

1 **1. TITLE PAGE**

2 **Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the**
3 **Western Amazon basin**

4

5 Teh, Yit Arn^{1*}, Murphy, Wayne A.², Berrio, Juan-Carlos², Boom, Arnound², and Page, Susan E.²

6 ¹ Institute of Biological and Environmental Sciences, University of Aberdeen

7 ² Department of Geography, University of Leicester

8 * Author to whom all correspondence should be addressed; email: yateh@abdn.ac.uk

9 **2. ABSTRACT**

10 The Amazon plays a critical role in global atmospheric budgets of methane (CH_4) and nitrous
11 oxide (N_2O). However, while we have a relatively good understanding of the continental-scale
12 flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific
13 contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report
14 CH_4 and N_2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin
15 (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this
16 research was to: quantify the range and magnitude of CH_4 and N_2O fluxes from this region;
17 assess seasonal trends in trace gas exchange; and determine the role of different
18 environmental variables in driving GHG flux. Trace gas fluxes were determined from the most
19 numerically-dominant peatland vegetation types in the region: forested vegetation, forested
20 (short pole) vegetation, *Mauritia flexuosa*-dominated palm swamp, and mixed palm swamp.
21 Data were collected in both wet and dry seasons over the course of four field campaigns from
22 2012 to 2014. Diffusive CH_4 emissions averaged $36.05 \pm 3.09 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$ across the
23 entire dataset, with diffusive CH_4 flux varying significantly among vegetation types and
24 between seasons. Net ebullition of CH_4 averaged $973.3 \pm 161.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$, and did not
25 vary significantly among vegetation types nor between seasons. Diffusive CH_4 flux was
26 greatest for mixed palm swamp ($52.0 \pm 16.0 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), followed by *M. flexuosa* palm
27 swamp ($36.7 \pm 3.9 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), forested (short pole) vegetation ($31.6 \pm 6.6 \text{ mg CH}_4\text{-C m}^{-2}$
28 d^{-1}), and forested vegetation ($29.8 \pm 10.0 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$). Diffusive CH_4 flux also showed
29 marked seasonality, with divergent seasonal patterns among ecosystems. Forested
30 vegetation and mixed palm swamp showed significantly higher dry season ($47.2 \pm 5.4 \text{ mg CH}_4\text{-C m}^{-2}$
31 d^{-1} and $85.5 \pm 26.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$, respectively) compared to wet season emissions

32 (6.8 ± 1.0 mg CH₄-C m⁻² d⁻¹ and 5.2 ± 2.7 mg CH₄-C m⁻² d⁻¹, respectively). In contrast, forested
33 (short pole) vegetation and *M. flexuosa* palm swamp showed the opposite trend, with dry
34 season flux of 9.6 ± 2.6 and 25.5 ± 2.9 mg CH₄-C m⁻² d⁻¹, respectively, versus wet season flux
35 of 103.4 ± 13.6 and 53.4 ± 9.8 mg CH₄-C m⁻² d⁻¹, respectively. These divergent seasonal trends
36 may be linked to very high water tables (>1 m) in forested vegetation and mixed palm swamp
37 during the wet season, which may have constrained CH₄ transport across the soil-atmosphere
38 interface. Diffusive N₂O flux was very low (0.70 ± 0.34 µg N₂O-N m⁻² d⁻¹), and did not vary
39 significantly among ecosystems nor between seasons. We conclude that peatlands in the
40 PMFB are large and regionally significant sources of atmospheric CH₄, that need to be better
41 accounted for in regional emissions inventories. In contrast, N₂O flux was negligible,
42 suggesting that this region does not make a significant contribution to regional atmospheric
43 budgets of N₂O. The divergent seasonal pattern in CH₄ flux among vegetation types challenges
44 our underlying assumptions of the controls on CH₄ flux in tropical peatlands, and emphasizes
45 the need for more process-based measurements during high water table periods.

46

47

48 **KEYWORDS**

49 methane, nitrous oxide, peat, tropical peatland, Amazonia, Peru

50

51

52

53 **3. INTRODUCTION**

54 The Amazon basin plays a critical role in the global atmospheric budgets of carbon (C) and
55 greenhouse gases (GHGs) such as methane (CH_4) and nitrous oxide (N_2O). Recent basin-wide
56 studies suggest that the Amazon as a whole accounts for approximately 7 % of global
57 atmospheric CH_4 emissions (Wilson et al., 2016). N_2O emissions are of a similar magnitude,
58 with emissions ranging from 2-3 Tg $\text{N}_2\text{O-N}$ year⁻¹ (or, approximately 12-18 % of global
59 atmospheric emissions) (Huang et al., 2008;Saikawa et al., 2014;Saikawa et al., 2013). While
60 we have a relatively strong understanding of the role that the Amazon plays in regional and
61 global atmospheric budgets of these gases, one of the key gaps in knowledge is the
62 contribution of specific ecosystem types to regional fluxes of GHGs (Huang et al.,
63 2008;Saikawa et al., 2014;Saikawa et al., 2013). In particular, our understanding of the
64 contribution of Amazonian wetlands to regional C and GHG budgets is weak, as the majority
65 of past ecosystem-scale studies have focused on *terra firme* forests and savannas (D'Amelio
66 et al., 2009;Saikawa et al., 2013;Wilson et al., 2016;Kirschke et al., 2013;Nisbet et al., 2014).
67 Empirical studies of GHG fluxes from Amazonian wetlands are more limited in geographic
68 scope and have focused on three major areas: wetlands in the state of Amazonas near the
69 city of Manaus (Devol et al., 1990;Bartlett et al., 1990;Bartlett et al., 1988;Keller et al., 1986),
70 the Pantanal region (Melack et al., 2004;Marani and Alvalá, 2007;Liengaard et al., 2013), and
71 the Orinoco River basin (Smith et al., 2000;Lavelle et al., 2014). Critically, none of the
72 ecosystems sampled in the past were peat-forming ones; rather, the habitats investigated
73 were non-peat forming (i.e. mineral or organo-mineral soils), seasonally-inundated floodplain
74 forests (i.e. *varzea*), rivers or lakes.

76 Peatlands are one of the major wetland habitats absent from current bottom-up GHG
77 inventories for the Amazon basin, and are often grouped together with non-peat forming
78 wetlands in regional atmospheric budgets (Wilson et al., 2016). Unlike their Southeast Asian
79 counterparts, most peatlands in the Amazon basin are unaffected by human activity at the
80 current time (Lahteenoja et al., 2009a; Lahateenoja et al. 2009b; Lahteenoja and Page 2011),
81 except for ecosystems in the Madre de Dios region in southeastern Peru, which are impacted
82 by gold mining (Householder et al., 2012). Because we have little or no data on ecosystem-
83 level land-atmosphere fluxes from Amazonian peatlands (Lahteenoja et al., 2012;Lahteenoja
84 et al., 2009b;Kirschke et al., 2013;Nisbet et al., 2014), it is difficult to ascertain if rates of GHG
85 flux from these ecosystems are similar to or different from mineral soil wetlands (e.g. *varzea*).
86 Given that underlying differences in plant community composition and soil properties are
87 known to modulate the cycling and flux of GHGs in wetlands (Limpens et al., 2008;Melton et
88 al., 2013;Belyea and Baird, 2006;Sjögersten et al., 2014), expanding our observations to
89 include a wider range of wetland habitats is critical in order to improve our understanding of
90 regional trace gas exchange, and also to determine if aggregating peat and mineral soil
91 wetlands together in bottom-up emissions inventories are appropriate for regional budget
92 calculations. Moreover, Amazonian peatlands are thought to account for a substantial land
93 area (i.e. up to 150,000 km²) (Schulman et al., 1999;Lahteenoja et al., 2012), and any
94 differences in biogeochemistry among peat and mineral/organo-mineral soil wetlands may
95 therefore have important implications for understanding and modelling the biogeochemical
96 functioning of the Amazon basin as a whole.

97

98 Since the identification of extensive peat forming wetlands in the north (Lahteenoja et al.,
99 2009a; Lahateenoja et al. 2009b; Lahteenoja and Page 2011) and south (Householder et al.,
100 2012) of the Peruvian Amazon, several studies have been undertaken to better characterize
101 these habitats, investigating vegetation composition and habitat diversity (Draper et al., 2014;
102 Kelly et al., 2014; Householder et al., 2012; Lahteenoja and Page, 2011), vegetation history
103 (Lahteenoja and Roucoux et al., 2010), C stocks (Lahteenoja et al., 2012; Draper et al., 2014),
104 hydrology (Kelly et al., 2014), and peat chemistry (Lahteenoja et al., 2009a; Lahteenoja et al.,
105 2009b). Most of the studies have focused on the Pastaza-Marañón foreland basin (PMFB),
106 where one of the largest stretches of contiguous peatlands have been found (Lahteenoja et
107 al 2009a; Lahteenoja and Page, 2011; Kelly et al, 2014), covering an estimated area of 35,600
108 $\pm 2,133 \text{ km}^2$ (Draper et al., 2014). Up to 90% of the peatlands in the PMFB lie in flooded
109 backwater river margins on floodplains and are influenced by large, annual fluctuations in
110 water table caused by the Amazonian flood pulse (Householder et al., 2012;Lahteenoja et al.,
111 2009a). These floodplain systems are dominated by peat deposits that range in depth from
112 ~3.9 m (Lahteenoja et al., 2009a) to ~12.9 m (Householder et al., 2012). The remaining 10%
113 of these peatlands are not directly influenced by river flow and form domed (i.e. raised)
114 nutrient-poor bogs that likely only receive water and nutrients from rainfall (Lahteenoja et
115 al., 2009b). These nutrient-poor bogs are dominated by large, C-rich forests (termed “pole
116 forests”), that represent a very high density C store (total pool size of $1391 \pm 710 \text{ Mg C ha}^{-1}$,
117 which includes both above- and belowground stocks); exceeding in fact the C density of
118 nearby floodplain systems (Draper et al., 2014). Even though the peats in these nutrient-poor
119 bogs have a relatively high hydraulic conductivity, they act as natural stores of water because
120 of high rainwater inputs (>3000 mm per annum), which help to maintain high water tables,
121 even during parts of the dry season (Kelly et al., 2014).

122

123 CH₄ flux in tropical soils are regulated by the complex interplay among multiple factors that
124 regulate CH₄ production, oxidation, and transport. Key factors include: redox/water table
125 depth (Couwenberg et al., 2010;Couwenberg et al., 2011;Silver et al., 1999;Teh et al.,
126 2005;von Fischer and Hedin, 2007), plant productivity (von Fischer and Hedin, 2007;Whiting
127 and Chanton, 1993), soil organic matter lability (Wright et al., 2011), competition for C
128 substrates among anaerobes (Teh et al., 2008;Teh and Silver, 2006;von Fischer and Hedin,
129 2007), and presence of plants capable of facilitating atmospheric egress (Pangala et al., 2013).
130 Of all these factors, fluctuation in soil redox conditions, as mediated by variations in water
131 table depth, is perhaps most critical in regulating CH₄ dynamics (Couwenberg et al.,
132 2010;Couwenberg et al., 2011), because of the underlying physiology of the microbes that
133 produce and consume CH₄. Methanogenic archaea are obligate anaerobes that only produce
134 CH₄ under anoxic conditions (Conrad, 1996); as a consequence, they are only active in stably
135 anoxic soil microsites or soil layers, where they are protected from the effects of strong
136 oxidants such as oxygen or where competition for reducing equivalents (e.g. acetate, H₂) from
137 other anaerobic microorganisms is eliminated (Teh et al., 2008;Teh and Silver, 2006;Teh et
138 al., 2005;von Fischer and Hedin, 2002;von Fischer and Hedin, 2007). CH₄ oxidation, on the
139 other hand, is thought to be driven primarily by aerobic methanotrophic bacteria in tropical
140 soils (Hanson and Hanson, 1996;Teh et al., 2005;Teh et al., 2006;von Fischer and Hedin,
141 2002;von Fischer and Hedin, 2007), with anaerobic CH₄ oxidation playing a quantitatively
142 smaller role (Blazewicz et al., 2012). Thus, fluctuations in redox or water table depth play a
143 fundamental role in directing the flow of C among different anaerobic pathways (Teh et al.,
144 2008;Teh and Silver, 2006;von Fischer and Hedin, 2007), and shifting the balance between

145 production and consumption of CH₄ (Teh et al., 2005; von Fischer and Hedin, 2002). Moreover,
146 water table or soil moisture fluctuations are also thought to profoundly influence CH₄
147 transport dynamics throughout the soil profile, changing the relative partitioning of CH₄
148 among different transport pathways such as diffusion, ebullition, and plant-facilitated
149 transport (Whalen, 2005; Jungkunst and Fiedler, 2007).

150

151 Controls on N₂O flux are also highly complex (Groffman et al., 2009), with N₂O originating
152 from as many as four separate sources (e.g. bacterial ammonia oxidation, archaeal ammonia
153 oxidation, denitrification, dissimilatory nitrate reduction to ammonium), each with different
154 environmental controls (Baggs, 2008; Morley and Baggs, 2010; Firestone and Davidson,
155 1989; Firestone et al., 1980; Pett-Ridge et al., 2013; Silver et al., 2001; Prosser and Nicol, 2008).
156 Key factors regulating soil N₂O flux include: redox, soil moisture content or water table depth,
157 temperature, pH, labile C availability, and labile N availability (Groffman et al., 2009). As is the
158 case for CH₄, variations in redox/water table depth plays an especially prominent role in
159 regulating N₂O flux in tropical peatland ecosystems, because all of the processes that produce
160 N₂O are redox-sensitive, with bacterial or archaeal ammonia oxidation occurring under
161 aerobic conditions (Prosser and Nicol, 2008; Firestone and Davidson, 1989; Firestone et al.,
162 1980) whereas nitrate-reducing processes (i.e. denitrification, dissimilatory nitrate reduction
163 to ammonium) are anaerobic ones (Firestone and Davidson, 1989; Firestone et al.,
164 1980; Morley and Baggs, 2010; Silver et al., 2001). Moreover, for nitrate reducing processes,
165 which are believed to be the dominant source of N₂O in wet systems, the extent of
166 anaerobiosis also controls the relative proportion of N₂O or N₂ produced during dissimilatory

167 metabolism (Firestone and Davidson, 1989;Firestone et al., 1980;Morley and Baggs,
168 2010;Silver et al., 2001).

169

170 In order to improve our understanding of the biogeochemistry and rates of GHG exchange
171 from Amazonian peatlands, we conducted a preliminary study of CH₄ and N₂O fluxes from
172 forested peatlands in the PMFB. The main objectives of this are to:

173 1. Quantify the magnitude and range of soil CH₄ and N₂O fluxes from a sub-set of
174 peatlands in the PMFB that represent dominant vegetation types
175 2. Determine seasonal patterns of trace gas exchange
176 3. Establish the relationship between trace gas fluxes and environmental variables

177 Sampling was concentrated on the four most dominant vegetation types in the area, based
178 on prior work by the investigators (Lahteenoja and Page, 2011). Trace gas fluxes were
179 captured from both floodplain systems and nutrient-poor bogs in order to account for
180 underlying differences in biogeochemistry that may arise from variations in hydrology.
181 Sampling was conducted during four field campaigns (two wet season, two dry season) over
182 a 27-month period, extending from February 2012 to May 2014.

183

184

185 **4. MATERIALS AND METHODS**

186 **4.1 Study site and sampling design**

187 The study was carried out in the lowland tropical peatland forests of the PMFB, between 2
188 and 35 km south of the city of Iquitos, Peru (Lahteenoja et al., 2009a; Lahteenoja et al., 2009b)
189 (Figure 1, Table 1). The mean annual temperature is 26 °C, annual precipitation is c. 3,100
190 mm, relative humidity ranges from 80-90 %, and altitude ranges from c. 90 to 130 m above
191 sea level (Marengo 1998). The northwestern Amazon basin near Iquitos experiences
192 pronounced seasonality, which is characterized by consistently high annual temperatures, but
193 marked seasonal variation in precipitation (Tian et al., 1998), and an annual river flood pulse
194 linked to seasonal discharge from the Andes (Junk et al., 1989). Precipitation events are
195 frequent, intense and of significant duration during the wet season (November to May) and
196 infrequent, intense and of short duration during the dry season (June to August). September
197 and October represent a transitional period between dry and wet seasons, where rainfall
198 patterns are less predictable. Catchments in this region receive no less than 100 mm of rain
199 per month (Espinoza Villar et al., 2009a; Espinoza Villar et al., 2009b) and >3000 mm of rain
200 per year. River discharge varies by season, with the lowest discharge between the dry season
201 months of August and September. Peak discharge from the wet season flood pulse occurs
202 between April and May, as recorded at the Tamshiyaku River gauging station (Espinoza Villar
203 et al., 2009b).

204

205 Histosols form the dominant soil type for peatlands in this region (Andriesse, 1988; Lahteenoja
206 and Page, 2011). Study sites are broadly classified as nutrient-rich, intermediate, or nutrient-
207 poor (Lahteenoja and Page, 2011), with pH ranging from 3.5 to 7.2 (Lahteenoja and Page,
208 2011; Lahteenoja et al., 2009a; Lahteenoja et al., 2009b). More specific data on pH for our plots
209 are presented in Table 3. Nutrient-rich (i.e. minerotrophic) sites tend to occur on floodplains

210 and river margins, and account for at least 60 % of the peatland cover in the PMFB (Lahteenoja
211 and Page, 2011;Draper et al., 2014). They receive water, sediment, and nutrient inputs from
212 the annual Amazon river flood pulse (Householder et al., 2012;Lahteenoja and Page, 2011),
213 leading to higher inorganic nutrient content, of which Ca and other base cations form major
214 constituents (Lahteenoja and Page, 2011). Many of the soils in these nutrient-rich areas are
215 fluvaquentic Tropofibrists (Andriesse, 1988), and contain thick mineral layers or minerogenic
216 intrusions, reflective of episodic sedimentation events in the past (Lahteenoja and Page,
217 2011). In contrast, nutrient-poor (i.e. oligotrophic) sites tend to occur further in-land
218 (Lahteenoja and Page, 2011;Draper et al., 2014). They are almost entirely rain-fed, and
219 receive low or infrequent inputs of water and nutrients from streams and rivers (Lahteenoja
220 and Page, 2011). These ecosystems account for 10 to 40 % of peatland cover in the PMFB,
221 though precise estimates vary depending on the land classification scheme employed
222 (Lahteenoja and Page, 2011;Draper et al., 2014). Soil Ca and base cation concentrations are
223 significantly lower in these sites compared to nutrient-rich ones, with similar concentrations
224 to that of rainwater (Lahteenoja and Page, 2011). Soils are classified as typic or hydric
225 Tropofibrists (Andriesse, 1988). Even though Ca and base cations themselves play no direct
226 role in modulating CH₄ and N₂O fluxes, underlying differences in soil fertility may indirectly
227 influence CH₄ and N₂O flux by influencing the rate of labile C input to the soil, the
228 decomposability of organic matter, and the overall throughput of C and nutrients through the
229 plant-soil system (Firestone and Davidson, 1989;Groffman et al., 2009;von Fischer and Hedin,
230 2007;Whiting and Chanton, 1993).

231

232 We established 239 sampling plots ($\sim 30 \text{ m}^2$ per plot) within five tropical peatland sites that
233 captured four of the dominant vegetation types in the region (Draper et al.,
234 2014;Householder et al., 2012;Kelly et al., 2014;Lahteenoja and Page, 2011), and which
235 encompassed a range of nutrient availabilities (Figure 1, Table 1) (Lahteenoja and Page,
236 2011;Lahteenoja et al., 2009a). These four dominant vegetation types included: forested
237 vegetation (nutrient-rich; n= 21 plots), forested (short pole) vegetation (nutrient-poor; n= 47
238 plots), *Mauritia flexuosa*-dominated palm swamp (intermediate fertility, n= 153 plots), and
239 mixed palm swamp (nutrient-rich; n=18 plots) (Table 1). Four of the study sites (Buena Vista,
240 Charo, Miraflores, and Quistococha) were dominated by only one vegetation type, whereas
241 San Jorge contained a mixture of *M. flexuosa* palm swamp and forested (short pole)
242 vegetation (Table 1). As a consequence, both vegetation types were sampled in San Jorge to
243 develop a more representative picture of GHG fluxes from this location. Sampling efforts were
244 partially constrained by issues of site access; some locations were difficult to access (e.g.
245 centre of the San Jorge peatland) due to water table height and navigability of river channels;
246 as a consequence, sampling patterns were somewhat uneven, with higher sampling densities
247 in some peatlands than in others (Table 1).

248

249 In each peatland site, transects were established from the edge of the peatland to its centre.
250 Each transect varied in length from 2 to 5 km, depending on the relative size of the peatland.
251 Randomly located sampling plots ($\sim 30 \text{ m}^2$ per plot) were established at 50 or 200 m intervals
252 along each transect, from which GHG fluxes and environmental variables were measured
253 concomitantly. The sampling interval (i.e. 50 or 200 m) was determined by the length of the
254 transect or size of the peatland, with shorter sampling intervals (50 m) for shorter transects

255 (i.e. smaller peatlands) and longer sampling intervals (200 m) for longer transects (i.e. larger
256 peatlands).

257

258 **4.2 Quantifying soil-atmosphere exchange**

259 Soil-atmosphere fluxes (CH_4 , N_2O) were determined in four campaigns over a two-year annual
260 water cycle: February 2012 (wet season), June-August 2012 (dry season), June-July 2013 (dry
261 season), and May-June 2014 (wet season). The duration of the campaign for each study site
262 varied depending on its size. Each study site was generally sampled only once for each
263 campaign, except for a sub-set of plots within each vegetation type where diurnal studies
264 were conducted to determine if CH_4 and N_2O fluxes varied over daily time steps. Gas exchange
265 was quantified using a floating static chamber approach (Livingston and Hutchinson, 1995;
266 Teh et al., 2011). Static flux measurements were made by enclosing a 0.225 m^2 area with a
267 dark, single component, vented 10 L flux chamber. No chamber bases (collars) were used due
268 to the highly saturated nature of the soils. In most cases, a standing water table was present
269 at the soil surface, so chambers were placed directly onto the water. In the absence of a
270 standing water table, a weighted skirt was applied to create an airtight seal. Under these drier
271 conditions, chambers were placed carefully on the soil surface. In order to reduce the risk of
272 pressure-induced ebullition or disruption to soil gas concentration profiles caused by the
273 investigators' footfall, flux chambers were lowered from a distance of 2-m away using a 2-m
274 long pole. Gas samples were collected with syringes using >2 m lengths of Tygon® tubing,
275 after thoroughly purging the dead volumes in the sample lines. To promote even mixing
276 within the headspace, chambers were fitted with small computer fans (Pumpanen et al.,
277 2004). Headspace samples were collected from each flux chamber at five intervals over a 25

278 minute enclosure period using a gas tight syringe. Gas samples were stored in evacuated
279 Exetainers® (Labco Ltd., Lampeter UK), shipped to the UK, and subsequently analysed for CH₄,
280 CO₂ and N₂O concentrations using Thermo TRACE GC Ultra (Thermo Fischer Scientific Inc.,
281 Waltham, Massachusetts, USA) at the University of St. Andrews. Chromatographic separation
282 was achieved using a Porapak-Q column, and gas concentrations determined using a flame
283 ionization detector (FID) for CH₄, a methanizer-FID for CO₂, and an electron capture detector
284 (ECD) for N₂O. Instrumental precision, determined from repeated analysis of standards, was
285 < 5% for all detectors.

286

287 Diffusive fluxes were determined by using the JMP IN version 11 (SAS Institute, Inc., Cary,
288 North Carolina, USA) statistical package to plot best-fit lines to the data for headspace
289 concentration against time for individual flux chambers, with fluxes calculated from linear or
290 non-linear regressions depending on the individual concentration trend against time (Teh et
291 al., 2014). Gas mixing ratios (ppm) were converted to areal fluxes by using the Ideal Gas Law
292 to solve for the quantity of gas in the headspace (on a mole or mass basis) and normalized by
293 the surface area of each static flux chamber (Livingston and Hutchinson, 1995). Ebullition-
294 derived CH₄ fluxes were also quantified in our chambers where evidence of ebullition was
295 found. This evidence consisted of either: (i) rapid, non-linear increases in CH₄ concentration
296 over time; (ii) abrupt, stochastic increases in CH₄ concentration over time; or (iii) an abrupt
297 stochastic increase in CH₄ concentration, followed by a linear decline in concentration. For
298 observations following pattern (i), flux was calculated by fitting a quadratic regression
299 equation to the data ($P < 0.05$), and CH₄ flux determined from the initial steep rise in CH₄
300 concentration. For data following pattern (ii), the ebullition rate was determined by

301 calculating the total CH₄ production over the course of the bubble event, in-line with prior
302 work conducted by the investigators (Teh et al., 2011). Last, for data following pattern (iii), a
303 best-fit line was plotted to the CH₄ concentration data after the bubble event, and a net rate
304 of CH₄ uptake calculated from the gradient of the line. While observations (i) – (iii) all reflect
305 the effects of ebullition, only observations following patterns (i) and (ii) indicate net emission
306 to the atmosphere, whereas observations following pattern (iii) indicate emission followed by
307 net uptake. As a consequence, patterns (i) and (ii) were categorized as “net ebullition” (i.e.
308 net efflux) whereas observations following pattern (iii) were categorized as “ebullition-driven
309 CH₄ uptake” (i.e. net influx).

310

311 **4.3 Environmental variables**

312 To investigate the effects of environmental variables on trace gas fluxes, we determined air
313 temperature, soil temperature, chamber headspace temperature, soil pH, soil electrical
314 conductivity (EC; μScm^{-2}), dissolved oxygen concentration of the soil pore water (DO;
315 measured as percent saturation, %) in the top 15 cm of the peat column, and water table
316 position concomitant with gas sampling. Air temperature (measured 1.3 m above the soil)
317 and chamber headspace temperature were measured using a Checktemp® probe and meter
318 (Hanna Instruments LTD, Leighton Buzzard, UK). Peat temperature, pH, DO and EC were
319 measured at a depth of 15 cm below the peat surface and recorded *in situ* with each gas
320 sample using a HACH® rugged outdoor HQ30D multi meter and pH, LDO or EC probe. At sites
321 where the water level was above the peat surface, the water depth was measured using a
322 meter rule. Where the water table was at or below the peat surface, the water level was

323 measured by auguring a hole to 1 m depth and measuring water table depth using a meter
324 rule.

325

326 **4.4 Statistical Analyses**

327 Statistical analyses were performed using JMP IN version 11 (SAS Institute, Inc., Cary, North
328 Carolina, USA). Box-Cox transformations were applied where the data failed to meet the
329 assumptions of analysis of variance (ANOVA); otherwise, non-parametric tests were applied
330 (e.g. Wilcoxon signed-rank test). ANOVA and analysis of co-variance (ANCOVA) were used to
331 test for relationships between gas fluxes and vegetation type, season, and environmental
332 variables. When determining the effect of vegetation type on gas flux, data from different
333 study sites (e.g. San Jorge and Miraflores) were pooled together. Means comparisons were
334 tested using a Fisher's Least Significant Difference (LSD) test.

335

336

337 **5. RESULTS**

338 **5.1 Differences in gas fluxes and environmental variables among vegetation types**

339 All vegetation types were net sources of CH₄, with an overall mean (\pm standard error) diffusive
340 flux of $36.1 \pm 3.1 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$ and a mean net ebullition flux of $973.3 \pm 161.4 \text{ mg CH}_4\text{-C}$
341 $\text{m}^{-2} \text{ d}^{-1}$ (Figure 2, Table 2). We also saw examples of ebullition-driven CH₄ uptake (i.e. a sudden
342 or stochastic increase in CH₄ concentration, followed immediately by a rapid linear decline in
343 concentration), with a mean rate of $-504.1 \pm 84.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$ (Table 2). Diffusive fluxes

344 of CH₄ accounted for the majority of observations (83.3 to 93.1 %), while ebullition fluxes
345 accounted for a much smaller proportion of observations (6.9 to 16.7 %; Table 2).

346

347 Diffusive CH₄ flux varied significantly among the four vegetation types sampled in this study
348 (two-way ANOVA with vegetation, season and their interaction, $F_{7, 979} = 13.2$, $P < 0.0001$; Fig.
349 2a). However, the effect of vegetation was relatively weak (see ANCOVA results in the section
350 'Relationships between gas fluxes and environmental variables'), and a means comparison
351 test on the pooled data was unable to determine which means differed significantly from the
352 others (Fisher's LSD, $P > 0.05$). For the pooled data, the overall numerical trend was that mixed
353 palm swamp showed the highest mean flux (52.0 ± 16.0 mg CH₄-C m⁻² d⁻¹), followed by *M.*
354 *flexuosa* palm swamp (36.7 ± 3.9 mg CH₄-C m⁻² d⁻¹), forested (short pole) vegetation ($31.6 \pm$
355 6.6 mg CH₄-C m⁻² d⁻¹), and forested vegetation (29.8 ± 10.0 mg CH₄-C m⁻² d⁻¹). CH₄ ebullition
356 (i.e. net ebullition and ebullition-driven uptake) did not vary significantly among vegetation
357 types nor between seasons (Table 2). Broadly speaking, however, we saw a greater frequency
358 of ebullition in the *M. flexuosa* palm swamp, followed by mixed palm swamp, forested
359 vegetation, and forested (short pole vegetation) (Table 2).

360

361 These study sites were also a weak net source of N₂O, with a mean diffusive flux of 0.70 ± 0.34
362 $\mu\text{g N}_2\text{O-N m}^{-2} \text{d}^{-1}$. We saw only limited evidence of ebullition of N₂O, with only three chambers
363 out of 1181 (0.3 % of observations) showing evidence of N₂O ebullition. These data were
364 omitted from the analysis of diffusive flux of N₂O. Because of the high variance in diffusive
365 N₂O flux among plots, analysis of variance indicated that mean diffusive N₂O flux did not differ

366 significantly among vegetation types (two-way ANOVA, $P > 0.5$, Fig. 2b). However, when the
367 N_2O flux data were grouped by vegetation type, we see that some vegetation types tended
368 to function as net atmospheric sources, while others acted as atmospheric sinks (Fig. 2b, Table
369 3). For example, the highest N_2O emissions were observed from *M. flexuosa* palm swamp
370 ($1.11 \pm 0.44 \mu\text{g N}_2\text{O-N m}^{-2} \text{d}^{-1}$) and forested vegetation ($0.20 \pm 0.95 \mu\text{g N}_2\text{O-N m}^{-2} \text{d}^{-1}$). In
371 contrast, forested (short pole) vegetation and mixed palm swamp were weak sinks for N_2O ,
372 with a mean flux of -0.01 ± 0.84 and $-0.21 \pm 0.70 \mu\text{g N}_2\text{O-N m}^{-2} \text{d}^{-1}$, respectively.

373

374 Soil pH varied significantly among vegetation types (data pooled across all seasons; ANOVA,
375 $P < 0.0001$, Table 3). Multiple comparisons tests indicated that mean soil pH was significantly
376 different for each of the vegetation types (Fisher's LSD, $P < 0.0001$, Table 3), with the lowest
377 pH in forested (short pole) vegetation (4.10 ± 0.04), followed by *M. flexuosa* palm swamp
378 (5.32 ± 0.02), forested vegetation (6.15 ± 0.06), and the mixed palm swamp (6.58 ± 0.04).

379

380 Soil dissolved oxygen (DO) content varied significantly among vegetation types (data pooled
381 across all seasons; Kruskal-Wallis, $P < 0.0001$, Table 3). Multiple comparisons tests indicated
382 that mean DO was significantly different for each of the vegetation types (Fisher's LSD, $P <$
383 0.05 , Table 3), with the highest DO in the forested (short pole) vegetation ($25.2 \pm 2.1 \%$),
384 followed by the *M. flexuosa* palm swamp ($18.1 \pm 1.0 \%$), forested vegetation ($11.8 \pm 2.8 \%$),
385 and the mixed palm swamp ($0.0 \pm 0.0 \%$).

386

387 Electrical conductivity (EC) varied significantly among vegetation types (data pooled across all
388 seasons; Kruskal-Wallis, $P < 0.0001$, Table 3). Multiple comparison tests indicated that mean
389 EC was significantly different for each of the vegetation types (Fisher's LSD, $P < 0.05$; Table 3),
390 with the highest EC in the mixed palm swamp ($170.9 \pm 6.0 \mu\text{s m}^{-2}$), followed by forested
391 vegetation ($77.1 \pm 4.2 \mu\text{s m}^{-2}$), *M. flexuosa* palm swamp ($49.7 \pm 1.4 \mu\text{s m}^{-2}$) and the forested
392 (short pole) vegetation ($40.9 \pm 3.5 \mu\text{s m}^{-2}$).

393

394 Soil temperature varied significantly among vegetation types (data pooled across all seasons;
395 ANOVA, $P < 0.0001$, Table 3). Multiple comparisons tests indicated that soil temperature in
396 forested (short pole) vegetation was significantly lower than in the other vegetation types
397 (Table 3); whereas the other vegetation types did not differ in temperature amongst
398 themselves (Fisher's LSD, $P < 0.05$, Table 3).

399

400 Air temperature varied significantly among vegetation types (data pooled across all seasons;
401 ANOVA, $P < 0.0001$, Table 3). Multiple comparisons tests indicated that air temperature in *M.*
402 *flexuosa* palm swamp was significantly lower than in the other vegetation types; whereas the
403 other vegetation types did not differ in temperature amongst themselves (Fisher's LSD, $P <$
404 0.05 , Table 3).

405

406 Water table depths varied significantly among vegetation types (data pooled across all
407 seasons; ANOVA, $P < 0.0001$, Table 3). The highest mean water tables were observed in mixed
408 palm swamp ($59.6 \pm 9.3 \text{ cm}$), followed by forested vegetation ($34.0 \pm 6.9 \text{ cm}$), *M. flexuosa*

409 palm swamp (17.4 ± 1.2 cm), and forested (short pole) vegetation (3.5 ± 1.0 cm) (Fisher's LSD,
410 $P < 0.0005$).

411

412 **5.2 Temporal variations in gas fluxes and environmental variables**

413 The peatlands sampled in this study showed pronounced seasonal variability in diffusive CH₄
414 flux (two-way ANOVA, $F_{7, 979} = 13.2$, $P < 0.0001$; Table 4). For ebullition of CH₄ and ebullition-
415 driven uptake of CH₄, mean fluxes varied between seasons, but high variability meant that
416 these differences were not statistically significant ((two-way ANOVA, $P > 0.8$; Table 2).
417 Diffusive N₂O flux showed no seasonal trends (two-way ANOVA, $P > 0.5$), and therefore will
418 not be discussed further here. Diurnal studies suggest that neither diffusive fluxes of CH₄ nor
419 N₂O varied over the course of a 24-hour period.

420

421 For diffusive CH₄ flux, the overall trend was towards significantly higher wet season ($51.1 \pm$
422 7.0 mg CH₄-C m⁻² d⁻¹) compared to dry season (27.3 ± 2.7 mg CH₄-C m⁻² d⁻¹) flux (data pooled
423 across all vegetation types; t-Test, $P < 0.001$, Table 4). However, when diffusive CH₄ flux was
424 disaggregated by vegetation type, very different seasonal trends emerged. For example, both
425 forested vegetation and mixed palm swamp showed significantly greater diffusive CH₄ flux
426 during the *dry season* with net fluxes of 47.2 ± 5.4 mg CH₄-C m⁻² d⁻¹ and 64.2 ± 12.1 mg CH₄-
427 C m⁻² d⁻¹, respectively (Fisher's LSD, $P < 0.05$, Table 3). In contrast, *wet season* flux was 7-16
428 times lower, with net fluxes of 6.7 ± 1.0 mg CH₄-C m⁻² d⁻¹ and 6.1 ± 1.3 mg CH₄-C m⁻² d⁻¹,
429 respectively (Fisher's LSD, $P < 0.05$, Table 3). In contrast, forested (short pole) vegetation and
430 *M. flexuosa* palm swamp showed seasonal trends consistent with the pooled data set; i.e.

431 significantly higher flux during the wet season (46.7 ± 8.4 and 60.4 ± 9.1 mg CH₄-C m⁻² d⁻¹,
432 respectively) compared to the dry season (28.3 ± 2.6 and 18.8 ± 2.6 mg CH₄-C m⁻² d⁻¹,
433 respectively) (Fisher's LSD, $P < 0.05$, Table 3).

434

435 Even though seasonal trends in CH₄ ebullition were not statistically significant, we will briefly
436 describe the overall patterns for the different vegetation types as they varied among
437 ecosystems (Table 2). Forested vegetation only showed evidence of ebullition during the dry
438 season, where ebullition-driven uptake was observed. For forested (short pole) vegetation,
439 net ebullition was generally greater during the wet season, while ebullition-driven uptake was
440 higher during the dry season. For *M. flexuosa* palm swamp, both net ebullition and ebullition-
441 driven uptake were greater during the wet season. Lastly, for mixed palm swamp, both net
442 ebullition and ebullition-driven uptake were greater during the dry season.

443

444 For the environmental variables, soil pH, DO, EC, water table depth, and soil temperature
445 varied significantly between seasons, whereas air temperature did not. Thus, for sake of
446 brevity, air temperature is not discussed further here. Mean soil pH was significantly lower
447 during the wet season (5.18 ± 0.03) than during the dry season (5.31 ± 0.04) (data pooled
448 across all vegetation types; t-Test, $P < 0.05$, Table 2). When disaggregated by vegetation type,
449 the overall trend was found to hold true for all vegetation types except forested (short pole)
450 vegetation, which displayed higher pH during the wet season compared to the dry season
451 (Table 2). A two-way ANOVA on Box-Cox transformed data using vegetation type, season and
452 their interaction as explanatory variables indicated that vegetation type was the best

453 predictor of pH, with season and vegetation type by season playing a lesser role ($F_{7, 1166} =$
454 348.9, $P < 0.0001$).

455

456 For DO, the overall trend was towards significantly lower DO during the wet season ($13.9 \pm$
457 1.0 %) compared to the dry season (19.3 ± 1.2 %) (data pooled across all vegetation types;
458 Wilcoxon test, $P < 0.0001$, Table 2). However, when the data were disaggregated by
459 vegetation type, we found that individual vegetation types showed distinct seasonal trends
460 from each other. Forested vegetation and mixed palm swamp were consistent with the
461 overall trend (i.e. lower wet season compared to dry season DO), whereas forested (short
462 pole) vegetation and *M. flexuosa* palm swamp displayed the reverse trend (i.e. higher *wet*
463 *season* compared to *dry season* DO) (Table 2). A two-way ANOVA on Box Cox transformed
464 data using vegetation type, season and their interaction as explanatory variables indicated
465 that vegetation type was the best predictor of DO, followed by a strong vegetation by season
466 interaction; season itself played a lesser role than either of the other two explanatory
467 variables ($F_{7, 1166} = 57.0$, $P < 0.0001$).

468

469 For EC, the overall trend was towards lower EC in the wet season ($49.4 \pm 1.8 \mu\text{s m}^{-2}$) compared
470 to the dry season ($65.5 \pm 2.2 \mu\text{s m}^{-2}$) (data pooled across all vegetation types; Wilcoxon test,
471 $P < 0.05$, Table 2). When the data were disaggregated by vegetation type, this trend was
472 consistent for all the vegetation types except for forested vegetation, where differences
473 between wet and dry season were not statistically significant (Wilcoxon, $P > 0.05$, Table 2).

474

475 Water table depths varied significantly between seasons (data pooled across all vegetation
476 types; Wilcoxon test, $P < 0.0001$, Table 2). Mean water table level was significantly higher in
477 the wet (54.1 ± 2.7 cm) than the dry (1.3 ± 0.8 cm) season. When disaggregated by vegetation
478 type, the trend held true for individual vegetation types (Table 2). All vegetation types had
479 negative dry season water tables (i.e. below the soil surface) and positive wet season water
480 tables (i.e. water table above the soil surface), except for *M. flexuosa* palm swamp that had
481 positive water tables in both seasons. Two-way ANOVA on Box-Cox transformed data using
482 vegetation type, season and their interaction as explanatory variables indicated that all three
483 factors explained water table depth, but that season accounted for the largest proportion of
484 the variance in the model, followed by vegetation by season, and lastly by vegetation type ($F_{7, 1157} = 440.1, P < 0.0001$).

486

487 For soil temperature, the overall trend was towards slightly higher temperatures in the wet
488 season (25.6 ± 0.0 °C) compared to the dry season (25.1 ± 0.0 °C) (t-Test, $P < 0.0001$). Analysis
489 of the disaggregated data indicates this trend was consistent for individual vegetation types
490 (Table 2). Two-way ANOVA on Box-Cox transformed data using vegetation type, season and
491 their interaction as explanatory variables indicated that all three variables played a significant
492 role in modulating soil temperature, although season accounted for the largest proportion of
493 the variance whereas the other two factors accounted for a similar proportion of the variance
494 ($F_{7, 1166} = 21.3, P < 0.0001$).

495

496 **5.3 Relationships between gas fluxes and environmental variables**

497 To explore the relationships between environmental variables and diffusive gas fluxes, we
498 conducted an analysis of covariance (ANCOVA) on Box-Cox transformed gas flux data, using
499 vegetation type, season, vegetation by season, and environmental variables as explanatory
500 variables. We did not analyze trends between ebullition and environmental variables because
501 of the limitations in the sampling methodology and the limited number of observations.

502

503 For diffusive CH₄ flux, ANCOVA revealed that vegetation by season was the strongest
504 predictor of CH₄ flux, followed by a strong season effect ($F_{13, 917} = 9.2, P < 0.0001$). Other
505 significant drivers included soil temperature, water table depth, and a borderline-significant
506 effect of vegetation type ($P < 0.06$). However, it is important to note that each of these
507 environmental variables were only weakly correlated with CH₄ flux even if the relationships
508 were statistically significant; for example, when individual bivariate regressions were
509 calculated, the r^2 values were less than 0.01 for each plot (see Supplementary Online
510 Materials, Figures S1 and S2).

511

512 For diffusive N₂O flux, ANCOVA indicated that the best predictors of flux rates were dissolved
513 oxygen and electrical conductivity ($F_{13, 1014} = 2.2, P < 0.0082$). As was the case for CH₄, when
514 the relationships between these environmental variables and N₂O flux were explored using
515 individual bivariate regressions, r^2 values were found to be very low (e.g. less than $r^2 < 0.0007$)
516 or not statistically significant (see Supplementary Online Materials, Figures S3 and S4).

517

518

519 **6. DISCUSSION**

520 **6.1 Large and asynchronous CH₄ fluxes from peatlands in the Pastaza-Marañón foreland**

521 **basin**

522 The ecosystems sampled in this study were strong atmospheric sources of CH₄. Diffusive CH₄
523 flux, averaged across all vegetation types, was $36.1 \pm 3.1 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$, spanning a range
524 from -100 to 1,510 mg CH₄-C m⁻² d⁻¹. This mean falls within the range of other diffusive fluxes
525 observed in Indonesian peatlands (3.7-87.8 mg CH₄-C m⁻² d⁻¹) (Couwenberg et al., 2010) and
526 other Amazonian wetlands (7.1-390.0 mg CH₄-C m⁻² d⁻¹) (Bartlett et al., 1990;Bartlett et al.,
527 1988;Devol et al., 1990;Devol et al., 1988). Although the ebullition data must be treated with
528 caution because of the sampling methodology (see below), we observed a mean net ebullition
529 flux of $973.3 \pm 161.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$, spanning a range of 27 to 8,082 mg CH₄-C m⁻² d⁻¹.
530 While data on ebullition from Amazonian wetlands are sparse, these values are broadly in-
531 line with riverine and lake ecosystems sampled elsewhere (Bastviken et al., 2010;Smith et al.,
532 2000;Sawakuchi et al., 2014). Ebullition-driven CH₄ uptake is not a commonly reported
533 phenomena in other peatland studies because it is likely an artefact of chamber sampling
534 methods; as a consequence, we do not discuss these data further here. To summarize, these
535 data on diffusive CH₄ flux and ebullition suggest that peatlands in the Pastaza-Marañón
536 foreland basin are strong contributors to the regional atmospheric budget of CH₄, given that
537 the four vegetation types sampled here represent the dominant cover types in the PMFB
538 (Draper et al., 2014;Householder et al., 2012;Kelly et al., 2014;Lahteenoja and Page, 2011)

539

540 The overall trend in the diffusive flux data was towards greater temporal (i.e. seasonal)
541 variability in diffusive CH₄ flux rather than strong spatial (i.e. inter-site) variability. For the
542 pooled dataset, diffusive CH₄ emissions were significantly greater during the wet season than
543 the dry season, with emissions falling by approximately half from one season to the other (i.e.
544 51.1 ± 7.0 to 27.3 ± 2.7 mg CH₄-C m⁻² d⁻¹). This is in contrast to the data on diffusive CH₄ flux
545 among study sites, where statistical analyses indicate that there was a weak effect of
546 vegetation type on CH₄ flux, that was only on the edge of statistical significance (i.e. ANCOVA;
547 P < 0.06 for the vegetation effect term). For the ebullition data, while there was no significant
548 difference among vegetation types nor between seasons, it is interesting to note that
549 ebullition was more common for the two vegetation types – Mixed Palm Swamp and *M.*
550 *flexuosa* palm swamp – that showed the highest rates of diffusive CH₄ flux (Figure 2, Table 2).
551 In contrast, forested (short pole) and forested vegetation, which showed the lowest rates of
552 diffusive CH₄ flux, also showed the lowest occurrence of ebullition (Figure 2, Table 2). This is
553 broadly consistent with the notion that Mixed Palm Swamp and *M. flexuosa* palm swamp may
554 produce more CH₄ or possess lower gross CH₄ oxidation rates than the other vegetation types.

555

556 On face value, these data on diffusive CH₄ flux suggest two findings: first, the relatively weak
557 effect of vegetation type on diffusive CH₄ flux implies that patterns of CH₄ cycling are broadly
558 similar among study sites. Second, the strong *overall* seasonal pattern suggests that – on the
559 whole – these systems conform to our normative expectations of how peatlands function
560 with respect to seasonal variations in hydrology and redox potential; i.e. enhanced CH₄
561 emissions during a more anoxic wet season (i.e. when water tables rise), and reduced CH₄
562 emissions during a more oxic dry season (i.e. when water tables fall). However, closer

563 inspection of the data reveals that different vegetation types showed contrasting seasonal
564 emission patterns (Table 3), challenging our basic assumptions about how these ecosystems
565 function. For example, while forested (short pole) vegetation and *M. flexuosa* palm swamp
566 conformed to expected seasonal trends for methanogenic wetlands (i.e. higher wet season
567 compared to dry season emissions), forested vegetation and mixed palm swamp showed the
568 opposite pattern, with significantly greater CH₄ emissions during the dry season. The
569 disaggregated data thus imply that the process-based controls on CH₄ fluxes may vary
570 significantly among these different ecosystems, rather than being similar, leading to a
571 divergence in seasonal flux patterns.

572

573 What may explain this pattern of seasonal divergence in CH₄ flux? One explanation is that CH₄
574 emissions from forested vegetation and mixed palm swamp, compared to the other two
575 ecosystems, may be more strongly transport-limited during the wet season than the dry
576 season. This interpretation is supported by the field data; forested vegetation and mixed palm
577 swamp had the highest wet season water table levels, measuring 110.8 ± 9.3 and 183.7 ± 1.7
578 cm, respectively (Table 2). In contrast, water table levels for forested (short pole) vegetation
579 and *M. flexuosa* palm swamp in the wet season were 3-7 times lower, measuring only 26.9 ±
580 0.5 and 37.2 ± 1.7 cm, respectively (Table 2). Moreover, a scatter plot of diffusive CH₄ flux
581 against water table depth shows a peak in diffusive CH₄ emissions when water tables are
582 between 30 to 40 cm above the surface, after which CH₄ emissions decline precipitously
583 (Supplementary Online Materials Figure S2). Thus, the greater depth of overlying water in
584 forested vegetation and mixed palm swamp may have exerted a much greater physical
585 constraint on gas transport compared to the other two ecosystems. This interpretation is

586 broadly consistent with studies from other ecosystems, which indicate that high or positive
587 water tables may suppress CH₄ emissions from wetlands above a system-specific threshold
588 (Couwenberg et al., 2010; Couwenberg et al., 2011).

589

590 However, transport limitation alone does not fully explain the difference in dry season CH₄
591 emissions among vegetation types. Forested vegetation and mixed palm swamp showed
592 substantially higher dry season CH₄ emissions (47.2 ± 5.4 and 85.5 ± 26.4 mg CH₄-C m⁻² d⁻¹,
593 respectively) compared to forested (short pole) vegetation and *M. flexuosa* palm swamp (9.6
594 ± 2.6 and 25.5 ± 2.9 mg CH₄-C m⁻² d⁻¹, respectively), pointing to underlying differences in CH₄
595 production and oxidation among these ecosystems. One possibility is that dry season
596 methanogenesis in forested vegetation and mixed palm swamp was greater than in the other
597 two ecosystems, potentially driven by higher rates of C flow (Whiting and Chanton, 1993).
598 This is plausible given that forested vegetation and mixed palm swamp tend to occur in more
599 nutrient-rich parts of the Pastaza-Marañón foreland basin, whereas forested (short pole)
600 vegetation and *M. flexuosa* palm swamp tend to dominate in more nutrient-poor areas
601 (Lahteenoja et al., 2009a), leading to potential differences in rates of plant productivity and
602 belowground C flow. Moreover, it is possible that the nutrient-rich vegetation may be able to
603 utilize the higher concentration of nutrients, deposited during the flood pulse, during the
604 Amazonian dry season (Morton et al., 2014; Saleska et al., 2016), with implications for overall
605 ecosystem C throughput and CH₄ emissions. Of course, this interpretation does not preclude
606 other explanations, such as differences in CH₄ transport rates among ecosystems (e.g. due to
607 plant-facilitated transport or ebullition) (Panagala et al., 2013), or varying rates of CH₄
608 oxidation (Teh et al., 2005). However, these other possibilities cannot be explored further

609 without recourse to more detailed process-level experiments. Forthcoming studies on the
610 regulation of GHG fluxes at finer spatial scales (e.g. investigation of environmental gradients
611 within individual study sites) or detailed diurnal studies of GHG exchange (Murphy *et al.*, in
612 prep.) will further deepen our understanding of the process controls on soil GHG flux from
613 these peatlands, and shed light on these questions.

614

615 Finally, while the trends described here are intriguing, it is important to acknowledge some
616 of the potential limitations of our data. First, given the uneven sampling pattern, it is possible
617 that the values reported here do not fully represent the entire range of diffusive flux rates,
618 especially for the more sparsely sampled habitats. However, given the large and statistically
619 significant differences in CH₄ emissions between seasons, it is likely that the main trends that
620 we have identified will hold true with more spatially-extensive sampling. Second, the data are
621 a conservative underestimate of CH₄ emissions, because the low frequency, static chamber
622 sampling approach that we utilized was unable to fully capture erratic ebullition events
623 representatively (McClain *et al.*, 2003). Although we attempted to quantify CH₄ ebullition
624 within our static flux chambers, the sampling approach that we utilized was not the best-
625 suited for representatively quantifying ebullition. Given the erratic or stochastic nature of
626 ebullition, automated chamber measurements or an inverted “flux funnel” approach would
627 have provided better estimates of ebullition (Strack *et al.*, 2005). However, we lacked the
628 resources to apply these techniques here. We also did not measure CH₄ emissions from the
629 stems of woody plants, even though woody plants have been recently identified as an
630 important point of atmospheric egress (Pangala *et al.*, 2013). We did not have enough data
631 on floristic composition or individual plant identities within our plots to develop a sampling

632 design that would adequately represent plant-mediated fluxes from our study sites, nor the
633 resources to implement a separate study of stem fluxes. Third and last, our data probably
634 underestimate net CH₄ fluxes for the PMFB because we chose to include fluxes with strong
635 negative values (i.e. more than -10 mg CH₄-C m⁻² d⁻¹) in our calculation of mean diffusive flux
636 rates. These observations are more negative than other values typically reported elsewhere
637 in the tropical wetland literature (Bartlett et al., 1990;Bartlett et al., 1988;Devol et al.,
638 1990;Devol et al., 1988;Couwenberg et al., 2010). However, they represent only a small
639 proportion of our dataset (i.e. 7 %, or only 68 out of 980 measurements), and inspection of
640 our field notes and the data itself did not produce convincing reasons to exclude these
641 observations (e.g. we found no evidence of irregularities during field sampling, and any
642 chambers that showed statistically insignificant changes in concentration over time were
643 removed during our quality control procedures). While headspace concentrations for these
644 measurements were often elevated above mean tropospheric levels (>2 ppm), this in itself is
645 not unusual in reducing environments that contain strong local sources of CH₄ (Baldocchi et
646 al., 2012). We did not see this as a reason to omit these values as local concentrations of CH₄
647 are likely to vary naturally in methanogenic forest environments due to poor mixing in the
648 understory and episodic ebullition events. Importantly, exclusion of these data did not alter
649 the overall statistical trends reported above, and only produced slightly higher estimates of
650 diffusive CH₄ flux (41.6 ± 3.2 mg CH₄-C m⁻² d⁻¹ versus 36.1 ± 3.1 mg CH₄-C m⁻² d⁻¹).

651

652 **6.2 Western Amazonian peatlands as weak atmospheric sources of nitrous oxide**

653 The ecosystems sampled in this study were negligible atmospheric sources of N₂O, emitting
654 only 0.70 ± 0.34 µg N₂O-N m⁻² d⁻¹, suggesting that peatlands in the Pastaza-Marañón foreland

655 basin make little or no contribution to regional atmospheric budgets of N₂O. This is consistent
656 with N₂O flux measurements from other forested tropical peatlands, where N₂O emissions
657 were also found to be relatively low (Inubushi et al., 2003; Couwenberg et al., 2010). No
658 statistically significant differences in N₂O flux were observed among study sites or between
659 seasons, suggesting that these different peatlands may have similar patterns of N₂O cycling.
660 Interestingly, differences in N₂O fluxes were not associated with the nutrient status of the
661 peatland; i.e. more nutrient-rich ecosystems, such as forested vegetation and mixed palm
662 swamp, did not show higher N₂O fluxes than their nutrient-poor counterparts, such as
663 forested (short pole) vegetation and *M. flexuosa* palm swamp. This may imply that N
664 availability, one of the principal drivers of nitrification, denitrification, and N₂O production
665 (Groffman et al., 2009; Werner et al., 2007), may not be greater in nutrient-rich versus
666 nutrient-poor ecosystems in this part of the Western Amazon. Alternatively, it is possible that
667 even though N availability and N fluxes may differ between nutrient-rich and nutrient-poor
668 systems, N₂O yield may also vary such that net N₂O emissions are not significantly different
669 among study sites (Teh et al., 2014).

670

671 One potential source of concern are the negative N₂O fluxes that we documented here. While
672 some investigators have attributed negative fluxes to instrumental error (Cowan et al.,
673 2014; Chapuis-Lardy et al., 2007), others have demonstrated that N₂O consumption –
674 particularly in wetland soils – is not an experimental artifact, but occurs due to the complex
675 effects of redox, organic carbon content, nitrate availability, and soil transport processes on
676 denitrification (Ye and Horwath, 2016; Yang et al., 2011; Wen et al., 2016; Schlesinger,
677 2013; Teh et al., 2014; Chapuis-Lardy et al., 2007). Given the low redox potential and high
678 carbon content of these soils, it is plausible that microbial N₂O consumption is occurring,

679 because these types of conditions have been found to be conducive for N_2O uptake elsewhere
680 (Ye and Horwath, 2016; Teh et al., 2014; Yang et al., 2011).

681

682

683 **7. CONCLUSIONS**

684 Our data suggest that peatlands in the Pastaza-Marañón foreland basin are strong sources of
685 atmospheric CH_4 at a regional scale, and need to be better accounted for in CH_4 emissions
686 inventories for the Amazon basin as a whole. In contrast, N_2O fluxes were negligible,
687 suggesting that these ecosystems are weak regional sources at best. Divergent or
688 asynchronous seasonal emissions pattern for CH_4 among different vegetation types was
689 intriguing, and challenges our underlying expectations of how tropical peatlands function.
690 These data highlight the need for greater wet season sampling, particularly from ecosystems
691 near river margins that may experience very high water tables (i.e. >40 cm). Moreover, these
692 data also emphasize the need for more spatially-extensive sampling across both the Pastaza-
693 Marañón foreland basin and the wider Amazon region as a whole, in order to establish if these
694 asynchronous seasonal emission patterns are commonplace or specific to peatlands in the
695 PMFB region. If CH_4 emission patterns for different peatlands in the Amazon are in fact
696 asynchronous and decoupled from rainfall seasonality, then this may partially explain some
697 of the heterogeneity in CH_4 source and sinks observed at the basin-wide scale (Wilson et al.,
698 2016).

699

700

701 **8. AUTHOR CONTRIBUTION**

702 YAT secured the funding for this research, assisted in the planning and design of the
703 experiment, and took the principal role in the analysis of the data and preparation of the
704 manuscript. WAM planned and designed the experiment, collected the field data, analyzed
705 the samples, and took a secondary role in data preparation, data analysis, and manuscript
706 preparation. JCB, AB, and SEP supported the planning and design of the experiment, and
707 provided substantive input into the writing of the manuscript. AB in particular took a lead role
708 in developing the maps of our study sites in the PMFB.

709

710

711 **9. ACKNOWLEDGEMENTS**

712 The authors would like to acknowledge the UK Natural Environment Research Council for
713 funding this research (NERC award number NE/I015469). We would like to thank MINAG and
714 the Ministerio de Turismo in Iquitos for permits to conduct this research, the Instituto de
715 Investigaciones de la Amazonía Peruana (IIAP) for logistical support, Peruvian rainforest
716 villagers for their warm welcome and acceptance, Hugo Vasquez, Pierro Vasquez, Gian Carlo
717 Padilla Tenazoa and Yully Rojas Reátegui for fieldwork assistance, Dr Outi Lahteenoja and Dr
718 Ethan Householder for fieldwork planning, and Dr Paul Beaver of Amazonia Expeditions for
719 lodging and logistical support. Our gratitude also goes to Alex Cumming for fieldwork support
720 and laboratory assistance, Bill Hickin, Gemma Black, Adam Cox, Charlotte Langley, Kerry Allen,
721 and Lisa Barber of the University of Leicester for all of their continued support. Thanks are
722 also owed to Graham Hambley (St Andrews), Angus Calder (St Andrews), Viktoria Oliver

723 (Aberdeen), Torsten Diem (Aberdeen), Tom Kelly (Leeds), and Freddie Draper Leeds) for their
724 help in the laboratory and with fieldwork planning. TD, VO, and two anonymous referees
725 provided very helpful and constructive comments on earlier drafts of this manuscript. This
726 publication is a contribution from the Scottish Alliance for Geoscience, Environment and
727 Society (<http://www.sages.ac.uk>) and the UK Tropical Peatland Working Group
728 (<https://tropicalpeat.wordpress.com>).

729

730

731 **10. REFERENCES**

732 Andriesse, J.: Nature and management of tropical peat soils, 59, Food & Agriculture Org.,
733 1988.

734 Baggs, E. M.: A review of stable isotope techniques for N₂O source partitioning in soils:
735 Recent progress, remaining challenges and future considerations. , Rapid Communications
736 in Mass Spectrometry 22, 1664-1672, 2008.

737 Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.:
738 The challenges of measuring methane fluxes and concentrations over a peatland pasture,
739 Agric. For. Meteorol., 153, 177-187, <http://dx.doi.org/10.1016/j.agrformet.2011.04.013>, 2012.

740 Bartlett, K. B., Crill, P. M., Sebacher, D. I., Harriss, R. C., Wilson, J. O., and Melack, J. M.:
741 METHANE FLUX FROM THE CENTRAL AMAZONIAN FLOODPLAIN, J. Geophys. Res.-Atmos.,
742 93, 1571-1582, 1988.

743 Bartlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E., and Harriss, R. C.: METHANE FLUX
744 FROM THE AMAZON RIVER FLOODPLAIN - EMISSIONS DURING RISING WATER, J. Geophys.
745 Res.-Atmos., 95, 16773-16788, 10.1029/JD095iD10p16773, 1990.

746 Bastviken, D., Santoro, A. L., Marotta, H., Pinho, L. Q., Calheiros, D. F., Crill, P., and Enrich-
747 Prast, A.: Methane Emissions from Pantanal, South America, during the Low Water Season:
748 Toward More Comprehensive Sampling, *Environ. Sci. Technol.*, 44, 5450-5455,
749 10.1021/es1005048, 2010.

750 Belyea, L. R., and Baird, A. J.: Beyond "The limits to peat bog growth": Cross-scale feedback
751 in peatland development, *Ecological Monographs*, 76, 299-322, 2006.

752 Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., and Firestone, M. K.: Anaerobic oxidation of
753 methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling,
754 *Journal of Geophysical Research: Biogeosciences*, 117, n/a-n/a, 10.1029/2011JG001864,
755 2012.

756 Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., and Bernoux, M.: Soils, a sink for N₂O?
757 A review, *Global Change Biology*, 13, 1-17, 10.1111/j.1365-2486.2006.01280.x, 2007.

758 Conrad, R.: Soil Microorganisms as Controllers of Atmospheric Trace Gases., *Microbiological
759 Reviews*, 60, 609-640, 1996.

760 Couwenberg, J., Dommain, R., and Joosten, H.: Greenhouse gas fluxes from tropical
761 peatlands in south-east Asia, *Global Change Biology*, 16, 1715-1732, 10.1111/j.1365-
762 2486.2009.02016.x, 2010.

763 Couwenberg, J., Thiele, A., Tanneberger, F., Augustin, J., Bärisch, S., Dubovik, D.,
764 Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A., and Joosten, H.: Assessing
765 greenhouse gas emissions from peatlands using vegetation as a proxy, *Hydrobiologia*, 674,
766 67-89, 10.1007/s10750-011-0729-x, 2011.

767 Cowan, N. J., Famulari, D., Levy, P. E., Anderson, M., Reay, D. S., and Skiba, U. M.:
768 Investigating uptake of N₂O in agricultural soils using a high-precision dynamic
769 chamber method, *Atmos. Meas. Tech.*, 7, 4455-4462, 10.5194/amt-7-4455-2014, 2014.

770 D'Amelio, M. T. S., Gatti, L. V., Miller, J. B., and Tans, P.: Regional N₂O fluxes in Amazonia
771 derived from aircraft vertical profiles, *Atmospheric Chemistry and Physics*, 9, 8785-8797,
772 2009.

773 Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., and Martinelli, L. A.: Methane emissions to
774 the troposphere from the Amazon floodplain, *Journal of Geophysical Research: Atmospheres*, 93, 1583-1592, 10.1029/JD093iD02p01583, 1988.

776 Devol, A. H., Richey, J. E., Forsberg, B. R., and Martinelli, L. A.: SEASONAL DYNAMICS IN
777 METHANE EMISSIONS FROM THE AMAZON RIVER FLOODPLAIN TO THE TROPOSPHERE, *J. Geophys. Res.-Atmos.*, 95, 16417-16426, 10.1029/JD095iD10p16417, 1990.

779 Draper, F. C., Roucoux, K. H., Lawson, I. T., Mitchard, E. T. A., Coronado, E. N. H., Lahteenoja,
780 O., Montenegro, L. T., Sandoval, E. V., Zarate, R., and Baker, T. R.: The distribution and
781 amount of carbon in the largest peatland complex in Amazonia, *Environmental Research Letters*, 9, 12, 10.1088/1748-9326/9/12/124017, 2014.

783 Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: Nitrous oxide from soil denitrification:
784 Factors controlling its biological production., *Science*, 208, 749-751, 1980.

785 Firestone, M. K., and Davidson, E. A.: Microbiological basis of NO and N₂O production and
786 consumption in soil, in: *Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere*, edited by: Andrae, M. O., and Schimel, D. S., John Wiley and Sons Ltd., New
787 York, 7-21, 1989.

789 Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K.,
790 Tague, C., Tonitto, C., and Vidon, P.: Challenges to incorporating spatially and temporally
791 explicit phenomena (hotspots and hot moments) in denitrification models, *Biogeochemistry*, 93, 49-77, 10.1007/s10533-008-9277-5, 2009.

793 Hanson, R. S., and Hanson, T. E.: Methanotrophic Bacteria., *Microbiological Reviews*, 60,
794 439-471, 1996.

795 Householder, J. E., Janovec, J., Tobler, M., Page, S., and Lähteenoja, O.: Peatlands of the
796 Madre de Dios River of Peru: Distribution, Geomorphology, and Habitat Diversity, *Wetlands*,
797 32, 359-368, 10.1007/s13157-012-0271-2, 2012.

798 Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Simmonds, P., Dlugokencky, E. J.,
799 Hall, B., Elkins, J., Steele, P., Langenfelds, R., Krummel, P., Dutton, G., and Porter, L.:
800 Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwerk
801 measurements, a chemical transport model, and an inverse method, *J. Geophys. Res.-*
802 *Atmos.*, 113, 1-19, D17313

803 10.1029/2007jd009381, 2008.

804 Jungkunst, H. F., and Fiedler, S.: Latitudinal differentiated water table control of carbon
805 dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate
806 change, *Global Change Biology*, 13, 2668-2683, 10.1111/j.1365-2486.2007.01459.x, 2007.

807 Keller, M., Kaplan, W. A., and Wofsy, S. C.: EMISSIONS OF N₂O, CH₄ AND CO₂ FROM
808 TROPICAL FOREST SOILS, *J. Geophys. Res.-Atmos.*, 91, 1791-1802,
809 10.1029/JD091iD11p11791, 1986.

810 Kelly, T. J., Baird, A. J., Roucoux, K. H., Baker, T. R., Honorio Coronado, E. N., Ríos, M., and
811 Lawson, I. T.: The high hydraulic conductivity of three wooded tropical peat swamps in
812 northeast Peru: measurements and implications for hydrological function, *Hydrological
813 Processes*, 28, 3373-3387, 10.1002/hyp.9884, 2014.

814 Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J.,
815 Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S.,

816 Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B.,
817 Fraser, P. J., Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quere, C., Naik, V.,
818 O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M.,
819 Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P.,
820 Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss,
821 R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks,
822 *Nature Geoscience*, 6, 813-823, 10.1038/ngeo1955, 2013.
823 Lahteenoja, O., Ruokolainen, K., Schulman, L., and Alvarez, J.: Amazonian floodplains
824 harbour minerotrophic and ombrotrophic peatlands, *Catena*, 79, 140-145,
825 10.1016/j.catena.2009.06.006, 2009a.
826 Lahteenoja, O., Ruokolainen, K., Schulman, L., and Oinonen, M.: Amazonian peatlands: an
827 ignored C sink and potential source, *Global Change Biology*, 15, 2311-2320, 10.1111/j.1365-
828 2486.2009.01920.x, 2009b.
829 Lahteenoja, O., and Page, S.: High diversity of tropical peatland ecosystem types in the
830 Pastaza-Maranon basin, Peruvian Amazonia, *Journal of Geophysical Research-
831 Biogeosciences*, 116, 14, 10.1029/2010jg001508, 2011.
832 Lahteenoja, O., Reategui, Y. R., Rasanen, M., Torres, D. D., Oinonen, M., and Page, S.: The
833 large Amazonian peatland carbon sink in the subsiding Pastaza-Maranon foreland basin,
834 Peru, *Global Change Biology*, 18, 164-178, 10.1111/j.1365-2486.2011.02504.x, 2012.
835 Lavelle, P., Rodriguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gomez, Y.,
836 Gutierrez, A., Hurtado, M. D., Loaiza, S., Pullido, S. X., Rodriguez, E., Sanabria, C., Velasquez,
837 E., and Fonte, S. J.: Soil ecosystem services and land use in the rapidly changing Orinoco
838 River Basin of Colombia, *Agriculture Ecosystems & Environment*, 185, 106-117,
839 10.1016/j.agee.2013.12.020, 2014.

840 Liengaard, L., Nielsen, L. P., Revsbech, N. P., Priem, A., Elberling, B., Enrich-Prast, A., and
841 Kuhl, M.: Extreme emission of N₂O from tropical wetland soil (Pantanal, South America),
842 *Frontiers in Microbiology*, 3, 13, 10.3389/fmicb.2012.00433, 2013.

843 Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N.,
844 Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to
845 global implications – a synthesis, *Biogeosciences*, 5, 1475–1491, 2008.

846 Marani, L., and Alvalá, P. C.: Methane emissions from lakes and floodplains in Pantanal,
847 Brazil, *Atmospheric Environment*, 41, 1627-1633,

848 <http://dx.doi.org/10.1016/j.atmosenv.2006.10.046>, 2007.

849 McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S.
850 C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.:
851 Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic
852 ecosystems, *Ecosystems*, 6, 301-312, 10.1007/s10021-003-0161-9, 2003.

853 Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Novo,
854 E.: Regionalization of methane emissions in the Amazon Basin with microwave remote
855 sensing, *Global Change Biology*, 10, 530-544, 10.1111/j.1529-8817.2003.00763.x, 2004.

856 Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C.
857 A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P.,
858 Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zurcher, S., Brovkin, V., van Bodegom, P.
859 M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and
860 wetland methane modelling: conclusions from a model inter-comparison project
861 (WETCHIMP), *Biogeosciences*, 10, 753-788, 10.5194/bg-10-753-2013, 2013.

862 Morley, N., and Baggs, E. M.: Carbon and oxygen controls on N₂O and N₂ production during
863 nitrate reduction, *Soil Biol. Biochem.*, 42, 1864-1871, 10.1016/j.soilbio.2010.07.008, 2010.

864 Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F.,
865 Harding, D. J., and North, P. R. J.: Amazon forests maintain consistent canopy structure and
866 greenness during the dry season, *Nature*, 506, 221-224, 10.1038/nature13006

867 <http://www.nature.com/nature/journal/v506/n7487/abs/nature13006.html> - supplementary-
868 information, 2014.

869 Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the Rise—Again, *Science*,
870 343, 493-495, 10.1126/science.1247828, 2014.

871 Pangala, S. R., Moore, S., Hornibrook, E. R. C., and Gauci, V.: Trees are major conduits for
872 methane egress from tropical forested wetlands, *New Phytologist*, 197, 524-531,
873 10.1111/nph.12031, 2013.

874 Pett-Ridge, J., Petersen, D. G., Nuccio, E., and Firestone, M. K.: Influence of oxic/anoxic
875 fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil, *FEMS*
876 *Microbiol. Ecol.*, 85, 179-194, 10.1111/1574-6941.12111, 2013.

877 Prosser, J. I., and Nicol, G. W.: Relative contributions of archaea and bacteria to aerobic
878 ammonia oxidation in the environment, *Environ. Microbiol.*, 10, 2931-2941, 10.1111/j.1462-
879 2920.2008.01775.x, 2008.

880 Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions
881 from natural processes, *Global Biogeochemical Cycles*, 27, 972-989, 10.1002/gbc.20087,
882 2013.

883 Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., Langenfelds,
884 R., Tohjima, Y., Machida, T., Manizza, M., Rigby, M., O'Doherty, S., Patra, P. K., Harth, C. M.,
885 Weiss, R. F., Krummel, P. B., van der Schoot, M., Fraser, P. J., Steele, L. P., Aoki, S.,
886 Nakazawa, T., and Elkins, J. W.: Global and regional emissions estimates for N₂O,
887 *Atmospheric Chemistry and Physics*, 14, 4617-4641, 10.5194/acp-14-4617-2014, 2014.

888 Saleska, S. R., Wu, J., Guan, K., Araujo, A. C., Huete, A., Nobre, A. D., and Restrepo-Coupe,
889 N.: Dry-season greening of Amazon forests, *Nature*, 531, E4-E5, 10.1038/nature16457, 2016.

890 Sawakuchi, H. O., Bastviken, D., Sawakuchi, A. O., Krusche, A. V., Ballester, M. V. R., and
891 Richey, J. E.: Methane emissions from Amazonian Rivers and their contribution to the global
892 methane budget, *Global Change Biology*, 20, 2829-2840, 10.1111/gcb.12646, 2014.

893 Schlesinger, W. H.: An estimate of the global sink for nitrous oxide in soils, *Global Change
894 Biology*, 19, 2929-2931, 10.1111/gcb.12239, 2013.

895 Schulman, L., Ruokolainen, K., and Tuomisto, H.: Parameters for global ecosystem models,
896 *Nature*, 399, 535-536, 1999.

897 Silver, W., Lugo, A., and Keller, M.: Soil oxygen availability and biogeochemistry along
898 rainfall and topographic gradients in upland wet tropical forest soils., *Biogeochemistry*, 44,
899 301-328, 1999.

900 Silver, W. L., Herman, D. J., and Firestone, M. K. S.: Dissimilatory Nitrate Reduction to
901 Ammonium in Upland Tropical Forest Soils., *Ecology*, 82, 2410-2416, 2001.

902 Sjögersten, S., Black, C. R., Evers, S., Hoyos-Santillan, J., Wright, E. L., and Turner, B. L.:
903 Tropical wetlands: A missing link in the global carbon cycle?, *Global Biogeochemical Cycles*,
904 28, 1371-1386, 10.1002/2014GB004844, 2014.

905 Smith, L. K., Lewis, W. M., Chanton, J. P., Cronin, G., and Hamilton, S. K.: Methane emissions
906 from the Orinoco River floodplain, Venezuela., *Biogeochemistry*, 51, 113-140, 2000.

907 Strack, M., Kellner, E., and Waddington, J. M.: Dynamics of biogenic gas bubbles in peat and
908 their effects on peatland biogeochemistry, *Global Biogeochemical Cycles*, 19, n/a-n/a,
909 10.1029/2004GB002330, 2005.

910 Teh, Y. A., Silver, W. L., and Conrad, M. E.: Oxygen effects on methane production and
911 oxidation in humid tropical forest soils, *Global Change Biology*, 11, 1283-1297,
912 10.1111/j.1365-2486.2005.00983.x, 2005.

913 Teh, Y. A., and Silver, W. L.: Effects of soil structure destruction on methane production and
914 carbon partitioning between methanogenic pathways in tropical rain forest soils, *Journal of*
915 *Geophysical Research: Biogeosciences*, 111, n/a-n/a, 10.1029/2005JG000020, 2006.

916 Teh, Y. A., Silver, W. L., Conrad, M. E., Borglin, S. E., and Carlson, C. M.: Carbon isotope
917 fractionation by methane-oxidizing bacteria in tropical rain forest soils, *Journal of*
918 *Geophysical Research-Biogeosciences*, 111, 10.1029/2005jg000053, 2006.

919 Teh, Y. A., Dubinsky, E. A., Silver, W. L., and Carlson, C. M.: Suppression of methanogenesis
920 by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: implications for
921 ecosystem methane flux, *Global Change Biology*, 14, 413-422, 10.1111/j.1365-
922 2486.2007.01487.x, 2008.

923 Teh, Y. A., Silver, W. L., Sonnentag, O., Detto, M., Kelly, M., and Baldocchi, D. D.: Large
924 Greenhouse Gas Emissions from a Temperate Peatland Pasture, *Ecosystems*, 14, 311-325,
925 10.1007/s10021-011-9411-4, 2011.

926 Teh, Y. A., Diem, T., Jones, S., Huaraca Quispe, L. P., Baggs, E., Morley, N., Richards, M.,
927 Smith, P., and Meir, P.: Methane and nitrous oxide fluxes across an elevation gradient in the
928 tropical Peruvian Andes, *Biogeosciences*, 11, 2325-2339, 10.5194/bg-11-2325-2014, 2014.

929 von Fischer, J., and Hedin, L.: Separating methane production and consumption with a field-
930 based isotope dilution technique., *Global Biogeochemical Cycles*, 16, 1-13,
931 10.1029/2001GB001448, 2002.

932 von Fischer, J. C., and Hedin, L. O.: Controls on soil methane fluxes: Tests of biophysical
933 mechanisms using stable isotope tracers, *Global Biogeochemical Cycles*, 21, 9, Gb2007

934 10.1029/2006gb002687, 2007.

935 Wen, Y., Chen, Z., Dannenmann, M., Carminati, A., Willibald, G., Kiese, R., Wolf, B.,

936 Veldkamp, E., Butterbach-Bahl, K., and Corre, M. D.: Disentangling gross N₂O production

937 and consumption in soil, *Sci Rep*, 6, 8, 10.1038/srep36517, 2016.

938 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., and Kiese, R.: A global inventory of N₂O

939 emissions from tropical rainforest soils using a detailed biogeochemical model, *Global*

940 *Biogeochemical Cycles*, 21, 1-18, Gb3010

941 10.1029/2006gb002909, 2007.

942 Whalen, S. C.: Biogeochemistry of methane exchange between natural wetlands and the

943 atmosphere, *Environ. Eng. Sci.*, 22, 73-94, 10.1089/ees.2005.22.73, 2005.

944 Whiting, G. J., and Chanton, J. P.: Primary production control of methane emission from

945 wetlands., *Nature*, 364, 794-795, 1993.

946 Wilson, C., Gloor, M., Gatti, L. V., Miller, J. B., Monks, S. A., McNorton, J., Bloom, A. A.,

947 Basso, L. S., and Chipperfield, M. P.: Contribution of regional sources to atmospheric

948 methane over the Amazon Basin in 2010 and 2011, *Global Biogeochem. Cycles*, 30, 400-420,

949 10.1002/2015GB005300, 2016.

950 Wright, E. L., Black, C. R., Cheesman, A. W., Drage, T., Large, D., Turner, B. L., and

951 SjÖgersten, S.: Contribution of subsurface peat to CO₂ and CH₄ fluxes in a neotropical

952 peatland, *Global Change Biology*, 17, 2867-2881, 10.1111/j.1365-2486.2011.02448.x, 2011.

953 Yang, W. H., Teh, Y. A., and Silver, W. L.: A test of a field-based N-15-nitrous oxide pool

954 dilution technique to measure gross N₂O production in soil, *Global Change Biology*, 17,

955 3577-3588, 10.1111/j.1365-2486.2011.02481.x, 2011.

956 Ye, R., and Horwath, W. R.: Nitrous oxide uptake in rewetted wetlands with contrasting soil
957 organic carbon contents, *Soil Biology and Biochemistry*, 100, 110-117,
958 <http://dx.doi.org/10.1016/j.soilbio.2016.06.009>, 2016.

959

960 **11. TABLES AND FIGURES**

961 **Table 1.** Site characteristics including field site location, nutrient status, plot and flux chamber
 962 replication

Vegetation type	Site name	Nutrient status*	Latitude (S)	Longitude (W)	Plots	Flux chambers
Forested	Buena Vista	Rich	4°14'45.60"S	73°12'0.20"W	21	105
Forested (short pole)	San Jorge (centre)	Poor	4°03'35.95"S	73°12'01.13"W	6	28
Forested (short pole)	Miraflores	Poor	4°28'16.59"S	74° 4'39.95"W	41	204
M. flexuosa Palm Swamp	Quistococha	Intermediate	3°49'57.61"S	73°12'01.13"W	135	668
M. flexuosa Palm Swamp	San Jorge (edge)	Intermediate	4°03'18.83"S	73°10'16.80"W	18	86
Mixed palm swamp	Charo	Rich	4°16'21.80"S	73°15'27.80"W	18	90

963 *After Householder et al. 2012, Lahteenoja et al. 2009a, and Lahteenoja et al. 2009b

964

965 **Table 2.** Proportion of observations for each vegetation type that showed evidence of
 966 ebullition, mean rates of ebullition and ebullition-driven CH₄ uptake. Values represent
 967 means and standard errors.

Vegetation Type	Percentage of observations (%)	Net Ebullition (mg CH ₄ -C m ⁻² d ⁻¹)		Ebullition-driven uptake (mg CH ₄ -C m ⁻² d ⁻¹)	
		Wet Season	Dry Season	Wet Season	Dry Season
Forested	10.5	0	0	0	-136.4 ± 0.1
Forested (short pole)	6.9	994.6 ± 293.2	512.5 ± 153.0	-95.8 ± 0.0	-245.5 ± 48.9
<i>M. flexuosa</i> Palm Swamp	16.7	1192.0 ± 305.7	994.3 ± 237.3	-869.4 ± 264.8	-401.4 ± 59.9
Mixed Palm Swamp	12.2	0	733.6 ± 313.1	0	-464.4 ± 565.9

968

969 **Table 3.** Environmental variables for each vegetation type for the wet and dry season.

970 Values reported here are means and standard errors. Lower case letters indicate significant
971 differences among vegetation types within the wet or dry season (Fisher's LSD, $P < 0.05$).

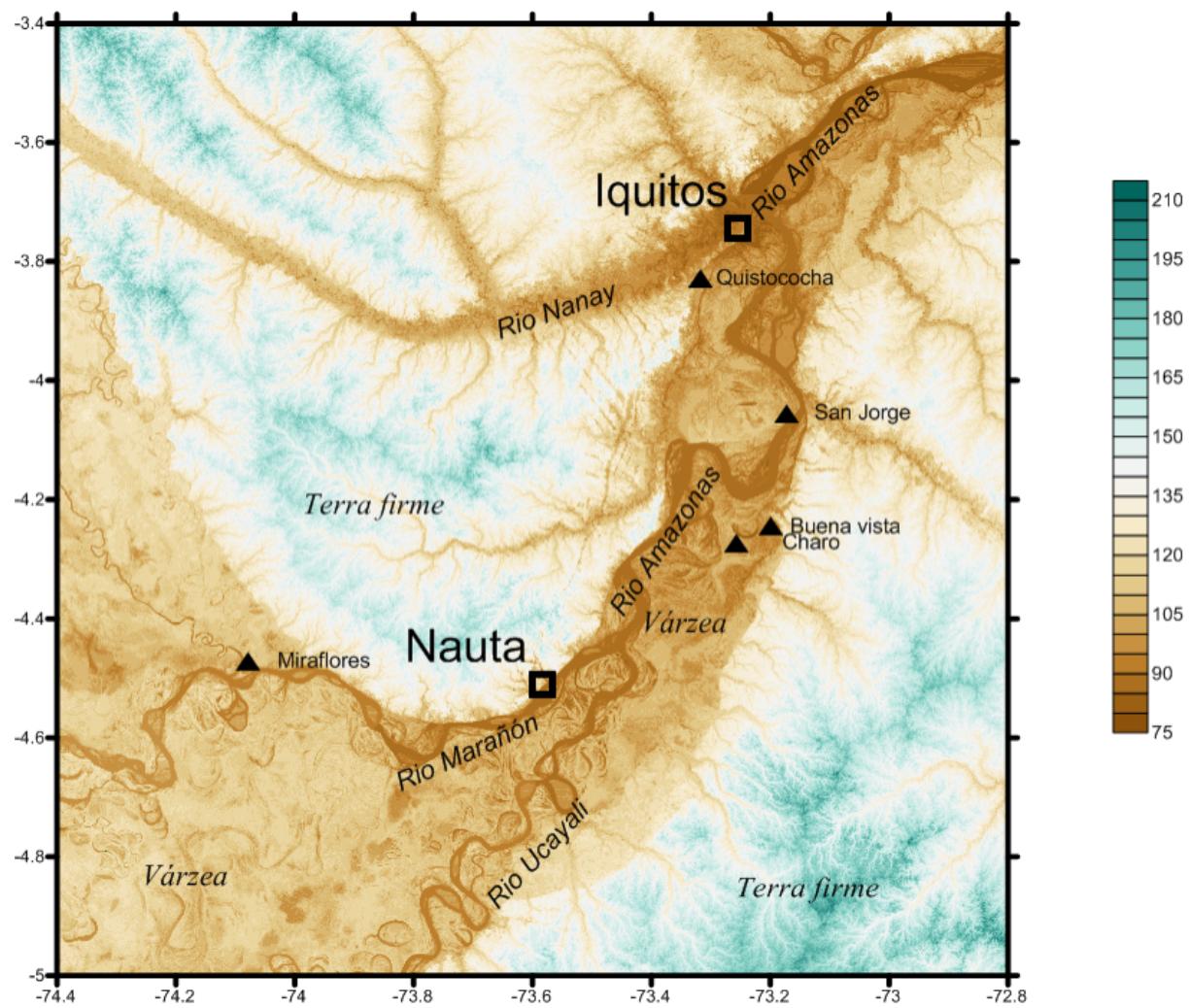
Vegetation Type	Peat Temperature		Air Temperature		Conductivity		Dissolved Oxygen		Water Table Level		pH	
	($^{\circ}\text{C}$)		($^{\circ}\text{C}$)		($\mu\text{S m}^{-2}$)		(\%)		(cm)			
	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season
Forested	26.1 \pm 0.1a	24.7 \pm 0.0a	28.8 \pm 0.7a	26.4 \pm 0.3a	79.0 \pm 5.9a	75.9 \pm 5.7a	0.2 \pm 0.1a	18.9 \pm 4.4a	110.8 \pm 9.3a	-13.2 \pm 0.7a	5.88 \pm 0.15a	6.31 \pm 0.04a
Forested (short pole)	25.2 \pm 0.0b	24.8 \pm 0.1a	27.6 \pm 0.1b	27.5 \pm 0.1b	21.0 \pm 0.0b	48.5 \pm 4.8b	4.4 \pm 0.0a	33.1 \pm 2.6b	26.9 \pm 0.5b	-4.7 \pm 0.4b	4.88 \pm 0.01b	3.8 \pm 0.03b
<i>M. flexuosa</i>	25.6 \pm 0.6c	25.3 \pm 0.1b	26.3 \pm 0.1c	26.4 \pm 0.1a	45.9 \pm 2.1c	51.9 \pm 1.8b	19.4 \pm 1.3b	17.3 \pm 1.5a	37.2 \pm 1.7c	6.1 \pm 1.3c	5.04 \pm 0.03c	5.49 \pm 0.03c
Palm Swamp	26.0 \pm 0.0a	25.0 \pm 0.1ab	26.1 \pm 0.1c	28.2 \pm 0.3b	100.0 \pm 0.2d	206.4 \pm 4.2c	0.0 \pm 0.0a	0.0 \pm 0.0c	183.7 \pm 1.7d	-2.4 \pm 0.3b	6.1 \pm 0.03a	6.82 \pm 0.02d
Mixed Palm Swamp												

972

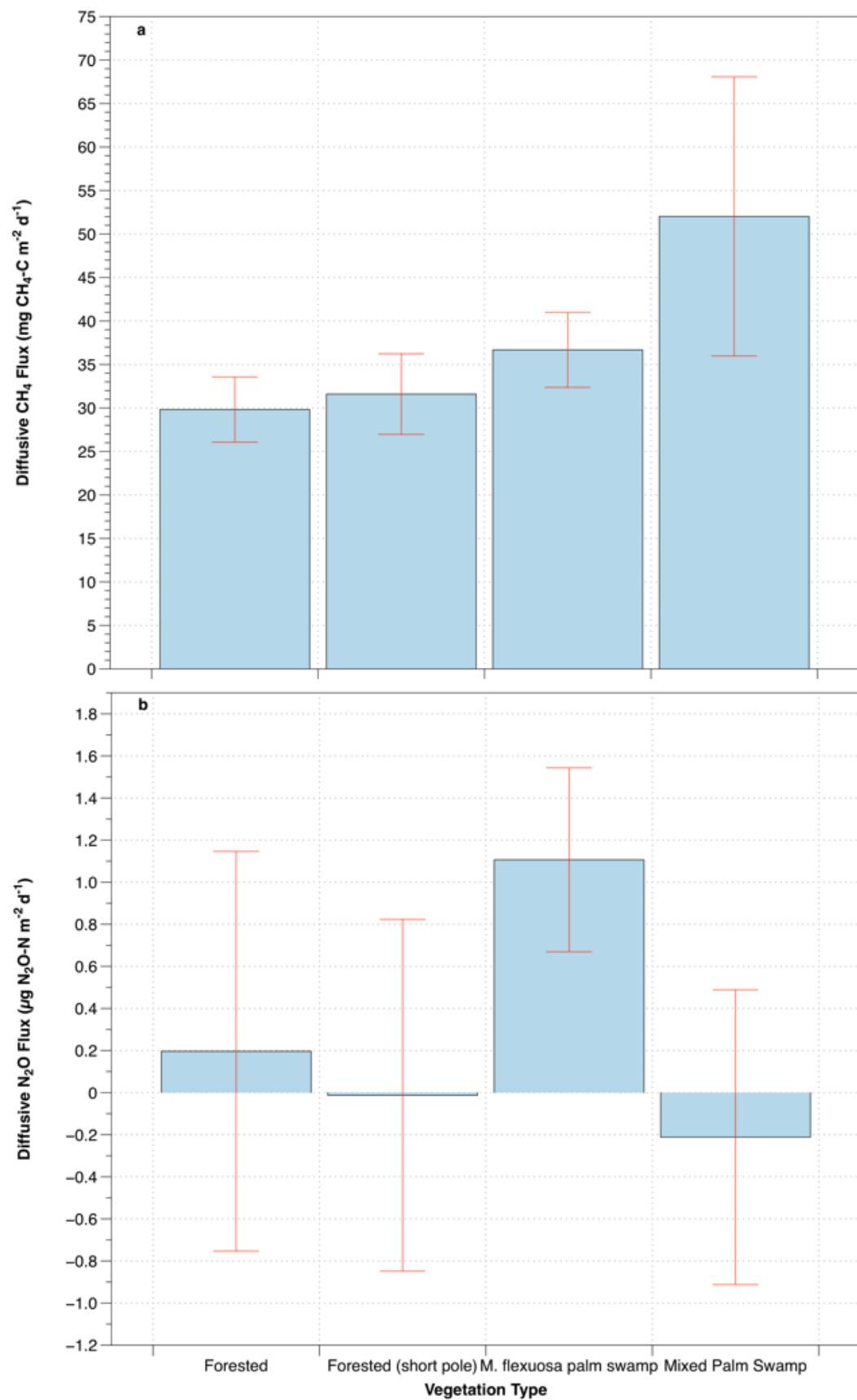
973 **Table 4.** Trace gas fluxes for each vegetation type for the wet and dry season. Values reported
974 here are means and standard errors. Upper case letters indicate significant differences in gas
975 flux between seasons with a vegetation type, while lower case letters indicate significant
976 differences among vegetation types within a season (Fisher's LSD, $P < 0.05$).

Vegetation Type	Methane Flux (mg CH ₄ -C m ⁻² d ⁻¹)		Nitrous Oxide Flux (μ g N ₂ O-N m ⁻² d ⁻¹)	
	Wet Season	Dry Season	Wet Season	Dry Season
Forested	6.7 ± 1.0Aa	47.2 ± 5.4Ba	2.54 ± 1.48	-1.16 ± 1.20
Forested (short pole)	60.4 ± 9.1Ab	18.8 ± 2.6Bb	1.16 ± 0.54	-0.42 ± 0.90
<i>M. flexuosa</i> Palm Swamp	46.7 ± 8.4Ac	28.3 ± 2.6Bc	1.14 ± 0.35	0.92 ± 0.61
Mixed Palm Swamp	6.1 ± 1.3Aa	64.2 ± 12.1Ba	1.45 ± 0.79	-0.80 ± 0.79

977


978 **Figure Captions**

979 **Figure 1.** Map of the study region and field sites. The colour scale to the right of the map
980 denotes elevation in meters above sea level (m a.s.l.). Tan and brown tones indicate areas in
981 which peatlands are found; however, not all of these areas are peatland-dominated.


982

983 **Figure 2.** Net diffusive **(a)** methane (CH_4) and **(b)** nitrous oxide (N_2O) fluxes by vegetation type.
984 Error bars denote standard errors.

985 **Figure 1**

987 **Figure 2**

