

1 **Reviewer 1**

2 The effects of elevated precipitation, N deposition and warming on soil respiration was analyzed
3 in a temperature desert based on 2-years data. Its valuable to promote the research on the response
4 of soil respiration to climate change in dry land. But this manuscript needs major revision before
5 publication.

6 **Response:** Thanks very much for your revision. We accept and have made the changes requested.

7

8 Detailed comments: 1. Fig 3 showed the diurnal variation of Rs during one sun day and one
9 post-rain day, so the diurnal pattern of Rs in Fig 3 may can not represent the diurnal pattern of Rs
10 across the whole year. If not, the measured Rs during 10:00-12:00 may show large difference with
11 the daily average of Rs and further failed to show the effect of treatment on Rs for everyday in
12 2014-2016. It may be better to show the diurnal pattern of Rs at different seasons.

13 **Response:** Thank you for your comment. Diurnal variations of Rs were only measured from
14 March to September in 2015, March, April and July in 2016 (Fig.1S.). Firstly, we have also
15 corrected a 'wrong' description in Fig 3 in the original manuscript. Now the Fig 3a and b have
16 shown the diurnal variation of Rs during extreme drought (continuous high temperature drought)
17 rather than one normal sunny day, and the Fig 3c and d have shown the diurnal variation of Rs
18 during an extreme wet day (with daily precipitation 33 mm) rather than one small post-rainy day.
19 We found that the diurnal average of Rs were closed to the observed value during 10:00-12:00
20 from daily change observations in 2015 and 2016, except in July 2015, (Fig.1S. J). Therefore, this
21 supported the effect of treatments. Please see lines 267-269. Thanks again.

22

23 2. All gas samples were taken at 10:00-12:00 in everyday, however, the warming effect on soil
24 temperature is not obvious during this sampling time (the obvious warming effect on soil
25 temperature occurred at midday and afternoon time, fig 3a). So the samples during 10:00-12:00 in
26 this study may failed to catch the real warming effects on Rs.

27 **Response:** Yes, a varying effect on Rs was observed by warming in Fig 3. The data came from
28 extreme precipitation and drought events mainly, which may overestimate the warming effect on
29 Rs. The Rs can be inhibited at high temperature and low humidity, a common phenomenon in the
30 summer; and warming can reinforce this effect in Fig 1S. j, l, n and t. However, our results could

31 represent the warming effects on Rs in spring (e.g. April) and autumn although high temperature
32 reduced Rs, because the observed values on the diurnal average of Rs in warming plots are close
33 to the real values of Rs during 10:00-12:00, except some extreme precipitation and drought events
34 that in summer. So the samples during 10:00-12:00 in this study could catch the mean warming
35 effects on Rs as a whole. We also have made further discussion in the revised text. Please see lines
36 419-427.

37

38 **Reviewer2**

39 **Anonymous Referee #2**

40 Received and published: 18 January 2018

41 This manuscript studied the effects of elevated precipitation, N deposition and warming on soil
42 respiration in a temperate desert. This study was well designed, the manuscript was also well
43 written and the results are interesting, which have important implications on the climate change
44 feedback of soil respiration in the temperate desert. I recommend this manuscript to be accepted
45 with minor revision. The major comments are as follows.

46 1. Line 134, what is the principle for the increased temperature caused by OTC? How much
47 temperature can be increased by this OTC?

48 **Response:** The principle of an OTC warming is to heat the air in an OTC system through
49 solar radiation, and the OTC system has an effect of windshield, so the temperature in OTC
50 was increased. The air temperature was increased by about 1 °C on average, and the average
51 annual soil temperatures at 5 and 20 cm depth were significantly increased by 4.41 and 3.67
52 °C, respectively (Fig. 1a). An additional sentence was added in the revision. Please see lines
53 315-316.

54 2. Lines 141-144, did the Rs measured in this study also include the above-ground respiration
55 of the plants? It seems that there were no measures to exclude the aboveground respiration.

56 **Response:** Yes, R_s measured in this study also include parts of the above-ground respiration
57 of the plants but only from April to May. Because ephemeral plants grow only during this
58 period. In addition, the ephemeral plants are very sparse, and cover only 20-30% of total area,
59 so the above-ground respiration of the plants was relatively weak.

60

61 3. Lines 166-167, how to calculate the interactive effects of precipitation, N deposition and
62 warming on Rs?

63 **Response:** The interactive effects of precipitation, N deposition and warming on Rs were
64 calculated by the treatments between W1N1T1 plots and W0N0 plots. However, there were
65 lack of interactive effects of N deposition and warming, so the interactive effects of
66 precipitation, N deposition and warming on Rs were not calculated by repeated measures of
67 variance analysis.

68
69 4. Line 195, it seems soil moisture was mainly affected by the elevated precipitation other than
70 the interaction of precipitation, N deposition and warming.

71 **Response:** Agreed and corrected, please see sentence in lines 318-319.

72
73 5. Fig.1 a and b, what were the seasonal variations for soil T and moisture?

74 **Response:** The Fig.1a and b showed that the diurnal variation for soil T and moisture. We
75 have added the seasonal variations for soil T and moisture in Fig 2b. Please see lines
76 683-685 and 750.

77
78 6. Fig. 4f, why the data number in Fig.4f is less than other figures in Fig. 4?

79 **Response:** This is because soil pH in soil samples were only measured in several times.

80
81 7. Lines 232-239, did the thresholds be calculated using statistical method? Some minor
82 comments:

83 **Response:** The thresholds were re-analyzed or calculated using Nonlinear Regression (3D,
84 Gaussian and Plane) as in Fig 2S and Fig 4f. We found that Rs was inhibited at high
85 temperature and low humidity (soil temperature $> 26.5^{\circ}\text{C}$ and soil moisture $< 4.2\%$), and low
86 temperature and high humidity (soil temperature $< 2.7^{\circ}\text{C}$ and soil moisture $> 15.9\%$).
87 However, moderate soil temperature and moisture increased Rs (Fig. 2S). Therefore, it can be
88 summarized as the response characteristics of Rs under different temperature and humidity
89 ranges rather than the 'true' threshold. We have corrected a 'wrong' description on thresholds
90 in the text, because of no particular accurate threshold by current statistical analysis. Please

91 see lines 354-358.

92

93 8. Line 138, please use “the same as”.

94 **Response:** Agreed and corrected. Please see line 259.

95

96 9. Page 6, please give the exact year when the experiments were conducted.

97 **Response:** Agreed and done, please see line 234.

98

99 10. Lines 158-159, references for the MBC and MBN measurement should be given.

100 **Response:** A reference has been added. Please see lines 280-281 and 520.

101

102 11. Line 160, can soil pH be measured using potassium dichromate method? It must be a
103 mistake.

104 **Response:** Thank you for correcting this mistake. We have corrected the wrong description.

105 Please see lines 283-284.

106

107 12. Line 161, can't find the reference of Yue et al. (2016) in the reference list.

108 **Response:** The reference of Yue et al. (2016) has been added in the reference list. Please see
109 lines 637-638.

110

111 13. Fig.1 c and d, these figures should be enlarged. It's hard to see.

112 **Response:** Agreed and done as suggested. Please see line 737.

113

114

115

116

117

118

119

120

121 **Impact of elevated precipitation, nitrogen deposition and warming on soil
122 respiration in a temperate desert**

123

124 Ping Yue^{1,2,3}, Xiaoqing Cui², Yanming Gong¹, Kaihui Li¹, Keith Goulding⁴, Xuejun Liu² *

125 ¹ State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,

126 Chinese Academy of Sciences, Urumqi 830011, China

127 ² Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental

128 Sciences, China Agricultural University, Beijing 100193, China

129 ³ University of the Chinese Academy of Sciences, Beijing 100039, China

130 ⁴ The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden

131 AL5 2JQ, UK

132 * Correspondence to: Xuejun Liu (liu310@cau.edu.cn; or ecology2100@sina.cn)

133

134 **Abstract**

135 Soil respiration (R_s) is the most important source of carbon dioxide emissions from soil to

136 atmosphere. However, it is unclear what the interactive response of R_s would be to environmental

137 changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique

138 temperate desert ecosystems. To investigate this an *in situ* field experiment was conducted in the

139 Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results

140 showed that precipitation and N deposition significantly increased R_s , but warming decreased R_s ,

141 except in extreme precipitation events, which was mainly through its impact on the variation of

142 soil moisture at 5 cm depth. In addition, the interactive response of R_s to combinations of the

143 factors was much less than that of any single-factor, and the main interaction being a positive

144 effect, except interaction from increased precipitation and high N deposition ($60 \text{ kg N ha}^{-1} \text{ yr}^{-1}$).
145 Although R_s was found to be a unimodal change pattern with the variation of soil moisture, soil
146 temperature and soil $\text{NH}_4^+ \text{-N}$ content, and it was significantly positively correlated to soil dissolved
147 organic carbon (DOC) and pH, but from a structural equation model found that soil temperature
148 was the most important controlling factor. Those results indicated that R_s was mainly interactively
149 controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to
150 elevated precipitation, N deposition and warming. But the interactions of multiple factors largely
151 reduced between-year variation of R_s more than any single-factor, suggesting that the carbon cycle
152 in temperate deserts could be profoundly influenced by positive carbon-climate feedbacks.

153 **Key words:** precipitation; nitrogen deposition; warming; soil respiration; temperate desert

154

155 **Highlights**

156 1. Impacts of rainfall, N addition and warming on R_s were studied in a temperate desert.
157 2. Rainfall and N deposition significantly increased R_s , but warming reduced it.
158 3. The interactive response of R_s was much lower than any single-factor.
159 4. Soil temperature was the most important controlling factor for R_s .

160

161 **1. Introduction**

162 Global climate warming, changes in precipitation patterns and increased atmospheric
163 nitrogen (N) deposition have all occurred since the industrial revolution, especially in temperate
164 regions (IPCC, 2013), which will be expected to significantly change soil respiration (R_s) that is
165 the most important source of carbon dioxide (CO_2) from soil to atmosphere (Wu et al., 2011): the

166 annual CO₂ flux from R_s was ten-fold that of fossil fuel emissions (Eswaran et al., 1993; Batjes,
167 1996; Gougoulias et al., 2014). Therefore, even a small change in R_s will profoundly affect
168 greenhouse gas balance and climate (Heimann and Reichstein, 2008). Although a number of
169 experiments of the effects of warming, precipitation, and N deposition on R_s have been conducted
170 in alpine grassland, tundra regions, peatlands and temperate forest (Lafleur and Humphreys, 2008;
171 Strong et al., 2017; Yang et al., 2017; Zhao et al., 2017), studies in temperate desert ecosystems
172 are scarce, especially the impact on R_s of the interactions of these changes. A field study of
173 multi-factor interactive effects on R_s was therefore conducted in a temperate desert ecosystem to
174 help in understanding the response of R_s to climate change and N deposition in future and
175 highlight the main driving factors.

176 R_s includes autotrophic respiration (R_A), which is mainly from plant roots and mycorrhizal
177 activities; and heterotrophic respiration (R_H), which is mainly from the activities of
178 microorganisms (Hanson et al., 2000). Soil moisture is an critical limiting factor for plant roots
179 and microbial activities in desert ecosystems (Huang et al., 2015a): R_s was significantly increased
180 by 47-70% in a degraded steppe in Inner Mongolia, China, by increasing precipitation (Chen et al.,
181 2013), with the effect especially strong in summer (Zhang et al., 2017). In addition, in arid
182 ecosystems, increasing precipitation significantly stimulated plant growth, enhanced soil microbial
183 activity and abundance (Huang et al., 2015a), and changed soil nutrient and substrate
184 concentration, such as dissolved organic carbon (DOC), inorganic nitrogen content, moisture and
185 temperature (Huang et al., 2015b).

186 Warming significantly increased soil temperature, another important controlling factor for
187 plants growth and microbial activity (Sheiket al., 2011; Huang et al., 2015a). R_s rates were

188 significantly increased in a forest soil and Tibetan Plateau grassland by warming (Chen et al.,
189 2017a), reducing R_s with decreasing soil moisture in the growing season, but increasing R_s in the
190 non-growing season (Fang et al., 2017; Li et al., 2017); no significant impact was observed from
191 warming (Liu et al., 2016a). Therefore, how R_s is affected by warming induced variations in the
192 soil environment is still unclear. In addition, low and short-term N deposition enhanced R_s , while
193 higher and long-term N deposition inhibited R_s due to changes in plant growth and microbial
194 activity (Zhu et al., 2017), but no impacts have also been reported (Luo et al., 2017; Zhang et al.,
195 2017). A meta-analysis showed that the effects of N enrichment on soil CO_2 fluxes depended on
196 temperature and soil properties (Zhong et al., 2016); desert soils may be even more sensitive to its
197 variation.

198 A nation-wide analysis showed that warming, elevated N deposition and precipitation
199 significantly increased R_s in China (Feng et al., 2017). Some studies have shown that the warming
200 effect on R_s mainly depended on the variation of soil moisture in a dry forest soil (Li et al., 2017).
201 Luo et al. (2008), using a modeling analysis, found that interactive effects became increasingly
202 weaker with increasing intensity of the factors, but a recent meta-analysis showed that interactive
203 effects were much greater than single factors (Zhou et al., 2016a). Thus how multi-factor
204 interactions impact R_s is still unclear. Therefore, an *in situ* experiment was carried out in the
205 Gurbantunggut Desert to (1) investigate the single-factor and interactive responses of R_s to
206 warming, precipitation and N deposition, and (2) identify the main controlling factors on R_s .

207

208 2. Materials and methods

209 2.1. Study site

210 A field experiment was carried out at the southern edge of the Gurbantunggut Desert (44°26' N, 87°54'E and 436.8 m a.s.l.), northwest China, from September 2014 to October 2016. This is
211 the largest fixed/semi-fixed temperate desert in China. The mean annual temperature and
212 precipitation are 7.1°C and 215.6 mm, respectively (Cui et al., 2017), and annual potential
213 evaporation exceeds 2000 mm. From late November to mid-March of the following year, a 20–35
214 cm depth of snow cover the whole desert (equivalent to 38–64 mm rainfall; Huang et al., 2015c).
215
216 The growing season is from April to October. This desert soil is of extremely low fertility and high
217 alkaline (Cui et al., 2017). Soil organic carbon, total N content, soil NO_3^- -N, NH_4^+ -N contents and
218 C:N ratio are $2.21 \pm 0.71 \text{ g kg}^{-1}$, $0.08 \pm 0.003 \text{ g kg}^{-1}$, $4.49 \pm 0.71 \text{ mg kg}^{-1}$, $1.38 \pm 0.74 \text{ mg kg}^{-1}$ and
219 21.39 ± 1.84 , respectively (Table 1; Cui et al., 2017). Plant species are dominated by *Haloxylon*
220 *ammodendron* and *Haloxylon persicum*, and the vegetation was extremely sparse, with only 30%
221 coverage, with some spring ephemeral plants (May–June), some annuals, and perennials
222 herbaceous plants (July–August; Liu et al., 2016). Spring ephemerals account for > 60% of the
223 community cover and 85% of the biomass. Summer ephemerals, annuals and perennials usually
224 account for only a small proportion of the community biomass before June, but dominate the
225 community after the die-back of the spring annuals (Huang et al., 2015c).
226
227

227 2.2. Experimental treatments

228 A striking N deposition rate ($35.2 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) has occurred in the Gurbantunggut Desert
229 due to the rapid development of agriculture and industry with main form of ammonium nitrate
230 (NH_4NO_3), and wet ($19.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) and dry ($15.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) deposition are almost half
231 (Song et al., 2015). In addition, according to the forecast of Galloway et al. (2008) that

232 atmospheric N deposition will double from the early 1990s to 2050, and the predictions of Liu et
233 al. (2010) that precipitation in this region would be increased by 30% in next 30 years. In
234 **September 2014 to August 2016**, an *in situ* complete block interactive experiment was therefore
235 conducted to study the impact of N deposition and increased precipitation on R_s (Experiment 1).
236 The three levels of N deposition ($0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (control, N0), $30 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (low, N1) and 60
237 $\text{kg N ha}^{-1} \text{ yr}^{-1}$ (high, N2)) and two levels of precipitation ('natural' precipitation (W0) and an
238 increase of 30% (an extra 60 mm precipitation annually (W1)) were applied (Cui et al., 2017).
239 Therefore there were six treatments (W0N0, W0N1, W0N2, W1N0, W1N1 and W1N2) with four
240 replicates of each treatment; each replicate plot was $10 \text{ m} \times 10 \text{ m}$ with a 5-m wide buffer zone.
241 The additional precipitation and N deposition (NH_4NO_3) were added twelve times in April, July
242 and September, equivalent to 5 mm precipitation and 2.5 or 5 kg N ha^{-1} per application over a
243 week. The NH_4NO_3 was diluted in 50 L water (equal to 0.5 mm precipitation), and evenly applied
244 following the simulated precipitation. The same amount of water was applied to the control plots
245 (W0N0).

246 Rapidly warming ($0.6 \text{ }^\circ\text{C}$ per decade), increasing precipitation ($3\text{--}5 \text{ mm yr}^{-1}$ since 1979) and
247 receiving high N deposition (3 kg N ha^{-1} since 1980) are affecting the Gurbantunggut Desert (Liu
248 et al., 2013; Li et al., 2015), which would be expected to affect rate of R_s . Therefore, another
249 interactive experiment was established at the same time, simulating the three most likely climate
250 scenarios in the future: (1) warming only (W0N0T1); (2) increased precipitation and N deposition
251 without warming (W1N1T0); (3) the interaction of increasing precipitation, N deposition and
252 warming (W1N1T1); all compared with the current climate (W0N0T0). Therefore, there were four
253 treatments (W0N0T1, W1N1T0, W1N1T1, W0N0T0) with four replicates (plots) of each

254 treatment. Open-top chambers (OTCs) were used to simulate warming. The OTCs were designed
255 with 5 mm transparent tempered glass and stainless steel angle iron to the ITEX standard (Marion
256 et al., 1997). They were 2 m high and 4 m in diameter, with each OTC area being 12 m². However,
257 the design was improved such that the top and bottom OTC areas were the same so that
258 precipitation and snowfall were the same as that to the surrounding environment; this also avoids
259 overheating inside the OTCs. The timings of applications of water and N were the same as in
260 Experiment 1.

261

262 2.3. Measurements

263 R_s in all plots were measured twice or thrice a week (continuous measurements over 3 days
264 were made following simulated precipitation and N deposition) using gas chromatography and
265 static chambers (50 cm×50 cm×10 cm) at locations where grow only spring ephemeral plants
266 without any annuals and perennials in order to minimize the between-treatment spatial
267 heterogeneity due to sparse annuals, and perennials (Liu et al., 2012). Gas samples were collected
268 between 10:00-12:00 (GMT + 8) throughout the experimental period, which was detected in this
269 period were close to the diurnal averages (Fig.3b and 3d, Fig. 1S). Gas samples were collected
270 from the headspace of each chamber 0, 10, 20 and 30 min after closing the chamber per time. The
271 gas samples analyzed within three days using a gas chromatograph (GC; Agilent 7890A, Agilent
272 Technologies, Santa Clara, CA, USA) equipped with a flame ionization detector for quantitative
273 R_s (Liu et al., 2012). R_s rates were calculated from four concentrations of the gas sample based on
274 a first order differential linear or non-linear equation and were temperature- and pressure-
275 corrected (Liu et al., 2012; Zhang et al., 2014). Soil samples were taken monthly from around the

276 static chambers to a depth of 10 cm using an auger (3.5 cm in diameter). Fine roots and small
277 stones were separated out using a 2 mm sieve. Dissolved organic carbon (DOC) was extracted
278 with deionized water (soil: water ratio = 1:10) by shaking on an orbital shaker at 10000 rpm for 5
279 min and analyzed using a TOC analyzer (multi N/C 3100, Jena, Germany; Jones and Willett,
280 2006). Brookes' (1985), Chloroform fumigation extraction was used to measure microbial
281 biomass carbon (MBC) and microbial biomass nitrogen (MBN). Soil organic carbon (SOC) were
282 measured using the potassium dichromate method (Jiang et al., 2014), and soil NO_3^- -N and
283 NH_4^+ -N analyzed as per Yue et al. (2016). Soil pH was measured on a 1:5 soil: deionized water
284 suspension using a pH Meter (Seven Easy, Mettler-Toledo, Switzerland). Caipos Soil and
285 Environment Monitoring Systems (Caipos GmbH, Austria) were used to monitor soil
286 moisture/temperature at 5 and 20 cm depth every hour.

287

288 2.4. Effects of each treatment on R_s

289 The each treatment effect was analyzed using the following formula to better evaluating the
290 effect of precipitation, warming and N deposition on R_s (Yue et al., 2016).

291 The treatment effect = $(\text{TR}_s - \text{CR}_s) / \text{CR}_s \times 100\%$,

292 Where the treatment effect is W0N1, W0N2, W1N0, W1N1, W1N2, W1N1T1 or W0N0T1
293 effect on R_s (a positive value shows that the treatment has increased R_s and a negative value shows
294 decrease of R_s), corresponding TR_s represents R_s from the W0N1, W0N2, W1N0, W1N1, W1N2,
295 W1N1T1 or W0N0T1 plots ($\text{mg C m}^{-2} \text{ h}^{-1}$) and CR_s indicates the R_s from the control plots (W0N0,
296 $\text{mg C m}^{-2} \text{ h}^{-1}$).

297

298 2.5. Statistical analyses

299 Treatments effect on soil organic carbon (SOC), NO_3^- -N, NH_4^+ -N content, pH, DOC, MBC
300 and MBN were examined in each treatment by least significant difference LSD ($p<0.05$). The
301 single-factor and interaction effects of precipitation, warming and N deposition on R_s were
302 detected by multi-way analysis of variance (ANOVA), and the accumulated effect of precipitation,
303 warming and N deposition on R_s were tested by repeated measures ANOVA. In addition, the
304 relationships of R_s and DOC, MBC, MBN, soil temperature, soil moisture, NH_4^+ -N content, soil
305 NO_3^- - N, and pH were described using a linear or non-linear regression model. The factors of key
306 controls on R_s were used to analyze by structural equation models (SEMs). SPSS software
307 (version 20.0) was used to conduct all statistical analyses, and statistical significant differences
308 were set with $P<0.05$. All Figures were created using the SigmaPlot software package (version
309 10.0), but SEMs analyses were carried out using AMOS 22.0 (Amos Development Corporation,
310 Chicago, IL, USA).

311

312 3. Results

313 3.1. Treatments effects on soil environmental and properties

314 Soil temperatures at 5 depth were mostly increased between 11:00 and 22:00 every day by
315 warming; the average annual soil temperatures at 5 and 20 cm depth were significantly increased
316 by 4.41 and 3.67 $^{\circ}\text{C}$, respectively (Fig. 1a). Soil moisture at 5 cm depth was decreased by warming
317 by only 0.61v/v% (Fig. 1b), and a very small decrease of 0.01v/v% in soil moisture at 20 cm depth
318 was observed (Fig.1b). Soil moisture at 5 and 20 cm depth were largely increased by the increased
319 precipitation (Fig.1b). N deposition and warming significant increased soil NH_4^+ -N and NO_3^- -N

320 contents (Fig. 1c), but no significant change was found from increased precipitation. Soil MBC
321 and MBN were greatly increased by N deposition, but significant negative effects on soil MBC
322 and MBN were observed by warming and the interaction of precipitation and N deposition (Fig.
323 1d). No significant change in SOC and DOC was observed in any treatment (Fig. 1c and 1d).

324

325 *3.2. Precipitation, warming and N deposition effects on R_s*

326 In our study, a weak R_s emission rate (-2.46 to 50.26 mg C m⁻² h⁻¹) was observed at control
327 plots with an average emission rate of 12.18 mg C m⁻² h⁻¹ from September 2014 to October 2016
328 (Fig. 2c). Annual cumulative rate of R_s was 1090.11±450.78 kg C ha⁻¹, with non-growing season
329 account for 20.7% of the annual emission (Table 1). R_s was significantly enhanced by increasing
330 5-mm precipitation and N deposition from 12.18 to 16.23 and 14.97 mg C m⁻² h⁻¹ (average),
331 respectively (P< 0.001; Fig. 2c and 2d; Table 2), with annual R_s increased by 33.1% and
332 19.2-22.8%, respectively (Table 1). And the low N deposition effect on R_s was much higher than
333 that high N deposition (Fig. 2c and 2d). However, R_s was reduced mostly by warming, although
334 not significant (P=0.084; Table 2). And high temperatures and low humidity at times of peak
335 sunshine during the diurnal variation significantly inhibited its emission rate (Fig 3a and 3b,
336 Fig.2S), but it was also significantly increased by warming following extremely rainfall events
337 that increased soil moisture (Fig. 3c and 3d). The diurnal trend in R_s was consistent with that of
338 soil temperature at 5 cm depth (Fig. 3). In addition, the interactive responses of R_s to increasing
339 precipitation, warming and N deposition were much lower than that from any single-factor (Table
340 1), and with the interaction of 60 kg ha⁻¹ N and extra precipitation decreasing R_s by 4.25% (Table
341 1). Overall, annual R_s rates were significantly impacted by precipitation, N deposition, and their

342 interaction (Table 2), but no significant net change was caused by warming (Table 2), although R_s
343 rates were decreased by 9.99% (Table 1).

344

345 *3.3. Temporal variation and its control*

346 The results of repeated measures ANOVA showed that significantly accumulated effects on
347 R_s were found by N deposition and interaction between N deposition and precipitation or warming
348 rather than alone increasing precipitation and warming (Table 2). A large between-year variation
349 in R_s was observed with a coefficient of variation (CV) up to 41.4% (a much higher R_s rate was
350 observed in 2016 than 2015), but variation was reduced by increasing precipitation, N deposition
351 and warming and their interaction, except with an increase in N deposition of 30 kg ha⁻¹ (Table 1).

352 The results of regression analysis showed that R_s was significantly increased by increases in pH
353 and DOC (Fig. 4e and 4f), but no significant relationships were found with MBC, MBN or
354 NO₃⁻-N content (Fig. 4a, 4b and 4c). In addition, different response characteristics of R_s in the
355 impacts of increased soil moisture, soil temperature and NH₄⁺-N content were found. Soil
356 moisture was the most important controlling factor when it was <4.2 % and soil temperature
357 was >26.5°C (Fig. 4g and 4h, Fig. 2S). Secondly, soil temperature was the most important limiting
358 factor when soil moisture was >15.9 % and soil temperature <2.7 °C (Fig. 4g and 4h, 2S). Thirdly,
359 there was no significant impact on R_s when soil NH₄⁺-N content was <6.3 mg N / kg. A significant
360 increase in R_s occurred when soil NH₄⁺-N content was between 6.3 and 12.6 mg N / kg, but R_s
361 was inhibited when soil NH₄⁺-N content was between 12.6 and 31.6 mg N / kg (Fig. 4d).

362

363 **4. Discussion**

364 4.1. Single-factors impacts of precipitation, N deposition and warming on R_s

365 Annual R_s was $1090 \text{ kg C ha}^{-1}$ in this temperate desert, with the non-growing season
366 accounting for 20.7 % of the annual flux (Table 1). This is consistent with previous study in here
367 (Zhou et al., 2014; Huang et al., 2015a) because SOC content was very low (Fig. 1c), and
368 vegetation was very sparse in this desert (Liu et al., 2016b). Increasing precipitation significantly
369 increased R_s (Fig. 2c). It is also consistent with the results of a meta-analysis and previous study in
370 here (Huang et al., 2015a ; Liu et al., 2016c). This is because that the growth of desert plants and
371 microbial activity are significantly activated by increasing precipitation (Huang et al., 2015a), and
372 microbial biomass, mass-specific respiration, microbial biomass carbon (MBC) and nitrogen
373 (MBN), and microbial PLFAs were consistently significantly enhanced by increased precipitation
374 (Zhang et al., 2013; Huang et al., 2015a). However, R_s in our study was much higher in moderate
375 soil moisture conditions than with too little or too much soil moisture (Fig. 4g). This suggests that
376 R_s is mainly R_H rather than R_A in this desert, namely from soil microorganism, because (1) too
377 little or too much soil moisture could significantly inhibit microbial activity due to variation of
378 soil temperature and soil properties (Ma et al., 2013), while moderate soil moisture could
379 significantly enhance microbial activity (Skopp et al., 1990), and (2) the biomass of fine roots was
380 no significantly enhanced at our sites by increased precipitation (Cui et al., 2017). This is
381 consistent with results from a desert steppe in northern China where the contribution of R_H (78.1%)
382 was significantly higher than that of R_A (21.9%) under increasing precipitation (Liu et al., 2016a).
383 N deposition also significantly increased R_s , especially in low N deposition (Fig. 2d). This is
384 consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et
385 al., 2017), and with a meta-analysis showing that N deposition increased R_s by 8.8% (Zhou et al.,

386 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although
387 this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial
388 activity and abundance by low N deposition (Huang et al., 2015b). But this was inconsistent with a
389 young *Cunninghamia lanceolata* forest (Wang et al., 2017), and beneath shrubs of *H.*
390 *ammodendron*, soil high N content, has the opposite effect in our study site (Chen et al., 2013;
391 Huang et al., 2015b). What's more, the results of nonlinear regression analysis showed that higher
392 R_s rates occurred at moderate soil NH_4^+ -N contents (between 6.3 and 12.6 mg N / kg), while lower
393 R_s occurred in much lower (<6.3 mg N / kg) or much higher (>12.6 mg N / kg) soil NH_4^+ -N
394 contents (Fig. 4d), but this effect of N deposition on R_s is not consistent with other ecosystems
395 (Burton et al., 2004; Chen et al., 2013; Liu et al., 2015; Chen et al., 2017b). This is because the
396 desert soil is extremely limited than other ecosystem (Adams, 2003), so low N deposition
397 enhanced plants growth and microbial activity, but high N inhibited microbial activity and
398 community composition, reduced R_s (Zhou et al., 2014; Huang et al., 2015b). Overall, soil
399 NH_4^+ -N content was an important controlling factor for R_s because microbial activity, abundance
400 and species diversity were regulated by soil NH_4^+ -N content in this desert, and R_s was very
401 sensitive to variation of N deposition.

402 Warming decreased R_s (Fig. 2f), although not significantly ($P=0.084$; Table 2), which was
403 consistent with results from a semi-arid alfalfa-pasture of the Loess Plateau (Fang et al., 2017). In
404 addition, a significant decrease in R_s was observed on an extreme drought or hot sunny day when
405 soil moisture was reduced, and sharply reduced R_s when soil temperature reached 37 °C (Fig. 3a
406 and 3b, 1S). This is because: (i) microbial activity is significantly inhibited by extreme
407 temperatures and low soil moisture, may reduce population size by 50-80% (Sheik et al., 2011); (ii)

408 fine root growth is inhibited in high temperature and low soil moisture. Others have noted this
409 phenomenon as occurring at about 16:00 each day (Ma et al., 2013), but in our study the effect
410 was advanced to 14:00 by warming, which may reduce carbon emission from soil to atmosphere.
411 However, this is not consistent with results from a tundra ecosystem, subtropical forest or alpine
412 regions where R_s was significantly increased by warming due to the limitation of soil temperature
413 in these ecosystems, and no significant change in soil moisture (Noh et al., 2016; Wu et al., 2016;
414 Zhou et al., 2016b). In addition, a significant increase in R_s was found following enhanced
415 precipitation with warming (Fig. 3c and 3d), which indicates that soil moisture was the most
416 important controlling factor for R_s under a warming climate. This is consistent with other studies
417 (Chen et al., 2017a; Zhao et al., 2017). However, statistical analysis showed that no overall
418 significant impact on R_s was found during the experimental period by warming, and it was
419 reduced by 9.99%. This is because our gas samples were taken at 10:00 – 12:00 each day, when
420 average soil temperatures were increased by about one degree. Thus mean annual R_s was not
421 sensitive to temperature changes this small in contrast to the very significant effects of short-term
422 diurnal changes in soil temperature, observed between 12:00 and 17:00 (Fig. 3a and 3c). However,
423 gas samples during 10:00-12:00 in this study could catch the mainly warming effects on R_s ,
424 except some extremely precipitation and drought events in summer (Fig.1S), which will require
425 further systematic evaluation. Those results indicated that R_s depends mainly on variations of soil
426 moisture and temperature in the context of warming, and climate change is likely to have a very
427 significant effect on temperate deserts.
428

429 *4.2. The interactive effects of precipitation, N deposition and warming on R_s*

430 Interactive responses of R_s were much lower than those of any single-factor, but still
431 increased R_s overall, except interaction between precipitation and high N deposition (Table 1).
432 This is consistent with results in dry ecosystems (Morillas et al., 2015; Martins et al., 2016), but
433 not with the results of a meta-analysis that precipitation and N deposition interactive experiments
434 were a greater extent positive effect on R_s (Zhou et al., 2016a). This can be explained in our study
435 that soil MBC or MBN were much less in interactive treatments than that of single-factor (Fig. 1d),
436 which showed that a number of microorganisms were much less in interactive treatments than that
437 of single-factor due to much stronger N effect. As we found that R_s was reduced with increasing N
438 deposition and precipitation by as much as 4.25% in W1N2 plots (Table 1), which showed that the
439 inhibiting effect of soil NH_4^+ -N content was much stronger when there was sufficient soil
440 moisture (Fig. 2e). This is consistent with the results in a *Populuseuphratica* community in a
441 desert ecosystem (He et al., 2015). This was because (i) microbial activity was inhibited by high
442 or low soil moisture and high soil NH_4^+ -N or NO_3^- -N content (Burton et al., 2004); and (ii) high N
443 tent to reduce extracellular enzyme activity and the fungal population (Maris et al., 2015). In
444 addition, the interactive effect of the three factors on R_s in this desert was much lower than
445 interaction of two factors of precipitation and N deposition (Table 1), and is consistent with the
446 results of modeled interactive effects, which showed that three-factor interactions were rare while
447 two-factor interactions were more common (Luo et al., 2008). Fortunately, the interactive effect of
448 three factors or two factors (precipitation, N deposition and warming) in this desert could largely
449 reduce between-year variation on R_s (Table 2), which may because (i) the limits of soil moisture,
450 soil temperature and soil N content were relieved for key biological processes by increasing
451 precipitation, N deposition and warming (Huang et al., 2015a; Liu et al., 2016b); (ii) various

452 factors antagonistic to each other (Zhou et al., 2016a). However, the variation in the growing
453 season on R_s can be increased by warming, elevated precipitation and N deposition because of
454 their dominant effects on plant growth and microbial activity (Huang et al., 2015b), but it was the
455 exact opposite in the non-growing season due to reduce the limit of temperature (Zeng et al.,
456 2016). Those results showed that R_s would be reduced under interactive effect of increasing
457 rainfall, temperature and N deposition in the future, and took place a positive carbon-climate
458 feedbacks.

459

460 *4.3. Temporal variation in treatments on R_s and controlling factors*

461 Significantly accumulated effects on R_s were found by elevated N deposition rather than
462 alone increasing precipitation and warming (Table 2). A previous study in here has showed that R_s
463 was decreased to N addition with experimental duration (Zhou et al., 2014), which was
464 inconsistent with our results (Fig. 2d) because in our study relatively lower rate of N addition than
465 that Zhou et al. (2014), and the composition of microbial community and soil propertie were
466 altered gradually by long-term and high N deposition (Fig. 1c and d; Huang et al., 2015b; Zong et
467 al., 2017). In addition, significantly accumulated effects in the interaction between N deposition
468 and precipitation or warming on R_s were also found (Table 2), and R_s was decreased by 4.25% by
469 interaction between increasing precipitation and high N deposition (Table 1), which indicated that
470 the response of R_s to N deposition largely dependent on soil moisture in desert soil. This may be
471 attributed to the antagonistic interaction between elevated N deposition and precipitation on R_h
472 (Zhou et al., 2016a). Those results indicated that N deposition produced strong accumulated
473 effects on R_s in this desert, and was enhanced largely with increasing soil moisture, which would

474 reduce carbon emission from soil to atmosphere.

475 Regression analysis shows that R_s exhibited a unimodal change pattern with variations of soil
476 $\text{NH}_4^+ \text{-N}$ (Fig. 4d), moisture (Fig. 4g), and temperature (Fig. 4h), and R_s was significantly positively
477 correlated to soil dissolved organic carbon (DOC) and pH (Fig. 4e and 4f). However, structural
478 equation modeling indicated that soil temperature was the most important controlling factor than
479 soil $\text{NH}_4^+ \text{-N}$ and soil moisture (Fig. 5), unsupported our hypothesis, but it is consistent with most
480 research results (Wu et al., 2016; Zhou et al., 2016b; Chen et al., 2017a). In addition, large
481 inter-annual variation was observed ($CV = 41.4\%$) during our experiment (Table 1), while the
482 variation of annual precipitation and air temperature were only 4.41% and 7.78%, respectively
483 (Table 1), but close to the CV of spring root biomass of ephemeral plants (47.14%) with 24 times
484 of aboveground biomass of spring ephemeral plants in 2016 than that in 2015 (Cui et al., 2017),
485 which indicated that the increase of R_s in 2016 was mainly from the root respiration of ephemeral
486 plants. This is consistent with previous study that ephemeral plants mediated inter-annual variation
487 of carbon fluxes in this desert (Huang et al., 2015c; Liu et al., 2016). It is different from other
488 ecosystems where inter-annual variations of R_s were mainly dependent on variations in annual
489 precipitation and air temperature (Gerard et al., 1999; Asensio et al., 2007; Chen et al., 2012).
490 Overall, our results indicate that annual variation in R_s in this temperate desert is mainly
491 controlled by soil temperature, but between-year variation in R_s is mainly controlled by ephemeral
492 plants.

493

494 **5. Conclusion**

495 Climate change and elevated N deposition play important roles in controlling R_s in

496 temperate deserts. We found that increasing precipitation and N deposition significantly increased
497 R_s in the Gurbantunggut Desert, but warming reduced R_s , mostly because of the variation of soil
498 moisture. In addition, we found that the interactive responses of R_s was much lower to
499 precipitation, N deposition and warming than that any single factors. What's more, R_s are mainly
500 mediated by soil moisture, soil temperature and soil NH_4^+ -N content, but soil temperature are the
501 most important with between-year variation in R_s mainly controlled by ephemeral plants. Those
502 results showed that R_s is very sensitive to increasing precipitation, N deposition and warming, and
503 their interactive effects could reduce soil carbon emissions and so reduce the impacts of climate
504 change.

505

506 **Acknowledgments**

507 This work was financially supported by the Chinese National Basic Research Program
508 (2014CB954202), the National Natural Science Foundation of China (41603084, 41425007,
509 31421092) and the Ten-Thousand Talent Program (X.J. Liu). Prof. Keith Goulding was supported
510 by the Sino-UK cooperative project on nitrogen - CINAg.

511

512 **Inferences**

513 Adams, M.B.: Ecological issues related to N deposition to natural ecosystems: research needs. Environ. Int. 29,
514 189-199. [https://doi.org/10.1016/S0160-4120\(02\)00179-4](https://doi.org/10.1016/S0160-4120(02)00179-4), 2003.
515 Asensio, D., Penuelas, J., Llusia, J., Ogaya, R., Filella, L: Interannual and interseasonal Soil CO_2 efflux and VOC
516 exchange rates in a Mediterranean holm oak forest in response to experimental drought. Soil Biol Biochem 39,
517 2471-2484. <https://doi.org/10.1016/j.soilbio.2007.04.019>, 2007
518 Batjes, N. H.: Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47, 151-163. <https://doi.org/10.1111/ejss.12114-2>, 1996.
519 Brookes, P.C.: Microbial biomass and activity measurements in soil. J Sci Food Agric 36:269-270,1985.
520 Burton, A.J., Pregitzer, K.S., Crawford, J.N., Zogg, G.P., Zak, D.R.: Simulated chronic NO_3^- deposition reduces

522 soil respiration in northern hardwood forests. *Global Change Biol* 10, 1080-1091. <https://doi.org/10.1111/j.1365-2486.2004.00737.x>, 2004.

523

524 Chen, J., Zhou, X.H., Hruska, T., Cao, J.J., Zhang, B.C., Liu, C., Liu, M., Shelton, S., Guo, L., Wei, Y.L., Wang, J.F., Xiao, S., Wang, P.: Asymmetric diurnal and monthly responses of ecosystem carbon fluxes to 525 experimental warming. *Clean-Soil Air Water* 45. <https://doi.org/10.1002/clen.201600557>, 2017a.

526

527 Chen, S.T., Huang, Y., Zou, J.W., Shi, Y.S., Lu, Y.Y., Zhang, W., Hu, Z.H., 2012. Interannual variability in soil 528 respiration from terrestrial ecosystems in China and its response to climate change. *Sci China Earth Sci* 55, 529 2091-2098.

530 Chen, W.W., Zheng, X.H., Chen, Q., Wolf, B., Butterbach-Bahl, K., Bruggemann, N., Lin, S.: Effects of increasing 531 precipitation and nitrogen deposition on CH₄ and N₂O fluxes and ecosystem respiration in a degraded steppe 532 in Inner Mongolia, China. *Geoderma* 192, 335-340. <https://doi.org/10.1016/j.geoderma.2012.08.018>, 2013.

533 Chen, Z.J., Setala, H., Geng, S.C., Han, S.J., Wang, S.Q., Dai, G.H., Zhang, J.H., 2017. Nitrogen addition impacts on the 534 emissions of greenhouse gases depending on the forest type: a case study in Changbai Mountain, Northeast 535 China. *J Soil Sediment* 17, 23-34, <https://doi.org/10.1007/s11368-016-1481-7>, 2017b.

536 Cui, X., Yue, P., Gong, Y., Li, K., Tan, D., Goulding, K., Liu, X.: Impacts of water and nitrogen addition on 537 nitrogen recovery in *Haloxylon ammodendron* dominated desert ecosystems. *Sci Total Environ* 601, 538 1280-1288. <https://doi.org/10.1016/j.scitotenv.2017.05.202>, 2017.

539 Eswaran, H., Van Den Berg, E., Reich, P.: Organic carbon in soils of the world. *Soil Sci Soc Am J* 57, 192-194.

540 <https://doi:10.2136/sssaj1993.03615995005700010034x>, 1993.

541 Fang, C., Ye, J.S., Gong, Y.H., Pei, J.Y., Yuan, Z.Q., Xie, C., Zhu, Y.S., Yu, Y.Y.: Seasonal responses of soil 542 respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. *Sci 543 Total Environ* 590, 729-738. <https://doi.org/10.1016/j.scitotenv.2017.03.034>, 2017.

544 Feng, J.G., Wang, J.S., Ding, L.B., Yao, P.P., Qiao, M.P., Yao, S.C.: Meta-analyses of the effects of major global 545 change drivers on soil respiration across China. *Atmos Environ* 150, 181-186. 546 <https://doi.org/10.1016/j.atmosenv.2016.11.060>, 2017.

547 Gerard, J.C., Nemry, B., Francois, L.M., Warnant, P.: The interannual change of atmospheric CO₂: contribution of 548 subtropical ecosystems? *Geophys Res Lett* 26, 243-246. <https://doi.org/doi: 10.1029/1998GL900269>, 1999.

549 Gougoulias, C., Clark, J. M., Shaw, L. J.: The role of soil microbes in the global carbon cycle: tracking the below 550 - ground microbial processing of plant - derived carbon for manipulating carbon dynamics in agricultural 551 systems. *Journal of the Science of Food and Agriculture*, 94(12), 2362-2371. <https://doi.org/10.1002/jsfa.6577>, 2014.

552

553 Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A.: Separating root and soil microbial contributions to soil 554 respiration: A review of methods and observations. *Biogeochemistry* 48, 115-146. 555 <https://doi.org/10.1023/A:1006244819642>, 2000.

556 Heimann, M., Reichstein, M.: Terrestrial ecosystem carbon dynamics and climate feedbacks. *Nature* 451, 289-292.

557 <https://doi.org/doi:10.1038/nature06591>, 2008.

558 He, X., Lv, G., Qin, L., Chang, S., Yang, M., Yang, J., Yang, X.: Effects of simulated nitrogen deposition on soil 559 respiration in a *Populus euphratica* community in the Ebinur Lake area, a desert ecosystem of northwestern 560 China. *PLoS one* 10, 1-16. <https://doi.org/10.1371/journal.pone.0137827>, 2015.

561 Huang, G., Li, Y., Su, Y.G.: Effects of increasing precipitation on soil microbial community composition and soil
562 respiration in a temperate desert, Northwestern China. *Soil Biol Biochem* 83, 52-56.
563 <https://doi.org/10.1016/j.soilbio.2015.01.007>, 2015a..

564 Huang, G., Cao, Y.F., Wang, B., Li, Y.; Effects of nitrogen addition on soil microbes and their implications for soil
565 C emission in the Gurbantunggut Desert, center of the Eurasian Continent. *Sci Total Environ* 515, 215-224,
566 <https://doi.org/10.1016/j.scitotenv.2015.01.054>, 2015b.

567 Huang, G., Li, Y., Padilla, F.M.: Ephemeral plants mediate responses of ecosystem carbon exchange to increased
568 precipitation in a temperate desert. *Agr Forest Meteorol* 201, 141-152, <https://doi.org/10.1016/j.agrformet.2014.11.011>, 2015c.

570 IPCC, 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth
571 Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
572 Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

573 Jiang, X., Cao, L., Zhang, R.: Changes of labile and recalcitrant carbon pools under nitrogen addition in a city
574 lawn soil. *J. Soils Sediments* 14, 515-524. <https://doi.org/10.1007/s11368-013-0822-z>, 2014.

575 Lafleur, P.M., Humphreys, E.R.: Spring warming and carbon dioxide exchange over low Arctic tundra in central
576 Canada. *Global Change Biol* 14, 740-756, <https://doi.org/10.1111/j.1365-2486.2007.01529.x>, 2008.

577 Liu, C., Wang, K., Zheng, X.: Responses of N₂O and CH₄ fluxes to fertilizer nitrogen addition rates in an irrigated
578 wheat-maize cropping system innorthern China. *Biogeosciences* 9, 839-850, <https://doi.org/10.5194/bg-9-839-2012>, 2012.

580 Li, G., Kim, S., Han, S.H., Chang, H., Son, Y., 2017. Effect of soil moisture on the response of soil respiration to
581 open-field experimental warming and precipitation manipulation. *Forests* 8.

582 Liu, L.T., Hu, C.S., Yang, P.P., Ju, Z.Q., Olesen, J.E., Tang, J.W.: Effects of experimental warming and nitrogen
583 addition on soil respiration and CH₄ fluxes from crop rotations of winter wheat-soybean/fallow. *Agr Forest
584 Meteorol* 207, 38-47. <https://doi.org/10.1016/j.agrformet.2015.03.013>, 2015.

585 Liu, T., Xu, Z.Z., Hou, Y.H., Zhou, G.S.: Effects of warming and changing precipitation rates on soil respiration
586 over two years in a desert steppe of northern China. *Plant Soil* 400, 15-27. <https://doi.org/10.1007/s11104-015-2705-0>, 2016a.

588 Liu, R., Cieraad, E., Li, Y., Ma, J.: Precipitation pattern determines the inter-annual variation of herbaceous layer
589 and carbon fluxes in a phreatophyte-dominated desert ecosystem. *Ecosystems* 19, 601-614. <https://doi.org/10.1007/s10021-015-9954-x>, 2016.

591 Liu, L.L., Wang, X., Lajeunesse, M.J., Miao, G.F., Piao, S.L., Wan, S.Q., Wu, Y.X., Wang, Z.H., Yang, S., Li, P.,
592 Deng, M.F.: A cross-biome synthesis of soil respiration and its determinants under simulated precipitation
593 changes. *Global Change Biol* 22, 1394-1405. <https://doi.org/10.1111/gcb.13156>, 2016c.

594 Liu, Y., Li, X., Zhang, Q., Guo, Y., Gao, G., Wang, J.: Simulation of regional temperature and precipitation in the
595 past 50 years and the next 30 years over China. *Quatern Int* 212, 57-63 <https://doi.org/10.1016/j.quaint.2009.01.007>, 2010a.

597 Luo, C.Y., Wang, S.P., Zhao, L., Xu, S.X., Xu, B.R.B.Y., Zhang, Z.H., Yao, B.Q., Zhao, X.Q.: Effects of land use
598 and nitrogen fertilizer on ecosystem respiration in alpine meadow on the Tibetan Plateau. *J Soil Sediment* 17,
599 1626-1634, <https://doi.org/10.1016/j.quaint.2009.01.007>, 2017.

600 Luo, Y., Gerten, D., Le Maire, G., Parton, W.J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W.:
601 Modeled interactive effects of precipitation, temperature, and CO₂ on ecosystem carbon and water dynamics
602 in different climatic zones. *Global Change Biol* 14, 1986-1999. <https://doi.org/10.1111/j.1365-2486.2008.01629.x>, 2008.

604 Ma, J., Wang, Z.-Y., Stevenson, B.A., Zheng, X.-J., Li, Y.: An inorganic CO₂ diffusion and dissolution process
605 explains negative CO₂ fluxes in saline/alkaline soils. *Sci Rep-Uk* 3. <https://doi.org/10.1038/srep02025>, 2013.

606 Maris, S.C., Teira-Esmatges, M.R., Arbonés, A., Rufat, J.: Effect of irrigation, nitrogen application, and a
607 nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (*Olea europaea*
608 L.) orchard. *Sci. Total Environ.* 538, 966-978, <https://doi.org/10.1016/j.scitotenv.2015.08.040>, 2015.

609 Martins, C.S.C., Macdonald, C.A., Anderson, I.C., Singh, B.K.: Feedback responses of soil greenhouse gas
610 emissions to climate change are modulated by soil characteristics in dryland ecosystems. *Soil Biol Biochem*
611 100, 21-32, <https://doi.org/10.1016/j.soilbio.2016.05.007>, 2016.

612 Morillas, L., Duran, J., Rodriguez, A., Roales, J., Gallardo, A., Lovett, G.M., Groffman, P.M.: Nitrogen supply
613 modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse
614 gas exchange. *Global Change Biol* 21, 3854-3863, <https://doi.org/10.1111/gcb.12956>, 2015.

615 Noh, N.J., Kuribayashi, M., Saitoh, T.M., Nakaji, T., Nakamura, M., Hiura, T., Muraoka, H.: Responses of soil,
616 heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate
617 deciduous forest. *Ecosystems* 19, 504-520, <https://doi.org/10.1007/s10021-015-9948-8>, 2016.

618 Sheik, C.S., Beasley, W.H., Elshahed, M.S., Zhou, X., Luo, Y., Krumholz, L.R.: Effect of warming and drought on
619 grassland microbial communities. *The ISME Journal* 5, 1692-1700, <https://doi.org/10.1038/ismej.2011.32>,
620 2011.

621 Skopp, J., Jawson, M. D., Doran, J. W.: Steady-state aerobic microbial activity as a function of soil water content.
622 *Soil Sci Soc Am J* 54, 1619-1625, <https://doi.org/10.2136/sssaj1990.03615995005400060018x>, 1990.

623 Strong, A.L., Johnson, T.P., Chiariello, N.R., Field, C.B.: Experimental fire increases soil carbon dioxide efflux in
624 a grassland long-term multifactor global change experiment. *Global Change Biol* 23, 1975-1987.
625 <https://doi.org/10.1111/gcb.13525>, 2017.

626 Wang, Q.K., Zhang, W.D., Sun, T., Chen, L.C., Pang, X.Y., Wang, Y.P., Xiao, F.M.: N and P fertilization reduced
627 soil autotrophic and heterotrophic respiration in a young *Cunninghamia lanceolata* forest. *Agr Forest
628 Meteorol* 232, 66-73, <https://doi.org/10.1016/j.agrformet.2016.08.007>, 2017.

629 Wu, C.S., Liang, N.S., Sha, L.Q., Xu, X.L., Zhang, Y.P., Lu, H.Z., Song, L., Song, Q.H., Xie, Y.N., 2016.
630 Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest. *Sci Rep-Uk* 6.

631 Wu, Z.T., Dijkstra, P., Koch, G.W., Penuelas, J., Hungate, B.A.: Responses of terrestrial ecosystems to temperature
632 and precipitation change: a meta-analysis of experimental manipulation. *Global Change Biol* 17, 927-942,
633 <https://doi.org/10.1111/j.1365-2486.2010.02302.x>, 2011.

634 Yang, G., Wang, M., Chen, H., Liu, L.F., Wu, N., Zhu, D., Tian, J.Q., Peng, C.H., Zhu, Q.A., He, Y.X.: Responses
635 of CO₂ emission and pore water DOC concentration to soil warming and water table drawdown in Zhejiang
636 Peatlands. *Atmos Environ* 152, 323-329. <https://doi.org/10.1016/j.atmosenv.2016.12.051>, 2017.

637 Yue, P., Li, K., Gong, Y., Hu, Y., Mohammat, A., Christie, P., Liu, X.: A five-year study of the impact of nitrogen
638 addition on methane uptake in alpine grassland. *Sci Rep-UK*, 6. doi:10.1038/srep32064, 2016.

639 Zeng, X.H., Song, Y.G., Zeng, C.M., Zhang, W.J., He, S.B.: Partitioning soil respiration in two typical forests in
640 semi-arid regions, North China. *Catena* 147, 536-544. <https://doi.org/10.1016/j.catena.2016.08.009>, 2016.

641 Zhang, N., Liu, W., Yang, H., Yu, X., Gutknecht, J.L.M., Zhang, Z., Wan, S., Ma, K.: Soil microbial responses to
642 warming and increased precipitation and their implications for ecosystem C cycling. *Oecologia* 173,
643 1125-1142. <https://doi.org/10.1007/s00442-013-2685-9>, 2013.

644 Zhang, X.L., Tan, Y.L., Zhang, B.W., Li, A., Daryanto, S., Wang, L.X., Huang, J.H.: The impacts of precipitation
645 increase and nitrogen addition on soil respiration in a semiarid temperate steppe. *Ecosphere* 8. <https://doi.org/10.1002/ecs2.1655>, 2017.

647 Zhang, W. Liu,C.Y., Zheng, X.H., Fu, Y.F., Hu, X.X., Cao,G.M., Klaus Butterbach-Bahl.: The increasing
648 distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan
649 Plateau. *Soil Biol Biochem*, 71: 105-112. <https://doi.org/10.1016/j.soilbio.2014.01.005>, 2014.

650 Zhao, Z.Z., Dong, S.K., Jiang, X.M., Liu, S.L., Ji, H.Z., Li, Y., Han, Y.H., Sha, W.: Effects of warming and
651 nitrogen deposition on CH₄, CO₂ and N₂O emissions in alpine grassland ecosystems of the Qinghai-Tibetan
652 Plateau. *Sci Total Environ* 592, 565-572. <https://doi.org/10.1016/j.scitotenv.2017.03.082>, 2017.

653 Zhong, Y.Q.W., Yan, W.M., Shangguan, Z.P.: The effects of nitrogen enrichment on soil CO₂ fluxes depending on
654 temperature and soil properties. *Global Ecol Biogeogr* 25, 475-488. <https://doi.org/10.1111/geb.12430>, 2016.

655 Zhou, L.Y., Zhou, X.H., Shao, J.J., Nie, Y.Y., He, Y.H., Jiang, L.L., Wu, Z.T., Bai, S.H.: Interactive effects of
656 global change factors on soil respiration and its components: a meta-analysis. *Global Change Biol* 22,
657 3157-3169. <https://doi.org/10.1111/gcb.13253>, 2016a.

658 Zhou, X.B. and Zhang, Y.M.: Seasonal pattern of soil respiration and gradual changing effects of nitrogen addition
659 in a soil of the Gurbantunggut Desert, northwestern China. *Atmos Environ*, 85: 187-194.
660 <https://doi.org/10.1016/j.atmosenv.2013.12.024>, 2014.

661 Zhou, Y.M., Hagedorn, F., Zhou, C.L., Jiang, X.J., Wang, X.X., Li, M.H.: Experimental warming of a mountain
662 tundra increases soil CO₂ effluxes and enhances CH₄ and N₂O uptake at Changbai Mountain, China. *Sci
663 Rep-Uk* 6. <https://doi.org/10.1038/srep21108>, 2016b.

664 Zhu, J., Kang, F.F., Chen, J., Cheng, X.Q., Han, H.R.: Effect of nitrogen addition on soil respiration in a Larch
665 Plantation. *Pol J Environ Stud* 26, 1403-1412. <https://doi.org/10.15244/pjoes/67687>, 2017.

666 Zong, N., Shi, P.L., Chai, X., Jiang, J., Zhang, X.Z., Song, M.H.: Responses of ecosystem respiration to nitrogen
667 enrichment and clipping mediated by soil acidification in an alpine meadow. *Pedobiologia* 60, 1-10.
668 <https://doi.org/10.1016/j.pedobi.2016.11.001>, 2017.

669

670

671

672

673

674

675

676 **Fig. 1** Comparative effects of warming by Open Topped Chambers, increased precipitation, and N
677 deposition on soil temperature (a), soil moisture (b) at 5 and 20 cm depth; soil organic carbon
678 (SOC), NH_4^+ -N content, NO_3^- -N content and pH (c), dissolved organic carbon (DOC), microbial
679 biomass carbon (MBC) and microbial biomass nitrogen (MBN, d). The data are mean \pm SE, n = 4
680 in c and d, different letter indicate significant effect at P < 0.05.

681

682 **Fig. 2** Variation in rainfall (mm, a), and air temperature ($^{\circ}\text{C}$, a) from September 2014 to October
683 2016 at the Gurbantunggut Desert, and the soil moisture and temperature to increasing
684 precipitation and warming (b), and the response of R_s (mean, n = 4) to precipitation (c), N
685 deposition (d-e) and warming (f). W0 and W1 indicate under ambient precipitation (without water
686 addition) and 60 mm yr^{-1} precipitation addition; N0, N1, and N2 indicate 0, 30 and 60 kg N ha^{-1}
687 yr^{-1} nitrogen addition; while W1N0, W1N1, and W1N2 indicate 0, 30 and 60 kg N $\text{ha}^{-1} \text{yr}^{-1}$
688 nitrogen addition under 60 mm yr^{-1} precipitation addition; W1N1T1, W0N0T1 and W0N0T0
689 indicate the interaction between increasing precipitation (60 mm yr^{-1}), N deposition (30 kg N ha^{-1}
690 yr^{-1}) and warming by OTCs, warming alone (without increasing precipitation and N deposition)
691 and control plots, respectively. Black arrows indicate simulated precipitation (5 mm per time) and
692 N deposition (0.25 or 0.5 g N m^{-2} per time). Each point represents the mean of four replications
693 (chambers). Standard deviations for R_s are not showed for figure clarity.

694

695 **Fig. 3** Post-rainfall diurnal variation in R_s (mean \pm SE, n = 4, b) with variation in soil temperature
696 and soil moisture (a), and a sunny day variation in R_s (mean \pm SE, n = 4, d) with variation in soil
697 temperature (T5, T20, c) and soil moisture at 5 (W5) or 20 (W20) cm depth caused by warming in
698 open topped chambers (OTCs). Positive values indicate increment by warming, and negative
699 values indicate decline. A red straight line indicates the average value of R_s inside the OTCs in (b)
700 and (d), and a green straight line represents the average value of R_s out of OTCs in (b) and (d).
701 Red *, ** and *** indicate significant effect at P < 0.05, P < 0.01, and P < 0.001, respectively.

702

703 **Fig. 4** The relationship of soil respiration with microbial biomass carbon (MBC, a); microbial
704 biomass carbon (MBN, b); soil NO_3^- -N (c); NH_4^+ -N content (x, d); soil dissolved organic carbon
705 (DOC, e); pH (f); soil moisture (g) and soil temperature (h).

706

707 **Fig. 5** Structure equation modeling (SEM) test the multivariate (soil moisture, soil temperature,
708 soil NH₄⁺-N content, DOC and pH) effects on R_s (n=34). Single-headed arrows show that the
709 effect of different key controls on R_s were analyzed. The green arrows indicated positive effects,
710 and red arrows showed negative effects. And the width of the arrows indicate the strength of the
711 relationship. The numbers are standardized path coefficients, which can show the importance of
712 the variables in the model. Goodness-of-fit statistics for the model are shown below the model. *
713 indicate significant effect at P < 0.05.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737 **Fig. 1**

738

739

740

741

742

743

744

745

746

747

748

Fig. 2

753

754 **Fig. 3**

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770 **Fig. 4**

771

772

773

774

775

776

777

778

779

780

781 **Fig. 5**

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803 **Table 1** The annual, growing season (GS), non-growing season (NGS), and between-year fluxes
 804 and variation of soil respiration (R_s) in September 2014 to September 2016 (mean \pm SE), including
 805 the contribution of GS and NGS, and the treatment effect. The positive values stand for increase
 806 R_s , and the negative value stand for reduced R_s .

807

Treatments	Prec.	temp.	R_s rate (kg C ha^{-1})							
	mm	$^{\circ}\text{C}$	W0N0	W0N1	W0N2	W1N0	W1N1	W1N2	W1N1T1	T1
Annual	175.75	4.63	1090.11	1338.26	1299.41	1450.78	1304.77	1043.77	1196.84	981.19
	± 7.75	± 0.36	± 450.78	± 599.12	± 537	± 543.70	± 383.29	± 233.23	± 334.31	± 371.34
CV (%)	4.41	7.78	41.35	44.77	41.33	37.48	29.37	22.34	27.93	37.85
Treatments effect (%)	---	---	---	22.76	19.20	33.09	19.69	-4.25	9.79	-9.99
Growing season										
2014.9-2015.8	120.5	14.67	508.30	561.95	570.38	650.66	669.93	562.04	561.10	425.35
2015.9-2016.8	114.5	21.18	1220.27	1546.62	1506.88	1641.62	1274.93	1052.22	1183.86	1089.51
CV (%)	3.61	25.68	46.18	52.03	50.96	48.30	32.79	33.21	50.47	62.00
Non-Growing season										
2014.9-2015.8	47.5	-6.13	131.03	177.09	192.03	256.43	251.55	248.50	301.43	184.49
2015.9-2016.8	69	-11.2	320.62	390.84	329.54	352.85	413.12	224.79	347.29	262.02
CV (%)	26.10	41.37	59.37	53.23	37.29	22.38	34.38	7.09	10.00	24.82
NGS Contribution	---	---	20.65	22.07	21.57	22.98	25.89	24.13	27.10	22.80

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822 **Table 2** Tests of significance of year (Y), warming (T), precipitation (W) and nitrogen addition
 823 (N) on soil respiration (R_s) by multivariate ANOVA (F and P values). The accumulated effect of
 824 precipitation, N deposition and warming on R_s in 2015 and 2016 (F and P values) as assessed by
 825 repeated measures ANOVA. *, ** and *** indicate significant effects at P < 0.05, 0.01, and 0.001,
 826 respectively.

Three-way ANOVA	n	F	P
Y	2	26.171	<0.001***
N	424	7.709	<0.001***
W	565	17.124	<0.001***
W×N	424	9.392	<0.001***
W×Y	424	6.899	<0.001***
N×Y	424	5.561	0.004**
Y×W×N	424	5.963	0.003**
T	424	2.320	0.084
T×Y	424	0.536	0.464
Repeated measures ANOVA			
Y	2	30.487	<0.000***
N	383	12.887	<0.000***
W	281	2.934	0.087
T	142	0.965	0.326
W×N	281	12.755	<0.000***
T×W×N	281	39.927	<0.000***

827