Regulation of inorganic carbon acquisition in a red tide alga (*Skeletonema costatum*): the importance of phosphorus availability

Guang Gao^{a,b,c}, Jianrong Xia^{a*}, Jinlan Yu^a, Jiale Fan^b, Xiaopeng Zeng^a

^aSchool of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China

^bJiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, China

^cState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

*Corresponding author, Email: <u>jrxia@gzhu.edu.cn</u>; Phone: +86 (0)20 39366941; Fax: +86 (0)20 39366949

Abstract:

1

2 Skeletonema costatum is a common bloom-forming diatom and encounters eutrophication and severe carbon dioxide (CO₂) limitation during red tides. However, little is known regarding 3 the role of phosphorus (P) in modulating inorganic carbon acquisition in S. costatum, 4 particularly under CO₂ limitation conditions. We cultured S. costatum under five phosphate 5 levels (0.05, 0.25, 1, 4, 10 μmol L⁻¹) and then treated it with two CO₂ conditions (2.8 and 12.6 6 μmol L⁻¹) for two hours. The lower CO₂ reduced net photosynthetic rate at lower phosphate 7 levels ($< 4 \mu mol L^{-1}$) but did not affect it at higher phosphate levels (4 and 10 $\mu mol L^{-1}$). In 8 contrast, the lower CO₂ induced higher dark respiration rate at lower phosphate levels (0.05 9 and 0.25 µmol L⁻¹) and did not affect it at higher phosphate levels (> 1 µmol L⁻¹). The lower 10 CO₂ did not change relative electron transport rate (rETR) at lower phosphate levels (0.05 and 11 0.25 μmol L⁻¹) and increased it at higher phosphate levels (> 1 μmol L⁻¹). Photosynthetic CO₂ 12 affinity $(1/K_{0.5})$ increased with phosphate levels. The lower CO₂ did not affect photosynthetic 13 CO₂ affinity at 0.05 µmol L⁻¹ phosphate but enhanced it at the other phosphate levels. Activity 14 of extracellular carbonic anhydrase was dramatically induced by the lower CO2 at phosphate 15 replete conditions (> 0.25 μmol L⁻¹) and the same pattern also occurred for redox activity of 16 plasma membrane. Direct bicarbonate (HCO3-) use was induced when phosphate 17 concentration was more than 1 µmol L⁻¹. These findings indicate P enrichment could enhance 18 inorganic carbon acquisition and thus maintain the photosynthesis rate in S. costatum grown 19 20 under CO2 limiting conditions via increasing activity of extracellular carbonic anhydrase and facilitating direct HCO₃ use. This study sheds light on how bloom-forming algae cope with 21 carbon limitation during the development of red tides. 22

- 23 Keywords: carbonic anhydrase; CO₂ concentrating mechanisms; pH compensation point;
- 24 photosynthesis; redox activity; respiration

1. Introduction

25

Diatoms are unicellular photosynthetic microalgae that can be found worldwide in 26 freshwater and oceans. Marine diatoms account for 75% of the primary productivity for 27 28 coastal and other nutrient-rich zones and approximately 20% of global primary production (Field et al., 1998; Falkowski, 2012), hence playing a vital role in the marine biological 29 carbon pump as well as the biogeochemical cycling of important nutrients, such as nitrogen 30 and silicon (Nelson et al., 1995; Moore et al., 2013; Young & Morel, 2015). Diatoms usually 31 32 dominate the phytoplankton communities and form large-scale blooms in nutrient-rich zones and upwelling regions (Bruland et al., 2001; Anderson et al., 2008; Barton et al., 2016). 33 Nutrient enrichment is considered as a key factor that triggers algal blooms albeit the 34 occurrence of diatom blooms may be modulated by other environmental factors, such as 35 temperature, light intensity, salinity, and so forth (Smetacek & Zingone, 2013; Jeong et al., 36 37 2015). When inorganic nitrogen and phosphorus are replete, diatoms can out-compete chrysophytes, raphidophytes and dinoflagellates (Berg et al., 1997; Jeong et al., 2015; Barton 38 et al., 2016) and dominate algal blooms due to their quicker nutrient uptake and growth rate. 39 In normal natural seawater (pH 8.1, salinity 35), HCO₃ is the majority (~90%) of total 40 dissolved inorganic carbon (DIC, 2.0-2.2 mM). CO₂ (1%, 10-15 μM), which is the only 41 direct carbon source that can be assimilated by all photosynthetic organisms, only accounts 42 1% of total dissolved inorganic carbon. Diatoms' ribulose-1,5-bisphosphate 43 carboxylase/oxygenase (Rubisco), catalyzing the primary chemical reaction by which CO2 is 44 transformed into organic carbon, has a relatively low affinity for CO2 and is commonly less 45 than half saturated under current CO₂ levels in seawater (Hopkinson & Morel, 2011), 46

suggesting that CO₂ is limiting for marine diatoms' carbon fixation. To cope with the CO₂ limitation in seawater and maintain a high carbon fixation rate under the low CO₂ conditions, diatoms have evolved various inorganic carbon acquisition pathways and CO2 concentrating mechanisms (CCMs), for instance, active transport of HCO₃, the passive influx of CO₂, multiple carbonic anhydrase (including both common $(\alpha, \beta, \gamma, \underline{\text{found in all algae}})$ and unusual $(\delta, \zeta, \frac{\text{found only in diatoms}}{\text{only in diatoms}})$ families that carries out the fast interconversion of CO₂ and HCO₃-), assumed C4-type pathway (using phosphoenolpyruvate to capture more CO₂ in the periplastidal compartment), to increase the concentration at the location of Rubisco and thus the carbon fixation. (Hopkinson & Morel, 2011; Hopkinson et al., 2016). Skeletonema costatum is a worldwide diatom species that can be found from equatorial to polar waters. It usually dominates large-scale algal blooms in eutrophic seawaters (Wang, 2002; Li et al., 2011). When blooms occur, seawater pH increases and CO₂ decreases because the dissolution rate of CO₂ from the atmosphere cannot catch up with its removal rate caused by intensive photosynthesis of algae. For instance, pH level in the surface waters of the eutrophic Mariager Fjord, Denmark, could be up to 9.75 during algal blooms (Hansen, 2002). Consequently, S. costatum experiences very severe CO₂ limitation when blooms occur. To deal with it, S. costatum has developed multiple CCMs (Nimer et al., 1998; Rost et al., 2003). However, contrasting findings were reported. Nimer et al. (1998) documented that extracellular carbonic anhydrase activity in S. costatum was only induced when CO2 concentration was less than 5 μmol L⁻¹ while Rost et al. (2003) reported that activity of extracellular carbonic anhydrase could be detected even when CO₂ concentration was 27 µmol L⁻¹. Chen and Gao (2004) showed that in S. costatum had little capacity in direct HCO₃ utilization. On the other hand,

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

simultaneously. 70 Phosphorus (P) is an indispensable element for all living organisms, serving as an integral 72 component of lipids, nucleic acids, adenosine-triphosphate (ATP) and a diverse range of other metabolites. Levels of bioavailable phosphorus are very low in many ocean environments and phosphorus enrichment can commonly increase algal growth and marine primary productivity 75 in the worldwide oceans (Davies & Sleep, 1989; Müller & Mitrovic, 2015; Lin et al., 2016). Due to the essential role of phosphorus, extensive studies have been conducted to investigate 76 the effect of phosphorus on photosynthetic performances (Geider et al., 1998; Liu et al., 2012; Beamud et al., 2016), growth (Jiang et al., 2016; Reed et al., 2016; Mccall et al., 2017), 78 phosphorus acquisition, utilization and storage (Lin et al., 2016; Gao et al., 2018a). Some studies show the essential role of phosphorus in regulating inorganic carbon acquisition in 80 green algae (Beardall et al., 2005; Hu & Zhou, 2010). In terms of S. costatum, studies regarding the inorganic carbon acquisition in S. costatum focus on its response to variation of CO₂ availability. The role of phosphorus in S. costatum's CCMs remains unknown. Based on the connection between phosphorus and carbon metabolism in diatoms (Brembu et al., 2017), we hypothesize that phosphorus enrichment could enhance inorganic carbon utilization and hence maintain high rates of photosynthesis and growth in S. costatum under CO₂ limitation 86 conditions. In the present study, we aimed to test this hypothesis by investigating the variation of CCMs (including active transport of HCO₃ and carbonic anhydrase activity) and photosynthetic rate under five levels of phosphate and two levels of CO₂ conditions. We also measured redox activity of plasma membrane as it is deemed to be critical to activate carbonic

Rost et al. (2003) demonstrated that this species could take up CO₂ and HCO₃

69

71

73

74

77

79

81

82

83

84

85

87

88

89

anhydrase (Nimer *et al.*, 1998). Our study would provides helpful insights into how

92 bloom-forming diatoms overcome CO₂ limitation to maintain a quick growth rate during red

93 tides.

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

2. Materials and Methods

2.1. Culture conditions

Skeletonema costatum (Grev.) Cleve from Jinan University, China, was cultured in f/2 artificial seawater with five phosphate levels (0.05, 0.25, 1, 4, 10 μmol L⁻¹) by adding different amounts of NaH₂PO₄ 2H₂O. The cultures were carried out semi-continuously at 20°C for seven days. The light irradiance was set as 200 μmol photons m⁻² s⁻¹, with a light and dark period of 12: 12. The cultures were aerated with ambient air (0.3 L min⁻¹) to maintain the pH around 8.2. The cells during exponential phase were collected and rinsed twice with DIC-free seawater that was made according to Xu et al. (2017). Afterwards, cells were resuspended in fresh media with two levels of pH (8.20 and 8.70, respectively corresponding to ambient CO₂ (12.6 μmol L⁻¹, AC) and low CO₂ (2.8 μmol L⁻¹, LC) under corresponding phosphate levels for two hours before the following measurements, with a cell density of 1.0×10^6 mL⁻¹. The concentrations of DIC were 2109 ± 36 and 1802 ± 38 µmol (kg seawater)⁻¹, respectively. Cell density was determined by direct counting with an improved Neubauer haemocytometer (XB-K-25, Qiu Jing, Shanghai, China). This transfer aimed to investigate the effects of phosphate on DIC acquisition under a CO₂ limitation condition. The pH of 8.70 was chosen considering that it is commonly used as a CO₂ limitation condition (Nimer et al., 1998; Chen & Gao, 2004) and also occurs during algal blooms (Hansen, 2002). Two hours should be enough to activate CCMs in S. costatum (Nimer et al., 1998). The cell

density did not vary during the two hours of pH treatment. All experiments were conducted in triplicates.

2.2. Manipulation of seawater carbonate system

The two levels of pH (8.20 and 8.70) were obtained by aerating the ambient air and pure nitrogen (99.999%) tilluntil the target value, and were then maintained with a buffer of 50 mM tris (hydroxymethyl) aminomethane-HCl. The cultures were open to the ambient atmosphere and the rise of culture pH was due to algal photosynthesis below 0.02 unites (corresponding to the rise decrease of CO₂ less than 0.7 and 0.2 μmol L⁻¹ for pH 8.20 and 8.70 treatments, respectively) during the two hours of pH treatment. CO₂ level in seawater was calculated via CO2SYS (Pierrot *et al.*, 2006) based on measured pH and TAlk, using the equilibrium constants of K1 and K2 for carbonic acid dissociation (Roy *et al.*, 1993) and the KSO₄⁻¹ dissociation constant from Dickson (1990).

2.3. The pH_{NBS} was measured by a pH meter (pH 700, Eutech Instruments, Singapore) that was equipped with an Orion[®] 8102BN Ross combination electrode (Thermo Electron Co., USA) and calibrated with standard National Bureau of Standards (NBS) buffers (pH = 4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA). Total alkalinity (TAlk) was determined at 25.0 °C by Gran acidimetric titration on a 25-ml sample with a TAlk analyzer (AS-ALK1, Apollo SciTech, USA), using the precision pH meter and an Orion[®] 8102BN Ross electrode for detection. To ensure the accuracy of TAlk, the TAlk analyser was regularly calibrated with certified reference materials from Andrew G. Dickson's laboratory (Scripps Institute of Oceanography, U.S.A.) at a precision of ±2 μmol kg⁻¹. CO₂ level in seawater was calculated via CO2SYS (Pierrot *et al.*, 2006) based on measured pH and TAlk, using the

带格式的:字体:(默认)Times New Roman,小四,字体颜色:文字

带格式的:正文, 无项目符号或编

带格式的:字体:倾斜

135	equilibrium constants of K1 and K2 for carbonic acid dissociation (Roy et al., 1993) and the
136	KSO ₄ -dissociation constant from Dickson (1990).
137	2.3. Chlorophyll fluorescence measurement
138	Chlorophyll fluorescence was measured with a pulse modulation fluorometer (PAM-2100,
139	Walz, Germany) to assess electron transport in photosystem II (the first protein complex in the
140	<u>light-dependent reactions of photosynthesis</u>) and the possible connection between electron
141	transport and redox activity of the plasma membrane. The measuring light and actinic light
142	were 0.01 and 200 μmol photons $m^{2} s^{1}$, respectively. The saturating pulse was set 4,000 μmol
143	photons m ⁻² s ⁻¹ (0.8 s). Relative eElectron transport in photosystem II (FETR, μmol e (mg Chl
144	\underline{a}) == 0.5 × E × Φ_{PSII} × \overline{a}^* (Dimier <i>et al.</i> , 2009; Alderkamp <i>et al.</i> , 2012), where E (μ mol)
145	photons m ⁻² s ⁻¹) is the ambient light density, Φ_{PSII} (dimensionless) is the PSII photochemical
146	efficiency and \bar{a}^* is Chl a-specific absorption coefficient (m ⁻² (mg Chl a) ⁻¹). Since \bar{a}^* is
147	light-dependent, we used the value of 0.0138 based on Lefebvre et al's (2007) study in which
148	the light density is very close to ours.
149	$(F_M^2 - F_t) / F_M^2 \times 0.5 \times PFD$ (Gao et al., 2018), where F_M^2 is the maximal fluorescence
150	levels from algae in the actinic light after application a saturating pulse, Ft is the fluorescence
151	at an excitation level and PFD is the actinic light density.
152	2.4.–Estimation of photosynthetic oxygen evolution and respiration
153	The net photosynthetic and respiration rates of S. costatum were measured using a
154	Clark-type oxygen electrode (YSI Model 5300, USA) that was held in a circulating water bath
155	(Cooling Circulator; Cole Parmer, Chicago, IL, USA) to keep the setting temperature (20°C).
156	Five mL of samples were transferred to the oxygen electrode cuvette and were stirred during

measurement. The light intensity and temperature were maintained as the same as that in the growth condition. The illumination was provided by a halogen lamp. The increase of oxygen content in seawater within five minutes was defined as net photosynthetic rate. To measure dark respiration rate, the samples were placed in darkness and the decrease of oxygen content within ten minutes was defined as dark respiration rate given the slower oxygen variation rate for dark respiration. Net photosynthetic rate and dark respiration rate were presented as umol $O_2(10^9 \text{ cells})^{-1} \text{ h}^{-1}$. To obtain the curve of net photosynthetic rate versus DIC, seven levels of DIC (0, 0.1, 0.2, 0.5, 1, 2, and 4 mM) were made by adding different amounts of NaHCO₃ to the Tris buffered DIC-free seawater (pH 8.20). The algal samples were washed twice with DIC-free seawater before transferring to the various DIC solutions. Photosynthetic rates at different DIC levels were measured under saturating irradiance of 400 μmol photons m⁻² s⁻¹ and growth temperature. The algal samples were allowed to equilibrate for 2-3 min at each DIC level during which period a linear change in oxygen concentration was obtained and recorded. The parameter, photosynthetic half saturation constant ($K_{0.5}$, i.e., the DIC concentration required to give half of DIC-saturated maximum rate of photosynthetic O₂ evolution), was calculated from the Michaelis-Menten kinetics equation (Caemmerer and Farquhar 1981): $V = V_{max} \times [S]$ $/(K_{0.5} + [S])$, where V is the real-time photosynthetic rate, V_{max} is maximum photosynthetic rate and [S] is the DIC concentration. The value of $1/K_{0.5}$ represents photosynthetic DIC affinity. K_{0.5} for CO₂ was calculated via CO2SYS (Pierrot et al., 2006) based on pH and TA, using the equilibrium constants of K1 and K2 for carbonic acid dissociation (Roy et al., 1993) and the KSO₄ dissociation constant from Dickson (1990).

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

2.5. Measurement of photosynthetic pigment

179

200

180 To determine the photosynthetic pigment (Chl a) content, 50 mL of culture were filtered on a Whatman GF/F filter, extracted in 5 mL of 90% acetone for 12 h at 4°C, and centrifuged 181 182 (3, 000 g, 5 min). The optical density of the supernatant was scanned from 200 to 700 nm 183 with a UV-VIS spectrophotometer (Shimadzu UV-1800, Kyoto, Japan). The concentration of Chl a was calculated based on the optical density at 630 and 664 nm: Chl $a = 11.47 \times OD_{664} -$ 184 $0.40 \times OD_{630}$ (Gao et al., 2018b), and was normalized to pg cells⁻¹. 185 186 2.6. Measurement of extracellular carbonic anhydrase activity Carbonic anhydrase activity was assessed using the electrometric method (Gao et al., 187 2009). Cells were harvested by centrifugation at 4, 000 g for five minutes at 20°C, washed 188 once and resuspended in 8 mL Na-barbital buffer (20 mM, pH 8.2). Five mL CO₂-saturated 189 icy distilled water was injected into the cell suspension, and the time required for a pH 190 decrease from 8.2 to 7.2 at 4°C was recorded. Extracellular carbonic anhydrase (CA_{ext}) 191 192 activity was measured using intact cells. CA activity (E.U.) was calculated using the following formula: E.U. = $10 \times (T_0/T - 1)$, where T_0 and T represent the time required for the 193 194 pH change in the absence or presence of the cells, respectively. 2.7. Measurement of redox activity in the plasma membrane 195 The redox activity of plasma membrane was assayed by monitoring the change in 196 K₃Fe(CN)₆ concentration that accompanied reduction of the ferricyanide to ferrocyanide. The 197 198 ferricyanide [K₃Fe(CN)₆] cannot penetrate intact cells and has been used as an external electron acceptor (Nimer et al., 1998; Gao et al., 2018b). Stock solutions of K₃Fe(CN)₆ were 199

freshly prepared before use. Five mL of samples were taken after two hours of incubation

with 500 μ mol K₃Fe(CN)₆ and centrifuged at 4000 g for 10 min (20°C). The concentration of K₃Fe(CN)₆ in the supernatant was measured spectrophotometrically at 420 nm (Shimadzu UV-1800, Kyoto, Japan). The decrease of K₃Fe(CN)₆ during the two hours of incubation was used to assess the rate of extracellular ferricyanide reduction that was presented as μ mol (10⁶ cells)⁻¹ h⁻¹ (Nimer et al., 1998).

2.8. Cell-driving pH drift experiment

To obtain the pH compensation point, the cells were transferred to sealed glass vials containing fresh medium (pH 8.2) with corresponding phosphate levels. The cell concentration for all treatments was 5.0×10^5 mL⁻¹. The pH drift of the suspension was monitored at 20° C and 200 µmol photons m⁻² s⁻¹ light level. The pH compensation point was obtained when there was no a-further increase in pH.

2.9. Statistical analysis

Results were expressed as means of replicates \pm standard deviation and data were analyzed using the software SPSS v.21. The data from each treatment conformed to a normal distribution (Shapiro-Wilk, P > 0.05) and the variances could be considered equal (Levene's test, P > 0.05). Two-way ANOVAs were conducted to assess the effects of CO_2 and phosphate on net photosynthetic rate, dark respiration rate, ratio of net photosynthetic rate to dark respiration rate, rETR, Chl a, $K_{0.5}$, CA_{ext} , reduction rate of ferricyanide, and pH compensation point. Least Significant Difference (LSD) was conducted for *post hoc* investigation. Repeated measures ANOVAs were conducted to analyze the effects of DIC on net photosynthetic rate and the effect of incubation time on media pH in a closed system. Bonferroni was conducted for *post hoc* investigation as it is the best reliable *post hoc* test for repeated measures ANOVA

223 (Ennos, 2007). The threshold value for determining statistical significance was P < 0.05.

3. Results

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

3.1. Effects of CO_2 and phosphate on photosynthetic and respiratory performances The net photosynthetic rate and dark respiration rate in S. costatum grown at various CO₂ and phosphate concentrations were first investigated (Fig. 1). CO₂ interacted with phosphate on net photosynthetic rate, with each factor having a main effect (Table 1 & Fig. 1a). Post hoc LSD comparison (P = 0.05) showed that 2.8 µmol CO₂LC reduced net photosynthetic rate when the phosphate levels was below 4 µmol L⁻¹ but did not affect it at the higher phosphate levels. Under ACthe condition of 12.6 µmol CO₂, net photosynthetic rate increased with phosphate level and reached the plateau $(100.51 \pm 9.59 \, \mu \text{mol O}_2 (10^9 \, \text{cells})^{-1} \, \text{h}^{-1})$ at 1 $\mu \text{mol L}^{-1}$ phosphate. Under the condition of 2.8 µmol CO₂LC, net photosynthetic rate also increased with phosphate level but did not hit the peak $(101.46 \pm 9.19 \, \mu mol \, O_2 \, (10^9 \, cells)^{-1} \, h^{-1})$ until 4 µmol L⁻¹ phosphate. In terms of dark respiration rate (Fig. 1b), phosphate had a main effect on it and it interacted with CO₂ (Table 1). Specifically, 2.8 µmol CO₂LC increased dark respiration rate at 0.05 and 0.25 µmol L⁻¹ phosphate levels, but did not affect it when phosphate level was above 1 μ mol L⁻¹ (LSD, P < 0.05). Regardless of CO₂ level, respiration rate increased with phosphate availability and stopped at 1 µmol L⁻¹. The ratio of respiration to photosynthesis ranged from 0.23 to 0.40 (Fig. 21c). Both CO₂ and phosphate had a main effect, and they interacted on the ratio of respiration to photosynthesis (Table 1). The level of 2.8 µmol CO₂LC increased the ratio when phosphate was lower than 4 μ mol L⁻¹ but did not affect it when phosphate levels were 4 or 10 μ mol L⁻¹.

Both CO₂ and phosphate affected *ETR and they also showed an interactive effect (Fig. 3

2 & Table 2). For instance, post hoc LSD comparison showed that 2.8 µmol CO₂LC did not 245 affect #ETR at lower phosphate levels (0.05 and 0.25 µmol L-1) but increased it at higher 246 phosphate levels (1-10 µmol L⁻¹). Regardless of CO₂ treatment, **FETR** increased with 247 phosphate level (0.05–4 µmol L⁻¹) but the highest phosphate concentration did not result in a 248 249 further increase in \neq ETR (LSD, P > 0.05). The content of Chl a was measured to investigate the effects of CO₂ and phosphate on 250 photosynthetic pigment in S. costatum (Fig. 43). Both CO₂ and phosphate affected the 251 252 synthesis of Chl a and they had an interactive effect (Table 2). Post hoc LSD comparison (P =0.05) showed that $\frac{2.8 \text{ } \mu\text{mol CO}_2\text{LC}}{\text{did not affect Chl } a}$ at 0.05 or 0.25 $\mu\text{mol L}^{-1}$ phosphate 253 but stimulated Chl a synthesis at higher phosphate levels (1–10 µmol L⁻¹). Irrespective of CO₂ 254 treatment, Chl a content increased with phosphate level and reached the plateau (0.19 \pm 0.01 255 pg cell⁻¹ for $\underline{12.6 \mu mol\ CO_2AC}$ and 0.23 ± 0.01 pg cell⁻¹ for $\underline{2.8 \mu mol\ CO_2LC}$) at 4 $\mu mol\ L^{-1}$ 256 257 phosphate. To assess the effects of CO₂ and phosphate on photosynthetic CO₂ affinity in S. costatum, 258 the net photosynthetic rates of cells exposure to seven levels of DIC were measured (Fig. 54). 259 After curve fitting, the values of $K_{0.5}$ for CO_2 were calculated (Fig. 65). CO_2 and phosphate 260 interplayed on $K_{0.5}$ and each had a main effect (Table 2). The level of 2.8 μ mol CO_2 LC did 261 not affect $K_{0.5}$ at the lowest phosphate level but reduced it at the other phosphate levels. Under 262 ACthe condition of 12.6 μ mol CO₂, higher phosphate levels (0.25–4 μ mol L⁻¹) reduced $K_{0.5}$ 263 and the highest phosphate level led to a further decrease to 2.59 \pm 0.29 μ mol kg⁻¹ seawater 264 compared to the value of $4.00 \pm 0.30 \,\mu\text{mol kg}^{-1}$ seawater at $0.05 \,\mu\text{mol L}^{-1}$ phosphate. The 265 pattern with phosphate under LCat 2.8 µmol CO₂ was the same as 12.6 µmol CO₂ the AC. 266

带格式的:字体:加粗

3.3. The effects of CO_2 and phosphate on inorganic carbon acquisition

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

To investigate the potential mechanisms that cells overcame CO₂ limitation during algal blooms, the activity of CA_{ext}, a CCM related enzyme, was estimated under various CO₂ and phosphate conditions (Fig. 7a6a). Both CO2 and phosphate had a main effect and they interacted on CA_{ext} activity (Table 3). Post hoc LSD comparison (P = 0.05) showed that 2.8umol CO2LC induced more CAext activity under all phosphate conditions except for 0.05 μmol L⁻¹ levels, compared to 12.6 μmol CO₂AC. Under ACthe condition of 12.6 μmol CO₂, CA_{ext} activity increased (0.04–0.10 EU (10⁶ cells)⁻¹) with phosphate level and stopped increasing at 1 µmol L⁻¹ phosphate. Under the condition of 2.8 µmol CO₂LC, CA_{ext} activity also increased (0.04–0.35 EU (10⁶ cells)⁻¹) with phosphate level but reached the peak at 4 μmol L⁻¹ phosphate. The redox activity of plasma membrane was also assessed to investigate the factors that modulate CA_{ext} activity (Fig. 7b6b). The pattern of redox activity of plasma membrane under various CO_2 and phosphate conditions was the same as that of CA_{ext} activity. That is, CO₂ and phosphate had an interactive effect on redox activity of plasma membrane, each having a main effect (Table 3). To test cells' tolerance to high pH and obtain pH compensation points in S. costatum grown under various CO2 and phosphate levels, changes of media pH in a closed system were monitored (Fig. 87). The media pH under all phosphate conditions increased with incubation time (Table 4). Specifically speaking, there was a steep increase in pH during the first three hours, afterwards the increase became slower and it reached a plateau in six hours (Bonferroni, P < 0.05). Phosphate had an interactive effect with incubation time (Table 4). For instance, there was no significant difference in media pH among phosphate levels during first two

hours of incubation but then divergence occurred and they stopped at different points. Two-way ANOVA analysis showed that CO_2 treatment did not affect pH compensation point but phosphate had a main effect (Table 3-). Under each CO_2 treatment, pH compensation point increased with phosphate level, with lowest of 9.03 ± 0.03 at $0.05 \mu mol L^{-1}$ and highest of 9.36 ± 0.04 at $10 \mu mol L^{-1}$ phosphate.

4. Discussion

4.1. Photosynthetic performances under various CO₂ and phosphate conditions

The lower CO₂ availability reduced the net photosynthetic rate of *S. costatum* grown at the lower phosphate levels in the present study. However, Nimer *et al.* (1998) demonstrated that the increase in pH (8.3–9.5) did not reduce photosynthetic CO₂ fixation of *S. costatum* and Chen and Gao (2004) reported that a higher pH (8.7) even stimulated the photosynthetic rate of *S. costatum* compared to the control (pH 8.2). The divergence between our and the previous studies may be due to different nutrient supply. Both Nimer *et al.* (1998) and Chen and Gao (2004) used f/2 media to grow algae. The phosphate concentration in f/2 media is ~36 µmol L⁻¹, which is replete for physiological activities in *S. costatum*. *Skeletonema costatum* grown at higher phosphate levels (4 and 10 µmol L⁻¹) also showed similar photosynthetic rates for the lower and higher CO₂ treatments. Our finding combined with the previous studies indicates phosphorus plays an important role in dealing with low CO₂ availability for photosynthesis in *S. costatum*.

Different from net photosynthetic rate, $\frac{2.8 \ \mu mol\ CO_2 LC}{LC}$ did not affect rETR at lower phosphate levels (0.05 and 0.25 \ \mu mol\ L^{-1}) and stimulated it at higher phosphate levels (1–10 \ \mu mol\ L^{-1}). This interactive effect of CO₂ and phosphate may be due to their effects on Chl a.

The level of 2.8 µmol CO₂LC induced more synthesis of Chl *a* at higher phosphate levels (1–10 µmol L⁻¹). This induction of lower CO₂LC on photosynthetic pigment is also reported in green algae (Gao *et al.*, 2016). More energy is required under LC lower CO₂ to address the more severe CO₂ limitation and thus more Chl *a* are synthesized to capture more light energy, particularly when phosphate was replete. Although P is not an integral component for chlorophyll, it plays an important role in cell energetics through high-energy phosphate bonds, i.e. ATP, which could support chlorophyll synthesis. The stimulating effect of P enrichment on photosynthetic pigment is also found in green alga *Dunaliella tertiolecta* (Geider *et al.*, 1998) and brown alga *Sargassum muticum* (Xu *et al.*, 2017). The increased photosynthetic pigment in *S. costatum* could partially explain the increased rETR and photosynthetic rate under the higher P conditions.

4.6. Ratio of respiration to photosynthesis

The ratio of respiration to photosynthesis in algae indicates carbon balance in cells and carbon flux in marine ecosystems as well (Zou & Gao, 2013). The level of 2.8 µmol CO₂LC increased this ratio in *S. costatum* grown at the lower P conditions but did not affect it under the higher P conditions, indicating that P enrichment can offset the carbon loss caused by carbon limitation. To cope with CO₂ limitation, cells might have to obtain energy from dark respiration under lower P conditions as it seems infeasible to acquire energy from the low petro, which led to the increased dark respiration. However, 2.8 µmol CO₂LC induced higher petro petro properties and energy used for inorganic carbon (CO₂ and HCO₃) acquisition could be from the increased petro, additional dark respiration was not triggered, avoiding carbon loss. Most studies regarding the effect of CO₂ on ratio of

respiration to photosynthesis focus on higher plants (Gifford, 1995; Ziska & Bunce, 1998; Cheng *et al.*, 2010; Smith & Dukes, 2013), little is known on phytoplankton. Our study suggests that CO₂ limitation may lead to carbon loss in phytoplankton but P enrichment could alter this trend, regulating carbon balance in phytoplankton and thus their capacity in carbon sequestration.

4.3. Inorganic carbon acquisition under CO₂ limitation and phosphate enrichment

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

Decreased CO₂ can usually induce higher inorganic carbon affinity in algae (Raven et al., 2012; Wu et al., 2012; Raven et al., 2017; Xu et al., 2017). In the present study, the lower CO₂ did increase inorganic carbon affinity when P level was higher than 0.25 µmol L⁻¹ but did not affect it when P was 0.05 µmol L⁻¹, indicating the important role of P in regulating cells' CCMs in response to environmental CO₂ changes. The level of 2.8 µmol CO₂ LC-induced larger CA activity when P was above 0.25 µmol L⁻¹ but did not increase it at 0.05 µmol L⁻¹ of P, which could explain the interactive effect of P and CO₂ on inorganic carbon affinity as CA can accelerate the equilibrium between HCO₃ and CO₂ and increase inorganic carbon affinity. Regardless of CO₂, P enrichment alone increased CA activity and inorganic carbon affinity. P enrichment may stimulate the synthesis of CA by supplying required ATP. In addition, P enrichment increased the redox activity of plasma membrane in this study. It has been proposed that redox activity of plasma membrane could induce extracellular CA activity via protonation extrusion of its active center (Nimer et al., 1998). Our result that the pattern of CA is exactly the same as that of redox activity of plasma membrane shows a compelling correlation between CA and redox activity of plasma membrane. The stimulating effect of P on redox activity of plasma membrane may be due to its effect on FETR. The increased FETR could generate excess reducing equivalents, particularly under CO₂ limiting conditions. These excess reducing equivalents would be transported from the chloroplast into the cytosol (Heber,

1974), supporting the redox chain in the plasma membrane (Rubinstein & Luster, 1993;

Nimer et al., 1999) and triggering CA activity.

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

4.4. Direct HCO₃ utilization due to phosphate enrichment

A pH compensation point over 9.2 has been considered a sign of direct HCO₃ use for algae (Axelsson & Uusitalo, 1988) as the CO₂ concentration is nearly zero at pH above 9.2. This criterion has been justified based on the experiments for both micro and macro-algae. For instance, the marine diatom *Phaeodactylum tricornutum*, with a strong capacity for direct HCO₃ utilization, has a higher pH compensation point of 10.3 (Chen et al., 2006). In contrast, the red macroalgae, Lomentaria articulata and Phycodrys rubens that cannot utilize HCO₃ directly, and whose photosynthesis only depends on CO2 diffusion, have pH compensation points of less than 9.2 (Maberly, 1990). In terms of S. costatum, it has been reported to have a pH compensation point of 9.12, indicating a very weak capacity in direct HCO₃ utilization (Chen & Gao, 2004). Our study demonstrates that the pH compensation point of S. costatum varies with the availability of P. It is lower than 9.2 under P limiting conditions but higher than 9.2 under P replete conditions, suggesting that the capacity of direct HCO₃ utilization is regulated by P availability. Contrary to CO₂ passive diffusion, the direct use of HCO₃ depends on positive transport that requires energy (Hopkinson & Morel, 2011). P enrichment increased FETR in the present study and the ATP produced during the process of electron transport could be used to support HCO₃ positive transport. In addition, the increased respiration at higher P levels can also generate ATP to help HCO₃ positive transport. Our study indicates that P enrichment could trigger HCO₃⁻ direct utilization and hence increase inorganic acquisition capacity of *S. costatum* to cope with CO₂ limitation.

4.5. CCMs and red tides

In With the development of red tides, the pH in seawater canould be very high along with extremely low CO₂ availability due to intensive photosynthesis (Hansen, 2002; Hinga, 2002). For instance, pH level in the surface waters of the eutrophic Mariager Fjord, Denmark, is often above 9 during dinoflagellate blooms (Hansen, 2002). Diatoms are the casautive species for red tides and *S. costatum* could outcompete other bloom algae (dinoflagellates *Prorocentrum minimum* and *Alexandrium tamarense*) under nutrient replete conditions (Hu *et al.*, 2011). However, the potential mechanisms are poorly understood. Our study demonstrates *S. costatum* has multiple CCMs to cope with CO₂ limitation and the operation of CCMs is regulated by P availability. The CCMs of *S. costatum* are hampered under P limiting conditions and only function when P is replete. This finding may explain why Therefore, P enrichment would be critical for *S. costatum* to diatoms could overcome carbon limitation during algal bloom and toand dominate red tides when P is replete and as well as the shift from diatoms to dinoflagellates when P is limiting (Mackey et al., 2012).

5. Conclusions

The present study investigated the role of P in regulating inorganic carbon acquisition and CO₂ concentrating mechanisms in diatoms for the first time. The intensive photosynthesis and quick growth during algal blooms usually result in noticeable increase of pH and decrease of CO₂. Our study demonstrates that P enrichment could induce activity of extracellular carbonic anhydrase and direct utilization of HCO₃ in *S. costatum* to help overcome the CO₂ limitation,

as well as increasing photosynthetic pigment content and rETR to provide required energy.
This study provides important insight into the connection of phosphorus and carbon
acquisition in diatoms and the mechanisms that <u>help</u> S. costatum dominates algal blooms.
Author contribution
JX and GG designed the experiments, and GG, JY, JF and XZ carried them out. GG
prepared the manuscript with contributions from all co-authors.
Acknowledgements
This work was supported by National Natural Science Foundation of China (No.
41376156&40976078), Natural Science Fund of Guangdong Province (No. S2012010009853),
the China Postdoctoral Science Foundation (2018T110463&2017M620270), Jiangsu Planned
Projects for Postdoctoral Research Funds (1701003A), Science Foundation of Huaihai
Institute of Technology (Z2016007), and
Foundation for High-level Talents in Higher Education of Guangdong.
References
Alderkamp AC, Kulk G, Buma AG, Visser RJ, Van Dijken GL, Mills MM, Arrigo KR.
2012. The effect of iron limitation on the photophysiology of <i>Phaeocystis antarctica</i>
(Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under dynamic
irradiance. Journal of Phycology 48: 45-59.
Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela
R, Parsons ML, Rensel JE, Townsend DW. 2008. Harmful algal blooms and

Harmful Algae 8: 39-53.

带格式的:字体:加粗,检查拼写和语法

带格式的:缩进:左侧: 0 厘米, 悬挂缩进: 3 字符

带格式的:字体:加粗,检查拼写和语法

121	Axelsson L, Uusitalo J. 1988. Carbon acquisition strategies for marine macroalgae. Marine
122	Biology 97 : 295-300.
123	Barton AD, Irwin AJ, Finkel ZV, Stock CA. 2016. Anthropogenic climate change drives
124	shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the
125	National Academy of Sciences, USA 113: 2964-2969.
126	Beamud SG, Baffico GD, Reid B, Torres R, Gonzalez-Polo M, Pedrozo F, Diaz M. 2016.
127	Photosynthetic performance associated with phosphorus availability in mats of
128	Didymosphenia geminata (Bacillariophyceae) from Patagonia (Argentina and Chile).
129	Phycologia 55 : 118-125.
130	Beardall J, Roberts S, Raven JA. 2005. Regulation of inorganic carbon acquisition by
131	phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal og
132	Botany 83 : 859-864.
133	Berg GM, Glibert PM, Lomas MW, Burford MA. 1997. Organic nitrogen uptake and
134	growth by the chrysophyte Aureococcus anophagefferens during a brown tide event.
135	Marine Biology 129 : 377-387.
136	Brembu T, Mühlroth A, Alipanah L, Bones AM. 2017. The effects of phosphorus limitation
137	on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B
138	Biological Sciences 372: 20160406.
139	Bruland KW, Rue EL, Smith GJ. 2001. Iron and macronutrients in california coastal
140	upwelling regimes: implications for diatom blooms. Limnology and Oceanography 46:
141	1661-1674.
142	Caemmerer SV, Farquhar GD. 1981. Some relationships between the biochemistry of

443	photosynthesis and the gas exchange of leaves. <i>Planta</i> 153: 376-387.
444	Chen X, Gao K. 2004. Photosynthetic utilisation of inorganic carbon and its regulation in the
445	marine diatom Skeletonema costatum. Functional Plant Biology 31: 1027-1033.
446	Chen X, Qiu CE, Shao JZ. 2006. Evidence for K ⁺ -dependent HCO ₃ ⁻ utilization in the marine
447	diatom Phaeodactylum tricornutum. Plant Physiology 141: 731-736.
448	Cheng W, Sims DA, Luo Y, Coleman JS, Johnson DW. 2010. Photosynthesis, respiration,
449	and net primary production of sunflower stands in ambient and elevated atmospheric
450	CO ₂ concentrations: an invariant NPP:GPP ratio? Global Change Biology 6 : 931-941.
451	Davies AG, Sleep JA. 1989. The photosynthetic response of nutrient-depleted dilute cultures
452	of Skeletonema costatum to pulses of ammonium and nitrate; the importance of
453	phosphate. Journal of Plankton Research 11: 141-164.
454	Dickson AG. 1990. Standard potential of the reaction: $AgCl(s) + 12H2(g) = Ag(s) + HCl(aq)$,
455	and the standard acidity constant of the ion HSO_4^- in synthetic sea water from 273.15
456	to 318.15 K. Journal of Chemical Thermodynamics 22: 113-127.
457	<u>Dimier C, Brunet C, Geider R, Raven J. 2009.</u> Growth and photoregulation dynamics of the
458	picoeukaryote Pelagomonas calceolata in fluctuating light. Limnology and
459	Oceanography 54 : 823-836.
460	Ennos AR. 2007. Statistical and Data Handling Skills in Biology. Pearson Education, p.96.
461	Falkowski P. 2012. Ocean Science: The power of plankton. Nature 483: 17-20.
462	Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the
463	biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.
464	Gao G, Clare AS, Rose C, Caldwell GS. 2018a. Ulva rigida in the future ocean: potential
465	for carbon capture, bioremediation, and biomethane production. Global Change

带格式的:字体:加粗

带格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 3 字符, 首行缩 进: −3 字符

带格式的:字体:倾斜

带格式的:字体:加粗

466	Biology Bioenergy 10: 39-51.
467	Gao G, Gao K, Giordano M. 2009. Responses to solar UV radiation of the diatom
468	Skeletonema costatum (Bacillariophyceae) grown at different Zn ²⁺ concentrations
469	Journal of Phycology 45: 119-129.
470	Gao G, Liu Y, Li X, Feng Z, Xu J. 2016. An ocean acidification acclimatised green tide alga
471	Is robust to changes of seawater carbon chemistry but vulnerable to light stress. PloS
472	One 11: e0169040.
473	Gao G, Xia J, Yu J, Zeng X. 2018b. Physiological response of a red tide alga (Skeletonema
474	costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.
475	Marine Environmental Research, 133: 15-23.
476	Geider RJ, Macintyre HL, Graziano LM, McKay RML. 1998. Responses of the
477	photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and
478	phosphorus limitation. European Journal of Phycology 33: 315-332.
479	Gifford RM. 1995. Whole plant respiration and photosynthesis of wheat under increased CO ₂
480	concentration and temperature: long-term vs. short-term distinctions for modelling.
481	Global Change Biology 1: 385–396.
482	Hansen PJ. 2002. Effect of high pH on the growth and survival of marine phytoplankton:
483	implications for species succession. Aquatic Microbial Ecology 28: 279-288.
484	Heber U. 1974. Metabolite exchange between chloroplasts and cytoplasm. Annual Review of
485	Plant Physiology 25 : 393-421.
486	Hinga KR. 2002. Effects of pH on coastal marine phytoplankton. Marine Ecology Progress
487	Series 238 : 281-300.

488	Hopkinson BM, Dupont CL, Matsuda Y. 2016. The physiology and genetics of CO ₂	
489	concentrating mechanisms in model diatoms. Current Opinion in Plant Biology 31:	
490	51-57.	
491	Hopkinson BM, Morel FMM. 2011. Efficiency of the CO ₂ -concentrating mechanism of	
492	diatoms. Proceedings of the National Academy of Sciences, USA 108: 3830-3837.	
493	Hu H, Zhang J, Chen W. 2011. Competition of bloom-forming marine phytoplankton at low	
494	nutrient concentrations. Journal of Environmental Sciences 23: 656-663.	
495	Hu H, Zhou Q. 2010. Regulation of inorganic carbon acquisition by nitrogen and phosphorus	
496	levels in the Nannochloropsis sp. World Journal of Microbiology & Biotechnology 26:	
497	957-961.	
498	Jeong HJ, An SL, Franks PJS, Lee KH, Ji HK, Kang NS, Lee MJ, Jang SH, Lee SY,	
499	Yoon EY. 2015. A hierarchy of conceptual models of red-tide generation: Nutrition,	
500	behavior, and biological interactions. Harmful Algae 47: 97-115.	
501	Jiang X, Han Q, Gao X, Gao G. 2016. Conditions optimising on the yield of biomass, total	
502	lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chemistry	
503	194 : 723-732.	
504	Lefebvre S, Mouget JL, Loret P, Rosa P, Tremblin G. 2007. Comparison between	带格式的: 字体: 加粗 带格式的: Default, 缩进: 左侧 0 厘米, 悬挂缩进: 3 字符, 首
505	fluorimetry and oximetry techniques to measure photosynthesis in the diatom	0 厘米, 悬挂缩进: 3 字符, 首 行缩进: -3 字符
506	Skeletonema costatum cultivated under simulated seasonal conditions. Journal of	带格式的 :字体:倾斜
507	Photochemistry and Photobiology B: Biology 86: 131-139.	带格式的 :字体:加粗
508	Li G, Gao K, Yuan D, Zheng Y, Yang G. 2011. Relationship of photosynthetic carbon	

fixation with environmental changes in the Jiulong River estuary of the South China

510	Sea, with special reference to the effects of solar UV radiation. Marine Pollution	
511	Bulletin 62 : 1852-1858.	
512	Lin S, Litaker RW, Sunda WG. 2016. Phosphorus physiological ecology and molecular	
513	mechanisms in marine phytoplankton. Journal of Phycology 52: 10.	
514	Liu Y, Song X, Cao X, Yu Z. 2012. Responses of photosynthetic characters of Skeletonema	
515	costatum to different nutrient conditions. Journal of Plankton Research 35: 165-176.	
516	Maberly SC. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine	
517	macroalgae. Journal of Phycology 26 : 439-449.	
518	Mackey KRM, Mioni CE, Ryan JP, Paytan A. 2012. Phosphorus cycling in the red tide	/
519	incubator region of Monterey Bay in response to upwelling. Frontiers in Microbiology.	
520	<u>3: 33.</u>	
521	Mccall SJ, Hale MS, Smith JT, Read DS, Bowes MJ. 2017. Impacts of phosphorus	
522	concentration and light intensity on river periphyton biomass and community structure.	
523	Hydrobiologia 792 : 315-330.	
524	Moore CM, Mills MM, Arrigo KR, Bermanfrank I, Bopp L, Boyd PW, Galbraith ED,	
525	Geider RJ, Guieu C, Jaccard SL. 2013. Processes and patterns of oceanic nutrient	
526	limitation. Nature Geoscience 6 : 701-710.	
527	Müller S, Mitrovic SM. 2015. Phytoplankton co-limitation by nitrogen and phosphorus in a	
528	shallow reservoir: progressing from the phosphorus limitation paradigm.	
529	Hydrobiologia 744 : 255-269.	
530	Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. 1995. Production and	
531	dissolution of biogenic silica in the ocean: Revised global estimates, comparison with	

带格式的:字体:加粗

532	regional data and relationship to biogenic sedimentation. Global Biogeochemical
533	Cycles 9 : 359-372.
534	Nimer NA, Ling MX, Brownlee C, Merrett MJ. 1999. Inorganic carbon limitation,
535	exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine
536	phytoplankton species. Journal of Phycology 35: 1200-1205.
537	Nimer NA, Warren M, Merrett MJ. 1998. The regulation of photosynthetic rate and
538	activation of extracellular carbonic anhydrase under CO2-limiting conditions in the
539	marine diatom Skeletonema costatum. Plant Cell and Environment 21: 805-812.
540	Pierrot D, Lewis E, Wallace DWR. 2006. MS Excel program developed for CO ₂ system
541	calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak
542	Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.
543	Raven JA, Beardall J, Sánchez-Baracaldo P. 2017. The possible evolution, and future, of
544	CO2-concentrating mechanisms. Journal of Experimental Botany.
545	Raven JA, Giordano M, Beardall J, Maberly SC. 2012. Algal evolution in relation to
546	atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon
547	oxidation cycles. Phil. Trans. R. Soc. B 367: 493-507.
548	Reed ML, Pinckney JL, Keppler CJ, Brock LM, Hogan SB, Greenfield DI. 2016. The
549	influence of nitrogen and phosphorus on phytoplankton growth and assemblage
550	composition in four coastal, southeastern USA systems. Estuarine Coastal & Shelj
	Science 177 : 71-82.
551	
551 552	Rost B, Riebesell U, Burkhardt S, Sültemeyer D. 2003. Carbon acquisition of

554	Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ,
555	Campbell DM. 1993. The dissociation constants of carbonic acid in seawater at
556	salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44: 249-267.
557	Rubinstein B, Luster DG. 1993. Plasma membrane redox activity: components and role in
558	plant processes. Annual Review of Plant Biology 44: 131-155.
559	Smetacek V, Zingone A. 2013. Green and golden seaweed tides on the rise. Nature 504:
560	84-88.
561	Smith NG, Dukes JS. 2013. Plant respiration and photosynthesis in global-scale models:
562	incorporating acclimation to temperature and CO ₂ . Global Change Biology 19: 45-63.
563	Wang J. 2002. Phytoplankton communities in three distinct ecotypes of the Changjiang
564	estuary. Journal of Ocean University of China 32: 422-428.
565	Wu X, Gao G, Giordano M, Gao K. 2012. Growth and photosynthesis of a diatom grown
566	under elevated CO ₂ in the presence of solar UV radiation. Fundamental and Applied
567	Limnology 180 : 279-290.
568	Xu Z, Gao G, Xu J, Wu H. 2017. Physiological response of a golden tide alga (Sargassum
569	muticum) to the interaction of ocean acidification and phosphorus enrichment.
570	Biogeosciences 14: 671-681.
571	Young JN, Morel FMM. 2015. Biological oceanography: The CO ₂ switch in diatoms. <i>Nature</i>
572	Climate Change 5 : 722-723.
573	Ziska LH, Bunce JA. 1998. The influence of increasing growth temperature and CO ₂
574	concentration on the ratio of respiration to photosynthesis in soybean seedlings.
575	Global Change Biology 4: 637-643.

Zou D, Gao K. 20	13. Therma	l acclimation of	respiration and	photosynthesis i	n the mar	ine
macroalga	Gracilaria	lemaneiformis	(Gracilariales,	Rhodophyta).	Journal	of
Phycology 4	19 : 61–68.					
	macroalga	,	macroalga Gracilaria lemaneiformis	macroalga Gracilaria lemaneiformis (Gracilariales,	macroalga <i>Gracilaria lemaneiformis</i> (Gracilariales, Rhodophyta).	Zou D, Gao K. 2013. Thermal acclimation of respiration and photosynthesis in the marmacroalga <i>Gracilaria lemaneiformis</i> (Gracilariales, Rhodophyta). <i>Journal Phycology</i> 49 : 61–68.

Table 1 Two-way analysis of variance for the effects of CO_2 and phosphate on net photosynthetic rate, dark respiration rate and ratio of respiration to photosynthesis of S. costatum. CO_2 *phosphate means the interactive effect of CO_2 and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

_	_	
5	х	5
_		•

Source	Net photosynthetic rate		Dark respiration rate			Ratio of respiration to photosynthesis			
	df	F	Sig.	df	F	Sig.	df	F	Sig.
CO ₂	1	11.286	0.003	1	1.262	0.275	1	32.443	< 0.001
Phosphate	4	157.925	< 0.001	4	169.050	< 0.001	4	7.081	0.001
CO ₂ *phosphate	4	3.662	0.021	4	3.226	0.034	4	8.299	< 0.001
Error	20			20			20		

Table 2 Two-way analysis of variance for the effects of CO_2 and phosphate on relative electron transport rate (rETR), Chl a, and CO_2 level required to give half of DIC-saturated maximum rate of photosynthetic O_2 evolution ($K_{0.5}$) of S. costatum. CO_2 *phosphate means the interactive effect of CO_2 and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

5	9	1	

	rETR			Chl a			$K_{0.5}$		
Source	df	F	Sig.	df	F	Sig.	df	F	Sig.
CO_2	1	28.717	< 0.001	1	32.963	< 0.001	1	96.182	< 0.001
Phosphate	4	127.860	< 0.001	4	92.045	< 0.001	4	40.497	< 0.001
CO ₂ *phosphate	4	3.296	0.031	4	3.871	0.017	4	3.821	0.018
Error	20			20			20		

Table 3 Two-way analysis of variance for the effects of CO_2 and phosphate on CA_{ext} activity, redox activity of plasma membrane and pH compensation point of *S. costatum*. CO_2 *phosphate means the interactive effect of CO_2 and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

Source	CA _{ext} activity			redox activity of plasma membrane			pH compensation point		
	df	F	Sig.	df	F	Sig.	df	F	Sig.
CO ₂	1	569.585	< 0.001	1	937.963	< 0.001	1	0.056	0.816
Phosphate	4	176.392	< 0.001	4	276.362	< 0.001	4	226.196	< 0.001
CO ₂ *phosphate	4	87.380	< 0.001	4	137.050	< 0.001	4	0.040	0.997
Error	20			20			20		

Table 4 Repeated measures analysis of variance for the effects of CO_2 and phosphate on pH change during 10 hours of incubation. Time* CO_2 means the interactive effect of incubation time and CO_2 , Time*phosphate means the interactive effect of incubation time and phosphate, Time* CO_2 *phosphate means the interactive effect of incubation time, CO_2 and phosphate, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Time	40.766	10	4.077	8737.941	< 0.001
Time*CO ₂	0.003	10	< 0.001	0.569	0.838
Time*phosphate	0.886	40	0.022	47.496	< 0.001
Time*CO ₂ *phosphate	0.002	40	< 0.001	0.112	1.000
Error	0.093	200	< 0.001		

Figure legends

602

603

604

605

606

607

608

609

610

611

612

613

614

615

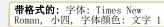
616

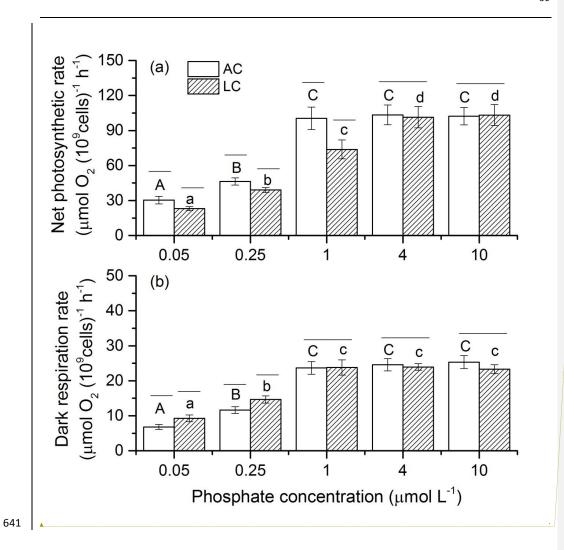
617

618

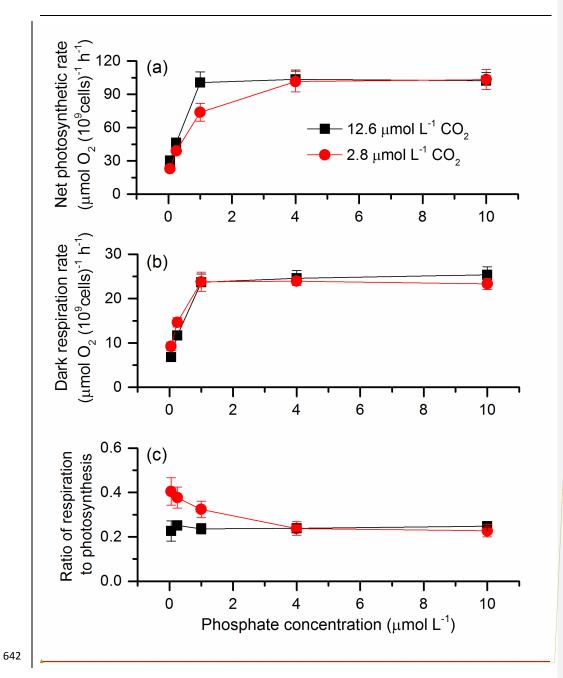
619

620

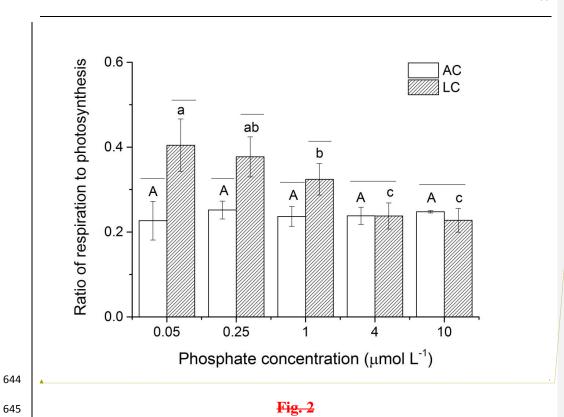

621


622

623


Fig. 1. Net photosynthetic rate (a) and, dark respiration rate (b) and ratio of respiration rate to net photosynthetic rate (c) in S. costatum grown at various phosphate concentrations after 12.6ambient (AC) and 2.8 µmol CO₂ low CO₂ (LC) treatments. The error bars indicate the standard deviations (n = 3). Different letters represent the significant difference (P < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal linesrepresent significant difference (P < 0.05) between CO_2 treatments. Fig. 2. Ratio of respiration rate to net photosynthetic rate in S. costatum grown at variousphosphate concentrations after ambient (AC) and low CO₂ (LC) treatments. The error barsindicate the standard deviations (n = 3). Different letters represent the significant difference (P < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines represent significant difference (P < 0.05) between CO₂ treatments. Fig. 32. Relative electron transport rate (rETR) in S. costatum grown at various phosphate concentrations after 12.6 and 2.8 µmol CO₂ ambient (AC) and low CO₂ (LC) treatments. The error bars indicate the standard deviations (n = 3). Different letters represent the significant difference (P < 0.05) among phosphate concentrations (Capital for AC lower case for LC). Horizontal lines represent significant difference (*P* < 0.05) between CO₂ treatments. Fig. 43. Photosynthetic Chl a content in S. costatum grown at various phosphate concentrations after 12.6 and 2.8 µmol CO₂ ambient (AC) and low CO₂ (LC) treatments. The error bars indicate the standard deviations (n = 3). Different letters represent the significant difference (P < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines represent significant difference (*P* < 0.05) between CO₂ treatments.

624	Fig. 54. Net photosynthetic rate as a function of DIC for S. costatum grown at various
625	phosphate concentrations after 12.6 ambient (a) and 2.8 μmol CO ₂ low CO ₂ (b) treatments.
626	The error bars indicate the standard deviations $(n = 3)$.
627	Fig. 65. Half saturation constant $(K_{0.5})$ for CO_2 in <i>S. costatum</i> grown at at various phosphate
628	concentrations after 12.6 and 2.8 µmol CO ₂ ambient (AC) and low CO ₂ (LC) treatments. The
629	error bars indicate the standard deviations (n = 3). Different letters represent the significant
630	difference ($P < 0.05$) among phosphate concentrations (capital for AC, lower case for LC).
631	Horizontal lines represent significant difference ($P < 0.05$) between CO ₂ -treatments.
632	Fig. 76. CA _{ext} activity (a) and reduction rate of ferricyanide (b) in <i>S. costatum</i> grown at
633	various phosphate concentrations after 12.6 and 2.8 µmol CO ₂ ambient (AC) and low CO ₂ (LC)
634	treatments. The error bars indicate the standard deviations ($n = 3$). Different letters represent
635	the significant difference ($P < 0.05$) among phosphate concentrations (capital for AC, lower-
636	case for LC). Horizontal lines represent significant difference (P < 0.05) between CO ₂ -
637	treatments.
638	Fig. 87. Changes of pH in a closed system caused by photosynthesis of <i>S. costatum</i> grown at
639	various phosphate concentrations after 12.6 and 2.8 µmol CO ₂ ambient (AC) and low CO ₂ (LC)
640	treatments. The error bars indicate the standard deviations $(n = 3)$.



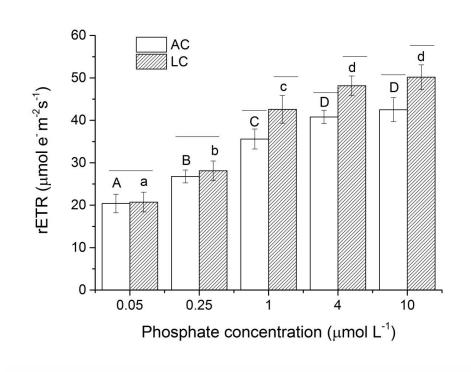

带格式的: 字体: Times New Roman, 小四, 字体颜色: 文字 1

Fig. 1

带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文 字 1

带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文字 1

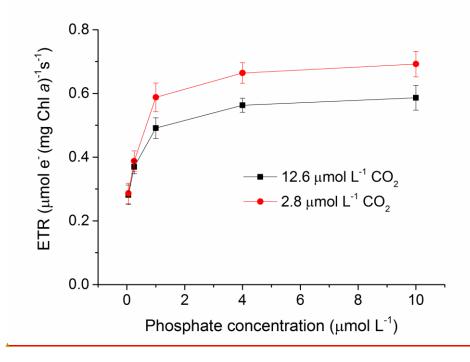
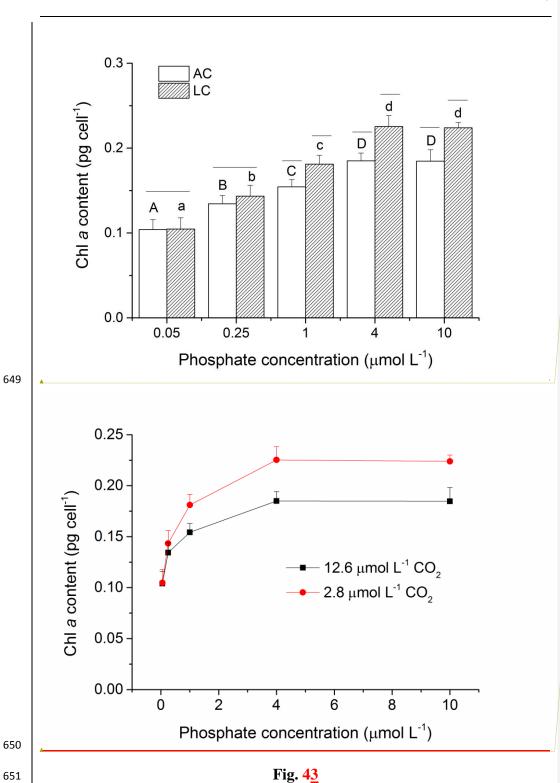
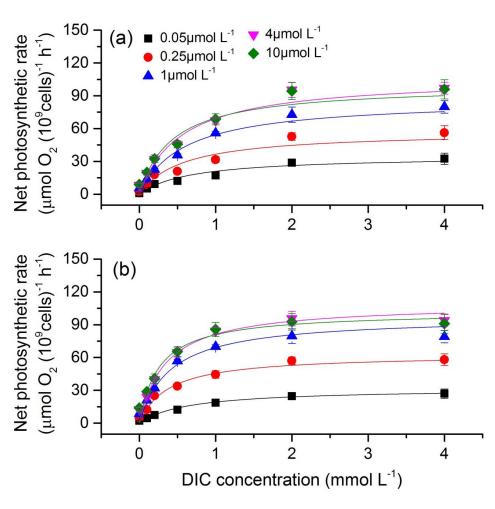
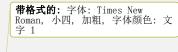




Fig. <u>32</u>



带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文 字 1

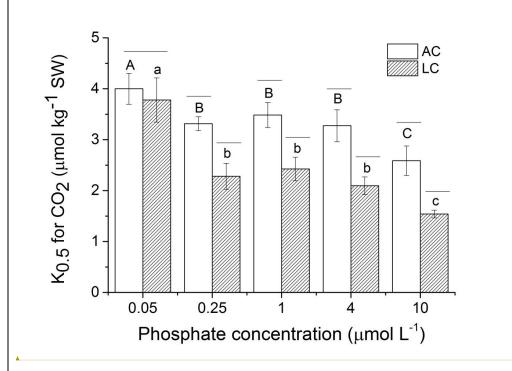
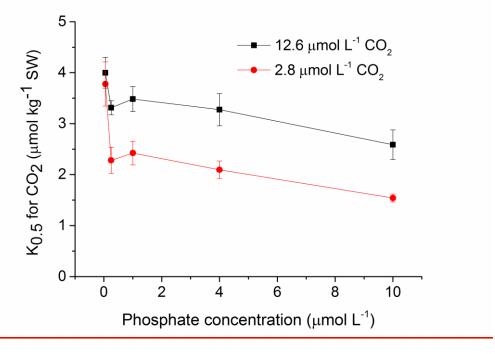
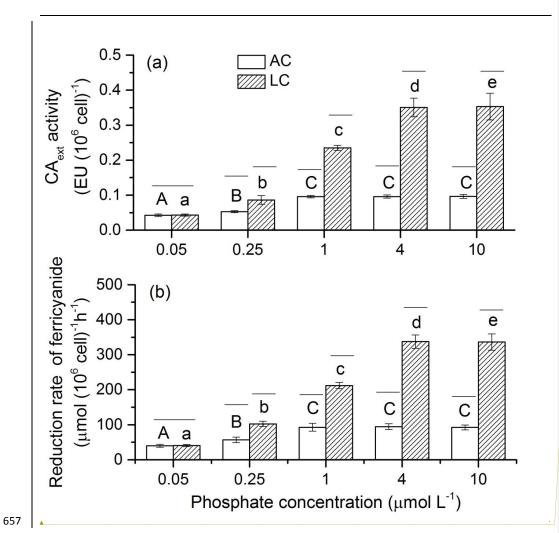
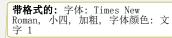
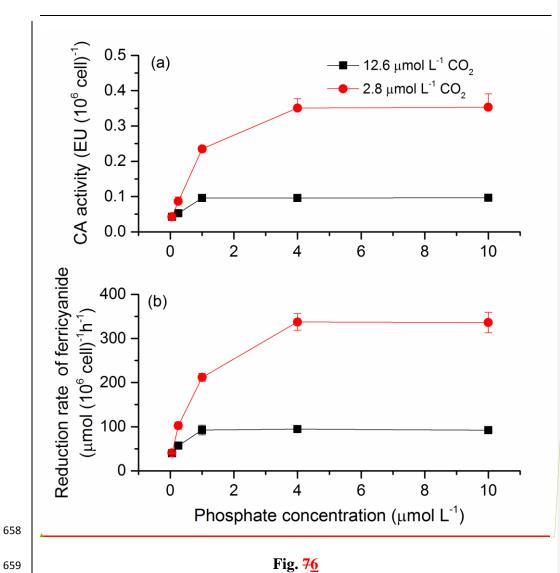
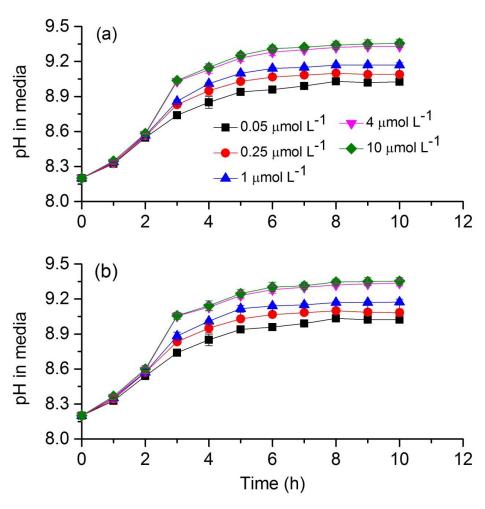

带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文字 1

Fig. <u>54</u>

带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文字 1


Fig. <u>65</u>

带格式的: 字体: Times New Roman, 小四, 加粗, 字体颜色: 文 字 1

661 Fig. 8<u>7</u>