Regulation of inorganic carbon acquisition in a red tide alga (*Skeletonema costatum*): the importance of phosphorus availability

Guang Gao^{a,b}, Jianrong Xia^{a*}, Jinlan Yu^a, Jiale Fan^b, Xiaopeng Zeng^a

^aSchool of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China

^bMarine Resources Development Institute of Jiangsu, Huaihai Institute of Technology,

Lianyungang, 222005, China

*Corresponding author, Email: jrxia@gzhu.edu.cn; Phone: +86 (0)20 39366941; Fax: +86 (0)20 39366949

1 Abstract:

2

Skeletonema costatum is a common bloom-forming diatom and encounters eutrophication and 2 severe carbon dioxide (CO₂) limitation during red tides. However, little is known regarding 3 4 the role of phosphorus (P) in modulating inorganic carbon acquisition in S. costatum, particularly under CO₂ limitation conditions. We cultured S. costatum under five phosphate 5 levels (0.05, 0.25, 1, 4, 10 μ mol L⁻¹) and then treated it with two CO₂ conditions (2.8 and 12.6 6 μ mol L⁻¹) for two hours. The lower CO₂ reduced net photosynthetic rate at lower phosphate 7 levels (< 4 μ mol L⁻¹) but did not affect it at higher phosphate levels (4 and 10 μ mol L⁻¹). In 8 contrast, the lower CO_2 induced higher dark respiration rate at lower phosphate levels (0.05) 9 and 0.25 μ mol L⁻¹) and did not affect it at higher phosphate levels (> 1 μ mol L⁻¹). The lower 10 CO₂ did not change relative electron transport rate (rETR) at lower phosphate levels (0.05 and 11 0.25 μ mol L⁻¹) and increased it at higher phosphate levels (> 1 μ mol L⁻¹). Photosynthetic CO₂ 12 affinity $(1/K_{0.5})$ increased with phosphate levels. The lower CO₂ did not affect photosynthetic 13 CO_2 affinity at 0.05 µmol L⁻¹ phosphate but enhanced it at the other phosphate levels. Activity 14 of extracellular carbonic anhydrase was dramatically induced by the lower CO₂ at phosphate 15 replete conditions (> 0.25 μ mol L⁻¹) and the same pattern also occurred for redox activity of 16 plasma membrane. Direct bicarbonate (HCO_3) use was induced when phosphate 17 concentration was more than 1 μ mol L⁻¹. These findings indicate P enrichment could enhance 18 19 inorganic carbon acquisition and thus maintain the photosynthesis rate in S. costatum grown under CO₂ limiting conditions via increasing activity of extracellular carbonic anhydrase and 20 facilitating direct HCO₃⁻ use. This study sheds light on how bloom-forming algae cope with 21 carbon limitation during the development of red tides. 22

- 23 Keywords: carbonic anhydrase; CO₂ concentrating mechanisms; pH compensation point;
- 24 photosynthesis; redox activity; respiration

26	Diatoms are unicellular photosynthetic microalgae that can be found worldwide in
27	freshwater and oceans. Marine diatoms account for 75% of the primary productivity for
28	coastal and other nutrient-rich zones and approximately 20% of global primary production
29	(Field et al., 1998; Falkowski, 2012), hence playing a vital role in the marine biological
30	carbon pump as well as the biogeochemical cycling of important nutrients, such as nitrogen
31	and silicon (Nelson et al., 1995; Moore et al., 2013; Young & Morel, 2015). Diatoms usually
32	dominate the phytoplankton communities and form large-scale blooms in nutrient-rich zones
33	and upwelling regions (Bruland et al., 2001; Anderson et al., 2008; Barton et al., 2016).
34	Nutrient enrichment is considered as a key factor that triggers algal blooms albeit the
35	occurrence of diatom blooms may be modulated by other environmental factors, such as
36	temperature, light intensity, salinity, and so forth (Smetacek & Zingone, 2013; Jeong et al.,
37	2015). When inorganic nitrogen and phosphorus are replete, diatoms can out-compete
38	chrysophytes, raphidophytes and dinoflagellates (Berg et al., 1997; Jeong et al., 2015; Barton
39	et al., 2016) and dominate algal blooms due to their quicker nutrient uptake and growth rate.
40	In normal natural seawater (pH 8.1, salinity 35), HCO_3^- is the majority (~90%) of total
41	dissolved inorganic carbon (DIC, 2.0–2.2 mM). CO ₂ (1%, 10–15 μ M), which is the only
42	direct carbon source that can be assimilated by all photosynthetic organisms, only accounts
43	for 1% of total dissolved inorganic carbon. Diatoms' ribulose-1,5-bisphosphate
44	carboxylase/oxygenase (Rubisco), catalyzing the primary chemical reaction by which CO ₂ is
45	transformed into organic carbon, has a relatively low affinity for CO ₂ and is commonly less
46	than half saturated under current CO ₂ levels in seawater (Hopkinson & Morel, 2011),

47	suggesting that CO_2 is limiting for marine diatoms' carbon fixation. To cope with the CO_2
48	limitation in seawater and maintain a high carbon fixation rate under the low CO ₂ conditions,
49	diatoms have evolved various inorganic carbon acquisition pathways and CO ₂ concentrating
50	mechanisms (CCMs), for instance, active transport of HCO_3^- , the passive influx of CO_2 ,
51	multiple carbonic anhydrase (including both common (α , β , γ) and unusual (δ , ζ) families that
52	carries out the fast interconversion of CO_2 and HCO_3^{-}), assumed C4-type pathway (using
53	phosphoenolpyruvate to capture more CO_2 in the periplastidal compartment), to increase the
54	concentration at the location of Rubisco and thus the carbon fixation. (Hopkinson & Morel,
55	2011; Hopkinson et al., 2016). Skeletonema costatum is a worldwide diatom species that can
56	be found from equatorial to polar waters. It usually dominates large-scale algal blooms in
57	eutrophic seawaters (Wang, 2002; Li et al., 2011). When blooms occur, seawater pH increases
58	and CO_2 decreases because the dissolution rate of CO_2 from the atmosphere cannot catch up
59	with its removal rate caused by intensive photosynthesis of algae. For instance, pH level in
60	the surface waters of the eutrophic Mariager Fjord, Denmark, could be up to 9.75 during algal
61	blooms (Hansen, 2002). Consequently, S. costatum experiences very severe CO ₂ limitation
62	when blooms occur. To deal with it, S. costatum has developed multiple CCMs (Nimer et al.,
63	1998; Rost et al., 2003). However, contrasting findings were reported. Nimer et al. (1998)
64	documented that extracellular carbonic anhydrase activity in S. costatum was only induced
65	when CO ₂ concentration was less than 5 μ mol L ⁻¹ while Rost <i>et al.</i> (2003) reported that
66	activity of extracellular carbonic anhydrase could be detected even when CO ₂ concentration
67	was 27 µmol L ⁻¹ . Chen and Gao (2004) showed that in S. costatum had little capacity in direct
68	HCO_3^- utilization. On the other hand, Rost <i>et al.</i> (2003) demonstrated that this species could

69 take up CO_2 and HCO_3^- simultaneously.

70	Phosphorus (P) is an indispensable element for all living organisms, serving as an integral
71	component of lipids, nucleic acids, ATP and a diverse range of other metabolites. Levels of
72	bioavailable phosphorus are very low in many ocean environments and phosphorus
73	enrichment can commonly increase algal growth and marine primary productivity in the
74	worldwide oceans (Davies & Sleep, 1989; Müller & Mitrovic, 2015; Lin et al., 2016). Due to
75	the essential role of phosphorus, extensive studies have been conducted to investigate the
76	effect of phosphorus on photosynthetic performances (Geider et al., 1998; Liu et al., 2012;
77	Beamud et al., 2016), growth (Jiang et al., 2016; Reed et al., 2016; Mccall et al., 2017),
78	phosphorus acquisition, utilization and storage (Lin et al., 2016; Gao et al., 2018a). Some
79	studies show the essential role of phosphorus in regulating inorganic carbon acquisition in
80	green algae (Beardall et al., 2005; Hu & Zhou, 2010). In terms of S. costatum, studies
81	regarding the inorganic carbon acquisition in S. costatum focus on its response to variation of
82	CO ₂ availability. The role of phosphorus in S. costatum's CCMs remains unknown. Based on
83	the connection between phosphorus and carbon metabolism in diatoms (Brembu et al., 2017),
84	we hypothesize that phosphorus enrichment could enhance inorganic carbon utilization and
85	hence maintain high rates of photosynthesis and growth in S. costatum under CO ₂ limitation
86	conditions. In the present study, we aimed to test this hypothesis by investigating the variation
87	of CCMs (including active transport of HCO_3^- and carbonic anhydrase activity) and
88	photosynthetic rate under five levels of phosphate and two levels of CO ₂ conditions. We also
89	measured redox activity of plasma membrane as it is deemed to be critical to activate carbonic
90	anhydrase (Nimer et al., 1998). Our study would provide helpful insights into how

bloom-forming diatoms overcome CO₂ limitation to maintain a quick growth rate during red
tides.

93 2. Materials and Methods

94 2.1. Culture conditions

Skeletonema costatum (Grev.) Cleve from Jinan University, China, was cultured in f/2 95 artificial seawater with five phosphate levels (0.05, 0.25, 1, 4, 10 μ mol L⁻¹) by adding 96 different amounts of NaH₂PO₄ 2H₂O. The cultures were carried out semi-continuously at 97 20° C for seven days. The light irradiance was set 200 µmol photons m⁻² s⁻¹, with a light and 98 dark period of 12: 12. The cultures were aerated with ambient air (0.3 L min⁻¹) to maintain the 99 100 pH around 8.2. The cells during exponential phase were collected and rinsed twice with 101 DIC-free seawater that was made according to Xu et al. (2017). Afterwards, cells were resuspended in fresh media with two levels of pH (8.20 and 8.70, respectively corresponding 102 to ambient CO₂ (12.6 μ mol L⁻¹, AC) and low CO₂ (2.8 μ mol L⁻¹, LC) under corresponding 103 phosphate levels for two hours before the following measurements, with a cell density of 1.0 104 $\times 10^{6}$ mL⁻¹. Cell density was determined by direct counting with an improved Neubauer 105 106 haemocytometer (XB-K-25, Qiu Jing, Shanghai, China). This transfer aimed to investigate the effects of phosphate on DIC acquisition under a CO₂ limitation condition. The pH of 8.70 was 107 chosen considering that it is commonly used as a CO₂ limitation condition (Nimer et al., 1998; 108 109 Chen & Gao, 2004) and also occurs during algal bloom (Hansen, 2002). Two hours should be enough to activate CCMs in S. costatum (Nimer et al., 1998). The cell density did not vary 110 during the two hours of pH treatment. All experiments were conducted in triplicates. 111 2.2. Manipulation of seawater carbonate system 112

113	The two levels of pH (8.20 and 8.70) were obtained by aerating the ambient air and pure						
114	nitrogen (99.999%) till the target value, and were then maintained with a buffer of 50 mM tris						
115	(hydroxymethyl) aminomethane-HCl. The cultures were open to the ambient atmosphere and						
116	the rise of culture pH was below 0.02 unites (corresponding to the rise of CO_2 less than 0.7						
117	and 0.2 μ mol L ⁻¹ for pH 8.20 and 8.70 treatments respectively) during the two hours of pH						
118	treatment. CO ₂ level in seawater was calculated via CO2SYS (Pierrot et al., 2006) based on						
119	measured pH and TAlk, using the equilibrium constants of K1 and K2 for carbonic acid						
120	dissociation (Roy et al., 1993) and the KSO ₄ ⁻ dissociation constant from Dickson (1990).						
121	2.3. The pH_{NBS} was measured by a pH meter (pH 700, Eutech Instruments, Singapore) that						
122	was equipped with an Orion [®] 8102BN Ross combination electrode (Thermo Electron Co.,						
123	USA) and calibrated with standard National Bureau of Standards (NBS) buffers (pH =						
124	4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA). Total alkalinity						
125	(TAlk) was determined at 25.0 $^{\circ}$ C by Gran acidimetric titration on a 25-ml sample with a						
126	TAlk analyzer (AS-ALK1, Apollo SciTech, USA), using the precision pH meter and an						
127	Orion [®] 8102BN Ross electrode for detection. To ensure the accuracy of TAlk, the TAlk						
128	analyser was regularly calibrated with certified reference materials from Andrew G.						
129	Dickson's laboratory (Scripps Institute of Oceanography, U.S.A.) at a precision of ± 2						
130	μ mol kg ⁻¹ . CO ₂ level in seawater was calculated via CO2SYS (Pierrot <i>et al.</i> , 2006) based						
131	on measured pH and TAlk, using the equilibrium constants of K1 and K2 for carbonic acid						
132	dissociation (Roy <i>et al.</i> , 1993) and the KSO_4^- dissociation constant from Dickson (1990).						
133	Chlorophyll fluorescence measurement						
13/	Chlorophyll fluorescence was measured with a pulse modulation fluorometer						

134 Chlorophyll fluorescence was measured with a pulse modulation fluorometer

(PAM-2100, Walz, Germany) to assess electron transport in photosystem II and the possible 135 connection between electron transport and redox activity of the plasma membrane. The 136 measuring light and actinic light were 0.01 and 200 μ mol photons m⁻² s⁻¹, respectively. The 137 saturating pulse was set 4,000 μ mol photons m⁻² s⁻¹ (0.8 s). Relative electron transport in 138 photosystem II (rETR, µmol e⁻ m⁻² s⁻¹) = (F_M' - F_t) / F_M' × 0.5 × PFD (Gao et al., 2018), 139 where F_{M} is the maximal fluorescence levels from algae in the actinic light after application a 140 saturating pulse, Ft is the fluorescence at an excitation level and PFD is the actinic light 141 density. 142

143 2.4. Estimation of photosynthetic oxygen evolution and respiration

The net photosynthetic and respiration rates of S. costatum were measured using a 144 Clark-type oxygen electrode (YSI Model 5300, USA) that was held in a circulating water bath 145 (Cooling Circulator; Cole Parmer, Chicago, IL, USA) to keep the setting temperature (20°C). 146 Five mL of samples were transferred to the oxygen electrode cuvette and were stirred during 147 measurement. The light intensity and temperature were maintained as the same as that in the 148 growth condition. The illumination was provided by a halogen lamp. The increase of oxygen 149 content in seawater within five minutes was defined as net photosynthetic rate. To measure 150 dark respiration rate, the samples were placed in darkness and the decrease of oxygen content 151 within ten minutes was defined as dark respiration rate given the slower oxygen variation rate 152 for dark respiration. Net photosynthetic rate and dark respiration rate were presented as µmol 153 $O_2(10^9 \text{ cells})^{-1} \text{ h}^{-1}$. 154

To obtain the curve of net photosynthetic rate versus DIC, seven levels of DIC (0, 0.1, 0.2,
0.5, 1, 2, and 4 mM) were made by adding different amounts of NaHCO₃ to the Tris buffered

DIC-free seawater (pH 8.20). The algal samples were washed twice with DIC-free seawater 157 before transferring to the various DIC solutions. Photosynthetic rates at different DIC levels 158 were measured under saturating irradiance of 400 μ mol photons m⁻² s⁻¹ and growth 159 160 temperature. The algal samples were allowed to equilibrate for 2–3 min at each DIC level during which period a linear change in oxygen concentration was obtained and recorded. The 161 parameter, photosynthetic half saturation constant ($K_{0.5}$, i.e., the DIC concentration required to 162 give half of DIC-saturated maximum rate of photosynthetic O₂ evolution), was calculated 163 from the Michaelis-Menten kinetics equation (Caemmerer and Farquhar 1981): $V = V_{max} \times [S]$ 164 / $(K_{0.5} + [S])$, where V is the real-time photosynthetic rate, V_{max} is maximum photosynthetic 165 166 rate and [S] is the DIC concentration. The value of $1/K_{0.5}$ represents photosynthetic DIC affinity. $K_{0.5}$ for CO₂ was calculated via CO2SYS (Pierrot *et al.*, 2006) based on pH and TA, 167 using the equilibrium constants of K1 and K2 for carbonic acid dissociation (Roy et al., 1993) 168 and the KSO₄⁻ dissociation constant from Dickson (1990). 169 2.5. Measurement of photosynthetic pigment 170 To determine the photosynthetic pigment (Chl a) content, 50 mL of culture were filtered 171 on a Whatman GF/F filter, extracted in 5 mL of 90% acetone for 12 h at 4°C, and centrifuged 172 (3, 000 g, 5 min). The optical density of the supernatant was scanned from 200 to 700 nm 173

175 Chl *a* was calculated based on the optical density at 630 and 664 nm: Chl $a = 11.47 \times OD_{664}$ –

with a UV-VIS spectrophotometer (Shimadzu UV-1800, Kyoto, Japan). The concentration of

- 176 $0.40 \times OD_{630}$, Chl $c = 24.36 \times OD_{630} 3.73 \times OD_{664}$ (Gao et al., 2018b), and was normalized
- 177 to pg cells⁻¹.

174

178 2.6. Measurement of extracellular carbonic anhydrase activity

179	Carbonic anhydrase activity was assessed using the electrometric method (Gao et al.,
180	2009). Cells were harvested by centrifugation at 4, 000 g for five minutes at 20°C, washed
181	once and resuspended in 8 mL Na-barbital buffer (20 mM, pH 8.2). Five mL CO ₂ -saturated
182	icy distilled water was injected into the cell suspension, and the time required for a pH
183	decrease from 8.2 to 7.2 at 4° C was recorded. Extracellular carbonic anhydrase (CA _{ext})
184	activity was measured using intact cells. CA activity (E.U.) was calculated using the
185	following formula: E.U. = $10 \times (T_0/T - 1)$, where T_0 and T represent the time required for the
186	pH change in the absence or presence of the cells, respectively.
187	2.7. Measurement of redox activity in the plasma membrane
188	The redox activity of plasma membrane was assayed by monitoring the change in
189	K_3 Fe(CN) ₆ concentration that accompanied reduction of the ferricyanide to ferrocyanide. The
190	ferricyanide $[K_3Fe(CN)_6]$ cannot penetrate intact cells and has been used as an external
191	electron acceptor (Nimer et al., 1998; Wu & Gao, 2009). Stock solutions of K ₃ Fe(CN) ₆ were
192	freshly prepared before use. Five mL of samples were taken after two hours of incubation
193	with 500 μ mol K ₃ Fe(CN) ₆ and centrifuged at 4000 g for 10 min (20°C). The concentration of
194	K_3 Fe(CN) ₆ in the supernatant was measured spectrophotometrically at 420 nm (Shimadzu
195	UV-1800, Kyoto, Japan). The decrease of K_3 Fe(CN) ₆ during the two hours of incubation
196	was used to assess the rate of extracellular ferricyanide reduction that was presented as µmol
197	$(10^6 \text{ cells})^{-1} \text{ h}^{-1}$ (Nimer et al., 1998).
198	2.8. Cell-driving pH drift experiment

To obtain the pH compensation point, the cells were transferred to sealed glass vials containing fresh medium (pH 8.2) with corresponding phosphate levels. The cell

concentration for all treatments was $5.0 \times 10^5 \text{ mL}^{-1}$. The pH drift of the suspension was monitored at 20°C and 200 µmol photons m⁻² s⁻¹ light level. The pH compensation point was obtained when there was no a further increase in pH.

204 2.9. Statistical analysis

Results were expressed as means of replicates ±standard deviation and data were 205 analyzed using the software SPSS v.21. The data from each treatment conformed to a normal 206 distribution (Shapiro-Wilk, P > 0.05) and the variances could be considered equal (Levene's 207 test, P > 0.05). Two-way ANOVAs were conducted to assess the effects of CO₂ and phosphate 208 on net photosynthetic rate, dark respiration rate, ratio of net photosynthetic rate to dark 209 respiration rate, rETR, Chl a, $K_{0.5}$, CA_{ext}, reduction rate of ferricyanide, and pH compensation 210 point. Least Significant Difference (LSD) was conducted for post hoc investigation. Repeated 211 measures ANOVAs were conducted to analyze the effects of DIC on net photosynthetic rate 212 and the effect of incubation time on media pH in a closed system. Bonferroni was conducted 213 for post hoc investigation as it is the best reliable post hoc test for repeated measures ANOVA 214 (Ennos, 2007). The threshold value for determining statistical significance was P < 0.05. 215

216 **3. Results**

217 3.1. Effects of CO_2 and phosphate on photosynthetic and respiratory performances

The net photosynthetic rate and dark respiration rate in *S. costatum* grown at various CO₂ and phosphate concentrations were first investigated (Fig. 1). CO₂ interacted with phosphate on net photosynthetic rate, with each factor having a main effect (Table 1). *Post hoc* LSD comparison (P = 0.05) showed that LC reduced net photosynthetic rate when the phosphate levels was below 4 µmol L⁻¹ but did not affect it at the higher phosphate levels. Under AC, net

photosynthetic rate increased with phosphate level and reached the plateau (100.51 \pm 9.59 223 μ mol O₂ (10⁹ cells)⁻¹ h⁻¹) at 1 μ mol L⁻¹ phosphate. Under LC, net photosynthetic rate also 224 increased with phosphate level but did not hit the peak $(101.46 \pm 9.19 \text{ }\mu\text{mol } \text{O}_2(10^9 \text{ cells})^{-1} \text{ h}^{-1})$ 225 until 4 μ mol L⁻¹ phosphate. In terms of dark respiration rate (Fig. 1b), phosphate had a main 226 effect on it and it interacted with CO₂ (Table 1). Specifically, LC increased dark respiration 227 rate at 0.05 and 0.25 μ mol L⁻¹ phosphate levels, but did not affect it when phosphate level was 228 above 1 μ mol L⁻¹ (LSD, P < 0.05). Regardless of CO₂ level, respiration rate increased with 229 phosphate availability and stopped at 1 μ mol L⁻¹. 230

The ratio of respiration to photosynthesis ranged from 0.23 to 0.40 (Fig. 2). Both CO₂ and phosphate had a main effect, and they interacted on the ratio of respiration to photosynthesis (Table 1). LC increased the ratio when phosphate was lower than 4 μ mol L⁻¹ but did not affect it when phosphate levels were 4 or 10 μ mol L⁻¹.

Both CO₂ and phosphate affected rETR and they also showed an interactive effect (Fig. 3 & Table 2). For instance, *post hoc* LSD comparison showed that LC did not affect rETR at lower phosphate levels (0.05 and 0.25 μ mol L⁻¹) but increased it at higher phosphate levels (1–10 μ mol L⁻¹). Regardless of CO₂ treatment, rETR increased with phosphate level (0.05–4 μ mol L⁻¹) but the highest phosphate concentration did not result in a further increase in rETR (LSD, *P* > 0.05).

The content of Chl *a* was measured to investigate the effects of CO₂ and phosphate on photosynthetic pigment in *S. costatum* (Fig. 4). Both CO₂ and phosphate affected the synthesis of Chl *a* and they had an interactive effect (Table 2). *Post hoc* LSD comparison (P =0.05) showed that LC did not affect Chl *a* at 0.05 or 0.25 µmol L⁻¹ phosphate but stimulated Chl *a* synthesis at higher phosphate levels (1–10 µmol L⁻¹). Irrespective of CO₂ treatment, Chl *a* content increased with phosphate level and reached the plateau (0.19 \pm 0.01 pg cell⁻¹ for AC and 0.23 \pm 0.01 pg cell⁻¹ for LC) at 4 µmol L⁻¹ phosphate.

To assess the effects of CO_2 and phosphate on photosynthetic CO_2 affinity in S. costatum, 248 the net photosynthetic rates of cells exposure to seven levels of DIC were measured (Fig. 5). 249 After curve fitting, the values of $K_{0.5}$ for CO₂ were calculated (Fig. 6). CO₂ and phosphate 250 interplayed on $K_{0.5}$ and each had a main effect (Table 2). LC did not affect $K_{0.5}$ at the lowest 251 phosphate level but reduced it at the other phosphate levels. Under AC, higher phosphate 252 levels (0.25–4 µmol L⁻¹) reduced $K_{0.5}$ and the highest phosphate level led to a further decrease 253 to 2.59 \pm 0.29 µmol kg⁻¹ seawater compared to the value of 4.00 \pm 0.30 µmol kg⁻¹ seawater at 254 0.05 μ mol L⁻¹ phosphate. The pattern with phosphate under LC was the same as the AC. 255

256 3.3. The effects of CO_2 and phosphate on inorganic carbon acquisition

To investigate the potential mechanisms that cells overcame CO₂ limitation during algal 257 blooms, the activity of CA_{ext}, a CCM related enzyme, was estimated under various CO₂ and 258 phosphate conditions (Fig. 7a). Both CO₂ and phosphate had a main effect and they interacted 259 on CA_{ext} activity (Table 3). Post hoc LSD comparison (P = 0.05) showed that LC induced 260 more CA_{ext} activity under all phosphate conditions except for 0.05 µmol L⁻¹ levels, compared 261 to AC. Under AC, CA_{ext} activity increased (0.04–0.10 EU (10⁶ cells)⁻¹) with phosphate level 262 and stopped increasing at 1 µmol L⁻¹ phosphate. Under LC, CA_{ext} activity also increased 263 $(0.04-0.35 \text{ EU} (10^6 \text{ cells})^{-1})$ with phosphate level but reached the peak at 4 µmol L⁻¹ 264 phosphate. The redox activity of plasma membrane was also assessed to investigate the 265 factors that modulate CA_{ext} activity (Fig. 7b). The pattern of redox activity of plasma 266

267 membrane under various CO_2 and phosphate conditions was the same as that of CA_{ext} activity. 268 That is, CO_2 and phosphate had an interactive effect on redox activity of plasma membrane, 269 each having a main effect (Table 3).

270 To test cells' tolerance to high pH and obtain pH compensation points in S. costatum grown under various CO₂ and phosphate levels, changes of media pH in a closed system were 271 monitored (Fig. 8). The media pH under all phosphate conditions increased with incubation 272 time (Table 4). Specifically speaking, there was a steep increase in pH during the first three 273 hours, afterwards the increase became slower and it reached a plateau in six hours (Bonferroni, 274 P < 0.05). Phosphate had an interactive effect with incubation time (Table 4). For instance, 275 276 there was no significant difference in media pH among phosphate levels during first two 277 hours of incubation but then divergence occurred and they stopped at different points. Two-way ANOVA analysis showed that CO₂ treatment did not affect pH compensation point 278 279 but phosphate had a main effect (Table 3). Under each CO₂ treatment, pH compensation point increased with phosphate level, with lowest of 9.03 \pm 0.03 at 0.05 $\,\mu mol~L^{\text{-1}}$ and highest of 280 9.36 ± 0.04 at 10 µmol L⁻¹ phosphate. 281

282 **4. Discussion**

4.1. Photosynthetic performances under various CO₂ and phosphate conditions

The lower CO_2 availability reduced the net photosynthetic rate of *S. costatum* grown at the lower phosphate levels in the present study. However, Nimer *et al.* (1998) demonstrated that the increase in pH (8.3–9.5) did not reduce photosynthetic CO_2 fixation of *S. costatum* and Chen and Gao (2004) reported that a higher pH (8.7) even stimulated the photosynthetic rate of *S. costatum* compared to the control (pH 8.2). The divergence between our and the

previous studies may be due to different nutrient supply. Both Nimer et al. (1998) and Chen 289 and Gao (2004) used f/2 media to grow algae. The phosphate concentration in f/2 media is 290 ~36 μ mol L⁻¹, which is replete for physiological activities in S. costatum. Skeletonema 291 *costatum* grown at higher phosphate levels (4 and 10 μ mol L⁻¹) also showed similar 292 photosynthetic rates for the lower and higher CO₂ treatments. Our finding combined with the 293 previous studies indicates phosphorus plays an important role in dealing with low CO₂ 294 availability for photosynthesis in S. costatum. 295

Different from net photosynthetic rate, LC did not affect rETR at lower phosphate levels 296 $(0.05 \text{ and } 0.25 \text{ } \mu\text{mol } \text{L}^{-1})$ and stimulated it at higher phosphate levels $(1-10 \text{ } \mu\text{mol } \text{L}^{-1})$. This 297 interactive effect of CO₂ and phosphate may be due to their effects on Chl a. LC induced 298 more synthesis of Chl *a* at higher phosphate levels $(1-10 \text{ }\mu\text{mol }L^{-1})$. This induction of LC on 299 photosynthetic pigment is also reported in green algae (Gao et al., 2016). More energy is 300 required under LC to address the more severe CO2 limitation and thus more Chl a are 301 synthesized to capture more light energy, particularly when phosphate was replete. Although P 302 is not an integral component for chlorophyll, it plays an important role in cell energetics 303 through high-energy phosphate bonds, i.e. ATP, which could support chlorophyll synthesis. 304 The stimulating effect of P enrichment on photosynthetic pigment is also found in green alga 305 Dunaliella tertiolecta (Geider et al., 1998) and brown alga Sargassum muticum (Xu et al., 306 2017). The increased photosynthetic pigment in S. costatum could partially explain the 307 increased rETR and photosynthetic rate under the higher P conditions. 308

- 4.6. Ratio of respiration to photosynthesis 309
- The ratio of respiration to photosynthesis in algae indicates carbon balance in cells and 310

carbon flux in marine ecosystems as well (Zou & Gao, 2013). LC increased this ratio in S. 311 costatum grown at the lower P conditions but did not affect it under the higher P conditions, 312 indicating that P enrichment can offset the carbon loss caused by carbon limitation. To cope 313 314 with CO₂ limitation, cells might have to obtain energy from dark respiration under lower P conditions as it seems infeasible to acquire energy from the low rETR, which led to the 315 increased dark respiration. However, LC induced higher rETR under P replete conditions and 316 energy used for inorganic carbon (CO_2 and HCO_3^{-}) acquisition could be from the increased 317 rETR. Therefore, additional dark respiration was not triggered, avoiding carbon loss. Most 318 studies regarding the effect of CO₂ on ratio of respiration to photosynthesis focus on higher 319 plants (Gifford, 1995; Ziska & Bunce, 1998; Cheng et al., 2010; Smith & Dukes, 2013), little 320 321 is known on phytoplankton. Our study suggests that CO₂ limitation may lead to carbon loss in phytoplankton but P enrichment could alter this trend, regulating carbon balance in 322 phytoplankton and thus their capacity in carbon sequestration. 323

4.3. Inorganic carbon acquisition under CO₂ limitation and phosphate enrichment

Decreased CO₂ can usually induce higher inorganic carbon affinity in algae (Raven et al., 325 2012; Wu et al., 2012; Raven et al., 2017; Xu et al., 2017). In the present study, the lower 326 CO_2 did increase inorganic carbon affinity when P level was higher than 0.25 µmol L⁻¹ but did 327 not affect it when P was 0.05 μ mol L⁻¹, indicating the important role of P in regulating cells' 328 329 CCMs in response to environmental CO₂ changes. LC induced larger CA activity when P was above 0.25 μ mol L⁻¹ but did not increase it at 0.05 μ mol L⁻¹ of P, which could explain the 330 interactive effect of P and CO₂ on inorganic carbon affinity as CA can accelerate the 331 equilibrium between HCO₃⁻ and CO₂ and increase inorganic carbon affinity. Regardless of 332

CO₂, P enrichment alone increased CA activity and inorganic carbon affinity. P enrichment 333 may stimulate the synthesis of CA by supplying required ATP. In addition, P enrichment 334 increased the redox activity of plasma membrane in this study. It has been proposed that redox 335 activity of plasma membrane could induce extracellular CA activity via protonation extrusion 336 of its active center (Nimer et al., 1998). Our result that the pattern of CA is exactly same as 337 that of redox activity of plasma membrane shows a compelling correlation between CA and 338 redox activity of plasma membrane. The stimulating effect of P on redox activity of plasma 339 membrane may be due to its effect on rETR. The increased rETR could generate excess 340 reducing equivalents, particularly under CO₂ limiting conditions. These excess reducing 341 equivalents would be transported from the chloroplast into the cytosol (Heber, 1974), 342 supporting the redox chain in the plasma membrane (Rubinstein & Luster, 1993; Nimer et al., 343 1999) and triggering CA activity. 344

345 *4.4. Direct HCO*³ *utilization due to phosphate enrichment*

A pH compensation point over 9.2 has been considered a sign of direct HCO₃⁻ use for 346 algae (Axelsson & Uusitalo, 1988) as the CO₂ concentration is nearly zero at pH above 9.2. 347 This criterion has been justified based on the experiments for both micro and macro-algae. 348 For instance, the marine diatom *Phaeodactylum tricornutum*, with a strong capacity for direct 349 HCO₃⁻ utilization, has a higher pH compensation point of 10.3 (Chen et al., 2006). In contrast, 350 351 the red macroalgae, Lomentaria articulata and Phycodrys rubens that cannot utilize HCO₃ directly and photosynthesis only depends on CO₂ diffusion, have pH compensation points of 352 less than 9.2 (Maberly, 1990). In terms of S. costatum, it has been reported to have a pH 353 compensation point of 9.12, indicating a very weak capacity in direct HCO₃⁻ utilization (Chen 354

& Gao, 2004). Our study demonstrates that the pH compensation point of S. costatum varies 355 with the availability of P. It is lower than 9.2 under P limiting conditions but higher than 9.2 356 under P replete conditions, suggesting that the capacity of direct HCO₃⁻ utilization is regulated 357 by P availability. Contrary to CO_2 passive diffusion, the direct use of HCO_3^- depends on 358 positive transport that requires energy (Hopkinson & Morel, 2011). P enrichment increased 359 rETR in the present study and the ATP produced during the process of electron transport could 360 be used to support HCO_3^- positive transport. In addition, the increased respiration at higher P 361 levels can also generate ATP to help HCO₃⁻ positive transport. Our study indicates that P 362 enrichment could trigger HCO₃⁻ direct utilization and hence increase inorganic acquisition 363 364 capacity of S. costatum to cope with CO₂ limitation.

365 *4.5. CCMs and red tides*

With the development of red tides, the pH in seawater could be very high along with 366 extremely low CO₂ availability due to intensive photosynthesis (Hansen, 2002; Hinga, 2002). 367 For instance, pH level in the surface waters of the eutrophic Mariager Fjord, Denmark, is 368 often above 9 during dinoflagellate blooms (Hansen, 2002). Diatoms are the casautive species 369 for red tides and S. costatum could outcompete other bloom algae (dinoflagellates 370 Prorocentrum minimum and Alexandrium tamarense) under nutrient replete conditions (Hu et 371 al., 2011). However, the potential mechanisms are poorly understood. Our study demonstrates 372 373 S. costatum has multiple CCMs to cope with CO_2 limitation and the operation of CCMs is regulated by P availability. The CCMs of S. costatum are hampered under P limiting 374 conditions and only function when P is replete. Therefore, P enrichment would be critical for 375 S. costatum to overcome carbon limitation during algal bloom and to dominate red tides. 376

The present study investigated the role of P in regulating inorganic carbon acquisition and 378 CO₂ concentrating mechanisms in diatoms for the first time. The intensive photosynthesis and 379 quick growth during algal blooms usually result in noticeable increase of pH and decrease of 380 CO₂. Our study demonstrates that P enrichment could induce activity of extracellular carbonic 381 anhydrase and direct utilization of HCO_3^- in S. costatum to help overcome the CO_2 limitation, 382 as well as increasing photosynthetic pigment content and rETR to provide required energy. 383 This study provides important insight into the connection of phosphorus and carbon 384 acquisition in diatoms and the mechanisms that S. costatum dominates algal blooms. 385 **Author contribution** 386 JX and GG designed the experiments, and GG, JY, JF and XZ carried them out. GG 387

388 prepared the manuscript with contributions from all co-authors.

389 Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 390 41376156 & 40976078), Natural Science Fund of Guangdong Province (No. 391 S2012010009853), Science and Technology Bureau of Lianyungang (SH1606), Jiangsu 392 Planned Projects for Postdoctoral Research Funds (1701003A), Science Foundation of 393 Huaihai Institute of Technology (Z2016007), 394 and Foundation for High-level Talents in Higher Education of Guangdong. 395

396 **References**

397 Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela

398

R, Parsons ML, Rensel JE, Townsend DW. 2008. Harmful algal blooms and

401	Axelsson L, Uusitalo J. 1988. Carbon acquisition strategies for marine macroalgae. Marine
400	<i>Harmful Algae</i> 8 : 39-53.
399	eutrophication: Examining linkages from selected coastal regions of the United States.

- 402 *Biology* **97**: 295-300.
- Barton AD, Irwin AJ, Finkel ZV, Stock CA. 2016. Anthropogenic climate change drives
 shift and shuffle in North Atlantic phytoplankton communities. *Proceedings of the National Academy of Sciences, USA* 113: 2964-2969.

406 Beamud SG, Baffico GD, Reid B, Torres R, Gonzalez-Polo M, Pedrozo F, Diaz M. 2016.

- 407 Photosynthetic performance associated with phosphorus availability in mats of
 408 *Didymosphenia geminata* (Bacillariophyceae) from Patagonia (Argentina and Chile).
 409 *Phycologia* 55: 118-125.
- Beardall J, Roberts S, Raven JA. 2005. Regulation of inorganic carbon acquisition by
 phosphorus limitation in the green alga *Chlorella emersonii*. *Canadian Journal of Botany* 83: 859-864.
- 413 Berg GM, Glibert PM, Lomas MW, Burford MA. 1997. Organic nitrogen uptake and
- 414 growth by the chrysophyte *Aureococcus anophagefferens* during a brown tide event.
 415 *Marine Biology* 129: 377-387.
- Brembu T, Mühlroth A, Alipanah L, Bones AM. 2017. The effects of phosphorus limitation
 on carbon metabolism in diatoms. *Philosophical Transactions of the Royal Society B Biological Sciences* 372: 20160406.
- Bruland KW, Rue EL, Smith GJ. 2001. Iron and macronutrients in california coastal
 upwelling regimes: implications for diatom blooms. *Limnology and Oceanography* 46:

422	Caemmerer SV, Farquhar GD. 1981. Some relationships between the biochemistry of
423	photosynthesis and the gas exchange of leaves. Planta 153: 376-387.

- 424 Chen X, Gao K. 2004. Photosynthetic utilisation of inorganic carbon and its regulation in the
- 425 marine diatom *Skeletonema costatum*. *Functional Plant Biology* **31**: 1027-1033.
- 426 Chen X, Qiu CE, Shao JZ. 2006. Evidence for K⁺-dependent HCO₃⁻ utilization in the marine
 427 diatom *Phaeodactylum tricornutum*. *Plant Physiology* 141: 731-736.
- 428 Cheng W, Sims DA, Luo Y, Coleman JS, Johnson DW. 2010. Photosynthesis, respiration,
- and net primary production of sunflower stands in ambient and elevated atmospheric
 CO₂ concentrations: an invariant NPP:GPP ratio? *Global Change Biology* 6: 931-941.
- 431 Davies AG, Sleep JA. 1989. The photosynthetic response of nutrient-depleted dilute cultures
 432 of *Skeletonema costatum* to pulses of ammonium and nitrate; the importance of
- 433 phosphate. *Journal of Plankton Research* 11: 141-164.
- 434 **Dickson AG. 1990.** Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq),
- and the standard acidity constant of the ion HSO_4^- in synthetic sea water from 273.15

436 to 318.15 K. Journal of Chemical Thermodynamics 22: 113-127.

437 Ennos AR. 2017. Statistical and Data Handling Skills in Biology. Pearson Education, p.96.

438 Falkowski P. 2012. Ocean Science: The power of plankton. *Nature* 483: 17-20.

- Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the
 biosphere: integrating terrestrial and oceanic components. *Science* 281: 237-240.
- 441 Gao G, Clare AS, Rose C, Caldwell GS. 2018a. Ulva rigida in the future ocean: potential
- 442 for carbon capture, bioremediation, and biomethane production. *Global Change*
- 443 *Biology Bioenergy* **10:** 39-51.

445	Skeletonema costatum (Bacillariophyceae) grown at different Zn ²⁺ concentrations
446	Journal of Phycology 45: 119-129.
447	Gao G, Liu Y, Li X, Feng Z, Xu J. 2016. An ocean acidification acclimatised green tide alga
448	Is robust to changes of seawater carbon chemistry but vulnerable to light stress. PloS
449	<i>One</i> 11 : e0169040.
450	Gao G, Xia J, Yu J, Zeng X. 2018b. Physiological response of a red tide alga (Skeletonema
451	costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.
452	Marine Environmental Research, 133: 15-23.
453	Geider RJ, Macintyre HL, Graziano LM, McKay RML. 1998. Responses of the
454	photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and
455	phosphorus limitation. European Journal of Phycology 33: 315-332.
456	Gifford RM. 1995. Whole plant respiration and photosynthesis of wheat under increased CO ₂
457	concentration and temperature: long-term vs. short-term distinctions for modelling.
458	Global Change Biology 1: 385–396.
459	Hansen PJ. 2002. Effect of high pH on the growth and survival of marine phytoplankton:
460	implications for species succession. Aquatic Microbial Ecology 28: 279-288.
461	Heber U. 1974. Metabolite exchange between chloroplasts and cytoplasm. Annual Review of
462	Plant Physiology 25: 393-421.
463	Hinga KR. 2002. Effects of pH on coastal marine phytoplankton. Marine Ecology Progress
464	Series 238 : 281-300.

Gao G, Gao K, Giordano M. 2009. Responses to solar UV radiation of the diatom

444

Hopkinson BM, Dupont CL, Matsuda Y. 2016. The physiology and genetics of CO₂

470	Hu H, Zhang J, Chen W. 2011. Competition of bloom-forming marine phytoplankton at low
471	nutrient concentrations. Journal of Environmental Sciences 23: 656-663.
472	Hu H, Zhou Q. 2010. Regulation of inorganic carbon acquisition by nitrogen and phosphorus
473	levels in the Nannochloropsis sp. World Journal of Microbiology & Biotechnology 26:
474	957-961.
475	Jeong HJ, An SL, Franks PJS, Lee KH, Ji HK, Kang NS, Lee MJ, Jang SH, Lee SY,
476	Yoon EY. 2015. A hierarchy of conceptual models of red-tide generation: Nutrition,
477	behavior, and biological interactions. <i>Harmful Algae</i> 47: 97-115.
478	Jiang X, Han Q, Gao X, Gao G. 2016. Conditions optimising on the yield of biomass, total
479	lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chemistry
480	194 : 723-732.
481	Li G, Gao K, Yuan D, Zheng Y, Yang G. 2011. Relationship of photosynthetic carbon
482	fixation with environmental changes in the Jiulong River estuary of the South China
483	Sea, with special reference to the effects of solar UV radiation. Marine Pollution
484	Bulletin 62: 1852-1858.
485	Lin S, Litaker RW, Sunda WG. 2016. Phosphorus physiological ecology and molecular
486	mechanisms in marine phytoplankton. Journal of Phycology 52: 10.
487	Liu Y, Song X, Cao X, Yu Z. 2012. Responses of photosynthetic characters of Skeletonema
	24

concentrating mechanisms in model diatoms. Current Opinion in Plant Biology 31:

Hopkinson BM, Morel FMM. 2011. Efficiency of the CO₂-concentrating mechanism of

diatoms. Proceedings of the National Academy of Sciences, USA 108: 3830-3837.

51-57.

macroalgae. Journal of Phycology 26: 439-449. 490 Mccall SJ, Hale MS, Smith JT, Read DS, Bowes MJ. 2017. Impacts of phosphorus 491 concentration and light intensity on river periphyton biomass and community structure. 492 Hydrobiologia 792: 315-330. 493 Moore CM, Mills MM, Arrigo KR, Bermanfrank I, Bopp L, Boyd PW, Galbraith ED, 494 Geider RJ, Guieu C, Jaccard SL. 2013. Processes and patterns of oceanic nutrient 495 limitation. Nature Geoscience 6: 701-710. 496 Müller S, Mitrovic SM. 2015. Phytoplankton co-limitation by nitrogen and phosphorus in a 497 shallow reservoir: progressing from the phosphorus limitation paradigm. 498 Hydrobiologia 744: 255-269. 499 Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. 1995. Production and 500 dissolution of biogenic silica in the ocean: Revised global estimates, comparison with 501 regional data and relationship to biogenic sedimentation. Global Biogeochemical 502 *Cycles* **9**: 359-372. 503 Nimer NA, Ling MX, Brownlee C, Merrett MJ. 1999. Inorganic carbon limitation, 504 exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine 505 phytoplankton species. Journal of Phycology 35: 1200-1205. 506 Nimer NA, Warren M, Merrett MJ. 1998. The regulation of photosynthetic rate and 507 activation of extracellular carbonic anhydrase under CO₂-limiting conditions in the 508 marine diatom Skeletonema costatum. Plant Cell and Environment 21: 805-812. 509

costatum to different nutrient conditions. Journal of Plankton Research 35: 165-176.

Maberly SC. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine

488

489

510	Pierrot D, Lewis E, Wallace DWR. 2006. MS Excel program developed for CO ₂ system
511	calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak
512	Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.
513	Raven JA, Beardall J, Sánchez-Baracaldo P. 2017. The possible evolution, and future, of
514	CO2-concentrating mechanisms. Journal of Experimental Botany.
515	Raven JA, Giordano M, Beardall J, Maberly SC. 2012. Algal evolution in relation to
516	atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon
517	oxidation cycles. Phil. Trans. R. Soc. B 367: 493-507.
518	Reed ML, Pinckney JL, Keppler CJ, Brock LM, Hogan SB, Greenfield DI. 2016. The
519	influence of nitrogen and phosphorus on phytoplankton growth and assemblage
520	composition in four coastal, southeastern USA systems. Estuarine Coastal & Shelf
521	Science 177 : 71-82.
522	Rost B, Riebesell U, Burkhardt S, Sültemeyer D. 2003. Carbon acquisition of
523	bloom-forming marine phytoplankton. Limnology and Oceanography 48: 55-67.
524	Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ,
525	Campbell DM. 1993. The dissociation constants of carbonic acid in seawater at
526	salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44: 249-267.
527	Rubinstein B, Luster DG. 1993. Plasma membrane redox activity: components and role in
528	plant processes. Annual Review of Plant Biology 44: 131-155.
529	Smetacek V, Zingone A. 2013. Green and golden seaweed tides on the rise. Nature 504:
530	84-88.

531 Smith NG, Dukes JS. 2013. Plant respiration and photosynthesis in global-scale models:

Wu H, Gao K. 2009. Ultraviolet radiation stimulated activity of extracellular carbonic 535 anhydrase in the marine diatom Skeletonema costatum. Functional Plant Biology 36: 536 137-143. 537 Wu X, Gao G, Giordano M, Gao K. 2012. Growth and photosynthesis of a diatom grown 538 under elevated CO₂ in the presence of solar UV radiation. Fundamental and Applied 539 Limnology 180: 279-290. 540 541 Xu Z, Gao G, Xu J, Wu H. 2017. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. 542 Biogeosciences 14: 671-681. 543 Young JN, Morel FMM. 2015. Biological oceanography: The CO₂ switch in diatoms. *Nature* 544 *Climate Change* **5**: 722-723. 545 Ziska LH, Bunce JA. 1998. The influence of increasing growth temperature and CO₂ 546 concentration on the ratio of respiration to photosynthesis in soybean seedlings. 547 Global Change Biology 4: 637-643. 548 Zou D, Gao K. 2013. Thermal acclimation of respiration and photosynthesis in the marine 549 macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). Journal of 550 *Phycology* **49**: 61–68. 551 552 553 27

incorporating acclimation to temperature and CO₂. Global Change Biology 19: 45-63.

Wang J. 2002. Phytoplankton communities in three distinct ecotypes of the Changjiang

estuary. Journal of Ocean University of China 32: 422-428.

532

533

Table 1 Two-way analysis of variance for the effects of CO_2 and phosphate on net photosynthetic rate, dark respiration rate and ratio of respiration to photosynthesis of *S*. *costatum*. CO_2 *phosphate means the interactive effect of CO_2 and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

Source	Net photosynthetic rate		Dark respiration rate			Ratio of respiration to photosynthesis			
	df	F	Sig.	df	F	Sig.	df	F	Sig.
CO ₂	1	11.286	0.003	1	1.262	0.275	1	32.443	< 0.001
Phosphate	4	157.925	< 0.001	4	169.050	< 0.001	4	7.081	0.001
CO ₂ *phosphate	4	3.662	0.021	4	3.226	0.034	4	8.299	< 0.001
Error	20			20			20		

559	Table 2 Two-way analysis of variance for the effects of CO_2 and phosphate on relative
560	electron transport rate (rETR), Chl a, and CO ₂ level required to give half of DIC-saturated
561	maximum rate of photosynthetic O ₂ evolution ($K_{0.5}$) of <i>S. costatum</i> . CO ₂ *phosphate means the
562	interactive effect of CO_2 and phosphate, df means degree of freedom, F means the value of F
563	statistic, and Sig. means p-value.

	5		4
--	---	--	---

	rETR			Chl a			$K_{0.5}$		
Source	df	F	Sig.	df	F	Sig.	df	F	Sig.
CO ₂	1	28.717	< 0.001	1	32.963	< 0.001	1	96.182	< 0.001
Phosphate	4	127.860	< 0.001	4	92.045	< 0.001	4	40.497	< 0.001
CO ₂ *phosphate	4	3.296	0.031	4	3.871	0.017	4	3.821	0.018
Error	20			20			20		

Table 3 Two-way analysis of variance for the effects of CO_2 and phosphate on CA_{ext} activity, redox activity of plasma membrane and pH compensation point of *S. costatum*. CO₂*phosphate means the interactive effect of CO₂ and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

Source	CA _{ext} activity			redox activity of plasma membrane				pH compensation point		
	df	F	Sig.	df	F	Sig.	df	F	Sig.	
CO ₂	1	569.585	< 0.001	1	937.963	< 0.001	1	0.056	0.816	
Phosphate	4	176.392	< 0.001	4	276.362	< 0.001	4	226.196	< 0.001	
CO ₂ *phosphate	4	87.380	< 0.001	4	137.050	< 0.001	4	0.040	0.997	
Error	20			20			20			

570	Table 4 Repeated measures analysis of variance for the effects of CO_2 and phosphate on pH
571	change during 10 hours of incubation. Time*CO ₂ means the interactive effect of incubation
572	time and CO ₂ , Time*phosphate means the interactive effect of incubation time and phosphate,
573	Time*CO ₂ *phosphate means the interactive effect of incubation time, CO ₂ and phosphate,
F7 4	df means degree of freedom. E means the value of E statistic, and Sig. means a value

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Time	40.766	10	4.077	8737.941	< 0.001
Time*CO ₂	0.003	10	< 0.001	0.569	0.838
Time*phosphate	0.886	40	0.022	47.496	< 0.001
Time*CO ₂ *phosphate	0.002	40	< 0.001	0.112	1.000
Error	0.093	200	< 0.001		

df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

575 Figure legends

Fig. 1. Net photosynthetic rate (a) and dark respiration rate (b) in S. costatum grown at 576 various phosphate concentrations after ambient (AC) and low CO₂ (LC) treatments. The error 577 bars indicate the standard deviations (n = 3). Different letters represent the significant 578 difference (P < 0.05) among phosphate concentrations (capital for AC, lower case for LC). 579 Horizontal lines represent significant difference (P < 0.05) between CO₂ treatments. 580 Fig. 2. Ratio of respiration rate to net photosynthetic rate in S. costatum grown at various 581 phosphate concentrations after ambient (AC) and low CO_2 (LC) treatments. The error bars 582 indicate the standard deviations (n = 3). Different letters represent the significant difference (P 583 584 < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines represent significant difference (P < 0.05) between CO₂ treatments. 585 Fig. 3. Relative electron transport rate (rETR) in S. costatum grown at various phosphate 586 concentrations after ambient (AC) and low CO₂ (LC) treatments. The error bars indicate the 587 standard deviations (n = 3). Different letters represent the significant difference (P < 0.05) 588 among phosphate concentrations (Capital for AC lower case for LC). Horizontal lines 589 590 represent significant difference (P < 0.05) between CO₂ treatments. Fig. 4. Photosynthetic Chl a content in S. costatum grown at various phosphate concentrations 591 after ambient (AC) and low CO₂ (LC) treatments. The error bars indicate the standard 592 deviations (n = 3). Different letters represent the significant difference (P < 0.05) among 593 phosphate concentrations (capital for AC, lower case for LC). Horizontal lines represent 594 significant difference (P < 0.05) between CO₂ treatments. 595

596 Fig. 5. Net photosynthetic rate as a function of DIC for *S. costatum* grown at various

597 phosphate concentrations after ambient (a) and low CO_2 (b) treatments. The error bars 598 indicate the standard deviations (n = 3).

- **Fig. 6.** Half saturation constant ($K_{0.5}$) for CO₂ in *S. costatum* grown at at various phosphate
- 600 concentrations after ambient (AC) and low CO_2 (LC) treatments. The error bars indicate the
- standard deviations (n = 3). Different letters represent the significant difference (P < 0.05)
- among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines

represent significant difference (P < 0.05) between CO₂ treatments.

- **Fig. 7.** CA_{ext} activity (a) and reduction rate of ferricyanide (b) in *S. costatum* grown at various
- phosphate concentrations after ambient (AC) and low CO₂ (LC) treatments. The error bars
- 606 indicate the standard deviations (n = 3). Different letters represent the significant difference (P
- < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines
- represent significant difference (P < 0.05) between CO₂ treatments.
- **Fig. 8.** Changes of pH in a closed system caused by photosynthesis of *S. costatum* grown at
- various phosphate concentrations after ambient (AC) and low CO₂ (LC) treatments. The error
- 611 bars indicate the standard deviations (n = 3).

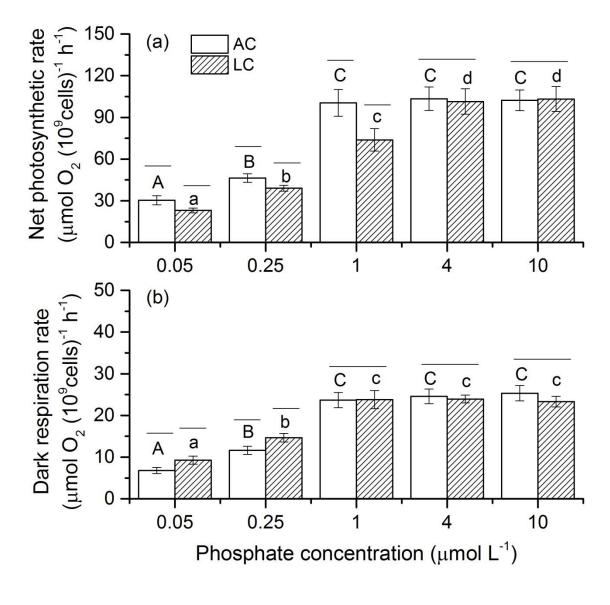


Fig. 1

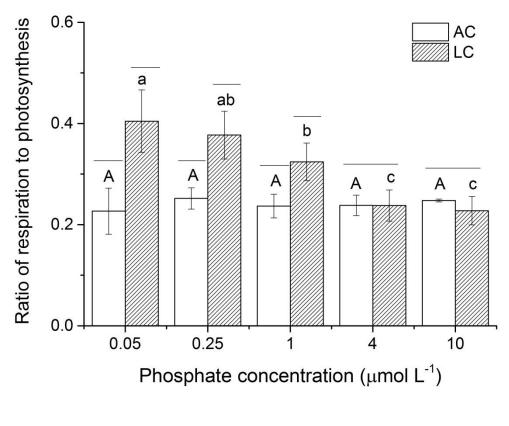


Fig. 2

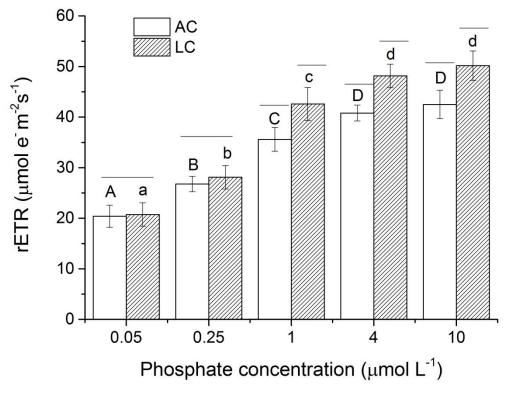


Fig. 3

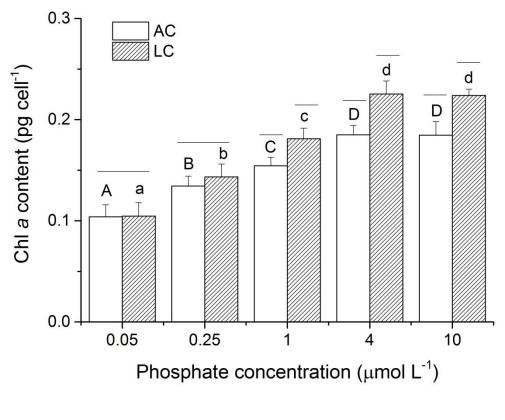


Fig. 4

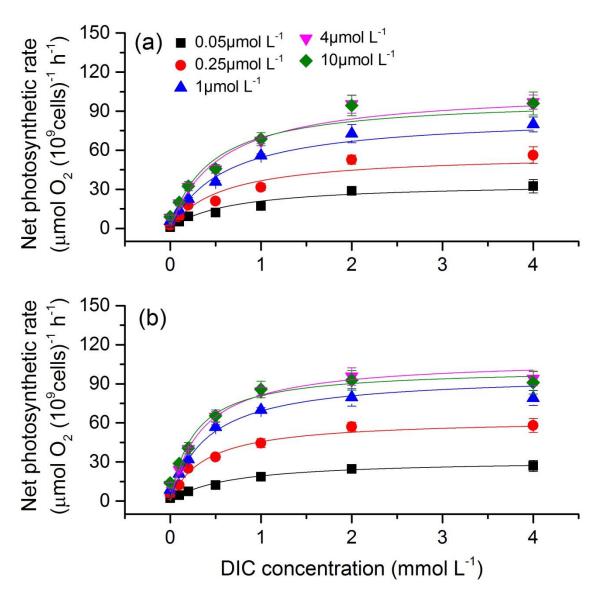


Fig. 5

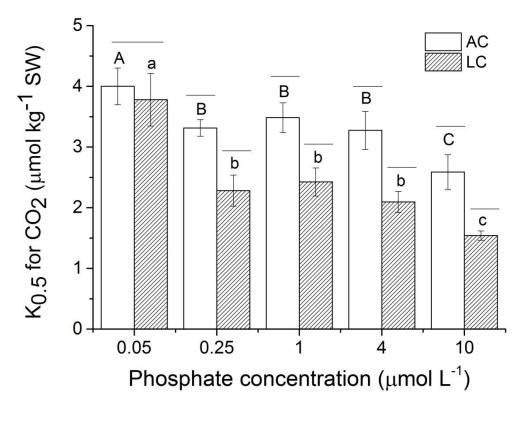


Fig. 6

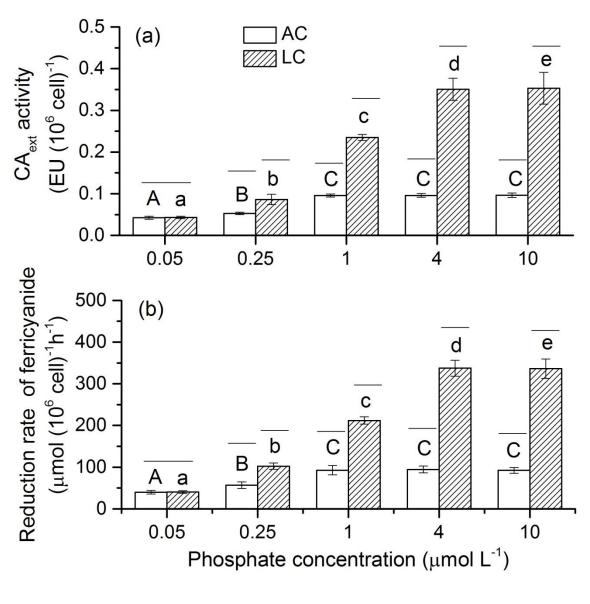
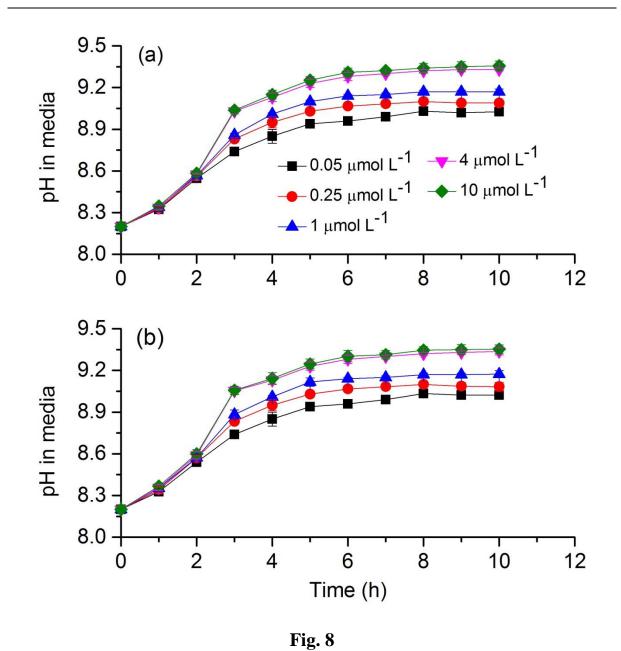



Fig. 7

