20 

radiation (PAR) is assumed to be 43% of the surface shortwave radiation. Light attenuation includes a salinity dependent 

coefficient (Ksalt) as in Fennel et al. (2011). 

A 40-year model spin-up was completed before starting the historical simulation. To spin-up the model, we used the 

basin-model boundary conditions and the ERA surface fluxes of randomly selected years from 1979-2014, following Lee et 

al. (2011). After spin-up, the model was run continuously from January 1979 until December of 2014, with monthly 25 

averaged fields saved.  
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3 Results 

The ocean-biogeochemical model reproduces reasonably well main patterns of temperature, salinity, sea level anomaly, and 

eddy kinetic, and biogeochemical variables. A model-data comparison of selected physical variables is presented in the 

Supplementary Material. In the following section we perform a validation for chlorophyll, diatom to total chlorophyll ratio, 

primary production, and nutrients.  5 

3.1 Biogeochemical model-data comparison 

Modeled surface chlorophyll agreed qualitatively well in the spatiotemporal patterns with the satellite chlorophyll (Fig. 2). 

The main differences between model and satellite chlorophyll are in the coastal region. Those differences can be explained 

(in part) by satellite chlorophyll overestimation, due to the high concentration of dissolved colored organic matter and 

sediments associated with river runoff (Hu et al., 2000; Del Castillo et al., 2001; Gilbes et al., 2002; D’Sa and Miller, 2003). 10 

The greatest chlorophyll concentration values are within the MS River delta, and the lowest values within the region 

influenced by the Loop Current. Significant seasonal differences are evident in the oceanic region, with minimum 

chlorophyll during summer (June-August), when thermal vertical stratification is the strongest, and maximum chlorophyll 

during winter (December-February) and early spring (March), concomitant with the greatest surface cooling and wind driven 

mixing (Muller-Karger et al., 1991; 2015). To compare temporal patters from model outputs and satellite observations, we 15 

derived monthly time series of chlorophyll in three regions: MS delta, Texas shelf and western part of the Louisiana shelf 

(for simplicity hereinafter refer to as Texas shelf), and the Deep Ocean area encompassing 85.5°-92°W and 25°-27.5°N (see 

regions in Figure 1). The MS-delta and the Texas shelf are two productive regions strongly influenced by the MS-A river 

run-off, whereas the Deep Ocean box is an oligotrophic region often influenced by the Loop Current. The simulated 

chlorophyll time series are strongly correlated with the satellite chlorophyll time series, reproducing main seasonal and 20 

interannual patterns (Fig. 3). However, the model tends to underestimate the long-term mean of satellite chlorophyll in the 

MS delta and Texas shelf (the satellite chlorophyll to model chlorophyll ratio ranges from 1.98 to 2.80; see Table 2). An 

underestimation of model chlorophyll is also evident when we contrast the modeled time series with in situ observations 

from the Coastal Waters Consortium (CWC) during spring-summer (black dots in Fig. 3a), although the CWC and simulated 

chlorophyll tend to agree well during fall and winter, suggesting that satellite sensors could be overestimating surface 25 

chlorophyll in these two seasons. This is not surprising for shelf waters influenced by river runoff, as previous studies in the 

northern GoM have reported that the satellite chlorophyll overestimates in situ chlorophyll from two to four times (e.g. 

Nababan et al., 2011). In the oceanic region, the simulated chlorophyll overestimates the long-term mean of SeaWiFS and 

MODIS chlorophyll by 12% and 22%, respectively, while in situ chlorophyll estimation based on APEX profiling float 

(black dots in Fig. 3c) closely match the model derived patterns.  30 

We evaluated the model’s ability to reproduce interannual patterns of chlorophyll by performing Empirical Orthogonal 

Decomposition of chlorophyll anomaly time series (anomaly refers to monthly outputs/observations with the monthly 
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climatological mean subtracted). The first EOF (EOF1) of model chlorophyll is consistent with the EOF1 from SeaWiFS 

(Fig. 4a, b) and MODIS (not shown). EOF1 is eminently a coastal pattern, with the greatest values located near the MS-A 

deltas. The main differences between model and satellite EOF1 are located in the northwestern Florida region, where model 

chlorophyll is much lower than SeaWiFS chlorophyll, probably linked to a misrepresentation of the interannual variability in 

riverine nutrient load. The interannual variability of the first Principal Component (PC1) time series (which represents the 5 

temporal variability of EOF1) of model chlorophyll is well correlated to the PC1 time series of SeaWiFS (r = 0.66) and 

MODIS (0.59).  

The model’s skill in reproducing the patterns in phytoplankton composition is evaluated through the diatom to total 

chlorophyll ratios reported by Zhao and Quigg (2014) for two coastal stations off Louisiana (Stations A and B in Fig. 5a). 

The model tends to overestimate the diatom ratio in Station A (29.04°N-89.56°W) and underestimate it in Station B 10 

(28.59°N-92.00°), but the differences are reasonably small considering the large variability in the observed diatom ratios 

(Fig. 5b). This variability can be associated with strong mesoscale variability across the MS delta (e.g. Marta-Almeida et al., 

2013), which is not reflected in the monthly outputs of our 8-km resolution model. In terms of temporal variability, the 

model is able to reproduce the observed decline in the diatom ratio during summer.  

Model-derived estimations of vertically integrated primary production were compared with observed rates, assuming a 15 

carbon to nitrogen ratio of 6.625 to express model production in g of carbon m-2 d-1. The temporal variability of the 

simulated production rates agrees reasonably well with the observed seasonal pattern, though a model underestimation is 

evident during late summer (Fig. 6a). The interquartile range of model production is 0.87-1.5, 0.32-0.47, and 0.13-0.23 g C 

m-2 d-1 for the MS delta, Texas shelf, and Deep Ocean region, respectively, which are within the range of production 

estimated by Lehrter et al. (2009) in the northern shelf, and Biggs (1992) and Sanchez (1992) in the Deep GoM (Fig. 6b).  20 

Simulated and observed time series of nitrate and silicate in Station C6 (28.86°N-90.46°W, Louisiana shelf) are shown 

in Figure 7a-b (observations only available for May-October). The seasonal change in surface nitrate is well reproduced by 

the model, which displays values >10 mmol m-3 during spring and <2 mmol m-3 in summer. On the other hand, the simulated 

surface silicate concentration show a poor agreement with the observed values, which in part could be explained by the 

relatively weak silicate seasonality and strong mesoscale variability over the Louisiana shelf. To further examine the ability 25 

of the model to reproduce coastal patterns in nitrate and silicate concentration on the Louisiana-Texas shelf, we evaluated the 

relationship between surface salinity and surface nutrient during spring-summer (Fig. 7c-d). Both nitrate and silicate show 

conservative mixing linked to the Mississippi and Atchafalaya river discharge. The model reproduces well the observed 

salinity-silicate relationship, while the similarity between the modeled and observed salinity-nitrate relationship is less clear. 

It is likely that additional number of observations is required to objectively visualize the observed pattern. However, our 30 

simulated salinity-nitrate relationship is consistent with observations by Sylvan et al. (2006) and modeling results by Fennel 

et al. (2011)(see their Figure 4). 

Nitrate and silicate measurement collected in the most oceanic stations of the Mississippi and Tampa lines from 

GOMMEC cruises 1 and 2 were used to evaluate the model’s ability to simulate nitrate and silicate patterns in the Deep 



8 
 

GoM. The modeled nutrient profiles (red lines) reproduce well the depleted nitrate and silicate levels in the upper 30 m, as 

well as the strong vertical gradient linked to the nutricline over 30-300 m depth (blue dots) (Fig. 8a-d). Some model 

overestimation of nitrate and silicate is seen at depth > 300 m, but that bias most likely has a limited impact in the nutrient 

concentration at the upper 100 m layer. The better model-observation agreement is observed in the station at Tampa’s line. 

3.2 Phytoplankton biomass patterns 5 

The model-data comparison shown in the previous section, along with the physical model validation presented in the 

Supplementary Material, indicates that the model is able to reproduce dominant ocean-biogeochemical processes, and 

consequently could be used to explore the underlying factors modulating spatio temporal changes in diatom and 

nanophytoplankton biomass. In this section we describe the main seasonal patterns in phytoplankton biomass in the three 

selected regions shown in Fig. 1. Subsequently we examine the driving factors modulating the phytoplankton biomass 10 

seasonality. 

The model-derived patterns in plankton biomass have important regional differences in terms of seasonality. To 

illustrate this, we estimated monthly climatologies of phytoplankton concentration from the surface to 30 m depth (or bottom 

depth if <30 m) within the MS delta, Texas shelf, and Deep Ocean regions (Fig. 9a-c; regions depicted in Fig. 1). Total 

phytoplankton is the greatest during March-April in the MS delta and Texas shelf, and February-March in the oceanic 15 

region, and smallest during August in the three regions. The timing and amplitude of the seasonal maxima differ 

significantly between phytoplankton components. In the MS delta, diatoms peak in February while nanophytoplankton peak 

in April-May. In the Texas shelf, the spring phytoplankton maximum is mainly driven by nanophytoplankton. Diatoms do 

not have a marked spring peak like in the MS delta, displaying two maxima in February (the greatest) and June. In the 

oceanic region, both nanophytoplankton and diatom peak in February-March, with nanophytoplankton clearly dominating 20 

upon diatom (>80%). 

3.2.1 Limitation factors and growth 

To investigate the drivers of phytoplankton growth variability, we derive climatological patterns for the nutrient 

limitation factors (LP; equations A1.5 and A2.7), the light limitation factors (fP; equations A1.6 and A2.8), the temperature-

dependent growth rates (Vp; equations A1.3 and A2.3), and the specific growth rate (SGR, which is the product of LP, fP and 25 

Vp). It is important to note that the nutrient and light limitation factors ranges from 0 to 1, with 0 indicating non-growth and 

1 indicating no limitation. This implies that growth limitation is inversely related to the limitation factors. Seasonal changes 

in LPS and LPL for the MS delta, Texas shelf, and Deep Ocean are depicted in Fig. 10a, b. In the MS delta and Texas shelf, 

the model nutrient-limitation factors are the greatest (i.e., the weakest limitation) during February-April, and the smallest 

(i.e., the strongest limitation) during September-November, reflecting the seasonality in river discharge along the northern 30 

shelf (the maximum river discharge in Louisiana and Texas is during April and March, respectively, and the minimum in 

August-September). A secondary peak in the nutrient limitation factors is observed during July in the Texas shelf, which can 
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be related to wind-driven upwelling and a secondary peak in river discharge during summer. In the Deep Ocean region, the 

nutrient-limitation factors are maxima during January-March and minima during July-October, a pattern associated with the 

seasonal cycle in thermal stratification and mixing (enhanced mixed in winter, enhanced stratification in summer). 

Significant differences exist between the magnitude of LPS and LPL. The LPS/LPL ratio is ~1.5 in the MS delta, ~2 in the Texas 

shelf, and ~3 in the deep GoM. Unlike nanophytoplankton, diatoms can be considerably nutrient limited in the MS delta 5 

region. The monthly climatologies of the silica to nitrogen limitation ratio (SLF:NLF) is used to evaluate whether diatoms 

are nitrogen limited (SLF:NLF>1) or silica limited (SLF:NLF<1)(Fig. 10c and Fig. S10 in Supplementary Material). Overall 

SLF:NLF is predominantly >1 in the three regions, implying that diatoms are mainly nitrogen limited. However, SLF:NLF 

shows values near or smaller than 1 during December-April in the deep Gulf, and during February-April in the MS delta, 

indicating that both nitrogen and silica can limit model diatom growth. 10 

Besides nutrients, light and temperature influence model phytoplankton growth. The strongest light limitation is in the 

MS delta, and the weakest is in the deep GoM (Fig. 10d-e), but the regional differences in light-limitation are much smaller 

than those for nutrient-limitation. Seasonally, light limitation is weakest during April in the coastal regions, and May in the 

Deep Ocean. Conversely, light limitation is the strongest during August and December in the coastal regions, and December 

in the Deep Ocean. In the coastal regions, the decline in light limitation during June-August can be linked to increased light 15 

attenuation, driven by the offshore spread of low-salinity and phytoplankton-rich waters by wind-driven upwelling. The 

temperature-dependent growth rate (Vp) displays the largest amplitude in the coastal regions, with a maximum in August and 

minimum in January-February (Fig. 10f-g). The ratio between the maximum and minimum Vp is ~2.3 in the coastal regions 

and ~1.4 in the Deep Ocean. 

The interplay among nutrient, light and temperature conditions determines the model phytoplankton specific growth rate 20 

(SGR). The seasonal pattern in the SGR shows differences between coastal and oceanic domains (Fig. 10h-i). In the coastal 

regions, the inverse relationship between Vp and both light and nutrient limitation factors during March-August determines 

the greatest SGR in June-July, while the small Vp and light limitation factors during December-February determine the 

minimum SGR in December-January. In the Deep Ocean region, the SGR seasonality is mainly driven by nutrient and light 

limitation. The maximum SGR is in February (concomitant with the maximum nutrient limitation factor) while the minimum 25 

SGR is in June-August, the latter driven by the strong nutrient limitation during summer. 

3.2.2 Biomass sources and losses 

Now we explore how the patterns in phytoplankton production and losses influence the patterns in phytoplankton biomass. 

We showed that the model SGR is the maximum during June-July in the coastal regions, and February in the Deep Ocean 

(Fig. 10h-i). We may expect that the seasonal changes in production reflect the changes in SGR, since production is the 30 

product between SGR and phytoplankton biomass. The link between SGR and production is evident in the Deep Ocean, as 

SGR and production have maxima in February and minima during July-September (Fig. 11c). However, in the MS delta and 

Texas shelf, the simulated production peaks occur 2-3 months earlier than the SGR peaks (Fig. 11a, b). This necessarily 
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implies that biomass losses due to biological (grazing, mortality, exudation) and physical (advection/diffusion) processes 

play an important role modulating production seasonality during spring-summer.  

To evaluate how biologically driven processes influence the seasonal patterns in model phytoplankton biomass, we 

calculated the net phytoplankton growth, which is the balance between production and biological losses (Fig. 11d-f). The net 

phytoplankton growth displays distinct patterns for each phytoplankton component and region. The maximum net growth for 5 

diatom is in January-February in the MS delta, December-January in the Texas shelf, and February in the Deep Ocean, while 

the maximum net growth for nanophytoplankton is in April in the MS delta, February in the Texas shelf, and January in the 

Deep Ocean. The net growth for diatoms and nanophytoplankton begins to decline before the production maximum. 

Moreover, in the Texas shelf, the net growth is negative during the production maximum. In the three regions, the net growth 

for total phytoplankton (diatoms plus nanophytoplankton) is positive in November-February, has a marked decline in spring, 10 

and is negative in May-August. The seasonality of the net phytoplankton growth contrasts with the pattern in the SGR in the 

MS delta and Texas shelf, as SGR is minimum in December-January and maximum in June. All these features suggest that 

the seasonal changes in model phytoplankton biomass are strongly modulated by biological losses. Zooplankton grazing is 

the dominant biological loss term (Fig. 11g-i), markedly prevailing upon mortality and exudation (not shown). 

Microzooplankton exert the strongest grazing pressure on nanophytoplankton biomass, and mesozooplankton on diatoms, 15 

with the grazing patterns closely following the patterns in production. The seasonal patterns for microzooplankton 

(mesozooplankton) grazing upon nanophytoplankton (diatoms) closely follow the patterns in nanophytoplankton (diatom) 

production. Peaks in micro- and mesozooplankton grazing are concomitant or lag by 1 month the peak in nanophytoplankton 

and diatom production. 

The seasonal patterns in net phytoplankton growth do not completely explain the seasonal changes in model 20 

phytoplankton biomass. To fully elucidate the local phytoplankton biomass change, the role of physically driven fluxes of 

phytoplankton biomass needs to be examined. To this effect, we estimate the advection + mixing term, which represents the 

sum of advection and turbulent diffusion of phytoplankton biomass, and compare it with the net phytoplankton growth (Fig. 

12a-c). The balance between these two terms determines the local rate of change of phytoplankton biomass. The net 

phytoplankton growth is generally inversely related to the advection + mixing term, implying that the biologically driven 25 

changes tend to be offset by the physically driven changes. Besides, the net phytoplankton growth is generally larger than the 

advection + mixing term, and consequently the sign of the local rate of change is mainly determined by the biological 

component. The few exceptions are the positive growth during September in the MS delta, April and September in the Texas 

shelf, and the negative growth in March-April in the Deep Ocean region. In the last case, the physically driven fluxes not 

only influence the amplitude of the monthly biomass change but the timing of the seasonal maxima. In the MS delta, the 30 

greatest magnitude for the advection + mixing term is during January-April, representing biomass losses mostly linked to 

horizontal advection (Fig. 12d). The advection can be related to the downstream export of phytoplankton rich water 

associated with the MS river plume. A substantial fraction of phytoplankton biomass from the MS-A delta is transported to 

the Texas shelf, which explains the positive advection + mixing term during March-June (Fig. 12b,e). In the Deep Ocean, the 
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greatest magnitude for the advection + mixing term is in December-February, representing biomass losses mainly driven by 

turbulent vertical diffusion (Fig. 12c,f). The close similitude between the magnitude of the advection + mixing term and the 

net phytoplankton growth determines a much smaller local rate of change in the Deep Ocean than in the coastal regions 

(about 1 order of magnitude). 

4 Discussion 5 

We configured an ocean-biogeochemical model for the GoM that explicitly represents two types of phytoplankton and 

zooplankton, and nitrogen and silica as limiting nutrients for phytoplankton growth. Our model reproduces reasonably well 

the main physical and biochemical patterns, although an underestimation of the mean surface chlorophyll is evident in the 

northern shelf, especially on bottom depth < 20 m. A comparison with in situ chlorophyll observations suggests that part of 

the model-satellite chlorophyll disagreement could be linked to chlorophyll overestimation by satellite sensors during fall-10 

winter. Realistic representations of phytoplankton variability in region with strong physical and biochemical gradients, like 

those in the northern GoM, are challenging. Previous modeling efforts on the Louisiana-Texas shelf based on Fennel’s 

model reproduced better the mean satellite chlorophyll condition than our model (e.g. Fennel et al., 2011; Laurent et al., 

2012). However, Fennel’s model tends to overestimate satellite chlorophyll by a factor >3 in the Deep Ocean region during 

winter, which could be linked to misrepresentation of microzooplankton grazing (see section 4 in Supplementary Material). 15 

We acknowledge that additional components and processes could be included in our model, such as phosphorus cycling, iron 

limitation and nitrogen fixation, to represent more realistic biogeochemical dynamics. We also recognize that more 

observational studies will be required to constrain better our model parameters, as well as the biogeochemical fluxes between 

land and ocean. Nevertheless, we believe that the current model configuration can capture well enough the seasonal 

dynamics of diatoms and nanophytoplankton biomass in the GoM. It is known that variations in phytoplankton composition 20 

can have important repercussion for the ecosystem, including changes in upper trophic levels dynamics, carbon export 

(carbon export is enhanced in diatom-dominated food webs) and bottom hypoxia (Dagg et al., 2003; Green et al., 2008). 

Therefore, modeling efforts exploring variability in phytoplankton component, such as this study, are needed to advance our 

understanding of ecosystem variability in the GoM. 

We examined the main model phytoplankton biomass patterns and explored the underlying factors explaining biomass 25 

variability following a similar approach to that used by Fennel et al. (2011). We used a constant depth layer (0-30 m), 

whereas Fennel et al. (2011) calculated seasonal patterns in a seasonally variable mixed layer depth (~10 m in summer to 

~40 m in winter). We chose a constant depth layer because it makes the biomass budget analysis more straightforward. It is 

also worthwhile to mention that an important fraction of primary production can be distributed below the mixed layer in 

spring-summer (Yu et al., 2015). Our growth limitation analysis compared distinct regions in terms of phytoplankton 30 

production and river runoff influence, including the oligotrophic deep GoM, a region that has received less attention in 

previous modeling studies. We obtained that nutrient limitation displayed the largest spatial differences compared to other 
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limiting factors (light and temperature). Although the model indicated that the main limiting nutrient for model diatom is 

nitrogen, silicate also can limit model diatom production in the deep GoM during winter, and during spring in the MS delta. 

The latter agrees with observations of severe silica depletion during spring in the Louisiana shelf (Dortch and Whitledge, 

1992; Nelson and Dortch, 1996). Although observational studies suggested the occurrence of silica limitation in the MS delta 

decades ago with a potential link to anthropogenic-driven declines in the MS river Si:N ratio (Turner and Rabalais, 1991), 5 

this is the first modeling study to evaluate the role of silica as driver of diatom growth in the region. The implication for 

silica and nitrogen limitation in the Louisiana-Texas shelf is that changes in the MS-A river nutrient load can modulate 

changes in diatom production, influencing phytoplankton composition.  

The simulated SGR patterns showed important difference between coastal and oceanic domains. Nutrients, light, and 

temperature are important in modulating the seasonal SGR changes on the northern shelf, while nutrients and light are the 10 

dominant factors driving the SGR seasonality in the deep GoM. The monthly averages for the SGR in small and large 

phytoplankton range within 0.28-0.85 and 0.18-0.57 day-1 in the coastal regions, with the maximum (minimum) values in 

June-July (December-January). These SGR values are within the observational range reported by Fahnestiel et al. (1995), 

and similar to model estimations by Fennel et al. (2011). In the oceanic region, the SGR range for nanophytoplankton is 

0.17-0.40 day-1, with the maximum (minimum) values in February-March (June-September). Consistent with Fennel et al. 15 

(2011), we found that zooplankton grazing plays a leading role modulating phytoplankton biomass seasonality. This is 

especially evident in the coastal regions, where the net phytoplankton growth is negative (biomass decrease) in summer, and 

positive (biomass increase) in winter, i.e. opposite to the pattern in the SGR.  

Our study examined the coupled role of biologically (production and biological losses) and physically (advection and 

vertical mixing) driven biomass fluxes. Previous studies suggested the importance of advection and diffusion as driver of 20 

biomass changes in the GoM (e.g. Dagg et al., 2003; Green et al., 2008; Fennel et al., 2011). However, a quantification of 

these dynamics in biogeochemical model has not been done in the region. We found that the seasonal patterns in model 

phytoplankton biomass are largely determined by small imbalances between biologically and physically driven fluxes, the 

latter mainly associated with horizontal advection in the Louisiana-Texas shelf, and turbulent vertical diffusion in the deep 

GoM. Consequently, we cannot obtain a proper understanding of biomass seasonality when the physically driven biomass 25 

fluxes are excluded from the analysis. Disentangling the processes influencing phytoplankton seasonality is a complex task, 

as the mechanisms acting as physical loss terms can also influence the balance between production and biological losses. 

That is the case for turbulent vertical diffusion, which modulates the vertical distribution of nutrients (impacting on 

phytoplankton production) and zooplankton (impacting on zooplankton grazing)(Behrenfeld, 2010).  

Finally, future projections of environmental scenarios suggest substantial increases in both river runoff and thermal 30 

stratification in the northern GoM due to anthropogenic climate change (Tao et al., 2014; Liu et al., 2015). Therefore, how 

such environmental disturbances acting at multiple timescales can alter the subtle imbalances between primary production 

and biological losses (or between biological and physical driven biomass fluxes) is a topic that deserves further attention.  
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5 Summary and Conclusions 

A coupled ocean-biogeochemical model was configured for the GoM to examine underlying mechanisms determining spatial 

and seasonal variability in diatoms and nanophytoplankton biomass. We investigated the factors modulating the specific 

growth rate (SGR), and explored the seasonal changes in biologically and physically driven biomass fluxes. We found that 

model diatoms growth was ~40% and >80% nutrient-limited in the Louisiana shelf and deep GoM, respectively, whereas 5 

model nanophytoplankton growth was ~10% and 40-85% limited. Our model indicates that diatom growth is mainly limited 

by nitrogen. However, silica limitation can occur in the deep GoM during winter, and in the MS delta during spring. The 

interplay among nutrient, light, and temperature determined the SGR seasonal timing (max/min) in the Louisiana-Texas 

shelf, while nutrient and light determined the simulated SGR seasonal timing in the deep GoM. Primary production in the 

model was driven by changes in SGR, but also influenced by biomass losses linked to zooplankton grazing. Moreover, the 10 

net phytoplankton growth (i.e. the balance between primary production and biological losses) revealed top-down control of 

phytoplankton biomass. The physically driven biomass fluxes, mainly associated with horizontal advection in the Louisiana-

Texas shelf and turbulent vertical diffusion in the deep GoM, played a key role modulating amplitude and phase in the 

seasonal phytoplankton biomass cycle. These results stress the importance of an integrated analysis of biologically and 

physically driven biomass fluxes to better characterize phytoplankton biomass phenologies.  15 
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Figure 1: Model domain and bathymetry. Polygons A, B, and C depict the MS delta, Texas shelf, and Deep Ocean region, 5 
respectively, selected to describe plankton patterns. Gray contours show the 20, 30, 50, and 200 m isobaths.  
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Figure 2: Spatial patterns of model and satellite chlorophyll. Comparison between surface chlorophyll concentration (mg m-3) 
derived from model outputs (a, c) and SeaWiFS (b, d) during summer and winter. Gray line depicts the 200 m isobath. 
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Figure 3: Monthly chlorophyll time series derived from model (GoMBio, red line), SeaWiFS (green line), and MODIS (blue line). 
Grey area depicts the model chlorophyll range. Correlation coefficient between model and satellite time series is indicated at each 
panel. Black dots with vertical bars depict the monthly mean and inter-quartile range of in situ chlorophyll from the Coastal 
Waters Consortium dataset (panels a and b) and APEX profiling floats (Lagrangian Approach to Study the Gulf of Mexico Deep 5 
Circulation project, panels c). Ticks on the ordinate mark January 1st of each year. 
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Figure 4: EOF analysis of chlorophyll anomalies. a, b) First EOF mode of surface model chlorophyll (a) and SeaWiFS chlorophyll 
(b). c) Principal component associated with the first EOF mode of model, SeaWiFS, and MODIS chlorophyll. Correlation 
coefficient between model and satellite PC1 series is indicated in panel c. 5 
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Figure 5: Chlorophyll ratios. a) Climatological mean of the diatom to total phytoplankton ratio of chlorophyll; (b) Comparison 
between observations and model-derived diatom to total phytoplankton ratio of chlorophyll in the Louisiana shelf (coastal stations 
A and B depicted in panel a) during April (green) and August (red) of 2010-2012. Vertical and horizontal bars depict ±1 standard 
deviation. Mean and standard deviation of observed chlorophyll ratio are derived from values reported by Zhao and Quigg (2014).  5 
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Figure 6: a) Modeled and observed time series of primary production for the Mississippi delta and Texas shelf; grey and light blue 5 
shades depict the model production ranges for the Mississippi delta and Texas shelf, respectively; b) boxplots of primary 
production in the Mississippi delta, Texas shelf, and Deep Gulf region derived from observations and model (GoMBio) outputs 
during spring-summer. Red lines, bottom and top edges of the boxes, and whiskers represent the median, interquartile interval, 
and non-outlier range, respectively. 
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Figure 7: a-b) Model-data comparison of nitrate and silicate time series at Station C6 (28.86°N, 90.46°W); c-d) relationship 
between surface salinity and both nitrate and silicate concentration over the Louisiana-Texas shelf. Modeled values are shown as 
2-dimensional histogram (color scale) and observations as blue marks.  5 
 
  

1996 1998 2000 2002 2004 2006 2008 2010
0

5

10

15

20
m

m
ol

 N
 m

−3

 

 
Nitrate Station C6

a) Observed Model

1996 1998 2000 2002 2004 2006 2008 2010
0

10

20

30

40

50

m
m

ol
 S

i m
−3

Silicate Station C6

b)

0 20 40
0

50

100

Salinity (psu)

Ni
tra

te
 (m

m
ol

 m
−3

)

 

 
c)

0

2

4

6

0 20 40
0

50

100

150

Salinity (psu)

Si
lic

at
e 

(m
m

ol
 m

−3
)

 

 
d)

0

2

4

6



26 
 

 
 
Figure 8: Comparison between profiles of nitrate and silicate derived from model outputs (red lines) and GOMECC data (blue 
dots). The model’s climatological mean and range for July are also shown as black line and yellow area, respectively. Panels a, b, e 5 
and f (c, d, g and h) show the profiles associated with the most oceanic station from the Mississippi (Tampa) line for GOMECC 
cruises 1 (July 2007) and 2 (July 2012).  
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Figure 9: Climatological seasonal cycle of phytoplankton biomass in the 30 m upper layer from the Mississippi delta, Texas shelf, 
and Deep Ocean (regions depicted in Fig 1, gray polygons). 
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Figure 10: Growth limitation and specific growth rates for nanophytoplankton (PS) and diatoms (PL): a-b) nutrient limitation 
factors; c) silica to nitrogen limitation ratio (SLF:NLF; for diatoms only); d-e) light limitation factors; f-g) temperature-dependent 
growth; h-i) specific growth rates. Factors were averaged in the upper 30 m layer from the Mississippi delta, Texas shelf and Deep 
Ocean regions (depicted in Fig 1, gray polygons). 5 
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Figure 11: Phytoplankton production, net phytoplankton growth (production minus biological losses), and grazing estimated for 
the upper 30 m layer of the Mississippi delta (left), Texas shelf (middle) and Deep Ocean (right) (regions depicted in Fig 1, gray 
polygons). Grazing terms are microzooplankton upon nanophytoplankton (PS2ZS) and diatoms (PL2ZS), and mesozooplankton 
upon nanophytoplankton (PS2ZL) and diatoms (PL2ZL). 5 
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Figure 12: a-c) Phytoplankton biomass budget: the advection + mixing term represents the sum of advection and turbulent 
diffusion of phytoplankton biomass, the net phytoplankton growth is production minus biological losses, and the local rate of 
change is the balance between net phytoplankton growth and the advection + mixing term. Right y-axis (red) is for the local rate of 
change, and left y-axis (blue) is for the net phytoplankton growth and the advection + mixing term. d-f) Components of the 5 
advection + mixing term: Hadv, Vadv, and Vmix correspond to horizontal advection, vertical advection, and vertical mixing, 
respectively. Horizontal mixing can be neglected in the budget analysis, as it is 2 orders of magnitude smaller than other physical 
terms components. Patterns are averages within the upper 30 m ocean layer from the Mississippi delta, Texas shelf and Deep 
Ocean (regions depicted in Fig. 1). 
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Table 1. Model parameter values 

Parameter Name   Source  

 Phytoplankton parameters SP LP  

Vmax Maximum photosynthetic rate at 0°C (d-1) 0.52 0.78 a, b, * 

kGpp Temperature coefficient for photosynthesis (°C)-1 0.0693 0.0615 a 

αP Initial slope of the P-I curve (m2 W-1) d-1 0.028 0.035 b 

KNO3 Half saturation constant for nitrate (mmol N m-3) 1.0 3.0 a 

KNH4 Half saturation constant for ammonium (mmol N m-3) 0.1 0.5 a 

KSi Half saturation constant for silicate (mmol Si m-3) - 3.0 a 

θmax Maximum chlorophyll to carbon ratio 0.0428 0.0535 b, c, * 

ϕP Phytoplankton ratio extracellular excretion 0.08 0.08 a 

PMor Mortality at 0°C (m3 mmolN-1 d-1) 0.016 0.016 * 

kPMor Temperature coefficient for mortality (°C)-1 0.0588 0.0693 a 

AttP Light attenuation due to chlorophyll (m2 mg)-1 0.0248 0.0248 b 

wP Sinking rate (m day-1) - 0.1 b 

 Zooplankton parameters SZ LZ  

GRmPS Maximum grazing rate at 0°C on PS (d-1) 0.27 0.04 d, * 

GRmPL Maximum grazing rate at 0°C on PL (d-1) 0.07 0.24 d, * 

GRmZS Maximum grazing rate at 0°C on ZS (d-1) - 0.14 d, * 

kGra Temperature coefficient for grazing (°C)-1 0.0531 0.0531 d 

KSPZ Half saturation on SP (mmol N m-3)2 0.17 0.90 d, * 

KLPZ Half saturation on LP (mmol N m-3)2 0.10 0.90 d, * 

KSZZ Half saturation on SZ (mmol N m-3)2  0.90 d, * 

ZMor Mortality at 0°C (m3 mmolN-1 d-1) 0.023 0.030 * 

kZMor Temperature coefficient for mortality (°C)-1 0.0693 0.0693 a 

αZ Assimilation efficiency  0.70 0.70 a 

βZ Growth efficiency  0.30 0.30 a 

 Detritus parameters SD LD  

τNH4 Decomposition to NH4 rate at 25°C (d-1) 0.045 0.020 b 

τDON Decomposition to DON rate at 25°C (d-1) 0.045 0.020 b 

wD Sinking rate (m day-1) 1 10 a, b, * 

kD Temperature coefficient for remineralization (°C)-1 0.0693 0.0693 a 
a Kishi et al. (2007); b Fennel et al. (2006; 2011); c Dune et al. (2010); d Gomez et al. (2017); e Yu et al. (2014), f Jiang et al. (2014); * 

Present study.  
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Table 1 (Continuation)  

Parameter Name Value  Ref. 

Nit Nitrification rate at 25°C (d-1) 0.05  b 

kNit Temperature coefficient for nitrification (°C)-1 0.0693  a 

Ith Radiation threshold for nitrification inhibition (W m-2) 0.0095  b 

Dp Half-saturation radiation for nitrification inhibition (W m-2) 0.1  b 

γNH4 DON decomposition to NH4 rate at 25°C (d-1) 0.04  e, * 

τSi Opal dissolution to SiOH4 rate at 25°C (d-1) 0.02  f 

kDON Temperature coefficient for DON remineralization (°C)-1 0.0693  a 

kSi Temperature coefficient for opal dissolution (°C)-1 0.0693  a 

wOpal Opal sinking rate (m d-1) 10.0  * 

Attsw Light attenuation due to seawater (m-1) 0.037  b 

C:N Carbon to nitrogen ratio (mol C (mol N)-1) 6.625  a, b 
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Table 2. Long-term mean and standard deviation of model and satellite chlorophyll.  

 MS delta Texas shelf Deep Ocean 

 Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) 

Model:    

1979-2014 2.61 (1.49) 1.09 (0.83) 0.17 (0.08) 

1998-2010 2.48 (1.39) 1.03 (0.73)  0.18 (0.09) 

2003-2014 2.46 (1.38) 0.98 (0.70) 0.18 (0.09) 

SeaWiFS:     

1998-2014 4.91 (1.21) 2.52 (0.68) 0.15 (0.05) 

MODIS:    

2003-2014 5.30 (1.37)  2.75 (0.77)  0.14 (0.05) 

 Ratios Ratios Ratios 

SeaWiFS/Model  1.98 2.44 0.88 

MODIS/Model  2.15 2.80 0.78 

 
 
 


