1	Impact of	f elevated	precipitation,	nitrogen	deposition	and	warming	on	soil
2	respiration	n in a temp	erate desert						

4	Ping Yue ^{1,2,3}	, Xiaoqing Cui ² ,	Yanming Gong ¹ ,	Kaihui Li ¹ , Keith	Goulding ⁴ , Xuejun Liu ² *
	0		U	,	

- ⁵ ¹State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
- 6 Chinese Academy of Sciences, Urumqi 830011, China
- 7 ² Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental
- 8 Sciences, China Agricultural University, Beijing 100193, China
- 9 ³University of the Chinese Academy of Sciences, Beijing 100039, China
- ⁴ The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden

11 AL5 2JQ, UK

- 12 * Correspondence to: Xuejun Liu (<u>liu310@cau.edu.cn</u>; or <u>ecology2100@sina.cn</u>)
- 13

14 Abstract

15 Soil respiration (R_s) is the most important source of carbon dioxide emissions from soil to 16 atmosphere. However, it is unclear what the interactive response of R_s would be to environmental 17 changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique 18 temperate desert ecosystems. To investigate this an *in situ* field experiment was conducted in the 19 Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed 20 that precipitation and N deposition significantly increased R_s, but warming decreased R_s, except in 21 extreme precipitation events, which was mainly through its impact on the variation of soil moisture 22 at 5 cm depth. In addition, the interactive response of R_s to combinations of the factors was much 23 less than that of any single-factor, and the main interaction being a positive effect, except interaction

24	from increased precipitation and high N deposition (60 kg N ha ⁻¹ yr ⁻¹). Although R_s was found to be
25	a unimodal change pattern with the variation of soil mositure, soil temperature and soil NH4+-N
26	content, and it was signicantly postively correlated to soil dissloved organic carbon (DOC) and pH,
27	but from a structural equation model found that soil temperature was the most important controlling
28	factor. Those results indicated that R_s was mainly interactively controlled by the soil multi-
29	environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N
30	deposition and warming. But the interactions of multiple factors largely reduced between-year
31	variation of R_s more than any single-factor, suggesting that the carbon cycle in temperate deserts
32	could be profoundly influenced by positive carbon-climate feedbacks.
33	Key words: precipitation; nirogen deposition; warming; soil respiration; temperate desert
34	
35	Highlights
36	1. Impacts of rainfall, N addition and warming on R_s were studied in a temperate desert.
37	2. Rainfall and N deposition significantly increased R _s , but warming reduced it.
38	3. The interactive response of R_s was much lower than any single-factor.
39	4. Soil temperature was the most important controlling factor for R_s .
40	
41	1. Introduction
42	Global climate warming, changes in precipitation patterns and increased atmospheric nitrogen
43	(N) deposition have all occurred since the industrial revolution, especially in temperate regions
44	(IPCC, 2013), which will be expected to significantly change soil respiration (R_s) that is the most
45	important source of carbon dioxide (CO ₂) from soil to atmosphere (Wu et al., 2011): the annual CO ₂

46	flux from R _s was ten-fold that of fossil fuel emissions (Eswaranet al., 1993; Batjes, 1996;
47	Gougoulias et al., 2014). Therefore, even a small change in R _s will profoundly affect greenhouse
48	gas balance and climate (Heimann and Reichstein, 2008). Although a number of experiments of the
49	effects of warming, precipitation, and N deposition on Rs have been conducted in alpine grassland,
50	tundra regions, peatlands and temperate forest (Lafleur and Humphreys, 2008; Strong et al., 2017;
51	Yang et al., 2017; Zhao et al., 2017), studies in temperate desert ecosystems are scarce, especially
52	the impact on R_s of the interactions of these changes. A field study of multi-factor interactive effects
53	on R_s was therefore conducted in a temperate desert ecosystem to help in understanding the response
54	of R_s to climate change and N deposition in future and highlight the main driving factors.
55	R_s includes autotrophic respiration (R_A), which is mainly from plant roots and mycorrhizal
56	activities; and heterotrophic respiration (R_H), which is mainly from the activities of microorganisms
57	(Hanson et al., 2000). Soil moisture is an critical limiting factor for plant roots and microbial
58	activities in desert ecosystems (Huang et al., 2015a): R_s was significantly increased by 47-70% in a
59	degraded steppe in Inner Mongolia, China, by increasing precipitation (Chen et al., 2013), with the
60	effect especially strong in summer (Zhang et al., 2017). In addition, in arid ecosystems, increasing
61	precipitation significantly stimulated plant growth, enhanced soil microbial activity and abundance
62	(Huang et al., 2015a), and changed soil nutrient and substrate concentration, such as dissloved
63	organic carbon (DOC), inorganic nitrogen content, moisture and temperature (Huang et al., 2015b).
64	Warming significantly increased soil temperature, another important controlling factor for
65	plants growth and microbial activity (Sheiket al., 2011; Huang et al., 2015a). Rs rates were
66	significantly increased in a forest soil and Tibetan Plateau grassland by warming (Chen et al., 2017a),
67	reducing R_s with decreasing soil moisture in the growing season, but increasing R_s in the non-

68	growing season (Fang et al., 2017; Li et al., 2017); no significant impact was observed from
69	warming (Liu et al., 2016a). Therefore, how R _s is affected by warming induced variations in the soil
70	environment is still unclear. In addition, low and short-term N deposition enhanced R _s , while higher
71	and long-term N deposition inhibited R_s due to changes in plant growth and microbial activity (Zhu
72	et al., 2017), but no impacts have also been reported (Luo et al., 2017; Zhang et al., 2017). A meta-
73	analysis showed that the effects of N enrichment on soil CO ₂ fluxes depended on temperature and
74	soil properties (Zhong et al., 2016); desert soils may be even more senstive to its variation.
75	A nation-wide analysis showed that warming, elevated N deposition and precipitation
76	significantly increased R _s in China (Feng et al., 2017). Some studies have shown that the warming
77	effect on R _s mainly depended on the variation of soil moisture in a dry forest soil (Li et al., 2017).
78	Luo et al. (2008), using a modeling analysis, found that interactive effects became increasingly
79	weaker with increasing intensity of the factors, but a recent meta-analysis showed that interactive
80	effects were much greater than single factors (Zhou et al., 2016a). Thus how multi-factor
81	interactions impact Rs is still unclear. Therefore, an in stiu experiment was carried out in the
82	Gurbantunggut Desert to (1) investigate the single-factor and interactive responses of R_s to warming,
83	precipitation and N deposition, and (2) identify the main controlling factors on R_s .

85 2. Materials and methods

```
86 2.1. Study site
```

A field experiment was carried out at the southern edge of the Gurbantunggut Desert (44°26'
N, 87°54'E and 436.8 m a.s.l.), northwest China, from September 2014 to October 2016. This is the
largest fixed/semi-fixed temperate desert in China. The mean annual temperature and precipitation

90	are 7.1°C and 215.6 mm, respectively (Cui et al., 2017), and annual potential evaporation exceeds
91	2000 mm. From late November to mid-March of the following year, a 20-35 cm depth of snow
92	cover the whole desert (equivalent to 38–64 mm rainfall; Huang et al., 2015c). The growing season
93	is from April to October. This desert soil is of extremely low fertility and high alkaline (Cui et al.,
94	2017). Soil organic carbon, total N content, soil NO ₃ ⁻ -N, NH ₄ ⁺ -N contents and C:N ratio are 2.21
95	± 0.71 g kg ⁻¹ , 0.08 \pm 0.003 g kg ⁻¹ , 4.49 \pm 0.71 mg kg ⁻¹ , 1.38 \pm 0.74 mg kg ⁻¹ and 21.39 \pm 1.84,
96	respectively (Table 1; Cui et al., 2017). Plant species are dominated by Haloxylon ammodendron
97	and Haloxylon persicum, and the vegetation was extremely sparse, with only 30% coverage, with
98	some spring ephemeral plants (May-June), some annuals, and perennials herbaceous plants (July-
99	August; Liu et al., 2016). Spring ephemerals account for > 60% of the community cover and 85%
100	of the biomass. Summer ephemerals, annuals and perennials usually account for only a small
101	proportion of the community biomass before June, but dominate the community after the die-back
102	of the spring annuals (Huang et al., 2015c).

104 2.2. Experimental treatments

A striking N deposition rate (35.2 kg N ha⁻¹ yr⁻¹) has occurred in the Gurbantunggut Desert due to the rapid development of agriculture and industry with main form of ammonium nitrate (NH4NO3), and wet (19.6 kg N ha⁻¹ yr⁻¹) and dry (15.6 kg N ha⁻¹ yr⁻¹) deposition are almost half (Song et al., 2015). In addition, according to the forecast of Galloway et al. (2008) that atmospheric N deposition will double from the early 1990s to 2050, and the predictions of Liu et al. (2010) that precipitation in this region would be increased by 30% in next 30 years. In September 2014 to August 2016, an *in situ* complete block interactive experiment was therefore conducted to study the

112	impact of N deposition and increased precipitation on R_s (Experiment 1). The three levels of N
113	deposition (0 kg N ha ⁻¹ yr ⁻¹ (control, N0), 30 kg N ha ⁻¹ yr ⁻¹ (low, N1) and 60 kg N ha ⁻¹ yr ⁻¹ (high,
114	N2)) and two levels of precipitation ('natural' precipitation (W0) and an increase of 30% (an extra
115	60 mm precipitation annually (W1)) were applied (Cui et al., 2017). Therefore there were six
116	treatments (W0N0, W0N1, W0N2, W1N0, W1N1 and W1N2) with four replicates of each treatment;
117	each replicate plot was 10 m \times 10 m with a 5-m wide buffer zone. The additional precipitation and
118	N deposition (NH_4NO_3) were added twelve times in April, July and September, equivalent to 5 mm
119	precipitation and 2.5 or 5 kg N ha ⁻¹ per application over a week. The NH_4NO_3 was diluted in 50 L
120	water (equal to 0.5 mm precipitation), and evenly applied following the simulated precipitation. The
121	same amount of water was applied to the control plots (W0N0).

Rapidly warming (0.6 °C per decade), increasing precipitation (3-5 mm yr⁻¹ since 1979) and 122 123 receiving high N deposition (3 kg N ha⁻¹ since 1980) are affecting the Gurbantunggut Desert (Liu et al., 2013; Li et al., 2015), which would be excepted to affect rate of R_s. Therefore, another 124 125 interactive experiment was established at the same time, simulating the three most likely climate 126 scenarios in the future: (1) warming only (W0N0T1); (2) increased precipitation and N deposition 127 without warming (W1N1T0); (3) the interaction of increasing precipitation, N deposition and 128 warming (W1N1T1); all compared with the current climate (W0N0T0). Therefore, there were four 129 treatments (W0N0T1, W1N1T0, W1N1T1, W0N0T0) with four replicates (plots) of each treatment. Open-top chambers (OTCs) were used to simulate warming. The OTCs were designed with 5 mm 130 transparent tempered glass and stainless steel angle iron to the ITEX standard (Marion et al., 1997). 131 They were 2 m high and 4 m in diameter, with each OTC area being 12 m^2 . However, the design 132 133 was improved such that the top and bottom OTC areas were the same so that precipitation and

- snowfall were the same as that to the surrounding environment; this also avoids overheating insidethe OTCs. The timings of applications of water and N were the same as in Experiment 1.

2.3. Measurements

138	R_s in all plots were measured twice or thrice a week (continuous measurements over 3 days
139	were made following simulated precipitation and N deposition) using gas chromatography and static
140	chambers (50 cm \times 50 cm \times 10 cm) at locations where grow only spring ephemeral plants without any
141	annuals and perennials in order to minimize the between-treatment spatial heterogeneity due to
142	sparse annuals, and perennials (Liu et al., 2012). Gas samples were collected between 10:00-12:00
143	(GMT + 8) throughout the experimental period, which was detected in this period were close to the
144	diurnal averages (Fig.3b and 3d, Fig. 1S). Gas samples were collected from the headspace of each
145	chamber 0, 10, 20 and 30 min after closing the chamber per time. The gas samples analyzed within
146	three days using a gas chromatograph (GC; Agilent 7890A, Agilent Technologies, Santa Clara, CA,
147	USA) equipped with a flame ionization detector for quantitative R_s (Liu et al., 2012). R_s rates were
148	calculated from four concentrations of the gas sample based on a first order differential linear or
149	non-linear equation and were temperature- and pressure- corrected (Liu et al., 2012; Zhang et al.,
150	2014). Soil samples were taken monthly from around the static chambers to a depth of 10 cm using
151	an auger (3.5 cm in diameter). Fine roots and small stones were separated out using a 2 mm sieve.
152	Dissolved organic carbon (DOC) was extracted with deionized water (soil: water ratio = $1:10$) by
153	shaking on an orbital shaker at 10000 rpm for 5 min and analyzed using a TOC analyzer (multi N/C
154	3100, Jena, Germany; Jones and Willett, 2006). Brookes' (1985), Chloroform fumigation extraction
155	was used to measure microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). Soil

156	organic carbon (SOC) were measured using the potassium dichromate method (Jiang et al., 2014),
157	and soil $NO_3^{-}N$ and $NH_4^{+}-N$ analyzed as per Yue et al. (2016). Soil pH was measured on a 1:5 soil:
158	deionized water suspension using a pH Meter (Seven Easy, Mettler-Toledo, Switzerland). Caipos
159	Soil and Environment Monitoring Systems (Caipos GmbH, Austria) were used to monitor soil
160	moisture/temperature at 5 and 20 cm depth every hour.
161	
162	2.4. Effects of each treatment on R_s
163	The each treatment effect was analyzed using the following formula to better evaluating the
164	effect of precipitation, warming and N deposition on Rs (Yue et al., 2016).
165	The treatment effect = $(TR_s - CR_s) / CR_s \times 100\%$,
166	Where the treatment effect is W0N1, W0N2, W1N0, W1N1, W1N2, W1N1T1 or W0N0T1
167	effect on R_s (a positive value shows that the treatment has increased R_s and a negative value shows
168	decrease of R_s), corresponding TR_s represents R_s from the W0N1, W0N2, W1N0, W1N1, W1N2,
169	W1N1T1 or W0N0T1 plots (mg C $m^{-2} h^{-1}$) and CRs indicates the Rs from the control plots (W0N0,
170	mg C m ^{-2} h ^{-1}).
171	
172	2.5. Statistical analyses
173	Treatments effect on soil organic carbon (SOC), NO3 ⁻ -N, NH4 ⁺ -N content, pH, DOC, MBC
174	and MBN were examined in each treatment by least significant difference LSD (p $<$ 0.05). The single-
175	factor and interaction effects of precipitation, warming and N deposition on R_{s} were detected by
176	multi-way analysis of variance (ANOVA), and the accumulated effect of precipitation, warming and

177 N deposition on R_s were tested by repeated measures ANOVA. In addition, the relationships of R_s

178	and DOC, MBC, MBN, soil temperature, soil moisture, NH4 ⁺ -N content, soil NO3 ⁻ - N, and pH were
179	described using a linear or non-linear regression model. The factors of key controls on R_s were used
180	to analyze by structural equation models (SEMs). SPSS software (version 20.0) was used to conduct
181	all statistical analyses, and statistical significant differences were set with P<0.05. All Figures were
182	created using the Sigmaplot software package (version 10.0), but SEMs analyses were carried out
183	using AMOS 22.0 (Amos Development Corporation, Chicago, IL, USA).

```
185 3. Results
```

3.1. Treatments effects on soil environmental and properties

187	Soil temperatures at 5 depth were mostly increased between 11:00 and 22:00 every day by
188	warming; the average annual soil temperatures at 5 and 20 cm depth were significantly increased
189	by 4.41 and 3.67 °C, respectively (Fig. 1a). Soil moisture at 5 cm depth was decreased by warming
190	by only 0.61v/v% (Fig. 1b), and a very small decrease of 0.01v/v% in soil moisture at 20 cm depth
191	was observed (Fig.1b). Soil moisture at 5 and 20 cm depth were largely increased by the increased
192	precipitation (Fig.1b). N deposition and warming significant increased soil NH4 ⁺ -N and NO3 ⁻ -N
193	contents (Fig. 1c), but no significant change was found from increased precipitation. Soil MBC and
194	MBN were greatly increased by N deposition, but significant negative effects on soil MBC and
195	MBN were observed by warming and the interaction of precipitation and N deposition (Fig. 1d). No
196	significant change in SOC and DOC was observed in any treatment (Fig. 1c and 1d).
197	

198 3.2. Precipitation, warming and N deposition effects on R_s

199 In our study, a weak R_s emission rate (-2.46 to 50. 26 mg C m⁻² h⁻¹) was observed at control

200	plots with an average emission rate of 12.18 mg C m ⁻² h ⁻¹ from September 2014 to October 2016
201	(Fig. 2c). Annual cumulative rate of R_s was 1090.11±450.78 kg C ha ⁻¹ , with non-growing season
202	account for 20.7% of the annual emission (Table 1). R_s was significantly enhanced by increasing 5-
203	mm precipitation and N deposition from 12.18 to 16.23 and 14.97 mg C m ⁻² h ⁻¹ (average),
204	respectively (P< 0.001 ; Fig. 2c and 2d; Table 2), with annual R _s increased by 33.1% and 19.2-22.8%,
205	respectively (Table 1). And the low N deposition effect on R_s was much higher than that high N
206	deposition (Fig. 2c and 2d). However, R _s was reduced mostly by warming, although not significant
207	(P=0.084; Table 2). And high temperatures and low humidity at times of peak sunshine during the
208	diurnal variation significantly inhibited its emission rate (Fig 3a and 3b, Fig.2S), but it was also
209	significantly increased by warming following extremely rainfall events that increased soil moisture
210	(Fig. 3c and 3d). The diurnal trend in R_s was consistent with that of soil temperature at 5 cm depth
211	(Fig. 3). In addition, the interactive responses of R_s to increasing precipitation, warming and N
212	deposition were much lower than that from any single-factor (Table 1), and with the interaction of
213	$60 \text{ kg ha}^{-1} \text{ N}$ and extra precipitation decreasing R_s by 4.25% (Table 1). Overall, annual R_s rates were
214	significantly impacted by precipitation, N deposition, and their interaction (Table 2), but no
215	significant net change was caused by warming (Table 2), although R_s rates were decreased by 9.99%
216	(Table 1).

3.3. Temporal variation and its control

The results of repeated measures ANOVA showed that significantly accumulated effects on R_s
were found by N deposition and interaction between N deposition and precipitation or warming
rather than alone increasing precipitation and warming (Table 2). A large between-year variation in

222 R_s was observed with a coefficient of variation (CV) up to 41.4% (a much higher R_s rate was 223 observed in 2016 than 2015), but variation was reduced by increasing precipitation, N deposition 224 and warming and their interaction, except with an increase in N deposition of 30 kg ha⁻¹ (Table 1). 225 The results of regression analysis showed that R_s was significantly increased by increases in pH and 226 DOC (Fig. 4e and 4f), but no significant relationships were found with MBC, MBN or NO₃⁻N 227 content (Fig. 4a, 4b and 4c). In addition, different response characteristics of Rs in the impacts of 228 increased soil mositure, soil temperature and NH4+-N content were found. Soil mositure was the 229 most important controlling factor when it was <4.2 % and soil temperature was $>26.5^{\circ}$ C (Fig. 4g 230 and 4h, Fig. 2S). Secondly, soil temperature was the most important limiting factor when soil moisture was >15.9 % and soil temperature <2.7 °C (Fig. 4g and 4h, 2S). Thirdly, there was no 231 232 significant impact on R_s when soil NH₄⁺-N content was <6.3 mg N / kg. A significant increase in R_s 233 occurred when soil NH_4^+ -N content was between 6.3 and 12.6 mg N / kg, but R_s was inhibited when 234 soil NH4⁺-N content was between 12.6 and 31.6 mg N / kg (Fig. 4d).

235

236 4. Discussion

4.1. Single-factors impacts of precipitation, N deposition and warming on R_s

Annual R_s was 1090 kg C ha⁻¹ in this temperate desert, with the non-growing season accounting for 20.7 % of the annual flux (Table 1). This is consistent with previous study in here (Zhou et al., 2014; Huang et al., 2015a) because SOC content was very low (Fig. 1c), and vegetation was very sparse in this desert (Liu et al., 2016b). Increasing precipitation significantly increased R_s (Fig. 2c). It is also consistent with the results of a meta-analysis and previous study in here (Huang et al., 2015a; Liu et al., 2016c). This is because that the growth of desert plants and microbial activity are

244	significantly activated by increasing precipitation (Huang et al., 2015a), and microbial biomass,
245	mass-specific respiration, microbial biomass carbon (MBC) and nitrogen (MBN), and microbial
246	PLFAs were consistently significantly enhanced by increased precipitation (Zhang et al., 2013;
247	Huang et al., 2015a). However, R _s in our study was much higher in moderate soil moisture
248	conditions than with too little or too much soil moisture (Fig. 4g). This suggests that R_s is mainly
249	$R_{\rm H}$ rather than $R_{\rm A}$ in this desert, namely from soil microorganism, because (1) too little or too much
250	soil moisture could significantly inhibit microbial activity due to variation of soil temperature and
251	soil properties (Ma et al., 2013), while moderate soil moisture could significantly enhance microbial
252	activity (Skopp et al., 1990), and (2) the biomass of fine roots was no significantly enhanced at our
253	sites by increased precipitation (Cui et al., 2017). This is consistent with results from a desert steppe
254	in northern China where the contribution of $R_{\rm H}$ (78.1%) was significantly higher than that of $R_{\rm A}$
255	(21.9%) under increasing precipitation (Liu et al., 2016a).
255 256	(21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R _s , especially in low N deposition (Fig. 2d). This is
255 256 257	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R_s, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et
255 256 257 258	(21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R _s , especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased R _s by 8.8% (Zhou et al.,
255 256 257 258 259	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R_s, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased R_s by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although
255 256 257 258 259 260	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R_s, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased R_s by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial activity
255 256 257 258 259 260 261	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased Rs, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased Rs by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial activity and abundance by low N deposition (Huang et al., 2015b). But this was inconsistent with a young
255 256 257 258 259 260 261 262	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R_s, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased R_s by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial activity and abundance by low N deposition (Huang et al., 2015b). But this was inconsistent with a young <i>Cunninghamialanceolata</i> forest (Wang et al., 2017), and beneath shrubs of <i>H. ammodendron</i>, soil
255 256 257 258 259 260 261 262 263	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased R_s, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased R_s by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial activity and abundance by low N deposition (Huang et al., 2015b). But this was inconsistent with a young <i>Cunninghamialanceolata</i> forest (Wang et al., 2017), and beneath shrubs of <i>H. ammodendron</i>, soil high N content, has the opposite effect in our study site (Chen et al., 2013; Huang et al., 2015b).
255 256 257 258 259 260 261 262 263 263	 (21.9%) under increasing precipitation (Liu et al., 2016a). N deposition also significantly increased Rs, especially in low N deposition (Fig. 2d). This is consistent with results from an alpine meadow and in the Loess Plateau (Fang et al., 2017; Zong et al., 2017), and with a meta-analysis showing that N deposition increased Rs by 8.8% (Zhou et al., 2016a). This is because N deposition, on the one hand, could increase fine root biomass, although this was not significant in our study (Cui et al., 2017); on the other hand, increases microbial activity and abundance by low N deposition (Huang et al., 2015b). But this was inconsistent with a young <i>Cunninghamialanceolata</i> forest (Wang et al., 2017), and beneath shrubs of <i>H. ammodendron</i>, soil high N content, has the opposite effect in our study site (Chen et al., 2013; Huang et al., 2015b).

266	lower (<6.3 mg N / kg) or much higher (>12.6 mg N / kg) soil NH ₄ ⁺ -N contents (Fig. 4d), but this
267	effect of N deposition on R_s is not consistent with other ecosystems (Burton et al., 2004; Chen et al.,
268	2013; Liu et al., 2015; Chen et al., 2017b). This is because the desert soil is extremely limited than
269	other ecosystem (Adams, 2003), so low N deposition enhanced plants growth and microbial activity,
270	but high N inhibited microbial activity and community composition, reduced R _s (Zhou et al., 2014;
271	Huang et al., 2015b). Overall, soil NH_4^+ -N content was an important controlling factor for R_s
272	because microbial activity, abundance and species diversity were regulated by soil NH4+-N content
273	in this desert, and R_s was very sensitive to variation of N deposition.
274	Warming decreased R _s (Fig. 2f), although not significantly (P=0.084; Table 2), which was
275	consistent with results from a semi-arid alfalfa-pasture of the Loess Plateau (Fang et al., 2017). In
276	addition, a significant decrease in R_s was observed on an extreme drought or hot sunny day when
277	soil moisture was reduced, and sharply reduced R_{s} when soil temperature reached 37 $^{0}\!\mathrm{C}$ (Fig. 3a
278	and 3b, 1S). This is because: (i) microbial activity is significantly inhibited by extreme temperatures
279	and low soil moisture, may reduce population size by 50-80% (Sheik et al., 2011); (ii) fine root
280	growth is inhibited in high temperature and low soil moisture. Others have noted this phenomenon
281	as occurring at about 16:00 each day (Ma et al., 2013), but in our study the effect was advanced to
282	14:00 by warming, which may reduce carbon emission from soil to atmosphere. However, this is
283	not consistent with results from a tundra ecosystem, subtropical forest or alpine regions where $R_{\rm s}$
284	was significantly increased by warming due to the limitation of soil temperature in these ecosystems,
285	and no significant change in soil moisture (Noh et al., 2016; Wu et al., 2016; Zhou et al., 2016b). In
286	addition, a significant increase in R_s was found following enhanced precipitation with warming (Fig.
287	3c and 3d), which indicates that soil moisture was the most important controlling factor for Rs under

288 a warming climate. This is consistent with other studies (Chen et al., 2017a; Zhao et al., 2017). 289 However, statistical analysis showed that no overall significant impact on R_s was found during the 290 experimental period by warming, and it was reduced by 9.99%. This is because our gas samples 291 were taken at 10:00 - 12:00 each day, when average soil temperatures were increased by about one 292 degree. Thus mean annual Rs was not sensitive to temperature changes this small in contrast to the very significant effects of short-term diurnal changes in soil temperature, observed between 12:00 293 294 and 17:00 (Fig. 3a and 3c). However, gas samples during 10:00-12:00 in this study could catch the 295 meanly warming effects on R_s, except some extremely precipitation and drought events in summer 296 (Fig.1S), which will require further systematic evaluation. Those results indicated that R_s depends 297 mainly on variations of soil moisture and temperature in the context of warming, and climate change 298 is likely to have a very significant effect on temperate deserts.

299

300 4.2. The interactive effects of precipitation, N deposition and warming on R_s

301 Interactive responses of R_s were much lower than those of any single-factor, but still increased 302 R_s overall, except interaction between precipitation and high N deposition (Table 1). This is 303 consistent with results in dry ecosystems (Morillas et al., 2015; Martins et al., 2016), but not with the results of a meta-analysis that precipitation and N deposition interactive experiments were a 304 305 greater extent positive effect on R_s (Zhou et al., 2016a). This can be explained in our study that soil 306 MBC or MBN were much less in interactive treatments than that of single-factor (Fig. 1d), which 307 showed that a number of microorganisms were much less in interactive treatments than that of 308 single-factor due to much stronger N effect. As we found that Rs was reduced with increasing N deposition and precipitation by as much as 4.25% in W1N2 plots (Table 1), which showed that the 309

310	inhibiting effect of soil NH4 ⁺ -N content was much stronger when there was sufficient soil moisture
311	(Fig. 2e). This is consistent with the results in a <i>Populuseuphratica</i> community in a desert ecosystem
312	(He et al., 2015). This was because (i) microbial activity was inhibited by high or low soil moisture
313	and high soil NH_4^+ -N or NO_3^- -N content (Burton et al., 2004); and (ii) high N tent to reduce
314	extracellular enzyme activity and the fungal population (Maris et al., 2015). In addition, the
315	interactive effect of the three factors on R_s in this desert was much lower than interaction of two
316	factors of precipitation and N deposition (Table 1), and is consistent with the results of modeled
317	interactive effects, which showed that three-factor interactions were rare while two-factor
318	interactions were more common (Luo et al., 2008). Fortunately, the interactive effect of three factors
319	or two factors (precipitation, N deposition and warming) in this desert could largely reduce between-
320	year variation on R_s (Table 2), which may because (i) the limits of soil moisture, soil temperature
321	and soil N content were relieved for key biological processes by increasing precipitation, N
322	deposition and warming (Huang et al., 2015a; Liu et al., 2016b); (ii) various factors antagonistic to
323	each other (Zhou et al., 2016a). However, the variation in the growing season on R_s can be increased
324	by warming, elevated precipitation and N deposition because of their dominant effects on plant
325	growth and microbial activity (Huang et al., 2015b), but it was the exact opposite in the non-growing
326	season due to reduce the limit of temperature (Zeng et al., 2016). Those results showed that Rs would
327	be reduced under interactive effect of increasing rainfall, temperature and N deposition in the future,
328	and took place a positive carbon-climate feedbacks.
220	

4.3. Temporal variation in treatments on R_s and controlling factors

331 Significantly accumulated effects on R_s were found by elevated N deposition rather than alone

332	increasing precipitation and warming (Table 2). A previous study in here has showed that Rs was
333	decreased to N addition with experimental duration (Zhou et al., 2014), which was inconsistent with
334	our results (Fig. 2d) because in our study relatively lower rate of N addition than that Zhou et al.
335	(2014), and the composition of microbial community and soil propertie were altered gradually by
336	long-term and high N deposition (Fig. 1c and d; Huang et al., 2015b; Zong et al., 2017). In addition,
337	significantly accumulated effects in the interaction between N deposition and precipitation or
338	warming on R_s were also found (Table 2), and R_s was decreased by 4.25% by interaction between
339	increasing precipitation and high N deposition (Table 1), which indicated that the response of R_s to
340	N deposition largely dependent on soil moisture in desert soil. This may be attributed to the
341	antagonistic interaction between elevated N deposition and precipitation on R_h (Zhou et al., 2016a).
342	Those results indicated that N deposition produced strong accumulated effects on R _s in this desert,
343	and was enhanced largely with increasing soil moisture, which would reduce carbon emission from
344	soil to atmosphere.

Regression analysis shows that R_s exhibited a unimodal change pattern with variations of soil 345 NH₄⁺-N (Fig. 4d), mositure (Fig. 4g), and temperature (Fig. 4h), and R_s was signicantly postively 346 347 correlated to soil dissloved organic carbon (DOC) and pH (Fig. 4e and 4f). However, structural equation modeling indicated that soil temperature was the most important controling factor than soil 348 349 NH4⁺-N and soil moisture (Fig. 5), unsupported our hypothesis, but it is consistent with most 350 research results (Wu et al., 2016; Zhou et al., 2016b; Chen et al., 2017a). In addition, large interannual variation was observed (CV = 41.4%) during our experiment (Table 1), while the variation 351 of annual precipitation and air temperature were only 4.41% and 7.78%, respectively (Table 1), but 352 close to the CV of spring root biomass of ephemeral plants (47.14%) with 24 times of aboveground 353

354	biomass of spring ephemeral plants in 2016 than that in 2015 (Cui et al., 2017), which indicated that
355	the increase of R_s in 2016 was mainly from the root respiration of ephemeral plants. This is
356	consistent with previous study that ephemeral plants mediated inter-annual variation of carbon
357	fluxes in this desert (Huang et al., 2015c; Liu et al., 2016). It is different from other ecosystems
358	where inter-annual variations of R_s were mainly dependent on variations in annual precipitation and
359	air temperature (Gerard et al., 1999; Asensio et al., 2007; Chen et al., 2012). Overall, our results
360	indicate that annual variation in R_s in this temperate desert is mainly controlled by soil temperature,
361	but between-year variation in R _s is mainly controlled by ephemeral plants.
362	
363	5. Conclusion
364	Climate change and elevated N deposition play important roles in controlling R_s in temperate
365	deserts. We found that increasing precipitation and N deposition significantly increased R_s in the
366	Gurbantunggut Desert, but warming reduced Rs, mostly because of the variation of soil moisture.
367	In addition, we found that the interactive responses of R_{s} was much lower to precipitation, N
368	deposition and warming than that any single factors. What's more, R_s are mainly mediated by soil
369	moisture, soil temperature and soil NH4+-N content, but soil temperature are the most important
370	with between-year variation in Rs mainly controlled by ephemeral plants. Those results showed that
371	R_s is very sensitive to increasing precipitation, N deposition and warming, and their interactive
272	
372	effects could reduce soil carbon emissions and so reduce the impacts of climate change.

374 Acknowledgments

375 This work was financially supported by the Chinese National Basic Research Program

- 376 (2014CB954202), the National Natural Science Foundation of China (41603084, 41425007,
- 377 31421092) and the Ten-Thousand Talent Program (X.J. Liu). Prof. Keith Goulding was supported
- 378 by the Sino-UK cooperative project on nitrogen CINAg.
- 379

380 Inferences

- 381 Adams, M.B.: Ecological issues related to N deposition to natural ecosystems: research needs. Environ. Int. 29, 189-
- 382 199. https://doi.org/10.1016/S0160-4120(02)00179-4, 2003.
- Asensio, D., Penuelas, J., Llusia, J., Ogaya, R., Filella, L: Interannual and interseasonal Soil CO₂ efflux and VOC
 exchange rates in a Mediterranean holm oak forest in response to experimental drought. Soil Biol Biochem 39,
 2471-2484. https://doi.org/10.1016/j.soilbio.2007.04.019, 2007
- Batjes, N. H.: Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47, 151-163. https://
 doi.org/10.1111/ejss.12114-2, 1996.
- Brookes, P.C.: Microbial biomass and activity measurements in soil. J Sci Food Agric 36:269-270,1985.
- Burton, A.J., Pregitzer, K.S., Crawford, J.N., Zogg, G.P., Zak, D.R.: Simulated chronic NO₃⁻ deposition reduces soil
 respiration in northern hardwood forests. Global Change Biol 10, 1080-1091. https://doi.org/ 0.1111/j.13652486.2004.00737.x, 2004.
- Chen, J., Zhou, X.H., Hruska, T., Cao, J.J., Zhang, B.C., Liu, C., Liu, M., Shelton, S., Guo, L., Wei, Y.L., Wang, J.F.,
 Xiao, S., Wang, P.: Asymmetric diurnal and monthly responses of ecosystem carbon fluxes to experimental
 warming. Clean-Soil Air Water 45. https://doi.org/10.1002/clen.201600557, 2017a.
- Chen, S.T., Huang, Y., Zou, J.W., Shi, Y.S., Lu, Y.Y., Zhang, W., Hu, Z.H., 2012. Interannual variability in soil
 respiration from terrestrial ecosystems in China and its response to climate change. Sci China Earth Sci 55,
 2091-2098.
- Chen, W.W., Zheng, X.H., Chen, Q., Wolf, B., Butterbach-Bahl, K., Bruggemann, N., Lin, S.: Effects of increasing
 precipitation and nitrogen deposition on CH₄ and N₂O fluxes and ecosystem respiration in a degraded steppe in
 Inner Mongolia, China. Geoderma 192, 335-340. https://doi.org/10.1016/j.geoderma.2012.08.018, 2013.
- 401 Chen, Z.J., Setala, H., Geng, S.C., Han, S.J., Wang, S.Q., Dai, G.H., Zhang, J.H., Nitrogen addition impacts on the
 402 emissions of greenhouse gases depending on the forest type: a case study in Changbai Mountain, Northeast
 403 China. J Soil Sediment 17, 23-34, https://doi.org/10.1007/s11368-016-1481-7, 2017b.
- 404 Cui, X., Yue, P., Gong, Y., Li, K., Tan, D., Goulding, K., Liu, X.: Impacts of water and nitrogen addition on nitrogen
 405 recovery in Haloxylon ammodendron dominated desert ecosystems. Sci Total Environ 601, 1280-1288.
 406 https://doi.org/10.1016/j.scitotenv.2017.05.202, 2017.
- 407 Eswaran, H., Van Den Berg, E., Reich, P.: Organic carbon in soils of the world. Soil Sci Soc Am J 57, 192-194.
 408 https://doi:10.2136/sssaj1993.03615995005700010034x, 1993.
- 409 Fang, C., Ye, J.S., Gong, Y.H., Pei, J.Y., Yuan, Z.Q., Xie, C., Zhu, Y.S., Yu, Y.Y.: Seasonal responses of soil
- 410 respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. Sci

- 411 Total Environ 590, 729-738. https://doi.org/10.1016/j.scitotenv.2017.03.034, 2017.
- 412 Feng, J.G., Wang, J.S., Ding, L.B., Yao, P.P., Qiao, M.P., Yao, S.C.: Meta-analyses of the effects of major global 413 181-186. change drivers on soil respiration across China. Atmos Environ 150, 414 https://doi.org/10.1016/j.atmosenv.2016.11.060, 2017.
- Gerard, J.C., Nemry, B., Francois, L.M., Warnant, P.: The interannual change of atmospheric CO₂: contribution of
 subtropical ecosystems? Geophys Res Lett 26, 243-246. https://doi.org/doi: 10.1029/1998GL900269, 1999.
- Gougoulias, C., Clark, J. M., Shaw, L. J.: The role of soil microbes in the global carbon cycle: tracking the below ground microbial processing of plant derived carbon for manipulating carbon dynamics in agricultural
 systems. Journal of the Science of Food and Agriculture, 94(12), 2362-2371. https://doi.org/10.1002/jsfa.6577,
 2014.
- Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A.: Separating root and soil microbial contributions to soil
 respiration: A review of methods and observations. Biogeochemistry 48, 115-146.
 https://doi.org/10.1023/A:1006244819642, 2000.
- Heimann, M., Reichstein, M.:Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289-292.
 https://doi.org/doi:10.1038/nature06591, 2008.
- He, X., Lv, G., Qin, L., Chang, S., Yang, M., Yang, J., Yang, X.: Effects of simulated nitrogen deposition on soil
 respiration in a Populus euphratica community in the Ebinur Lake area, a desert ecosystem of northwestern
 China. PloS one 10, 1-16. https://doi.org/10.1371/journal.pone.0137827, 2015.
- Huang, G., Li, Y., Su, Y.G.: Effects of increasing precipitation on soil microbial community composition and soil
 respiration in a temperate desert, Northwestern China. Soil Biol Biochem 83, 52-56.
 https://doi.org/10.1016/j.soilbio.2015.01.007, 2015a..
- Huang, G., Cao, Y.F., Wang, B., Li, Y.; Effects of nitrogen addition on soil microbes and their implications for soil
 C emission in the Gurbantunggut Desert, center of the Eurasian Continent. Sci Total Environ 515, 215-224,
 https://doi.org/10.1016/j.scitotenv.2015.01.054, 2015b.
- Huang, G., Li, Y., Padilla, F.M.: Ephemeral plants mediate responses of ecosystem carbon exchange to increased
 precipitation in a temperate desert. Agr Forest Meteorol 201, 141-152, <u>https://doi.org/10.1016/j.agrformet.</u>
 2014.11.011, 2015c.
- 438 IPCC, 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth
 439 Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
 440 Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- Jiang, X., Cao, L., Zhang, R.:. Changes of labile and recalcitrant carbon pools under nitrogen addition in a city lawn
 soil. J. Soils Sediments 14, 515–524. https://doi.org/10.1007/s11368-013-0822-z, 2014.
- Lafleur, P.M., Humphreys, E.R.,: Spring warming and carbon dioxide exchange over low Arctic tundra in central
 Canada. Global Change Biol 14, 740-756, https://doi.org/10.1111/j.1365-2486.2007.01529.x, 2008.
- Liu, C., Wang, K., Zheng, X.: Responses of N₂O and CH₄ fluxes to fertilizer nitrogen addition rates in an irrigated
 wheat-maize cropping system innorthern China. Biogeosciences 9, 839-850, <u>https://doi.org/10.5194/bg-9-839-</u>
 2012, 2012.
- Li, G., Kim, S., Han, S.H., Chang, H., Son, Y., 2017. Effect of soil moisture on the response of soil respiration to
 open-field experimental warming and precipitation manipulation. Forests 8.

- Liu, L.T., Hu, C.S., Yang, P.P., Ju, Z.Q., Olesen, J.E., Tang, J.W.: Effects of experimental warming and nitrogen addition on soil respiration and CH₄ fluxes from crop rotations of winter wheat-soybean/fallow. Agr Forest Meteorol 207, 38-47. https://doi.org/10.1016/j.agrformet.2015.03.013, 2015.
- Liu, T., Xu, Z.Z., Hou, Y.H., Zhou, G.S.: Effects of warming and changing precipitation rates on soil respiration over
 two years in a desert steppe of northern China. Plant Soil 400, 15-27. https://doi.org/
 https://doi.org/10.1007/s11104-015-2705-0, 2016a.
- Liu, R., Cieraad, E., Li, Y., Ma, J.: Precipitation pattern determines the inter-annual variation of herbaceous layer
 and carbon fluxes in a phreatophyte-dominated desert ecosystem. Ecosystems 19, 601-614. <u>https://doi.</u>
 org/10.1007/s10021-015-9954-x, 2016.
- Liu, L.L., Wang, X., Lajeunesse, M.J., Miao, G.F., Piao, S.L., Wan, S.Q., Wu, Y.X., Wang, Z.H., Yang, S., Li, P.,
 Deng, M.F.: A cross-biome synthesis of soil respiration and its determinants under simulated precipitation
 changes. Global Change Biol 22, 1394-1405. https://doi.org/10.1111/gcb.13156, 2016c.
- Liu, Y., Li, X., Zhang, Q., Guo, Y., Gao, G., Wang, J.: Simulation of regional temperature and precipitation in the
 past 50 years and the next 30 years over China. Quatern Int 212, 57-63 <u>https://doi.org/10.1016/j</u>. quaint.
 2009.01.007, 2010a.
- Luo, C.Y., Wang, S.P., Zhao, L., Xu, S.X., Xu, B.R.B.Y., Zhang, Z.H., Yao, B.Q., Zhao, X.Q.: Effects of land use
 and nitrogen fertilizer on ecosystem respiration in alpine meadow on the Tibetan Plateau. J Soil Sediment 17,
 1626-1634, https://doi.org/10.1016/j.quaint.2009.01.007, 2017.
- Luo, Y., Gerten, D., Le Maire, G., Parton, W.J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W.:
 Modeled interactive effects of precipitation, temperature, and CO₂ on ecosystem carbon and water dynamics in
 different climatic zones. Global Change Biol 14, 1986-1999. https://doi.org/ 10.1111/j.1365-2486.
 2008.01629.x, 2008.
- 472 Ma, J., Wang, Z.-Y., Stevenson, B.A., Zheng, X.-J., Li, Y.: An inorganic CO₂ diffusion and dissolution process
 473 explains negative CO₂ fluxes in saline/alkaline soils. Sci Rep-Uk 3. https://doi.org/10.1038/srep02025, 2013.
- 474 Maris, S.C., Teira-Esmatges, M.R., Arbonés, A., Rufat, J.: Effect of irrigation, nitrogen application, and a
 475 nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.)
 476 orchard. Sci. Total Environ. 538,966–978, https://doi.org/10.1016/j.scitotenv.2015.08.040, 2015.
- 477 Martins, C.S.C., Macdonald, C.A., Anderson, I.C., Singh, B.K.: Feedback responses of soil greenhouse gas
 478 emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Biol Biochem
 479 100, 21-32, https://doi.org/10.1016/j.soilbio.2016.05.007,2016.
- Morillas, L., Duran, J., Rodriguez, A., Roales, J., Gallardo, A., Lovett, G.M., Groffman, P.M.: Nitrogen supply
 modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas
 exchange. Global Change Biol 21, 3854-3863, https://doi.org/10.1111/gcb.12956, 2015.
- Noh, N.J., Kuribayashi, M., Saitoh, T.M., Nakaji, T., Nakamura, M., Hiura, T., Muraoka, H.: Responses of soil,
 heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate
 deciduous forest. Ecosystems 19, 504-520, https://doi.org/10.1007/s10021-015-9948-8, 2016.
- Sheik, C.S., Beasley, W.H., Elshahed, M.S., Zhou, X., Luo, Y., Krumholz, L.R.: Effect of warming and drought on
 grassland microbial communities. The ISME Journal 5, 1692-1700, https://doi.org/ 10.1038/ismej.2011.32,
- 488 2011.

- 489 Skopp, J., Jawson, M. D., Doran, J. W.: Steady-state aerobic microbial activity as a function of soil watercontent.
 490 Soil Sci Soc Am J54, 1619-1625, https://doi.org/10.2136/sssaj1990.03615995005400060018x, 1990.
- 491 Strong, A.L., Johnson, T.P., Chiariello, N.R., Field, C.B.: Experimental fire increases soil carbon dioxide efflux in a
 492 grassland long-term multifactor global change experiment. Global Change Biol 23, 1975-1987.
 493 https://doi.org/10.1111/gcb. 13525, 2017.
- Wang, Q.K., Zhang, W.D., Sun, T., Chen, L.C., Pang, X.Y., Wang, Y.P., Xiao, F.M.: N and P fertilization reduced
 soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agr Forest Meteorol
 232, 66-73, https://doi.org/10.1016/j.agrformet.2016.08.007, 2017.
- Wu, C.S., Liang, N.S., Sha, L.Q., Xu, X.L., Zhang, Y.P., Lu, H.Z., Song, L., Song, Q.H., Xie, Y.N., 2016.
 Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest. Sci Rep-Uk 6.
- Wu, Z.T., Dijkstra, P., Koch, G.W., Penuelas, J., Hungate, B.A.: Responses of terrestrial ecosystems to temperature
 and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17, 927-942,
 https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
- Yang, G., Wang, M., Chen, H., Liu, L.F., Wu, N., Zhu, D., Tian, J.Q., Peng, C.H., Zhu, Q.A., He, Y.X.: Responses
 of CO₂ emission and pore water DOC concentration to soil warming and water table drawdown in Zoige
 Peatlands. Atmos Environ 152, 323-329. https://doi.org/10.1016/j.atmosenv.2016.12.051, 2017.
- Yue, P., Li, K., Gong, Y., Hu, Y., Mohammat, A., Christie, P., Liu, X.: A five-year study of the impact of nitrogen
 addition on methane uptake in alpine grassland. Sci Rep-UK, 6. doi:10.1038/srep32064, 2016.
- Zeng, X.H., Song, Y.G., Zeng, C.M., Zhang, W.J., He, S.B.: Partitioning soil respiration in two typical forests in
 semi-arid regions, North China. Catena 147, 536-544. https://doi.org/10.1016/j.catena.2016.08.009, 2016.
- Zhang, N., Liu, W., Yang, H., Yu, X., Gutknecht, J.L.M., Zhang, Z., Wan, S., Ma, K.: Soil microbial responses to
 warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173, 1125-1142.
 https://doi.org/ 10.1007/s00442-013-2685-9, 2013.
- 512 Zhang, X.L., Tan, Y.L., Zhang, B.W., Li, A., Daryanto, S., Wang, L.X., Huang, J.H.: The impacts of precipitation
 513 increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere 8. https:
 514 //doi.org/ 10.1002/ecs2.1655, 2017.
- 515 Zhang, W. Liu, C.Y., Zheng, X.H., Fu, Y.F., Hu, X,X., Cao,G.M., Klaus Butterbach-Bahl.: The increasing distribution
 516 area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan Plateau. Soil
 517 Biol Biochem, 71: 105-112. https://doi.org/10.1016/j.soilbio.2014.01.005, 2014.
- Zhao, Z.Z., Dong, S.K., Jiang, X.M., Liu, S.L., Ji, H.Z., Li, Y., Han, Y.H., Sha, W.: Effects of warming and nitrogen deposition on CH₄, CO₂ and N₂O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Sci
 Total Environ 592, 565-572. https://doi.org/10.1016/j.scitotenv.2017.03.082, 2017.
- Zhong, Y.Q.W., Yan, W.M., Shangguan, Z.P.: The effects of nitrogen enrichment on soil CO₂ fluxes depending on
 temperature and soil properties. Global Ecol Biogeogr 25, 475-488. https://doi.org/10.1111/geb.12430, 2016.
- Zhou, L.Y., Zhou, X.H., Shao, J.J., Nie, Y.Y., He, Y.H., Jiang, L.L., Wu, Z.T., Bai, S.H.: Interactive effects of global
 change factors on soil respiration and its components: a meta-analysis. Global Change Biol 22, 3157-3169.
 https://doi.org/ 10.1111/gcb.13253, 2016a.
- Zhou, X.B. and Zhang, Y.M.: Seasonal pattern of soil respiration and gradual changing effects of nitrogen addition
 in a soil of the Gurbantunggut Desert, northwestern China. Atmos Environ, 85: 187-194.

528 https://doi.org/10.1016/j.atmosenv.2013.12.024, 2014. 529 Zhou, Y.M., Hagedorn, F., Zhou, C.L., Jiang, X.J., Wang, X.X., Li, M.H.: Experimental warming of a mountain 530 tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Sci Rep-531 Uk 6. https://doi.org/10.1038/srep21108, 2016b. 532 Zhu, J., Kang, F.F., Chen, J., Cheng, X.Q., Han, H.R.: Effect of nitrogen addition on soil respiration in a Larch 533 Plantation. Pol J Environ Stud 26, 1403-1412. https://doi.org/10.15244/pjoes/67687, 2017. 534 Zong, N., Shi, P.L., Chai, X., Jiang, J., Zhang, X.Z., Song, M.H.: Responses of ecosystem respiration to nitrogen 535 enrichment and clipping mediated by soil acidification in an alpine meadow. Pedobiologia 60, 1-10. 536 https://doi.org/10.1016/j.pedobi.2016.11.001, 2017. 537 538 539 540 541 542 543 Fig. 1 Comparative effects of warming by Open Topped Chambers, increased precipitation, and N 544 545 deposition on soil temperature (a), soil moisture (b) at 5 and 20 cm depth; soil organic carbon (SOC), 546 NH4⁺-N content, NO3⁻-N content and pH (c), dissolved organic carbon (DOC), microbial biomass 547 carbon (MBC) and microbial biomass nitrogen (MBN, d). The data are mean \pm SE, n = 4 in c and 548 d, different letter indicate significant effect at P < 0.05. 549 550 Fig. 2 Variation in rainfall (mm, a), and air temperature (°C, a) from September 2014 to October 2016 at the Gurbantunggut Desert, and the soil moisture and temperature to increasing precipitation 551 and warming (b), and the response of R_s (mean, n = 4) to precipitation (c), N deposition (d-e) and 552 553 warming (f). W0 and W1 indicate under ambient precipitation (without water addition) and 60 mm yr^{-1} precipitation addition; N0, N1, and N2 indicate 0, 30 and 60 kg N ha⁻¹ yr⁻¹ nitrogen addition; 554 while W1N0, W1N1, and W1N2 indicate 0, 30 and 60 kg N ha⁻¹ yr⁻¹ nitrogen addition under 60 555 mm yr⁻¹ precipitation addition; W1N1T1, W0N0T1 and W0N0T0 indicate the interaction between 556

increasing precipitation (60 mm yr⁻¹), N deposition (30 kg N ha⁻¹ yr⁻¹) and warming by OTCs,

558 warming alone (without increasing precipitation and N deposition) and control plots, respectively.

559 Black arrows indicate simulated precipitation (5 mm per time) and N deposition (0.25 or 0.5 g N m⁻

² per time). Each point represents the mean of four replications (chambers). Standard deviations for
R_s are not showed for figure clarity.

562

Fig. 3 Post-rainfall diurnal variation in R_s (mean \pm SE, n = 4, b) with variation in soil temperature and soil moisture (a), and a sunny day variation in R_s (mean \pm SE, n = 4, d) with variation in soil temperature (T5, T20, c) and soil moisture at 5 (W5) or 20 (W20) cm depth caused by warming in open topped chambers (OTCs). Positive values indicate increment by warming, and negative values indicate decline. A red straight line indicates the average value of R_s inside the OTCs in (b) and (d), and a green straight line represents the average value of R_s out of OTCs in (b) and (d). Red *, ** and *** indicate significant effect at P < 0.05, P < 0.01, and P < 0.001, respectively.

570

Fig. 4 The relationship of soil respiration with microbial biomass carbon (MBC, a); microbial biomass carbon (MBN, b); soil NO₃-N (c); NH₄+-N content (x, d); soil dissolved organic carbon (DOC, e); pH (f); soil moisture (g) and soil temperature (h).

574

Fig. 5 Structure equation modeling (SEM) test the multivariate (soil moisture, soil temperature, soil NH₄⁺-N content, DOC and pH) effects on R_s (n=34). Single-headed arrows show that the effect of different key controls on R_s were analyzed. The green arrows indicated positive effects, and red arrows showed negative effects. And the width of the arrows indicate the strength of the relationship. The numbers are standardized path coefficients, which can show the importance of the variables in the model. Goodness-of-fit statistics for the model are shown below the model. * indicate significant effect at P < 0.05.

- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589

590		
591		
592		
593		
594		
595		
596		
597		
598		
599		
600		
601		
602		
603		
604		
605	Fig. 1	

Fig. 2

638 Fig. 4

649 Fig. 5

- ---

- and variation of soil respiration (R_s) in September 2014 to September 2016 (mean ±SE), including
- the contribution of GS and NGS, and the treatment effect. The positive values stand for increase R_s ,
- and the negative value stand for reduced R_s .

	Prec.	temp.	R_s rate (kg C ha ⁻¹)							
Treatments	mm	⁰ C	W0N0	W0N1	W0N2	W1N0	W1N1	W1N2	W1N1T1	T1
Annual	175.75	4.63	1090.11	1338.26	1299.41	1450.78	1304.77	1043.77	1196.84	981.19
Annual	±7.75	±0.36	± 450.78	±599.12	±537	± 543.70	±383.29	±233.23	±334.31	±371.34
CV (%)	4.41	7.78	41.35	44.77	41.33	37.48	29.37	22.34	27.93	37.85
Treatments effect (%)				22.76	19.20	33.09	19.69	-4.25	9.79	-9.99
Growing season										
2014.9-2015.8	120.5	14.67	508.30	561.95	570.38	650.66	669.93	562.04	561.10	425.35
2015.9-2016.8	114.5	21.18	1220.27	1546.62	1506.88	1641.62	1274.93	1052.22	1183.86	1089.51
CV (%)	3.61	25.68	46.18	52.03	50.96	48.30	32.79	33.21	50.47	62.00
Non-Growing season										
2014.9-2015.8	47.5	-6.13	131.03	177.09	192.03	256.43	251.55	248.50	301.43	184.49
2015.9-2016.8	69	-11.2	320.62	390.84	329.54	352.85	413.12	224.79	347.29	262.02
CV (%)	26.10	41.37	59.37	53.23	37.29	22.38	34.38	7.09	10.00	24.82
NGS Contribution			20.65	22.07	21.57	22.98	25.89	24.13	27.10	22.80

....

Table 2 Tests of significance of year (Y), warming (T), precipitation (W) and nitrogen addition

691 (N) on soil respiration (R_s) by multivariate ANOVA (F and P values). The accumulated effect of

692 precipitation, N deposition and warming on R_s in 2015 and 2016 (F and P values) as assessed by

693	repeated measures.	ANOVA. *	·, **	and *	*** indicate	significant	effects a	at P	< 0.05,	0.01,	and 0.00	1,
------------	--------------------	----------	-------	-------	--------------	-------------	-----------	------	---------	-------	----------	----

694 respectively.

Three-way ANOVA	n	F	Р
Y	2	26.171	< 0.001***
Ν	424	7.709	< 0.001***
W	565	17.124	< 0.001***
W×N	424	9.392	< 0.001***
W×Y	424	6.899	< 0.001***
N×Y	424	5.561	0.004**
Y×W×N	424	5.963	0.003**
Т	424	2.320	0.084
T×Y	424	0.536	0.464
Repeated measures ANOVA			
Y	2	30.487	< 0.000***
Ν	383	12.887	<0.000***
W	281	2.934	0.087
Т	142	0.965	0.326
W×N	281	12.755	<0.000***
$T \times W \times N$	281	39.927	< 0.000***