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Abstract6

We present a method for estimating land-use change using a Bayesian data assimilation7

approach. The approach provides a general framework for combining multiple disparate data8

sources with a simple model. This allows us to constrain estimates of gross land-use change9

with reliable national-scale census data, whilst retaining the detailed information available10

from several other sources. Eight different data sources, with three different data structures,11

were combined in our posterior estimate of land-use and land-use change, and other data12

sources could easily be added in future. The tendency for observations to underestimate13

gross land-use change is accounted for by allowing for a skewed distribution in the likelihood14

function. The data structure produced has high temporal and spatial resolution, and is15

appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately16

into the output, so we have a full posterior distribution of output and parameters. The17

data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/ (doi18

pending).19
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Introduction21

Human-induced land-use change has a substantial impact on biodiversity and both biogeo-22

chemical and hydrological cycles (Post & Kwon, 2000; Gitz & Ciais, 2003; Levy et al., 2004;23

Newbold et al., 2015; Piano et al., 2017). The importance of representing it in models of the24

climate, hydrology, and ecosystem processes is increasingly recognised (Martin et al., 2017;25

Prestele et al., 2017; Quesada et al., 2017). However, although changes in land use tend to26

occur incrementally over small areas, data on land-use change are typically limited in spatial27

and temporal resolution (Alexander et al., 2017). Furthermore, changes in land use may be28

rotational or involve transitions between multiple land-use classes over time, such that the29

gross area undergoing land-use change may be much larger than the net change in area (Fuchs30

et al., 2015; Tomlinson et al., 2017). From the point of view of modelling ecosystem processes,31

it is these fine-scale gross changes that we need to represent, because as model inputs, these32

may give very different simulated output, compared with simulations based on the net change33

at a coarse scale (Kato et al., 2013; Wilkenskjeld et al., 2014; Fuchs et al., 2015). For example,34

a reported net increase in forest area of 10 km2 may actually result from afforestation of 5035

km2 and deforestation of 40 km2. As input data to an ecosystem model, this might produce36

quite different results, compared to the parsimonious assumption (afforestation of 10 km237

and no deforestation)(Levy & Milne, 2004; Krause et al., 2016). Over most of the globe, data38

on land-use change are typically limited in spatial and temporal resolution, and are typically39

represented by a time series of the area occupied by each land-use class (Rounsevell et al.,40

2006). Little information is available on the gross changes which bring about this time series41

(Prestele et al., 2017). The IPCC Good Practice Guidelines recommends the estimation of42

land-use change matrices for reporting GHG fluxes arising from land-use change (Penman et43

al., 2003). This provides explicit information on the areas which have changed from each44

land-use class to every other class. Whilst these matrices contain more information, they are45

only valid over the single time period for which they were derived, being a two-dimensional46
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summary. For modelling over longer time periods, these are not very useful in themselves.47

To properly represent the change in land use over time, we need a higher-dimensional data48

structure.49

Land-use change is not easy to measure. A key problem is identifying change from repeated50

map or survey data, where the magnitude of the change signal is very small against the51

background noise of sampling and measurement error. Large censuses and careful survey52

techniques are required to distinguish true change from differences arising from measurement53

and sampling error (Fuller et al., 2003). A further problem is that information on land-use54

change at national scale typically comes from multiple disparate sources, which are often55

inconsistent with each other, using different land-use classifications and definitions (Phelps56

& Kaplan, 2017), arising from different thematic areas, and focus on different spatial and57

temporal domains, with different resolutions (Fisher et al., 2017). For example, land-use data58

in the UK are available from the agricultural census and surveys, the national forestry sector,59

the national mapping survey, as well as earth observation products such as Corine, MODIS60

and the CEH Land Cover Maps. However, no single data source provides a reliable estimate61

of land-use change with national coverage which extends suitably far back in time. A data62

assimilation approach is needed to make best use of the available data, so as to provide such63

a product. Existing methods ignore the large uncertainties which arise in estimating past64

land use change, and data assimilation approaches can explicitly address this issue.65

In general terms, data assimilation is an approach for fusing observations with prior knowledge66

(e.g., mathematical representations of physical laws; model output) to obtain an estimate of67

the distribution of the true state of some phenomenon. It has become very commonly used68

in fields such as atmospheric and oceanographic modelling, and numerical weather prediction69

(e.g. Lunt et al., 2016). Various techniques are used, such as simulated annealing, ensemble70

Kalman filtering, and 4D variational assimilation. All of these can be seen as special cases71

within the Bayesian framework, where models, parameters and data are related in a formal72
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way via Bayes Theorem (Wikle & Berliner, 2007). There are some significant differences in73

applying data assimilation in our land-use context, compared with atmospheric modelling.74

Firstly, there is only a very simple model, compared with the complex physical models of the75

atmosphere or ocean. By contrast, the observational process by which the data are produced76

is extremely complex, compared with the simple observations of air or sea temperature or77

pressure. Also, we are predicting retrospectively (i.e. “hind-casting”) over many years in the78

past, rather than “nudging” forecasts as new data becomes available.79

Our aim here was to develop a generic Bayesian approach, using multiple sources of data, to80

make spatially- and temporally-explicit estimates of land-use change. In a case study, we81

apply the approach to Scotland over the period 1969-2015. As an example application, we82

use a simple model of carbon fluxes following land-use change to show how uncertainties83

surrounding land-use change can be propagated through to model output.84

Materials and methods85

Mathematical approach and notation86

We represent land use u as a number of discrete states from the set {forest, crop, grassland, roughgrazing, urban, other},87

encoded as integers 1-6. At a single location (x,y), land use can change between these states88

over time, represented by the vector Uxy. (We use a convention of representing vectors,89

matrices and arrays as uppercase bold (e.g. U), and individual elements thereof as uppercase90

italic (e.g. Uxyt).) An example for t = (1 . . . 5) would be Uxy = (4, 3, 3, 2, 2), showing a91

change in land use from rough grazing (class 4) to grassland (class 3) for two years, then to92

cropland (class 2) for two years. Spatially, we represent land use on a grid, where each grid93

cell contains a vector of land use. Combining the spatial and temporal dimensions, we have94

the 3-D space-time array U = {Uxyt} (Figure 1). This is the basic data structure required by95

any model which models the effects of land use dynamically and spatially explicitly. Our aim96
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is to estimate the 3-D array U as accurately as possible by constraining with multiple data97

sources. (We note that for the purposes of non-spatial modelling, there is a lot of redundancy98

in this data structure, and the information in U can be condensed into the set of unique99

land-use vectors and their corresponding areas. We return to this point later.)100

Figure 1: Graphical depiction of a hypothetical 3-D cuboid U representing land use in space
and time dimensions. Different colours show different land uses.

We denote the area occupied by each land use u at time t as Aut, obtained by counting the101

frequency of land uses in Ut:102

Aut =
nx∑

x=1

ny∑

y=1
[Uxyt = u]Agridcell (1)

where the square brackets are Iverson notation, evaluating to 1 where true and zero otherwise,103

and Agridcell is the area of a single grid cell. We denote the array of all these areas (for each104
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land-use class and time step) as A = {Aut}. By differencing, we obtain the areas of net105

land-use change:106

∆Aut = Aut − Aut−1. (2)

At each time step, we have a square transition matrix107

B =




0 β12 β13 . . . β1n

β21 0 β23 . . . β2n

... ... ... . . . ...

βn1 βn2 βn3 . . . 0



t=1




0 β12 β13 . . . β1n

β21 0 β23 . . . β2n

... ... ... . . . ...

βn1 βn2 βn3 . . . 0



t=2

. . .




0 β12 β13 . . . β1n

β21 0 β23 . . . β2n

... ... ... . . . ...

βn1 βn2 βn3 . . . 0



t=nt

which represents the gross area changing from one land use to another that year. For example,108

β23 is the area changing from land-use type 2 to land-use type 3 in km2. The transition109

matrix at time t can be derived from Ut by comparison with the previous layer Ut−1. Each110

element is given by111

βijt =
nx∑

x=1

ny∑

y=1
[Uxyt−1 = i ∧ Uxyt = j]Agridcell (3)

.112

At each time step, the net change in the area occupied by each land use is given by the gross113

gains (the vector of column sums, G) minus the gross losses (the vector of row sums, L):114

∆Aut = Gut − Lut (4)
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where115

Gut =
nu∑

i=1
βiut

116

Lut =
nu∑

j=1
βujt

and i and j are the row and column indices.117

We thus have three data structures, U, B, and A, which are inter-related by equations 1 - 4.118

U contains complete information about the system, which can be summarised in the form of119

A and B. B contains partial information about the system, which can be summarised in the120

form of A, but does not directly specify U. In itself, A does not directly specify either U or121

B, but can be used as a constraint in their estimation.122

Multiple data sources are available which provide information in the form of these different123

data structures. Our approach here is to use equations 1 - 4 as a simple model to relate the124

different observational data via Bayesian data assimilation in a two-stage process. Firstly, we125

use a Bayesian approach to estimate the parameters in B, given prior information and partial126

observations of U and A. Secondly, we use the posterior distribution of B and spatial and127

probabilistic information on the location of land-use change to simulate posterior realisations128

of U. The maximum a posteriori probability (MAP, the mode of the posterior distribution)129

realisations represent our best estimate of land use and land-use change, given the available130

data.131

Data sources132

We combined a number of data sources (Table 1) to describe the spatial and temporal133

change in land use in Scotland in the approach outlined above. A classification scheme was134

produced for each of these to aggregate the data into the broad classes used by Bradley et al.135

(2005 - forest, crop, grassland, rough grazing, urban, and other), close to the IPCC land-use136
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classes (Penman et al., 2003). This was considered coarse enough that differences between137

classifications could be aggregated into these six common classes, so that translation between138

classifications did not cause major problems. In this classification, “grassland” comprises139

all improved and actively managed agricultural grassland. “Rough grazing” comprises all140

unmanaged grassland and semi-natural land. All spatial data were rasterised on a common141

100-m resolution grid, defined in the GB Ordnance Survey transverse Mercator projection.142

The time domain considered was 1969 to 2015.143

Abbreviation Data source Data structures Temporal coverage
CS Countryside Survey B 1978, 1984, 1990, 2000, 2007
AC Agricultural Census A 1969-2016
EAC EDINA Agricultural Census G, L, w 1969-2016
Corine Corine U, B, w 1990, 2000, 2006, 2012
IACS Integrated Administration

and Control System
U, B, w 2004-2015

NFEW FC National Forest Estate
and Woodlands

U, B, w 1969-2014

FC FC new planting Gforest 1969-2016
LCM CEH Land Cover Map Aurban, U, w 1990, 2000, 2007, 2015
ALCM Agricultural Land Capabil-

ity Map
w NA

Table 1: Data sources assimilated in the estimation of land-use change in Scotland.

Data assimilation144

Our data assimilation method proceeded as follows.145

• From repeat ground-based surveys, the CEH Countryside Survey (CS, Norton et al.,146

2012; Wood et al., 2017) provides direct observations of B for approximately 150 1-km2147

survey squares in Scotland. Whilst the coverage is not large compared to the total area148

of Scotland, the sample squares were chosen on a stratified design, and the observations149

are valuable in having consistent recording methods over a long time period. The150

method for scaling these survey squares to national scale is described in (Milne &151
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Brown, 1997). Surveys were carried out in 1978, 1984, 1990, 2000, and 2007, and we152

interpolated linearly between survey years to produce an annual time series. We used153

the estimates derived in this way as our prior distribution of B. Each year, the mean of154

the prior distribution was taken to be the value of B from CS. The standard deviation155

σ of the prior distribution was estimated by applying a bootstrapping approach to the156

CS data (Scott, 2008).157

• National Agricultural Census (AC) data provide annual records of the total area in158

the main agricultural land uses (Scottish Government, 2017). The Agricultural Census159

is conducted in June each year by the government agriculture department. Farmers160

declare the agricultural activity on their land in the form of ca. 150 items of data via a161

postal questionnaire. The results are collated at national scale. These are a long-running162

data set with near-complete coverage of agricultural land, relatively consistent over163

time, and are reported as national statistics and to the FAO. Hence it is desirable for164

our estimates of land-use change to be consistent with these data as far as possible. We165

therefore use these data as observations of Aut in the Bayesian framework, and predict166

∆Aut from Bt according to equation 4. The likelihood of the net change observed by167

Agricultural Census (∆Aobs
ut ) arising from normal distributions with means determined168

by equation 4 and the parameter matrix B is169

Lnet =
nu
nt∏

u=1
t=1

1
σobs
ut

√
2π

exp(−(∆Aobs
ut −∆Apred

ut )2/2σobs
ut

2) (5)

where ∆Apred
ut is the prediction from equation 4 for the change in land use u at time t, and170

σobs
ut is the observational error in the Agricultural Census. So, we now have (i) a simple model171

which predicts net land-use change in terms of a parameter matrix; (ii) prior estimates of172

these parameters for each year from the Countryside Survey; and (iii) a function (equation 5)173

for the likelihood of the observations of net change given the model parameters. Combining174
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these in Bayes Theorem, we can estimate the posterior distribution of the parameters, the175

transition matrix B. However before describing this, we can extend this simplest likelihood176

function by adding further sources of observational data.177

• The EDINA Agricultural Census (EAC) data (http://agcensus.edina.ac.uk/) provide178

additional information on land-use change, as they attempt to produce a spatially explicit179

version of the national-scale Agricultural Census data. Farm-level data is aggregated180

to 2-km grid cells, and data are available (or can be inferred) annually. While not181

containing explicit information on the actual land-use transitions, the resolution of the182

data is high enough that the net changes recorded each year in each 2-km cell may183

approximate the gross changes. In other words, because the data records the annual184

increases and decreases in land use across the grid of 2-km cells, the national totals of185

these increases and decreases gives an estimate of the gross change, the row and column186

sums of the transition matrix B, as well as the net change. When calculating the187

likelihood in our Bayesian framework, we can thus use the more informative observations188

of gross gains and losses (G and L) rather than just the observations of net change189

(∆A) from the national Agricultural Census. However, we know that the observations190

will tend to underestimate the gross change, because of the nature of the data reporting191

process: any counter-balancing gross change within the 2-km square is not included. To192

account for this, we can use a skewed normal distribution to represent this, such that193

predictions which overestimate the observations are more likely than underestimates.194

A skewed normal distribution of this form (Azzalini, 2017) gives the likelihood of the195

gross changes observed as:196
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Lgross =
nu
nt∏

u=1
t=1

2
σLobs
ut

φ

(
Lobs
ut − Lpred

ut

σLobs
ut

)
Φ
(
α

(
Lobs
ut − Lpred

ut

σLobs
ut

))

× 2
σGobs
ut

φ

(
Gobs
ut −Gpred

ut

σGobs
ut

)
Φ
(
α

(
Gobs
ut −Gpred

ut

σGobs
ut

)) (6)

where φ is the standard normal probability density function, Φ is the corresponding cumulative197

density function, and α is the skew parameter. Positive α produces a positive skew (when198

α = 0 we have the standard normal distribution). The parameter α can itself be estimated199

as part of the data assimilation procedure.200

• Several data sources provide observations of U for one or more land uses at a restricted201

set of time points. We combine these into a single array Uobs as follows.202

– For an initial estimate of U, we use the Corine data sets for 1990, 2000, 2007, and203

2012 (European Environment Agency, 2016). For each grid cell, change between204

these years was assumed to occur at a random time within the interval, so that at205

national scale we effectively interpolate linearly. This produces U with complete206

UK coverage at annual resolution over the period 1990 to 2012.207

– We overlay this with IACS data over the period 2004 to 2015 (Tomlinson et al.,208

2017). The Integrated Administration and Control System (IACS) is a European-209

wide spatially explicit dataset at the field level that serves as a register of agricul-210

tural subsidy claims under the EU Common Agricultural Policy. IACS records211

field-level land use (crop type, grassland age, forest coverage), field geometry and212

its association to a farm holding. This has large, but not complete spatial coverage213

(65 % of the Scottish land area), and the Corine data are retained where IACS214

data are missing. Where there are conflicts with Corine, IACS data are given215

precedence because they are direct ground-based records.216

– We then add forestry data from the GB Forestry Commission (FC) National217
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Forest Estate and Woodlands (https://www.forestry.gov.uk/datadownload), which218

records the location and planting date of forestry. Again, this only has limited219

coverage, as it only covers forest land, but is given precedence in the case of conflict220

with the Corine/IACS data. We iterate over each time step to calculate Bobs
t with221

equation 3. Bobs
t thus contains an observed estimate of the transition matrix for222

each year, from the combination of Corine, IACS and FC data.223

We can therefore add an additional term to the likelihood function which incorporates the224

comparison of the observations Bobs with the values in the current parameter set Bpred.225

226

LB =
nu
nt∏

i=1
j=1
t=1

1
σβobs
ijt

√
2π

exp(−(βobs
ijt − βpred

ijt )2/2σ2
βobs
ijt

) (7)

• To establish the posterior distribution, we use the Markov Chain Monte Carlo (MCMC)227

approach with the “DEz” algorithm implemented in the R package BayesianTools228

(Hartig et al., 2017). For each interval in the 46 year time series, an MCMC simulation229

was run, using the prior Bt matrix from Countryside Survey, the observations of ∆At,230

Lt, Gt for that year, and the observed Bt matrix from Corine-IACS_NFEW. In practice,231

it is more convenient to use log-likelihoods, and our overall likelihood was the summation232

of log(Lnet), log(Lgross) and log(LB). Nine chains were used, with 100,000 interations in233

each. To establish the initial B parameter values for one of the chains, a least-squares fit234

with the ∆A was used. Other chains were over-dispersed by adding random variation235

to this best-fit parameter set.236

• Having established the posterior distribution of B, we use spatial and probabilistic237

information on the location of land-use change to simulate posterior realisations of238

Upost. Starting with our best estimate of the near-present state of land use, Uobs
t=2015,239

we work backwards in time. At each time step, we know the number of grid cells which240
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need to change from land use i to land use j from the posterior matrix Bt. For each i241

to j transition, we perform a weighted sampling operation to select this number of cells242

from those where Uxyt = i. In choosing which cells to assign to j, we use the available243

data to calculate the probabilities which weight the sampling. Recall that Uobs is given244

by the amalgamation of Corine, IACS and NFEW data. In the simplest case, the245

probabilities are determined only by this: all cells where Uobs
xyt = i and Uobs

xy,t−1 = j have246

equally high probability of being selected in the sample, and all cells where Uobs
xyt = i247

and Uobs
xy,t−1 6= j have equally low (but non-zero) probability of being selected in the248

sample. This requires only a few simple rules to construct the probability weightings,249

w, for sampling cells for conversion from i to j:250

if Uobs
xy,t 6= i then wxy ← 0 else wxy ← 1

∧ if Uobs
xy,t−1 = j then wxy ← 1 else wxy ← pm

where pm is the probability of cells being misclassified in Uobs, which we estimate to be251

0.05. Sampling is done without replacement, so that a grid cell can only be selected252

once per year. To illustrate with an example, we start with our current map of land253

use, Uobs
t=2015. Suppose our posterior estimate of Bt determines that seven grid cells254

change from crop to grass, as we go back to 2014.Only cells which are crop in 2015 are255

valid candidates. Of these, those which were grass in 2014 (according to Uobs) will have256

high probability of being selected; others will have a low probability. If the posterior257

βpost
ijt area is lower than βobs

ijt , not all the cells with high weightings from the above rules258

will be selected in the sample. If the posterior βpost
ijt area is higher than βobs

ijt , additional259

cells, with low weightings from the above rules, will be selected in the sample. Thus,260

the cells which we are likely to change are those which are designated by Uobs as crop261

in 2015 and grass in 2014. The effect of this is to generally recreate the spatial and262
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temporal pattern seen in Uobs (data from Corine, IACS and NFEW), but modified263

according to the extent of change estimated in the posterior Bpost.264

• As well as using the data from Corine, IACS and NFEW, we can also use other spatial265

data sets to inform the location of land-use change in our simulatations of the posterior266

Uxyt. Any spatial data set which gives information on where and when a land use or267

land-use change occurs can be incorporated into the weighting used for sampling. Here,268

we used three additional data sets.269

– EDINA Agricultural Census gives an estimate of ∆A at 2-km resolution. For each270

land use, an observed increase in area indicates the likely location of predicted271

gains. We therefore add a term to w which is proportional to ∆A.272

– The CEH Land Cover Map (Rowland et al., 2017) gives an estimate of Ut in 1990,273

2000, 2007, and 2015 at high spatial resolution. Occurrence of a land use in the274

LCM suggests an area where gains would be more likely to occur. We add a term275

to w, based on occurrence of that land use in the LCM.276

– Agricultural Land Capability Maps gives an estimate of how suitable land is for277

intensive agriculture, with a scale which ranges from good arable land, through278

intensive grassland and extensive grassland, to rough grazing. This scale can be279

translated into a probability of occurence for the land uses considered here, and280

added into the weighting of the sampling again. We use all the above information281

to produce many posterior realisations of Upost, using the posterior B matrix and282

the sampling process described earlier.283

Because the U data structure is large, we are limited in simulating many samples. It is284

therefore useful to summarise as the much smaller set of unique vectors and their corresponding285

areas. Our approach is to simulate 1000 samples, to calculate the unique vectors and their286

areas, and not to retain the larger data structure to reduce storage requirements. Another287

possible approach would be to simulate using only the MAP B matrix, and thereby generate288

the most likely realisations of Uxyt, rather than the whole posterior distribution.289
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Carbon dynamics following land use change290

We applied a simple empirical model of carbon fluxes following land use change, based on the291

UK LULUCF GHG inventory (Griffin et al., 2014). The soil component is based on the work292

of Bradley et al. (2005), and uses an analysis of the total soil carbon stock in a large number293

of soil cores, classified by land use and soil series. A linear mixed-effects model was applied294

to these data, to quantify the average effect of land use on soil carbon stock, treating soil295

series as a random effect. The model uses these mean values to represent the equilibrium soil296

carbon stock for each land-use class. When land use changes, the soil carbon stock moves297

towards the equilibrium soil carbon stock for the new land use. The soil carbon stock at298

location (x,y) and time t is given by:299

Cxyt = Ceq
u − (Ceq

u − Cxy,t−1) exp(−k∆t) (8)

where Ceq
u is the equilibrium soil carbon stock for the current land use u, Cxy,t−1 is the soil300

carbon stock at the previous time step, and k is a rate constant. The flux of carbon over the301

time step, ∆t, is given simply by difference:302

FC = Cxyt − Cxy,t−1 (9)

The above-ground component applies to the growth of biomass following afforestation, and uses303

the yield tables for British forestry produced by Edwards & Christie (1981), as interpolated304

and expanded to include non-merchantable timber biomass and wood products by Dewar &305

Cannell (1992). The mean change in above-ground biomass was assumed to be negligible in306

other land-use transitions in this simple model.307
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Results308

Because of the availability of remotely-sensed data products, we are relatively confident in309

the present-day distribution of land use (Figure 2). This shows the concentration of urban310

areas in Scotland in the central belt, the restriction of cropland to the drier, flatter east coast,311

improved grassland mainly in the lowlands in the wetter south and west, and rough grazing312

and forestry sharing the Southern Uplands and Highlands in the north and west.313

As an initial step in the data assimilationn process, a close least-squares fit to ∆A was314

achieved within a few tens of iterations, indicating that there were no particular numerical315

difficulties in estimating the B parameters. Standard measures were applied to assess whether316

the posterior distribution of B was suitably characterised by the output of the MCMC317

sampling. As well as inspection of the trace plots and the form of the distribution of the B318

parameters, we calculated the effective sample sample size, the acceptance rate, and various319

standard convergence diagnostics (Gelman & Rubin, 1992; Geweke, 1992; Raftery & Lewis,320

1992). All of these showed satisfactory performance, that the MCMC chains converged,321

and that nine chains with 100,000 samples provides a reasonable estimate of the posterior322

distribution of B.323

Figure 3 shows the Agricultural Census observations, and posterior predictions of the net324

change in area of each land-use class. The net change implied by the prior CS and IACS325

observations of B are also shown. The broad trends are: (i) an increase in forest cover due326

to sustained commercial forest planting; (ii) a corresponding decrease in rough grazing and327

semi-natural land due to expansion of forestry and improved grassland; (iii) an increase in328

cropland area between 1970 and 1990, with subsequent decline to the present day, due to329

changes in economic forces and subsidy incentives; (iv) an increase in grassland area since330

around 1990, partly corresponding to the reduction in crop area, and partly due to a general331

expansion on to rough grazing areas; and (v) a slow but consistent expansion of the urban332

area. These trends are picked up by the different sources of observations to some extent. The333
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Figure 2: Land use in Scotland in 2015 as estimated by the CEH Land Cover Map. “Grass”
comprises all improved and actively managed agricultural grassland. “Rough” includes all
rough grazing, unmanaged grassland and semi-natural land. “Other” comprises barren areas
such as montane and coastal areas. For legibility, we show this aggregated to 2-km squares,
though the data are available at 250-m resolution
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Figure 3: Time series of the area occupied by each land use (Aut) from 1969 to 2015, showing
the observations, prior and posterior estimates. The shaded band shows the 2.5 and 97.5 %
percentiles of the posterior distribution of the net change in area.
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Agricultural Census has near-complete coverage, and annual resolution, so shows a detailed334

pattern, to which we give most credence. The CS data, used as the prior, have only decadal335

time resolution, but pick up these general trends, and approximate the same pattern as seen336

in the Agricultural Census data. The IACS data show considerable year-to-year variability,337

and tend to show exaggerated net changes compared to AC. The posterior prediction generally338

falls in between the AC observations and the CS prior, but tracks closer to the AC.339

Figure 4: Prior and posterior distributions of the transition matrix B, representing the gross
area changing from the land use in each row i to the land use in each column j each year
from 1969 to 2015. Red lines show the prior estimate from the Countryside Surveys. Pale
blue points show estimates from IACS plus Corine and NFEW. The maximum a posteriori
estimates after assimilating all data sources are shown in purple. The shaded band shows the
2.5 and 97.5 % quantiles of the posterior distribution. Note the y scale is different for each
row.

CS provided our prior estimate of B. Given the relatively small spatial coverage of CS,340
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uncertainty (σ) in the prior B is rather high. This would be expected to effectively limit the341

influence of the prior on the posterior B, compared to the observations from IACS, which342

have national coverage. Figure 4 shows that estimates of B from these two data sources are343

quite different. Particularly in the transitions to and from grassland, values of B from IACS344

tend to be an order of magnitude larger than values from CS, and more variable. However,345

the posterior B remains closer to the prior than might be expected. This is because values of346

B close to the IACS observations are deemed unlikely with respect to the other terms in the347

likelihood function. That is, the gross and net changes in area implied by the IACS data are348

inconsistent with the other observations of G, L and ∆A from AC (Figures 3 - 6).349

Figure 5: Time series of the gross gain in area of each land use (Aut) from 1969 to 2015,
showing the observations, prior and posterior estimates. The shaded band shows the 2.5 and
97.5 % percentiles of the posterior distribution.
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Figure 6: Time series of the gross loss in area from each land use (Aut) from 1969 to 2015,
showing the observations, prior and posterior estimates. The shaded band shows the 2.5 and
97.5 % percentiles of the posterior distribution.
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For cropland and improved grassland, CS and EAC show general agreement on the magnitude350

and pattern in area gained and lost to each land use (Figure 5 and Figure 6). An exception351

is an apparent anomaly in the early 2000s, when EAC gains and losses are both around 1000352

km2 higher than average for two years. This is not reflected in the net changes reported in353

the AC, so has to be treated with some caution. Reported gains and losses of rough grazing354

are much higher and very variable in EAC. This variability does not seem closely linked to355

the net change reported at national scale, so again, we treat this with some scepticism. There356

are no data on the gross gains and losses of urban and other land-use areas, as they are not357

covered by the AC or CS, and these terms are less well constrained.358

Figures 3 - 6 show that there is considerable spread in the posterior distribution of B and359

predictions of ∆A. The 95 % credibility interval is typically of the order of 100 km2 for the360

individual B parameters, and several hundred km2 for the predictions of ∆A. The credibility361

intervals are smallest where multiple data sources agree on the nature of land-use change,362

and where the change is coherent across land uses. That is, an increase in one land use363

has to be balanced by a decrease in one or more other land uses. We have less confidence364

in predictions where the observed change in one land use is not compensated for by other365

land use changes. Credibility intervals in ∆A increase as we go back in time, because the366

uncertainty accumulates from year to year, although the increase has square root form rather367

than linear,368

Figure 7 and Figure 8 attempt to convey the detailed structure of the posterior U in a simple369

graphical summary. Figure 7 shows the 100 most frequent vectors of land-use change. Line370

thickness and opacity are proportional to the frequency (= area) of each vector, so that371

the dominant vectors are the most visually obvious. The plot shows that a wide range of372

land-use transitions occurs over the time period considered. Transitions from rough grazing373

to forest and to improved grassland are dominant. Bi-directional transitions between crop374

and improved grassland are particularly common in the 1980s. This comes from information375
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Figure 7: Trajectories of the 100 land-use vectors in the posterior U with the largest areas
(excluding the six vectors which show no change). Each vector of land use is shown in a
different colour, varied arbitrarily to differentiate different vectors. Line thickness and opacity
are proportional to the frequency of (or total area occupied by) each vector, so that the
dominant vectors are the most visually obvious.
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Figure 8: Trajectories of the 20 land-use vectors in the posterior U with the largest areas
(excluding the six vectors which show no change). Line thickness is proportional to the
frequency of (or total area occupied by) the vector
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in the prior, the B matrices from CS which shows markedly higher crop to grass and grass to376

crop conversion rates over this time.377

Figure 8 shows the 20 most frequent vectors more clearly, with each vector on a separate378

panel. This shows that 17 out of 20 involve transitions to or from rough grazing (which379

includes all semi-natural) land, which is the largest land use in Scotland by some way (around380

half the total area). Seven of these represent afforestation, which has mainly occurred on381

less productive, upland rough grazing land. Five vectors represent expansion of improved382

grassland on to rough grazing land. Vectors with two or more changes are less frequent, with383

none occurring in the top 20, but do represent a significant part of the total area (~8 % of384

the area undergoing change).385

Figure 9 shows the CO2 flux resulting from land-use change over the 46-year period, derived386

from equations 8 - 9 and the posterior distribution of U. The positive fluxes denote a387

gain to the terrestrial carbon stock, negative fluxes represent a loss to the atmosphere. We388

only represent land-use change from 1969 onwards here, but the effects on carbon flux are389

long-lasting. Hence, the carbon flux calculated here is initially small, and increases as the390

area having undergone land-use change accumulates over time. The accumulation of carbon391

in forest biomass (and wood products) following afforestation over this period is the largest392

term in these results. The forest planting rate has decreased markedly since 2005, giving the393

reduction in carbon sequestration in recent years. In this simple soil model, land uses with394

higher equilibrium soil carbon than the average will tend to act as carbon sinks; those lower395

than the average will be sources. Carbon emissions from cropland increase as predominantly396

grassland is converted to cropland between 1970 and 1990. This then levels off as the cropland397

area remains stable or declines thereafter. Transitions to forest and rough grazing result in398

carbon sinks because they both have higher than average equilibrium soil carbon, and both399

show sizeable gross gains over the period. Rough grazing land also shows substantially larger400

gross area losses, but the associated carbon fluxes associated with this are attributed mainly401
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Figure 9: Net carbon flux from land-use change in Scotland over 1969-2015 showing the
maximum a posteriori estimate and its 95 % credibility interval. The flux is attributed to
change to each land-use class u. Positive fluxes denote a gain to the terrestrial carbon stock;
negative fluxes represent a loss to the atmosphere.
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to improved grassland, as this is the main land use to which it changes. Improved grassland402

therefore shows as a small net source of carbon, the result of land use changes from cropland403

to improved grassland (sink) and rough grazing to improved grassland (source).404

Figure 10: Total net carbon flux from land-use change in Scotland over 1969-2015, showing
the maximum a posteriori estimate and the 95 % credibility interval. Positive fluxes denote
a gain to the terrestrial carbon stock; negative fluxes represent a loss to the atmosphere.

The overall effect of these component fluxes is to produce a net sequestration of carbon405

from land-use change (Figure 10). The 95 % credibility interval in the near-present-day406

carbon flux is around 100 Gg C y−1, close to 50 % of the best estimate. There is therefore407

considerable uncertainty in the carbon flux associated with land-use change, because the408

27

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-466
Manuscript under review for journal Biogeosciences
Discussion started: 6 November 2017
c© Author(s) 2017. CC BY 4.0 License.



underlying changes in land use are themselves uncertain. Recognition and propagation of409

this uncertainty is therefore important.410

Mapping the carbon fluxes calculated by equations 8 - 9 and the MAP estimate of U, we411

can see that the carbon fluxes closely follow the present-day land-use distribution (Figure412

11). The carbon sinks are associated mainly with new forest areas, and to a lesser extent,413

wherever improved grassland or cropland has reverted to rough grazing. The carbon sources414

are associated with wherever cropland or urban areas have expanded.415

Discussion416

The results show that we can provide improved estimates of past land-use change using417

multiple data sources in the Bayesian framework. The computation involved is quite feasible418

on a modern computer, requiring around three hours to estimate the parameters for a 46-year419

period. The output of the assimilation procedure provides vectors of land-use change in420

the form required for dynamic and process-based modelling, which we illustrate with the421

soil carbon modelling example. The main advantage of the approach is that it provides a422

coherent, generalised framework for combining multiple disparate sources of data.423

As far as we are aware, there are no previous applications of formal data assimilation424

approaches to land-use change. However, some studies have addressed the same problem with425

related methods. Hurrt et al. (2006, 2011) used estimates of A together with estimates of426

wood harvest to predict B. The study was carried out at global scale at 0.5 degree resolution,427

and covered both historical and future scenarios for the period 1500-2100. To make the428

problem tractable, the transition matrix B was initially specified for only three land uses,429

so that a unique minimum solution could be found. Additional transitions associated with430

shifting cultivation and wood harvest were then calculated in a further step. They used a431

rule-based model which specified assumptions about the residence time of agricultural land,432
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Figure 11: Net carbon flux (in kg C m−2) from land use change in Scotland over 1969-2015
from the maximum a posteriori estimate of U . Positive fluxes denote a gain to the terrestrial
carbon stock; negative fluxes represent a loss to the atmosphere.
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the priority of land for conversion to agriculture and for wood harvesting, and the spatial433

pattern of wood harvesting within a country. The distribution of land use over space and time434

U was not explicitly represented; instead, the area and age of “secondary” land in each grid435

cell was tracked in a book-keeping approach. However, because only a matrix is calculated436

at each time step, the approach does not produce explicit vectors of land use for dynamic437

modelling, and such things as rotational land use are not easily represented. Sensitivity to438

various assumptions was analysed, but the uncertainties associated with the input data and439

these model assumptions cannot readily be quantified.440

Fuchs et al. (2013) used a number of data sets, including that of Hurrt et al. (2006), to441

explicitly estimate the change in land use over space and time U for the whole of Europe442

at 1 km2 resolution for each decade 1900-2010. Using logistic regression, they calculated443

“probability maps” for each land cover class, based on biogeophysical and socio-economic444

properties of each grid cell as explanatory variables for land use in 2000. For each decade445

and each country within the EU27, the net increase in the area of each land use (positive446

∆Aut) was allocated to the grid cells with the highest probability score for that land use.447

This approach yields essentially the same data structure as our method, and is wider in scope,448

covering all of Europe.449

Our method represents an advance on this in several ways. Because the approach of Fuchs450

et al. (2013) is based on net change in areas at country scale, the extent of the true, gross451

changes will be under-estimated, possibly by orders of magnitude, and implicitly the B452

matrices are minimised. Our approach uses explicit observations of the annual transition453

matrices B as far as possible. Rather than regression relationships, our approach uses annual454

spatially explicit observations of where and when land-use change is likely to have occurred455

(based on CS, IACS and EAC). We use higher temporal and spatial resolution (annually,456

at 100 m) because this is possible with the data available in the UK, and with the limited457

spatial domain we attempt to cover. At continental and global scales, the same quantity and458
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resolution of data is not available, and the computation issues become much larger. Our459

approach explicitly incorporates and propagates the uncertainty in the posterior distribution460

of B and predictions of A and subsequently modelled carbon fluxes. The uncertainty in461

land-use change is substantial, even in the UK where land management records are good.462

Our methodology accounts for this uncertainty in a mathematically rigorous way (Van Oijen,463

2017), and propagates this through to the subsequent modelling of other outputs, such as soil464

carbon fluxes. On a fundamental level, the Bayesian approach gives the correct theoretical465

answer to the data assimilation problem: if the observational error and prior are correctly466

specified and the posterior is adequately characterised by the MCMC sampling, then the467

posterior correctly represents the actual state of knowledge about the system parameters and468

predictions (Gelman et al., 2013; Reich, 2015).469

We thus need to consider how well we can characterise the observational error, and the prior470

and posterior distributions. Establishing that the posterior distribution has been adequately471

characterised by the MCMC sampling is relatively straightforward. There are various criteria472

for assessing this (the effective sample size, and measures of MCMC chain convergence) which473

the results meet. In this study we chose to use an informative prior based on CS. This follows474

the way in which the data became available chronologically; these were the only data available475

with which we could estimate land-use change in the UK when an inventory of carbon476

emissions was first attempted (Cannell et al., 1999). The uncertainty in the prior distribution477

of B can be relatively well quantified, because considerable effort has gone into quantifying478

the likely level of error in the national-scale estimates of land use (Scott, 2008; Wood et479

al., 2017). The standard deviation σ of the prior distribution was most easily estimated by480

applying a bootstrapping approach to the CS data, but more advanced approaches have been481

investigated (Henrys et al., 2015). Alternative options for the prior are possible, and would be482

worth exploring further to examine sensitivity to the specification of the prior. Where little483

information is available, an uninformative prior is often used, either uniform, or exponentially484

declining to capture the parsimony principle that low values of B are more likely than high485
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ones, all else being equal. More usefully, because we iterate over all years independently, we486

could form the prior distribution at time t from the posterior distribution for the previous487

year. In practice, we iterate backwards in time, so in fact the posterior at time t becomes the488

prior for time t− 1; this is mathematically simple but linguistically confusing. This approach489

means that information gained in the recent part of the time series is carried over into the490

earlier part of the time series. Subsequent estimates “borrow strength” from previous ones,491

in the Bayesian terminology. Currently, we do not use this approach because of the extra492

computation time this incurs, but methods to speed up this step can be explored.493

Observational error can be difficult to estimate objectively and accurately, and often the494

σ terms are poorly known. Even in relative terms, it can be hard to judge the degree of495

certainty to place in different data sources, where observational error is not readily quantified.496

In our case, we need to estimate the σ terms in the likelihood function (equations 5 - 7) for497

the AC, EAC and IACS data. Spatial coverage in the data sets is similarly large so there498

is no clear a priori reason to trust one more than the other. However, there are reasons to499

prioritise the national-scale trends in AC over those from IACS, and to be cautious of the500

spatial patterns in EAC. AC is a long-established survey with relatively consistent methods,501

whereas IACS is a recent introduction, and the recording methodology has not been entirely502

stable over this period (for example, with changes to how much farm woodland is recorded).503

It also attempts to collect a much higher level of detail (at the individual field scale), and this504

brings more potential for misclassification to appear as ostensible land-use change. However,505

with the limited information available, we cannot rule out that this is the more accurate data506

set, and that EAC and CS underestimate gross change. The accuracy of spatial information507

in EAC is limited by the way in which the data are collated, using postcodes of the land508

owner who completes the census return. Where large estates are owned, the correspondence509

between the centroid of the postcode district and the actual location of the land may not be510

very close. We therefore ascribe lowest uncertainty to AC, and higher but equal uncertainty511

to EAC and IACS data. In our Bayesian data assimilation procedure, IACS-based estimates512
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of B are effectively down-weighted when they produce a mismatch with the national-scale513

AC trends. IACS coverage on forest, urban and other land is not large, and we would not514

expect accurate detection of changes in these land uses.515

One of the main problems in land-use studies is that of classification. Depending on definitions516

used to delimit land-use classes, quite different areas may be calculated for the same nominal517

classes, and there is a real problem in combining data from different sources in that we518

may not be comparing like with like. Here, we minimise this problem by using a relatively519

coarse land-use classification, with only six classes. This would become more problematic if520

attempting to distinguish more refined classes. The computation time and difficulty increases521

with the square of the number of land-use classes, so there may be practical limits to the522

level of detail in the classification used, especially if applying on larger spatial domains.523

An attractive feature of the Bayesian data assimilation approach is that additional data524

sources can be added to the process as they become available, without any major changes to525

software or step-changes in results. Several other data sources exist in the UK which could be526

incorporated. These include spatial data on the granting of woodland felling licenses, which527

would further constrain the likely location of deforestation, and national mapping agency528

data on urban expansion. As new satellite instruments come on-stream (e.g. from Sentinel529

and synthetic aperture radar), further remotely-sensed data products will become available530

which could be added into the estimation of A, B and U. In this study, we do not attempt531

to forecast future land-use change, but in principle this is simple with this methodology. If no532

new data are available, the posterior distribution will widen as future years are iterated over.533

If scenario data were supplied, such as projected forest planting rates (G) or cropland areas534

required for food security (A), these could be used in the estimation of A, B and U in the535

same way as historical data. The method has applications in providing estimates of historical536

land use and land-use change input data for modelling work in many domains, including537

climate modelling (Lawrence et al., 2016), ecosystem and biogeochemical modelling (Ogle et538
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al., 2003; Ostle et al., 2009), species distribution modelling (Martin et al., 2013; Dainese et539

al., 2017), and socio-economics (Moran et al., 2011; Sharmina et al., 2016).540
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