
Revision notes for the manuscript : “Accounting for El Nino-Southern Oscillation infuence becomes urgent 
for predicting future East African ecosystem responses” 

We thank both reviewers and the editor very much for their comments and suggestions. We 
reframed our conclusion and addressed all of the referee comments. Please fnd our point-by-point 
responses below. Te line numbers given are referring to the marked-up version of the revised 
manuscript.

Reviewer #1

It seems that authors deemed that ENSO will be intensifed under the RCP8.5, high emissions scenario. So by 
contrast, the ENSO should be relatively weakened under the low emissions scenarios, such as RCP 2.6. In this 
case, comparing simulated results driven by two scenarios climate outputs should also provide useful 
information about vegetation response to intensifed ENSO. I understand this would result in much more 
workload for model simulation, however, the authors are expected to explain why they only used climate 
outputs under the RCP8.5 scenario. 

As both referees were critical about the use of RCP8.5 scenario only, we now extended our discussion sub-
header to include scenario selection and added a detailed paragraph on its discussion for the readership. 
L526-542.

Also, more quantitative results are expected in abstract, especially about projected vegetation response to 
ENSO. LPJ-GUESS is a dynamic vegetation model, but authors did not show any results about changes in 
vegetation distribution. I would be curious if vegetation distribution would change a lot under the RCP8.5 in 
this region. 

In this study, as we were mainly interested in the overall ecosystem metabolism in terms of carbon and water 
cycle, we focused on the fuxes. Nevertheless, LPJ-GUESS being a dynamic vegetation model is also important
for obtaining more realistic predictions for fuxes as biogeochemical and hydrological cycles are linked to 
vegetation dynamics as well as the changing climate. 

However, changes in vegetation distributions might still be relevant for certain locations, especially in terms 
of tree cover. Now we added a supplementary fgure (Figure A4) that shows the change in simulated woody 
vegetation Leaf Area Index due to change in climate and added a discussion un the text L469-477 and L519-
525

Specifc comments: 

1. Abstract, P2, L33, please specify what this study simulated, carbon and water fuxes or vegetation 
distribution?

We now explicitly specify that we simulated the fuxes in the corresponding line. L25

2. P58-61 and P105-109, Authors kind of repeat research objectives in two places; please reorganize them 
accordingly.

We intended the last sentence of the introduction to outline the roadmap for the paper. We now rephrased it 
as suggested. L88

3. Results section: need a separate sub-section to present future results.

We thank the reviewer for pointing this out, a sub-heading is necessary and is now added to the results 
section. L370



4. Besides spatial patterns, results of temporal variations in carbon and water fuxes as infuenced by ENSO 
are expected in results section.

As we conducted the study for the East Africa domain, and as ENSO impact would difer from site to site, 
each grid cell (1550 in total) would present their own temporal variation. Tat is why we decided to report the
spatial patterns to summarize the overall response. However, now we added a fgure (Figure 5) showing such 
temporal variations in the north and south transects L386-390

 5. Please have a paragraph or sub-section to identify uncertainties involved in this study. 

We thank the reviewer for this remark. We now included such a paragraph in the manuscript L499-508

Reviewer #2

Te Major Problem Te conclusion of the paper states: Tere is a relationship between the East African 
rainfall and ENSO events in agreement with previous studies (so nothing new), and climate models (CMIP5) 
are not good at capturing rainfall variability due to ENSO (also not new), therefore the future vegetation 
would be diferent from what is simulated using these climate models outputs. Both of these conclusions are 
already known. Tus what is new in this manuscript is the projection based on CMIP5 climate models that do
not capture the most important parameter – precipitation, and very probably they also not to capture properly
the temperature, which are required as inputs to the LPJ-GUESS model. Terefore the authors provide the 
statement that the future would be diferent from what is simulated using these climate models outputs. 

While we agree that these two fndings were known to a certain extent, they were also the main motivation of 
this study: there is a known relationship between East African rainfall and ENSO events, and GCMs are not 
good at capturing this rainfall variability due to ENSO. Ten it raises the very question that what is the extent 
of this discrepancy? What are we missing when we drive our vegetation models with these GCMs for future 
projections? Is it a negligible diference or does it make our forecasts unreliable? Tis is a crucial gap to fll in 
our knowledge given that these projections are ofen being used in decision making. Indeed, our 
quantifcation showed importance of capturing this relationship (hence, the urgency). Te reason why we 
reiterated the “already known” fndings in the conclusion as well is that we established them independently 
using the EOT method in this study and presented in a self-contained framework. We now re-phrased the 
conclusion section to highlight this context better.

Why than should be the manuscript published? Te manuscript can be still useful if the authors would 
concentrate on the model projected diferences between two plausible scenarios. If we succeed in controlling 
CO2 emission, we may follow a path close to the RCP4.5 scenario. If we fail to control the emission it would 
be close to RCP8.5. I recommend considering these two scenarios, and concentrating on model projected 
diferences between the two alternatives (RCP4.5 and RCP8.5). Tis will require a major revision or a re-
submission, but it will signifcantly improve the quality of the paper. Fact that some papers were published 
using only RCP8.5 should not be an excuse to continue this less than the best possible practice. 

In this study we aimed to quantify the ENSO infuence on East African vegetation and understand its future 
implications for ecosystem services. We believe, we were able to accomplish this aim with our current set of 
analyses as intended.

 We now included further discussion in the manuscript explicitly for the scenario selection. L526-542

Minor Points: 

(1) Several CMIP5 climate models were used for the presented study. How were these models selected from 
about 40 existing models and why? What was the criterion for the selection? If diferent models would be 



used how would be the results changed?

In this study, we used the dynamically downscaled GCM outputs by the CORDEX (Coordinated Regional 
Climate Downscaling Experiment) program. Regional climate models (RCMs) dynamically downscale GCM 
output to scales better suited to end users and are useful for understanding local climate in regions that have 
complex topography such as eastern Africa (Endris et al., 2013). Terefore we were limited to CORDEX 
outputs which consisted of 10 models at the time. Te results would of course not exactly be the same if we 
had used all existing CMIP5 models. Tat being said, we believe the main fndings and implications of the 
study would remain the same as we used the ensemble mean of CORDEX outputs in our study.

(2) Tere have been several papers published recently suggesting two kinds of El Nino events (EP and CP El 
Nino) with the suggestion that the future global warming will produce more El Nino just of one type. Is your 
El Nino projection in agreement with this statement?

We thank the reviewer for pointing this out. We now included the discussion on EP and CP ENSO in our 
manuscript. L551-564

(3) Te models used for future projection should be supported by showing an agreement with the past 
observations (necessary but not sufcient condition). Tis is not a guarantee that the models will provide 
reliable future projections, but if models cannot agree with the past observations their use for future 
projections is not justifed. Since the LPJ-GUESS requires the precipitation and temperature as a part of input,
please show how the ensemble mean of the CMIP5 models used simulate the past precipitation and 
temperature of East Africa.

We thank the reviewer for this remark, and we cordially agree that this is an important point in vegetation 
modeling studies. However, we already extensively tested LPJ-GUESS for historical and mid-Holocene 
periods in a previous study (Fer et al., 2015). Our past simulations showed good agreement with 
observational data for both periods and have been reported in a peer-reviewed journal which we refer the 
more interested reader to on L117-119.

(4) It is now 2017, why are you using only 1951-2005 as a historical period? Historical models simulations can
be extended till present (e.g. 2016) using parts (2005-2016) of future RCP projections.

We were following the division as provided by CORDEX outputs, which were using 1950-2005 as historical 
and 2006-2100 as future period. We could have rearranged the years but we adhered to the CORDEX setting 
for interpretability and reproducibility reasons. We now, explicitly state this in the text. L138

(5) Consider how your projections confrm or contradict recent observations of widespread greening (e.g. 
Forzieri et al, Science 2017; Brandt et al, Nature Ecology and Evolution 2017).

We thank the reviewer for these suggestions. We now included discussion regarding these two studies in the 
text. L469-477 and L519-525.

(6) I don’t see the urgency implied in the title. Please, consider a diferent title. 

We now changed the title to : “Influence of El Nino-Southern Oscillation regimes on East African vegetation 
and its future implications under RCP8.5 warming scenario”
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Abstract. The El Niño Southern Oscillation (ENSO), is the main driver for the interannual variability in

East African rainfall with significant impact on vegetation and agriculture, and dire consequences for

food and social security.  In this study, we identify and quantify the ENSO contribution to the East
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African rainfall variability to forecast future East African vegetation response to rainfall variability

related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we

removed the ENSO signal from the climate data using Empirical Orthogonal Teleconnections (EOT)

analysis. Then, we simulated the vegetationecosystem carbon and water fluxes under the historical

climate without components related to ENSO teleconnections. We found ENSO driven patterns in

vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific

Sea Surface temperature-East African rainfall teleconnection from observed datasets. We further

simulated East African vegetation response under future climate change as it is projected by climate

models and under future climate change combined with a predicted increased ENSO intensity. Our EOT

analysis highlight that climate simulations are still not good at capturing rainfall variability due to

ENSO, and as we show here the future vegetation would be different from what is simulated under these

climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in

East African vegetation growth under the influence of an intensified ENSO regime which will bring

further environmental stress to a region with a reduced capacity to adapt effects of global climate

change and food security. 

1 Introduction    

The 2010-2011 drought in the Horn of Africa, by some measures the worst drought in 60 years

(Nicholson, 2014), is a reminder that rainfall in this politically and socioeconomically vulnerable region

can fluctuate dramatically. El Niño Southern Oscillation (ENSO) influence has long been at the center

of attention as a driver of this interannual fluctuations in East African rainfall (Indeje et al. 2000, Anyah
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and Semazzi, 2007, Nicholson, 2015), however, it is still an on-going endeavour to qualify and quantify

the future behaviour of ENSO regimes under the predicted future warming (Vecchi & Wittenberg, 2010;

Miralles et al., 2014). In this study we aim to identify and quantify the ENSO contribution to the East

African rainfall variability in order to increase our understanding on the future response of East African

vegetation to rainfall variability related to changing ENSO regimes and climate which can have dire

consequences in this region in terms of food and social security.

1.1 East African climate 

Rainfall in East African climate is primarily controlled by the seasonal passage of the Intertropical

Convergence Zone (ITCZ) (Nicholson, 2000). While mean annual precipitation varies from <200 to

>2000mm/year (Nicholson, 2000) and dry season length can vary from 0 to >8 months. Interannual

variations in the seasonal migration of the East African ITCZ are driven to large extent by the ENSO

(Ropelewski and Halpert, 1996) and its related impact through western Indian Ocean sea surface

temperature (SST) anomalies (Goddard and Graham, 1999). The effect of ENSO on East African

precipitation is diversified. Surface ocean warming in the western Indian Ocean (El Niño) leads to

intensification and shifts of the ITCZ, bringing more precipitation to East Africa (Wolff et al., 2011),

even through the direct teleconnection through the atmosphere tends to reduce rainfall (La Niña). These

regions receive above average rainfall in El Niño years and below average in La Niña years during the

OND months (Endris et al., 2013).

1.2 East African vegetation
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The control ENSO exerts on East African precipitation also manifests itself on the vegetation which is

contingent upon the seasonal rainfall. East Africa hosts a variety of biomes ranging from tropical

rainforest to desert, however the region is mainly dominated by arid or semi-arid vegetation (Bobe,

2006). The arid and semi-arid vegetation consist of species that can tolerate aridity for several months

as a result of the exceedingly seasonal precipitation (Bobe, 2006). Agricultural activities also depends

on this strong seasonality as it determines the cropping times (Shisanya et al., 2011). Maize, beans,

coffee, tea and wheat are among the important agricultural products of East Africa together with fruit

products, and grasses for livestock (FAOSTAT, 2016).

An adaptive management of the limited resources will shape the future severity of climate change

impacts on food productivity in this rainfall-reliant setup (Thornton et al., 2014). Therefore, a

temporally and spatially extensive understanding of how the ecosystem dynamics in the region will

respond to changing climate, and of particular concern to East Africa, to the ENSO regimes is needed.

Several studies related the variability in African vegetation to ENSO events (Shisanya et al, 2011; Ivory

et al., 2013; Abdi et al., 2016; Detsch et al., 2016). However, the forthcoming of this relationship has

been less of a focus, partly due to our imperfect knowledge on the nature of the future ENSO response

to changing climate.

1.3 ENSO impact on East African vegetation

An opportunity to examine the ENSO – East African vegetation relationship is by means of using

predictive tools such as vegetation models which have been successfully applied to determine and
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forecast regional vegetation dynamics (Moncrieff et al., 2014; Scheiter and Savadogo, 2016) as well as

agricultural yields (Waha et al., 2013; Dietrich et al., 2014). In this study, we used the latest climate

projections from the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report for

Representative Concentration Pathway (RCP) 8.5 scenario, downscaled by the Coordinated

Downscaling Experiment (CORDEX) (Nikulin et al., 2012, Endris et al., 2013) to drive such a process-

based dynamic vegetation model, LPJ-GUESS (Lund-Potsdam-Jena general Ecosystem Simulator). To

be able to differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the

climate data and simulated the vegetation under the historical climate without components related to

ENSO teleconnections. HereIn the following sections, we aim to look at the ENSO influence on East

African vegetation i) under present conditions, ii) under projected future climate, and iii) under a

potentially increased ENSO intensity combined with future climate change. Finally, we discuss the

effects of ENSO-related vegetation variability on the carbon and hydrological cycles, and its

significance for mitigation efforts in the region.

2 Methods

2.1 The LPJ-GUESS model  

We used the dynamic vegetation model LPJ-GUESS (Lund-Potsdam Jena General Ecosystem

Simulator, Smith et al. 2001; Sitch et al. 2003, Gerten et al. 2004), for our study. LPJ-GUESS is a

mechanistic model in which ecosystem processes are simulated via explicit equations and is optimised
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for regional to global applications (Smith et al., 2001; Sitch et al., 2003; Gerten et al., 2004). Vegetation

dynamics are simulated as the emergent outcome of growth, reproduction, mortality and competition for

resources among woody plant individuals and herbaceous vegetation. 

The simulation units in this study are plant functional types (PFTs) distinguished by their growth form,

phenology, photosynthetic pathway (C3 or C4), bioclimatic limits for establishment and survival and, for

woody PFTs, allometry and life history strategy. The simulations of this study were carried out in

‘cohort mode,’ in which, for woody PFTs, cohorts of individuals recruited in the same patch in a given

year are represented by a single average individual, and are thus assumed to retain the same size and

form as they grow. A sample instruction file used to run LPJ-GUESS in this study with all the

parameters listed can be found under github.com/istfer/ENSOpaper/ins. 

Primary production and plant growth follow the approach of LPJ-DGVM (Sitch et al. 2003). Population

dynamics (recruitment and mortality) are influenced by available resources and environmental

conditions, and depends on demography and the life history characteristics of each PFT (Hickler et al.

2004). Disturbances such as wildfires are simulated based on temperature, fuel load and moisture

availability (Thonicke et al. 2001). Litter arising from phenological turnover, mortality and disturbances

enters the soil decomposition cycle. Decomposition rates depend on soil temperature and moisture

(Sitch et al. 2003). Soil hydrology follows Gerten et al. (2004). A more detailed description of LPJ-

GUESS is available in Smith et al. (2001). We used LPJ-GUESS version 2.1 which includes the PFT set

and modifications described in Ahlström et al. (2012). LPJ-GUESS has already been successfully
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applied and validated to match present-day and mid-Holocene observed biome distributions of East

Africa as suggested by data for both periods (Fer et al., 2016).

2.2 Datasets Tracking ENSO and regional vegetation 

2.2.1 ENSO 

To isolate the ENSO signal contribution to East African precipitation, we conducted an Empirical

Orthogonal Teleconnections (EOT) analysis between sea surface temperatures (SSTs) in the tropical

pacific ocean and precipitation over East Africa (see section Identifying the ENSO signal). For historical

extraction (1951-2005), we use monthly National Oceanic and Atmospheric Administration Extended

Reconstructed Sea Surface Temperature (NOAA ERSST) V4 dataset (Huang et al., 2014; Liu et al.,

2014), available on 2ºx2º global grids as a predictor field. As the response series, we used monthly

Climatic Research Unit Time Series (CRU TS) 3.20 dataset (Harris et al., 2014), available on 0.5ºx0.5º

global grids.

2.2.2 LPJ-GUESS datasets

LPJ-GUESS requires monthly climate (temperature, precipitation, cloud cover), atmospheric CO2 

concentration and soil texture as input data. For historical period (1951-2005), we used monthly CRU 

TS 3.20 climate data. We chose these years for all historical analysis throughout the study as the 

historical simulations of CORDEX outputs are available for this period. For future projections (2006-
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2100), we used the outputs from the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) program for the Africa domain. For reporting historical (1951-2005) and future (2006-

2100) period, we adhered to the CORDEX division of years for interpretability and reproducibility 

reasons. For the future scenario, we chose the baseline high emissions Representative Concentration 

Pathways (RCP) 8.5 scenario as this is considered as the baseline scenario under the assumption that 

climate mitigation targets will not be met (Moss et al., 2010; Riahi et al., 2011). This is a reasonable 

choice given that the observed trends are pointing beyond RCP 8.5 trajectory (Sanford et al., 2014). 

CORDEX, downscaled global climate models (GCMs) by using regional models, and the outputs are 

available from ESGF-CoG data portal (https://pcmdi.llnl.gov/search/esgf-llnl/https://esgf-

node.llnl.gov/search/esgf-llnl/). For East African climate, we took the ensemble mean of 9 downscaled 

models for future projections of RCP 8.5 scenario as these are the available, dynamically downscaled 

climate model outputs by the CORDEX project: CCCma CanESM2, CERFACS CNRM-CM5, QCCCE 

CSIRO Mk3-6-0, ICHEC EC-EARTH, IPSL CM5A-MR, MIROC5, MPI ESM-LR, NCC NorESM1-M,

NOAA GFDL-ESM2M  (Full names of the models are given in the Appendix). Instead of working with 

individual models we decided to drive our simulations with ensemble means as it has been shown to 

outperform individual models and show a better agreement with data (Endris et al., 2013). RCP 8.5 

compatible atmospheric CO2 values were also used as provided by NOAA – GISS experiment 

(Nazarenko et al., 2015).

2.2.3 Bias correction
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To eliminate biases originating from using CRU climate dataset for present and model simulations for

future, we subtract the 1951-2005 climatology of downscaled GCM ensemble from the 1951-2100 time

series of the ensemble and add the anomalies on CRU 1951-2005 climatology. This way we will able to

have a meaningful comparison between CRU-driven and GCM-driven vegetation model outputs while

keeping the climate variability from the GCM simulations. We should note here, that this would not

change the ENSO signal we will retrieve from the GCM outputs (see next section) because we de-

season and work with anomalies of the data field for our EOT analysis. 

2.2.4 Future Pacific SSTs

For future pacific SSTs, we used outputs from GCM simulations of the same models listed above for

RCP 8.5, except ICHEC EC-EARTH which was not available from the data portal at the time. However,

these GCM outputs were not downscaled and standardized in terms of spatial resolution (they were all

available in monthly time steps in terms of temporal resolution). We created raster files from these

outputs and using the “raster-package” (R Core Team, 2015; v2.5-8), we resampled these rasters to

brought them to the same spatial resolution as NOAA ERSST V4 dataset, and we took the ensemble

mean.

2.3 Identifying the ENSO signal

Here we first identify the ENSO signal as a driver for monthly East African precipitation variability

over the historical period (1951-2005). To do this we investigate the teleconnectivity between the SSTs
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in the tropical Pacific Ocean and precipitation over East Africa by using empirical orthogonal

teleconnections (EOT). The method is explained by van den Dool et al. (2000) in detail, and Appelhans

et al. (2015) implemented the original algorithm in R ('remote' package by Appelhans et al., 2015; R

Core Team, 2015). Here, we only briefly present the major steps of the EOT analysis:

2.3.1 Empirical Orthogonal Teleconnections (EOT)

In the EOT analysis, we aim to establish an explanatory relationship between the temporal dynamics of

a (predictor) domain and temporal variability of another (response) domain. Such predictor and

response domains consist of gridded time series profiles: in this study the gridded monthly SST time

series of the tropical pacific as predictor and gridded precipitation time series of East Africa as the

response. Then, the first step of EOT analysis is to regress these time series of each predictor domain

grid (Np) against the time series of each response domain grid (Nr) (Appelhans et al., 2015). This will

result in a (Np x Nr) number of regression fits after which we can calculate the sum of coefficients of

determination per predictor grid (ending up with Np sum of coefficients of determination values). Then,

the grid with the highest sum will be identified as the “base point” of the leading mode as it explains the

highest portion of the variance in the response domain (Appelhans et al., 2015). The time-series at this

base point is referred as the leading teleconnection, or hereafter as the first EOT. 

2.3.2 Screening for ENSO signal 

We applied the EOT method on de-seasoned and de-noised data fields in order to retrieve a low

frequency signal such as ENSO: here we used the SSTs in the tropical pacific ocean as predictor and

10

175

180

185

190

10



precipitation over East Africa as response. Then we proceeded to calculate the SSTs modes that are most

affecting for East African rainfall variability. We found the 1st EOT to be the ENSO signal. We

compared this EOT with Nino3.4 index to see whether we were able to isolate the ENSO signal. The

commented code used for all methods is publicly available on Github (github.com/istfer/ENSOpaper).

Before moving on to identifying future pacific sea surface temperature – East African precipitation

interactions, we applied the same extraction to historical GCM outputs (simulations) to see whether we

can identify a similar relationship from GCM products. Finally, we prepared the model drivers with the

modified ENSO signal we identified from the future simulations (see next section) and ran the model

with these datasets (here we focused on precipitation data only, while precipitation varies in these

simulations and the others -temperature- were kept as they were in the climate datasets: present – CRU

TS 3.2, future – CORDEX ensemble de-biased using CRU as explained above).

2.4 Removing and intensifying the ENSO signal    

In order to investigate the contribution of the ENSO signal to East African precipitation, we removed 

the ENSO signal and explored the rainfall pattern with and without ENSO contribution as well as the 

resulting vegetation changes calculated by LPJ-GUESS. We used the “remote” package which 

specifically implements the EOT analysis and keeps track of calculated values in a structured workflow:

The rainfall we are left with after removing the first EOT mode (which we identified as the ENSO 

signal) becomes the rainfall behaviour without ENSO contribution (within the 'remote' package, this 
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calculation of the residuals is automatically available after the calculation of the EOT modes). 

Therefore, if we take the difference between these residuals and the initial de-seasoned and de-noised 

data, this will give us the amount that we need to subtract from the raw data field to obtain the rainfall 

behaviour without ENSO contribution. The steps are explained below as pseudocode:

i) Deseason and denoise the response and predictor fields.

EAr, ds, dns: East African precipitation (response domain). Subscripts indicate raw, deseasoned, deseasoned

and denoised respectively.

PACr, ds, dns : Tropical Pacific Ocean Sea Surface Temperatures (SSTs) (predictor domain). Subscripts 

indicate raw, deseasoned, deseasoned and denoised respectively.

EAds = deseason(EAr)      PACds = deseason(PACr)                                      (1)

EAdns = denoise(EAds)      PACdns = denoise(PACds)                                     (2)

ii) Conduct Empirical Orthogonal Teleconnection (EOT) analysis:

EOTmodes ← EOT(EAdns ~ PACdns)                                                                        (3)

Here the EOTmodes object can be thought as a list that stores both the time series of the modes, the 

reduced fields obtained after the removal of each mode, slopes and intercepts of the fields (for more 

details see Appelhans  et al., 2015).
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iii) Calculate the difference (Diff) between the de-seasoned, de-noised data (EAdns) and the rainfall 

behaviour without ENSO contribution from the information that is already stored in the resulting 

EOTmodes object (ENSO signal is the first mode, therefore the rainfall behaviour we are left without 

ENSO will be the EAmodes, rr1 where subscript rr1 indicating “response residual” after the removal of the 

first EOT mode:

Diff = EAdns −  EAmodes, rr1                                                                                                                                                    (4)

iv) If we subtract this difference from the initial raw response field (EAr), we will obtain the East

African precipitation without ENSO contribution (EAr, woENSO):

EAr, woENSO = EAr − Diff                                                                                        (5)

v) As EOT analysis is basically a regression analysis, we can also obtain the ENSO contribution (Diff)

from the regression equation as shown below (which will become handy when we insert back the

intensified ENSO signal):

Diff = EOTmodes, eot_1 * EOTmodes,ri_1 − EOTmodes, rs_1                                               (6)

Here EOTmodes, eot_1, EOTmodes,ri_1 and EOTmodes, rs_1 refer to the EOT time series of the 1st mode (the ENSO 

signal), intercept of and slope of the response field calculated for the 1st mode (Appelhans et al., 2015). 

vii) Then, it is possible to modify the future ENSO signal (EOTmodes, eot_m) obtained from EOT analysis on

simulation datasets, re-calculate its contribution to the East African rainfall (Diffnew) and add this amount

back on the precipitation data without ENSO signal (EAr, woENSO) to obtain new precipitation amounts 
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(EAr, new) due to new signal. We can later use this EAr, new as the future precipitation input to our 

vegetation model to drive future simulations.

Diffnew = EOTmodes, eot_m * EOTmodes,ri_1 − EOTmodes, rs_1                                            (7)

EAr, new = EAr, woENSO + Diffnew                                                                                (8)

Here it is noticable that slope(s) and intercept(s) would also have been different if the ENSO signal was 

changes (EOTmodes, eot_m). However, this simplification is adequate for experiments in this paper. 

Moreover, we used the intercept and slope we retrieved from the EOT analysis on observational datasets

while re-calculating the new difference  (Diffnew)  due to intensified ENSO signal. Because the East 

African rainfall patterns explained by Tropical Pacific SSTs in the GCM simulations are different from 

observations (Figure A1 and A2). By using slopes and intercepts obtained from the observational data 

we were also able to preserve the more accurate patterns in rainfall differences.

viii) Finally, we obtained the modified ENSO signal (EOTmodes, eot_m) in Eq. (7) by detrending (fitting a 

LOWESS smoother and removing it from the signal) and multiplying the ENSO signal we extracted 

from the future simulations (deseasoned and denoised GCM simulations for East African rainfall – 

EAdns_ftr - and Tropical Pacific SSTs - PACdns_ftr -) with a coefficient (k =  3) such that the peaks of the 

new signal would be as strong as the observed anomalies (± 2.5 °C, Figure 1 and S3). For the code of 

this step see IdentifyModifyFutureENSO.R script at github.com/istfer/ENSOpaper.

          EOTmodes_ftr ← EOT(EAdns_ftr ~ PACdns, ftr)                                                                (9)
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          EOTmodes, eot_m  ← k *   detrend(EOTmodes_ftr, eot_1)                                                     (10)

3 Results

3.1 EOT analysis- extracting the ENSO signal    

We compared the first EOT mode extracted after de-seasoning and de-noising the fields as explained by

Appelhans et al. (2015) to the Nino-3.4 index recorded (Figure 1). The high correlation between the two

(R = 0.90) confirms that we were able to extract the ENSO signal by conducting the EOT analysis. On

the predictor domain (Tropical Pacific SSTs), the Nino-3.4 region found to be the area which explains

the most variance in the response domain (East African precipitation) as expected (Figure A1). The time

series of the first EOT explains 0.85% of the rainfall variability over the analyzed period here (1951-

2005). This small amount is not surprising, because East African precipitation follows a strong seasonal

pattern following the position of the Intertropical Convergence Zone (ITCZ) within the year. Therefore,

seasonality alone explains most of the variability in East African rainfall. In addition, due to the

complex topographical setting of the region, local conditions play a major role in the variation of the

rainfall. Still, when we de-season and de-noise the raw data fields to identify low-frequency signals

such as ENSO, the ENSO signal emerged as the most important teleconnection between tropical pacific

SST anomalies and East African precipitation.      

Having successfully extracted the ENSO signal from the observation datasets, we applied the same

procedure with the outputs of the climate models. We used an ensemble of SSTs from 8 GCM outputs as
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the predictor field and an ensemble of rainfall from 9 GCMs downscaled by CORDEX as the response

domain. The comparison between the calculated first EOT time series to the Nino-3.4 index observed

was much poorer (R=0.19) (Figure 1) which indicates that GCMs are not capturing the coupled Pacific

SST – East African rainfall teleconnection. Another striking feature that can be observed in Figure 1 is

the smoothness of the time series of the 1st mode calculated from the EOT analysis on ensembles of

climate model outputs when compared to the recorded index and the calculated ENSO signal from the

observation datasets. In other words, the ENSO signal retrieved from the EOT analysis on the climate

model outputs is nowhere near strong as the others. According to this signal obtained from the

simulation datasets, the only ENSO events that happened during 1951-2005 period were in the “weak”

category (Figure 1). Finally, the calculated patterns were different than the EOT analysis on observed

datasets (the corresponding figure is given in the Appenix, Figure A2): The areas where the sum of the

coefficients of determination were the highest were again situated around Nino 3.4 region but closer to

the Nino 4 region this time (Figure A2 – left panel). Spatially, the north-eastern and central parts of the

response domain are the most explained whereas previously it was more centralized around the coastal

equatorial parts of the region (Figure A2 – right panel).
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Figure 1. The comparison between Nino 3.4 Index recorded by NOAA (black line), time series of the 1st mode

obtained from the EOT analysis on observed CRU-NOAA datasets (red), and time series of the 1st mode obtained

from the EOT analysis on ensembles of the climate model simulations (blue). Black dashed line: Zero line. Blue

dashed lines   ± 1.0° anomaly thresholds for categorizing moderate ENSO events. Red dashed lines: ±

2.0° anomaly thresholds for categorizing very strong ENSO events.

3. 2 Historical simulations with and without the ENSO signal

After calculating the ENSO signal, we removed the amount due to ENSO from the East African

precipitation (CRU precipitation), and simulated East African vegetation using both datasets (CRUnormal

and CRUwithout_ENSO) to see its effect on vegetation. As it can clearly be seen from Figure 1, impact of
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ENSO signal is not the same everywhere on the East African domain, which means removing ENSO

signal would have differential effects on the rainfall amount. Regional maps of rainfall anomalies for

the strongest three El Niño (1972, 1982, 1999) and La Niña (1973, 1975, 1988) events between 1951-

2005 period are given in Figure 2. Here we show what the rainfall would be if there were not any

influence by the Pacific SSTs particularly during these three years. Especially the coastal Kenya and

Tanzania experience a strong change in the amount of rainfall they receive: During the El Niño periods,

these parts of East Africa receive up to 200 mm yr-1 more rain other than they would receive, while they

receive ~100 mm yr-1 less rain during the La Niña years. The impact is the opposite for western part of

Ethiopia : receiving ~200 mm yr-1 less rainfall during El Niño years, while ~100 mm yr-1 more during

La Niña years. To provide a closer look to the impacts of ENSO related variability on vegetation, we

report the results on vegetation simulations within the two transects where we see the strongest impacts

over these two oppositely behaving, coastal and northwestern, regions (Fig. 2).
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Figure 2. Regional maps of anomalies (mm yr-1) for the strongest three (1972, 1982, 1997) El Niño (left) and

(1973, 1975, 1988) La Niña (right) events between 1951-2005 period (anomalies were calculated by subtracting

precipitation without ENSO contribution from precipitation with ENSO contribution). Northern inner and

southern coastal transects chosen for reporting results on vegetation simulations.

We drove the dynamic vegetation model once with CRU dataset as is and once with CRU dataset with

removed ENSO contribution. Results are reported for the previously mentioned north and south sites in

Figure 3 and Table 1. Outputs from the northern-inner part show more variability within the chosen

grid-cells for this region. Indeed, this region is on the western edge of Ethiopian Plateau, with a

transition of biomes from mountainous forests to woodlands and savannas (Fer et al., 2016). As the

rainfall patterns in relation to ENSO signal was the opposite between these regions (Figure 2), we

expect to see that the response of these regions to the removal of the ENSO signal to be opposite, and
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this is indeed what we see in Figure 3: While outputs such as net primary productivity (NPP), net

ecosystem exchange (NEE), soil evapotranspiration (EVAP) and surface runoff (RUNOFF) for northern

site were less than otherwise they would be for El Nino events, they would be higher La Nina events.

And the opposite behaviour is true for the southern site.
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Figure 3. Carbon and water fluxes from north and south transects, simulated under climate with and without

ENSO contribution, for the strongest three (1972, 1982, 1997) El Niño and (1973, 1975, 1988) La Niña events

between 1951-2005 period. Top panel: Net Primary Productivity (NPP). Middle: Net Ecosystem Exchange

(NEE). Bottom: Total runoff. Locations of the northern-inner and southern-coastal sites are given in Figure 2.

In order to test whether the difference between the vegetation simulated under climate with ENSO

contribution, and the vegetation simulated under climate with removed ENSO contribution, we

conducted a paired t-test on the outputs. The results (Table 1) show that except NEE for northern sites,

all differences between the vegetation simulated with and without ENSO impact were significant. In

summary, ENSO contribution is significantly affecting the East African vegetation and we would expect

different vegetation if there were no ENSO events.
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Table 1. Paired t-test results to test whether there is a significant difference in the vegetation simulations that are

driven with and without ENSO contributions for the three strongest ENSO events during the historical period

(1951-2005) and with and without intensified ENSO signal for the  strongest ENSO events during the future

period (2006-2100). Grey highlighted cells indicate insignificant differences according to p=0.05 threshold.

Significant p-values indicate rejection of the H0 in favor of the alternative, that is true difference in means is not

equal to 0.   p: p-value,  md: mean of the differences

NPP: Net Primary Productivity, NEE: Net Ecosystem Exchange, RUNOFF: Surface runoff). 

Location of North (N) and South (S) sites are shown on Figure 2.

NPP

(kgC m-2 yr-1)

NEE

(kgC m-2 yr-1)

RUNOFF

(mm yr-1)

El Niño La Niña El Niño La Niña El Niño La Niña

H
is

to
ri

c
a
l

N p < 0.05

md: -0.056

p < 0.05

md: 0.035

p = 0.089 p = 0.1 p < 0.05

md: -41.35

p < 0.05

md: 22.21

S p < 0.05

md: 0.084

p < 0.05

md: -0.074

p < 0.05

md: -0.088

p < 0.05

md: 0.087

p < 0.05

md: 19.41

p < 0.05

md: -10.74

F
u
tu

re

N p < 0.05

md: -0.052

p < 0.05

md: 0.033

p = 0.93 p = 0.58 p < 0.05

md: -10.91

p < 0.05

md: 46.97

S p < 0.05

md: 0.049

p < 0.05

md: -0.101

p < 0.05

md: -0.113

p < 0.05

md: 0.173

p < 0.05

md: 5.66

p = 0.06
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3. 3 Future simulations with and without the intensified ENSO signal

We conducted the same paired t-test for the north and south sites for the future simulations (Table 1). In

the northern site where intensified signal leads to less (more) NPP during El Niño (La Niña) years, the

mean difference is -52 (+32.6)  gC m-2 yr-1 between the vegetation simulated under future climate with

and without intensified ENSO signal. In the southern site where intensified signal leads to more (less)

NPP during El Niño (La Niña) years, the mean difference is +49.1 (-101.1)  gC m- 2 yr-1 between the

vegetation simulated under future climate with and without intensified ENSO signal. While the mean

differences for NEE were not significant at the northern site, southern site stores 112.7 (173.1)  gC m-2

yr-1 more (less) carbon under the intensified ENSO scenario during the El Niño (La Niña) years. 

Another noteworthy output is that, the northern site has a lot more runoff during the La Niña years

under the intensified ENSO scenario. This is especially clear on Figure 4 where spatial patterns of the

differences in the simulated future vegetation under RCP 8.5 scenario with and without intensified

ENSO are shown. The opposite behaviour of the northern parts of East Africa under El Niño vs. La

Niña conditions can also be observed on NPP and RUNOFF figures, wheres for NEE differences a

particular pattern is not emergent. This is mainly because NEE values can themselves be negative (flux

to ecosystem) and positive (release to atmosphere). 

The opposite temporal behaviours of the northern and southern transects are also clear in Figure 5 which

shows the time series of the differences between simulated NPP, NEE and RUNOFF under climate

drivers with and without intensified ENSO signal. In line with the characterized behaviours above, we
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simulated higher (lower) NPP for the southern transect (red line) for the El Nino (La Nina) years under

the intensified scenario, whereas the opposite is true for the northern transect (black line). The higher

amplitude of RUNOFF difference for the northern transect is notable in the bottom panel (Figure 5).
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Figure 4. Simulated future differences in the NPP, NEE and RUNOFF between with and without intensified

ENSO runs. (Left) Mean differences for the strong El Nino years (≥ + 1.5°C) (2025, 2026, 2077) were calculated

by subtracting the GCM-ensemble driven simulations without modification from the GCM-ensemble driven

future simulations with intensified ENSO signal. (Right) Same for strong future La Nina events (≤ ‒ 1.5°C)

(2039, 2049, 2084).
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Figure 5. Temporal differences in the NPP, NEE and RUNOFF according to future simulations with and without

intensified ENSO contribution (Δ = With_Intensification -  Without_Intensification). Black line: Northern

transect, Red line: southern transect. Vertical blue lines: All moderate (< -1.0° C) La Nina years identified for the

future period (2006-2100),  Vertical pink lines: Moderate  (> 1.0° C) El Nino years. The units are same as Figure

4.

4 Discussion

4.1 Identifying and intensifying the ENSO Signal

East African rainfall variability and especially contribution of the ENSO was investigated before (Indeje

et al., 2000; Schreck and Semazzi, 2004). Here we used a different method, Empirical Orthogonal

Teleconnections (EOT) analysis to quantitatively calculate the ENSO contribution and found the spatial

correlation patterns over the East Africa region to be in agreement with previous studies who

independently looked at Pacific SST drivers for East African precipitation (Anyah and Semazzi, 2007).

The ENSO signal identified through this method was also showing strong correlation with NOAA

Nino3.4 index, which means EOT method was a suitable choice for our analysis.

Using the EOT method, we presented a relatively conservative estimate of ENSO variability in East

African rainfall, because we considered the direct Tropical Pacific teleconnection only. However, there

are accompanying changes: ENSO events are linked to Indian Ocean Dipole, which more directly

influences EA rainfall (Black et al., 2003). It has been suggested that subsequent to ENSO triggering,

internal Indian Ocean dynamics could take over. More specifically,  East African rainfall increases as
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the western Indian Ocean gets warmer which is often associated with ENSO forcing. However, warmer

western Indian Ocean can weaken the rains when it interacts with southeasterly atmospheric circulations

(Schreck and Semazzi, 2004). The exact relationship and discrepancies between IOD and ENSO

behaviours are yet to be revealed (Lim et al. 2016). Still, we found that the ENSO-East Africa

connection to be robust as previous studies (Indeje et al., 2000; Anyah and Semazzi, 2007) and did not

delve into IOD relationship. Also, we were motivated by the previous studies that have identified ENSO

influence to be important in dryland vegetation dynamics (Ahlström et al., 2015; Abdi et al., 2016).

Hence, we focused on reporting more comparable results with those. Another factor that could affect

our estimations is atmospheric latency. In our analysis, we did not consider any time lags for the tropical

pacific SST anomalies and East African precipitation teleconnection, but a time lag can be expected due

to atmospheric circulation processes, and the influence of SST anomalies might not develop

instantaneously.  Therefore if we account for this time lag, we might explain even more of the rainfall

variance. For a more comprehensive study of SST influences on East African rainfall see Appelhans and

Nauss (2016).

The EOT method, which is shown here to be effective on the historical observations, produced different 

East African rainfall variability patterns due to Pacific SSTs when GCM outputs were used. Also the 

ENSO signal retrieved was much weaker than the one extracted from the observation datasets in terms 

of both ENSO event strength and the match (correlation) with the Nino 3.4 index. As a preliminary 

investigation (not shown), we conducted the EOT analysis across mixture of observed-simulated 

datasets: Pacific SSTsobserved (NOAA ERSST) - East African precipitationsimulated (CORDEX), and Pacific 
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SSTssimulated (GCMs) - East African precipitationobsrved (CRU). The ENSO signal retrieved from the 

Pacific SSTsobserved - East African precipitationsimulated pair was a better match with Nino 3.4 index than the

one extracted from the simulated-simulated pair but still worse than the one extracted from observed-

observed dataset pair, whereas ENSO signal retrieved from the Pacific SSTssimulated -  East African 

precipitationobsrved pair was not a better match to Nino 3.4 index than the one extracted from the 

simulated-simulated pair. This quick test indicated that the GCM simulated Tropical Pacific SSTs are 

the main source of the poor teleconnection identified from the simulated-simulated pair and a dynamic 

downscaling of the tropical Pacific SSTs might improve the ocean-atmosphere coupled teleconnection. 

However, more formal tests are needed to conclude on this matter, which was beyond the scope of this 

study. 

4.2 Present-day simulations

Despite the fact that our estimation of ENSO contribution to the East African interannual rainfall

variability was conservative, the precipitation difference between with and without ENSO contribution

was equivalent to one or even two rainy months for some of the grid cells. These regions already

receive a small amount of rainfall and even minor differences are critical for agricultural food

production and the productivity of the natural ecosystem that sustains a large biodiversity. We found up

to 0.1 kgC m- 2 yr-1 mean difference in NPP in the southern parts of the region solely due to ENSO

contribution. 
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We found that ENSO influence on net ecosystem exchange is also prominent in the semi-arid

ecosystems of East Africa. Especially, in southern-coastal parts, ecosystem releases more to the

atmosphere during La Nina events whereas it would store more carbon otherwise. This would also have

implications on global carbon cycle as it has previously been found that regional response of semi-arid

ecosystems, mainly occupying low latitudes, play an important role in determining the trend in CO2

uptake by terrestrial ecosystems (Ahlström et al. 2015). For instance, La Nina events are associated with

large carbon sinks in Australian semi-arid ecosystems due to increased precipitation and 2011 anomaly

in global carbon sink was mainly attributed to the response of Australian ecosystems (Poulter et al.,

2014). While semi-arid ecosystems of East Africa might play a smaller role than Australian ones

(simply due to the difference in the area they cover), it would still influence the magnitude and trend of

the global carbon sink by terrestrial ecosystems. Furthermore, Forzieri et al. (2017) report the

importance of the interplay between vegetation cover (in terms of Leaf Area Index, LAI) and surface

biophysics, finding an amplification of their relationship under extreme warm-dry and cold-wet years.

Here we found that the ENSO contribution impacts the temporal LAI variability in East Africa

considerably (Figure A5), presenting a good example of such temporal variations that can play

significant roles in modulating key vegetation-climate interactions. According to the analysis by

Forzieri et al. (2017), the magnitudes of differences we found in our study due to accounting for an

intensified ENSO signal are influential on the surface energy balance components such as longwave

outgoing radiation, latent heat flux and sensible heat flux. Our findings reiterate the importance of
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considering ENSO contribution in carbon and energy budget calculations for any region that is

influenced by ENSO variability. 

Here we also report ENSO influence on surface runoff as excess runoff response causes problems in

East Africa. In this region, Rift Valley Fever (RVF) and Malaria outbreaks are threatening the livelihood

of the society and these vector-borne diseases are transmitted by mosquitoes who breed in flooded low-

lying habitats (Meegan and Bailey, 1989, Kovats et al., 2003, Hope and Thomson, 2008). For example,

a major RVF outbreak during late 1997 to early 1998 has been linked to the heavy and prolonged rains

that are associated with 1997-98 El Nino event (Trenberth, 1998), in agreement with our results where

we found that the southern coastal site experiences higher runoff during El Nino events than otherwise it

would do. 

Another important ecological factor to be considered for East African vegetation dynamics is fire. The

fire occurrence in LPJ-GUESS depends on the atmospheric temperature values, and  moisture and litter

availability. Therefore, although we did not calibrate LPJ-GUESS fire parameters for East Africa or

explicitly changed fire regimes under any of the scenarios, the model simulated the changes in fire

behaviour due to different environmental states implicitly. More specifically, for the southern coastal

part, a higher mean expected return time of fire was simulated during the El Nino years for simulations

with ENSO contribution than without due to higher moisture availability during ENSO years for this

region (not shown). For the same site, the opposite was true for La Nina years, and the whole behaviour

was reversed for the northern site. A more sophisticated fire – ENSO – vegetation interplay can be
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further investigated using models that have an individual level representation of fire response such as

aDGVM2 (Scheiter, Langan and Higgins, 2013).

In this study, we did not further calibrate the LPJ-GUESS PFT parameters as it has been calibrated and

validated for the region by previous studies (Doherty et al., 2010, Fer et al., 2016). It is possible that

these point estimate values do not capture the uncertainties associated with the PFT parameters.

However, previous studies have shown LPJ-GUESS parameters to be robust (Zaehle et al., 2005;

Doherty et al., 2010). Besides, as we used the same set of parameters for all runs, the discrepancies

simulated with and without ENSO contribution would still hold. As LPJ-GUESS spins up from bare

ground, we also do not expect much uncertainty influencing the model predictions with and without

ENSO contribtuion due to initial conditions. On the other hand, we expect the driver uncertainty to

dominate the uncertainty around model predictions. However, that is exactly what we aimed at to

quantify in this study as being discussed in the following sections.

4.3 Scenario selection and fFuture simulations

In the results for the future simulations, the total surface runoff and NPP responses were considerably 

underestimated. Under the intensified ENSO scenario, an excessive amount of runoff is simulated for 

the northern parts during La Nina years and for the southern parts during El Nino years, which would 

exacerbate the disease events in the region. Likewise, the simulated low amounts of runoff for the 

northern parts during El Nino years indicate drought events in this parts of the region. This effect can 

also be seen in the simulated NPP responses which reduces considerably for the northern parts during El
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Nino years. Furthermore, the amounts we calculated here agree well with previous studies showing 

changes in NPP supply associated with ENSO events in sub-Saharan African drylands (Abdi et al., 

2016). 

The regions identified to be impacted by ENSO the most, are also the regions that currently undergo the

highest woody vegetation decrease and human population increase in East Africa according to the 

analysis by Brandt et al. (2017). In our future simulations, we simulated increase in woody vegetation 

LAI due to climate change (Figure A4) in those regions of East Africa. It requires further analysis to say

whether this anthropogenic reduction in woody vegetation could be met by future climate and 

atmospheric CO2 related increase. However, it reinforces the essentiality of accounting for ENSO 

influence as independent analyses show increasing stress over this region.

In this study, we chose RCP8.5 as our future warming scenario for two reasons: i) we aimed to follow 

the current trajectory which is pointing beyond RCP 8.5 scenario given the observed trends (Sanford et 

al., 2014), ii) we intended to capture the furthest range presented by RCPs as that is the extent to be 

considered for the assessment of ecosystem responses and mitigation efforts. However, we found that 

the ENSO signal as identified by the EOT method to be very weak in the GCM outputs and fFor the 

future simulations we intensified the ENSO signal such that very strong ENSO years can also be 

experienced as it is the real-world case. I t could be argued that we did not even applied an extra 

intensification due to RCP8.5, and this discrepancy would hold regardless of the future scenario. 

Therefore, our 'intensified' version is more likely to be the realistic version, and Cconsidering that we 

are expected to experience even stronger ENSO events in the future than today (Cai et al., 2013) we 
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could have intensified this signal even more.  However, our results with this realistic even this modest 

intensification already shows the importance of capturing atmosphere-ocean teleconnections in climate 

simulations for reliable future simulations of the ecosystems. We simulated large differences in future 

ecosystem responses under our 'intensified' ENSO scenario, as large as the differences we calculated for

the present-day with and without ENSO simulations. In other words, if we were to predict vegetation 

response to future climate change by using GCM outputs as they are, it would be as if simulating the 

present-day vegetation with climate data without any ENSO contribution.

Apart from the temporal and strength mismatch, the GCM simulations are also producing different 

spatial patterns for tropical Pacific SST-East African rainfall teleconnection. Therefore, in our 

modification we chose to correct for this spatial pattern by using the relationships we obtained from the 

observed datasets as this correction did not influence the temporal behavior and the peakiness of the 

ENSO signal retrieved from the GCM simulations. As a result, our findings can be compared for present

day patterns directly. 

Another finding in our study regarding the spatial patterns was that, while the region that explains the 

most variability in East African rainfall is closer to the Nino-3.4 region in our historical analysis, it 

shifts towards the Nino-4 region in the EOT analysis with GCM outputs. In our methodology the 

coupling of tropical Pacific Sea Surface temperature-East African rainfall variability emerges from the 
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data, and this shift in the influence region agrees well with previous studies that identify an increase in 

the intensity of Central-Pacific (CP) ENSO in the future from GCM outputs (Kim and Yu, 2012). While 

CP ENSO is thought to be forced by changes in the atmospheric circulation, mechanism for Eastern-

Pacific ENSO is rather associated with thermocline variations in the oceanic circulation (Yu, Kao and 

Lee, 2010), and the seasonal impacts produced by these two types of ENSO could differ. For example, 

wetter patterns of EP El Nino events in East Africa might not occur under CP El Nino events and, CP La

Nina events could induce drier conditions in the southern parts of the region than EP La Nina events 

(Wiedermann et al. 2017) which could result in prolongated drought events for the East Africa region. 

Future work with further discrimination of CP-EP event types could help better anticipate the ecosystem

responses to such seasonal extremes.

Especially the total surface runoff and NPP responses were considerably underestimated. Under the 

intensified ENSO scenario, an excessive amount of runoff is simulated for the northern parts during La 

Nina years and for the southern parts during El Nino years, which would exacerbate the disease events 

in the region. Likewise, the simulated low amounts of runoff for the northern parts during El Nino years

indicate drought events in this parts of the region. This effect can also be seen in the simulated NPP 

responses which reduces considerably for the northern parts during El Nino years. Furthermore, the 

amounts we calculated here agree well with previous studies showing changes in NPP supply associated

with ENSO events in sub-Saharan African drylands (Abdi et al., 2016).

35

555

560

565

570

35



5 Conclusion

In this study, we translated the lack of ability of GCMs to account for ENSO teleconnections into

quantified discrepancies in terms of ecosystem responses. WIn this study we investigated the

relationship between interannual East African rainfall variability and ENSO events using Empirical

Orthogonal Teleconnection (EOT) analysis, and found a robust connection from observational datasets

in agreement with previous studies, w.hile confirming that GCM outputs are still not reliable for

capturing this pertinent rainfall variability due to ENSO.  While the strength of this relationship is not

homogeneous among the region, and the patterns of vegetation response presented opposite

characteristics in the northern and southern areas, ENSO influence on East African vegetation and in

return its carbon and hydrological fluxes was apparent. However, we also found that climate simulations

are still not good at capturing this pertinent rainfall variability due to ENSO. The simulated vegetation

responses showed non-negligible differences under climate with and without stronger ENSO signal in

relevance to mitigation efforts for future climate change. We conclude This implies that the future

vegetation would be different from what is simulated under these climate model outputs lacking

accurate ENSO contribution to the degree of ignoring the ENSO influence altogether. ,

whereasComparably with findings from previous studies linking vegetation-climate interactions, we

discussed the importance ofit is important to  accounting for this influence which can bring further

environmental stress to East Africa as we show here. Overall, our results highlight that more robust

projections on coupled atmosphere-ocean teleconnections can help reducing large uncertainties of the
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future magnitude and sign of carbon sink provided by terrestrial ecosystems by improving our

understanding on the vegetation response.
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