
Dear Dr. Thonicke, 

Thanks for carefully looking at our replies to the referees and for your very positive assessment of our paper. 
Please find below the reply to your comments and suggestions. 

- Original comments by the editor will be shown in italics
- Author’s reply will be shown in normal font
- Actual changes in the manuscript will be shown in bold.

We also provide a point-by-point list of changes, when applicable, with line numbers corresponding to the 
revised version of the manuscript (no track changes), and mapped to the original comments by the reviewers 
(see our published author comments). 

Finally, any (minor) issue we have detected during the revision has been corrected and listed at the end of this 
document (see ‘Other changes).

Best regards,

Rafael Poyatos, on behalf of the coauthors

Reply to Editor’s comments

I have minor suggestions to make for the fully revised manuscript:
R1#3: 
1. Please merge the supplementary figures and merge sections S3 and 4 as you suggested. 
2. And yes, please move Table S2 to the main text to make it Table 1 and modify the text accordingly.
3. Please insert your suggestion for Figure 2 to illustrate the multiple comparisons

We have made all the suggested changes, but for number 3 in the list above, please note that we have 
only added the letters for the multiple comparisons in Figs. 2, 3, 6 and 7 (not in Figs. 4 or 5) because of 
lack of space. The P-values for the relevant comparisons concerning these figures have been added to 
the main text. Please note that letters denote results of multiple comparisons, in alphabetical order from 
highest to lowest performance. This clarification has been added to each figure caption showing these 
comparisons. 

R1#9: Please check how you can include your response to this reviewer point in the manuscript. Also to 
emphasize what you regard as being unique.

We have now included the reasoning in our reply to R#19 in the main text:

Assessments of imputation methods in the ecological literature have not tested the impact of the
choice of univariate imputation models within MICE (Penone et al. 2014, Taugourdeau et al. 
2014). Here we showed that predictive mean matching (PMM), the default algorithm in the mice 
package, performed comparably well compared to alternative methods (Supplement S3, Fig. S3, 
S4). Therefore, we used MICE with PMM as the univariate imputation model, also because it is 
robust to non-normality and preserves non-linear relationships between variables (Morris et al., 
2014). 

R1#17: Please check if you can include a sentence on the number of iterations in the method section in addition 
to the added sentence in response to R1#18

We have added a sentence justifying the number of iterations:

We set t = 2 to ensure convergence and to minimise the effects of imputation order (van Buuren 
2012).



R2#3 Please check the entire manuscript text that you consistently use auxiliary information or variable as 
suggested by the reviewer

We now use the term ‘auxiliary variables’ throughout the paper when referring generically to variables 
that are used as predictors in imputation processes. However, please note that to refer to the specific 
variables we have tested in this paper, we now use the term’ ‘environmental information’, following the 
comment R1#11 by the first reviewer. See, for example, the change in the title.

Both reviewers asked why species identity was not part of your analysis. Please check if you can include this 
point in implications or elsewhere in the discussion.

We have changed the opening paragraph of the ‘Implications’ section to include our reasoning on the 
lack of species-specific results:

The problem of missing data is ubiquitous in plant trait datasets of regional to global scope. 
Recently, ecologists have made substantial progress in (i) the assessment of the best imputation
methods in trait-based applications, (ii) how these methods perform with increasing 
missingness, (iii) which ecological covariates aid to improve imputations and (iv) how different 
imputation methods impact the results of trait-based analyses (Pakeman, 2014, Taugourdeau et 
al. 2014, Penone et al. 2014, Schrodt et al. 2015). Most effort thus far, however, has been directed 
at imputing species-level trait means and all the abovementioned questions have rarely been 
assessed on the same dataset. Here we deal with all the previous issues simultaneously and 
also deal withthe spatial component of trait variability, where the intra-specific component 
cannot be neglected. We did not focus on differences in imputation errors across species 
because this issue is, to a large extent, related to the degree of trait variability explained by 
biotic and abiotic predictors across different taxa, which was recently reported by Vilà-Cabrera 
et al. (2015).

Apart from those mentioned in my list above, I ask you to please include all suggested modifications to the 
manuscript as you described them in the response letters.

Please find at the end of this document a list with the most substantial changes, with a reference to the 
corresponding referee comment and the lines of the current manuscript where changes have been 
made. 

I think your manuscript will greatly profit from the detailed reviews thanks to the time both reviewers invested.

We would like to thank the editor and the reviewers for the constructive comments on our manuscript. 

List of changes

Reviewer #1

R1#2. See L. 140-145.
R1#3. 
- In the supplement, the original Figs. S2, S4, S7, S10, S12, S13-S17 have been removed. Original sections S3 
and S4 in the Supplementary Materials have been merged and the original section S7 (quantification of the 
effect of missingness levels) has been integrated in current section S6.
- Original Table S2 now is Table 1. 
- Changes in section 3.3, L. 326 - 330.



- See the addition of letters depicting multiple comparisons in Fig. 2, 3, 6, and 7 and the reporting of P-values for 
meaningful comparisons throughout the text (L. 260, 261, 273, 271, 281, 282, 290, 298, 300, 304, 317, 318,  
322, 331, 337, 340, 342, 343) . See also changes in the ‘Methods’ section (L. 243-248).
R1#5. See changes in L. 406-419.
R1#7. See changes in L. 380-385.
R1#8. See changes in L. 56-62.
R1#9. See changes in L. 169-174.
R1#10. L. 68-70.
R1#11. See changes in L. 74-78.
R1#13. See changes in L. 376-379.
R1#14. See changes in L. 346-351.
-See changes in L. 425-427.
R1#15. See changes in L. 406-408.
R1#18. See L. 158-159.
R1#19. Original sections S3 and S4 in the Supplementary Materials have been merged. Also, the current 
explanation of MICE in the main text includes more details (e.g. number of iterations, justification of PMM). See 
L. 164-178.
R1#20. See changes in L.193-196.
R1#22. All figures showing KGE now have a caption clarifying that higher KGE means better performance (Figs. 
4, 6).
R1#25. This comment refers to the reduction of the Supplementary Materials. See R1#3 above.
R1#26. See changes in L. 72-74 of the Supplementary Material S3.
R1#27. Original sections S3 and S4 in the Supplementary Materials have been merged. 
R1#28
R1#29. Full description of the traits have been added to the captions in Figs. 2-8 and Figs. S3, S6, S8-S13).
R1#30. 
R1#31
R1#32. See changes in L. 257-266.
R1#33. In response to the reviewer’s comments, see the changes in the following sections of the manuscript:
- L. 257-259.
- L. 269-272
R1#36. See new section added (3.4, L. 353).
R1#37. We now provide several statistical tests in Fig. 2, 3, 6, 7, Tables 1 and S1, and throughout the text (L. 
260, 261, 273, 271, 281, 282, 290, 298, 300, 304, 317, 318,  322, 331, 337, 340, 342, 343).
R1#38. L. 181-182.
R1#40. See our changes in R1#37.
R1#41. We now refer to figures in the supplement by the number (L. 106, 159,172, 176, 259, 266, 269, 271, 272,
274, 275, 276, 299, 328, 333, 334, 336, 347, 349, 358, 359, 363).
R1#42. See our changes in R1#29.

Reviewer 2

R2#2. Full description of the traits have been added to the captions in Figs. 2-8 and Figs. S3, S6, S8-S13).
R2#3. We now use the term ‘auxiliary variables’ throughout the paper when referring generically to variables that
are used as predictors in imputation processes (see L. 77, 79, 150,  159, 185, 186, 201, 252, 278, 302, 303, 314,
318, 361, 390 ). However, please note that to refer to the specific variables we have tested in this paper, we now 
use the term ‘environmental information’. 
R2#5. See L. 26-29.
R2#6. See L. 46-47.
R2#8. See L. 96-97.
R2#9. See L. 140-142.
R2#10. See L. 126-128.
R2#11. See L. 189.
R2#13. See changes in L. 213-214, L. 230-232, L. 238-241, L. 225-227.
R2#14. See L. 252.
R2#16. See L. 257-266. 
R2#17. We now refer to figures in the supplement by the number (L. 106, 159,172, 176, 259, 266, 269, 271, 272,
274, 275, 276, 299, 328, 333, 334, 336, 347, 349, 358, 359, 363).
R2#18. See L. 269. 



R2#19. See changes in L. 27, 96, 111, 150, 187, 191, 193, 196, 281, 296, 303, 307, 317, 395, 601, 628, 635, 
643, 649, 655).
R2#21. See changes in L. 306-310.
R2#22. The change proposed in the author comment does not apply anymore, as this text has been deleted.
R2#24. See changes in L. 278-287, L. 321-326.
R2#25. See changes in L. 333-337.
R2#26. See new section 3.4 (L. 353)
R2#27. See changes in L. 391-397.
R2#28. See L. 371.
R2#30. See changes in R2#17 above.
R2#31. All supplementary figures are now cited in the main text.
R2#33. This mistake has been corrected in current figures S2 and s3.

Other changes
- The figure that is now Fig. S3 was not the correct one in the previous version of the manuscript, and we have 
now fixed this. 
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Abstract. The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and

processes.  Spatially-explicit datasets with information on intraspecific trait variability are rare but offer great promise in

improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data

imputation. Here we compare statistical imputation approaches, using varying levels of ecological informationenvironmental

information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass

per area and wood density) in a spatially-explicit plant trait dataset  of temperate and Mediterranean tree species (IEFC

dataset for Catalonia, north-east Iberian Peninsula, 31900 km2). We simulated gaps at different missingness levels (10% –

80%)  in a complete trait matrix, and we used overall trait means, species means, k-nearest neighbours (kNN), ordinary and

regression kriging and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed

these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure

and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy

masked  a  poor  representation  of  trait  distributions  and  multivariate  trait  structure.  Species  identity  improved  MICE

imputations  for  all  traits,  whereas  forest  structure  and  topography  improved  imputations  for  some  traits.  No  method

performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by

relevant ecological variables produced globally more plausible datasetsgave the best results. However, at higher missingness

(> 30%) species mean imputations and regression kriging tended to outperform MICE for some traits.  MICE informed by

relevant ecological variables allowed to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation

uncertainty. Resulting sSpatial patterns of the studied traits in Catalan forests (5495 plots) were largelybroadly similar when

using species means, regression kriging or the best-performing MICE application, but some important discrepancies were
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observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy, and

show  that  including  ecological  informationenvironmental  information in  statistical  imputation  approaches  yields  more

plausible imputations in spatially-explicit plant trait datasets.

1 Introduction

Trait-based ecology has emerged in recent years as one of the most active ecological sub-disciplines, specially in plant

ecology (Westoby & Wright, 2006; Violle et al. 2007). The move from a taxonomic perspective of biodiversity towards a

focus on continuous axes of functional variation holds promise for greater generalisation, synthesis and predictive ability in

ecology  (Funk  et  al.  2016;  Shipley  et  al.  2016).  As  a  result,  plant  ecologists  have  increasingly  embraced  trait-based

approaches because they may be specially suited to study plant strategies (Reich, 2014), community assembly and dynamics

(McGill et al. 2006) or ecosystem functioning, particularly in the context of global environmental change (Reichstein et al.

2014). But trait-based ecology is also unquestionably thriving because of the increasing availability and reliability of plant

trait data (Kattge et al. 2011).

Plant  trait  databases  compiled  from  primary  sources  and  multiple  individual  contributions  lack  a  common design  and

inevitably  result  in  sparse  data  matrices  (e.g.  Jetz  et  al.  2016).  Complete-case  analyses  (i.e.,  data  analyses  using only

sampling units with complete data availability) entail a reduced sampling size, which complicates community-level studies

(Pakeman,  2014) and limit  the spatial  coverage  of trait  maps usable in trait-based models of  ecosystem function.  Data

deletion may also bias parameter estimates (e.g., in trait relationships) if the data are not missing completeley at random

(MCAR; Little & Rubin, 2002; Nakagawa & Freckleton, 2008). Imputation (i.e., gap-filling) of missing data with plausible

values has the potential to overcome some of these limitations, but has has only relatively recently started to be widely

advocated in ecology (Nakagawa & Freckleton, 2008). It should be noted, however,  ,that although imputation may not be

recommended in certain studies (Blonder 2016).

Single imputation methods replace a missing datum by one value and proceed with the analysis as if the imputed data had

been observed (Nakagawa & Freckleton, 2008). Within these approaches, ; species mean or median imputation are probably

the most widely used methods in ecology, but they ignore the variance of the imputed variables.  Other single imputation

approaches such as mModel-based imputation (Gelman & Hill, 2007) methods use other variables in the dataset to impute

missing data, but they substantially alter the univariate trait distributions and the covariance structure of the dataset (Gelman

& Hill, 2007). Approaches such as k-nearest neighbour (kNN) or machine-learning methods (Stekhoven & Bühlmann, 2012)

may be more appropriate  forto impute multivariate  datasets,  but  they all  alter,  to different  degrees,  the univariate  trait

distributions andpreserving their covariance structure of the dataset(Eskelson et al. 2009; Penone et al. 2014). In a multiple

imputation  framework,  m imputed  datasets  are  obtained  through  simulation  and  may  be  jointly  analysed  to  provide
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parameter estimates that take into account the uncertainty introduced by the imputations themselves (e.g. Fisher et al. 2003).

Some multiple imputation techniques, such as multivariate imputation using chained equations (MICE) may be specially

well-suited to  preserve the original structure and distribution of multivariate datasets (van Buuren & Groothuis-Oudshoorn,

2011; van Buuren, 2012).

While forest inventories have adopted  sophisticatedstatistical imputation methods for some time, as for example the kNN

methods (Eskelson et al. 2009 and references therein), imputation methods have only recently been started to be used in trait-

based ecology (Baraloto et al. 2010; Pyšek et al. 2015). Complex imputation methods such as kNN, MICE or random forests

generally outperform overall mean or species mean imputations (Penone et al. 2014; Taugourdeau et al. 2014). In earlier

applications of these methods, it has been common to assume that interspecific trait variability was dominant, compared to

intraspecific  trait  variability,  was  dominant.  The strong  phylogenetic  signal  may then  be  sufficient  to  impute  species-

averaged trait values using taxonomic information (Swenson, 2014). However, intraspecific variability in plant traits may be

substantial (Siefert et al. 2015; Vilà-Cabrera et al. 2015) and imputation methods that use environmental information may be

more appropriate when assessing trait relationships and trait-environment covariance in a spatially explicit context. Biotic or

abiotic variables other than the trait matrix of interest can be included in imputation algorithms as auxiliary variables to

reduce imputation bias (Azur et al. 2011; Rezvan et al. 2015). Geostatistical methods of spatial interpolation can also be used

with (e.g. regression kriging) or without (e.g. ordinary kriging) auxiliary variables (e.g. Hengl et al. 2007).

Additional challenges occur in the imputation of traits in large databases. The expected declining performance of imputation

methods with increasing missingness levels, may be trait- and dataset-dependent (Penone et al. 2014; Taugourdeau et al.

2014). Moreover, the impact of imputations on altering bivariate trait relationships has only been testedassessed for single

relationships (Penone et al. 2014; Schrodt et al. 2015) and not for the multiple relevant relationships within a plant trait

dataset.  Likewise,  there are  few studies quantifying how different  imputation methods alter  the multivariate  covariance

structure of plant trait datasets (Schrodt et al. 2015).

Our overarching aim here is to assess the performance of different imputation methods to fill simulated gaps at different

missingness levels in a spatially-explicit plant trait dataset (IEFC, Ecological and Forest Inventory of Catalonia, north-east

Iberian  Peninsula).  We  imputed  these  missing  data  using  single  imputation  (kNN),  multiple  imputation  (MICE)  and

geostatistical  approaches  (ordinary  and  regression  kriging,  OrdKrig  and  RegKrig,  respectively),  and  compared  the

imputations with baseline scenarios of overall mean and species mean imputation. Imputation performance was assessed in

terms of accuracy, univariate trait distributions, multivariate trait structure and deviations in trait relationships. Our specific

objectives are: (i) to test which imputation method (overall mean imputation, kNN, MICE, OrdKrig) performed best when

relying  only  on  plant  trait  data;  (ii)  to  assess  the  impact  of  including  additional  predictors  (i.e.  ecological

informationenvironmental information such as species identity, climate, forest structure, topography, lithology and sampling
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date) in MICE and kNN imputations; (iii) to compare the performance of kNN, MICE and RegKrig using optimum levels of

ecological informationenvironmental information (i.e. the best set of predictors in objective ii); and, finally, (iv) to apply the

best performing method to fill the gaps in a major subset of the IEFC database to obtain ‘continuous’ maps of plant traits for

the main forest species across a relatively large Mediterranean region.

2. Methods

2. 1 Study area

The study area is the entire territory of Catalonia (31900 km2), in the north-east Iberian peninsula. Catalonia has 38% forest

cover (1.2 x 106 ha) and forests are largely dominated by species belonging to the Pinaceae and Fagaceae families. We

selected 13 tree species, including 6 Pinus spp., 5 deciduous and evergreen Quercus spp., Abies alba and Fagus sylvatica,

which altogether cover >90% of the forested area in Catalonia (see Supplement S1, Fig. S1).

2. 2 Data

Plant trait and forest data were retrieved from the Ecological and Forest Inventory of Catalonia (IEFC), carried out between

1988 and 1998 (Gracia et al. 2000‒2004). A complete description of the sampling scheme and methods used to measure

plant traits in the IEFC can be found in the Supplement S1. The subset of the IEFC limited to the 13 study species, hereby

called ‘IEFC incomplete dataset’, included 5495 plots.  StandForest structure, lithology and sampling information for each

plot  were  retrieved  from  the  IEFC database,  whereas  climate  data  were  obtained  from the  Climatic  Digital  Atlas  of

Catalonia, with a spatial resolution of 180 m (Ninyerola et al. 2000).

We selected five plant traits (leaf mass per area, LMA, mg cm -2;  leaf nitrogen per unit mass, Nmass, %mass; maximum tree

height, Hmax, m; wood density, WD, gm cm-3; leaf biomass to sapwood area ratio, BL:AS, t m-2) that are used to describe major

plant functional strategies (Westoby et al. 2002; Wright et al. 2004; Chave et al . 2009; Laforest-Lapointe et al. 2014). In

Catalan forests, four of these traits (LMA, Nmass, Hmax, WD) mostly vary acrossbetween families (Pinaceae and Fagaceae) and

within species (Vilà-Cabrera et al. 2015). The missing data patterns in this trait data matrix shows a much higher percentage

of missing data (hereafter, ‘missingness) for foliar traits, corresponding to a less intense sampling of these traits (Supplement

S1Fig.  1). These  intentional missing data (van Buuren 2012) would correspond to a  planned missing data design, where

missingness at random (MAR) is deliberately applied (Nagakawa  2015). 

2.3 Experimental design

All data manipulations, imputations and statistical analyses were performed with the R programming language (R Core

Team, 2015). We created a subset of the IEFC incomplete dataset only including those plots (N = 630) where all 5 traits had
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been measured on the dominant species (‘IEFC complete dataset’). In this dataset, we randomly deleted measured values at

different  probability  levels  (10%,  20%,  30%,  50% and  80%)  and  independently  for  each  trait,  thus  the  missing  data

artificially introduced are missing completely at random (MCAR). This data deletion was replicated, to yield 30 simulated

datasets for each missingness level  (Fig.  1).  Hence,  the different  imputation methods were assessed on 150 datasets (5

missingness levels x 30 replicates). 

We ran different single and multiple imputation algorithms (see 2.34 Imputation methods) to fill the gaps in the trait data of

the simulated incomplete datasets. Single imputation methods yield m = 1 imputed dataset per simulated dataset and here we

set the multiple imputation methods to yield m = 5 datasets per simulated dataset to incorporate imputation uncertainty. Prior

to the calculation of different performance metrics for each dataset, trait values in multiply imputed datasets were averaged

(Penone et al. 2014). Performance metrics were assessed using the measured values of each trait in the IEFC complete

dataset (see 2.65. Statistical evaluation of the imputations). Note that each imputed dataset contains both measured and gap-

filled data, but the expression ‘imputed values’ refers only to gap-filled data. 

2.34 Imputation methods

We compared imputation methods with different degrees of complexity. We used two simple approaches to provide baseline

imputations.  ;  Mean imputation (‘Mean’) filled missing data using the overall mean value for each trait and species mean

imputation (‘Spmean’) replaced missing values with trait means computed for each species. Because of the spatial nature of

the dataset, we also tested two geostatistical approaches, ordinary kriging (‘OrdKrig’) and regression kriging (‘RegKrig’) .

Lastly, we also used two methods designed to handle multivariate datasets:  k-nearest neighbour imputation (‘kNN’) and

MICE (Multivariate Imputation using Chained Equations).

Ordinary  kriging  calculates  a  weighted  average  of  nearby  observations  to  predict  values  of  a  target  variable  in  an

unmeasured location, with weights that minimize prediction error and depend on spatial structure of the target variable via a

variogram model (Hengl et al. 2007). Regression kriging combines a deterministic model of the target variable as a function

of auxiliary variables with kriging applied to fit the residuals (Hengl et al., 2007). We included climate and forest structure

variables in the model used for regression kriging imputations (cf. ‘Comparative assessment of imputation methods’), but not

species identity, because there were not enough data to generate the experimental variograms for some of the less common

species  for  all  the simulations.  We performed all  kriging imputations with the  ‘autoKrige’  function in  the automap R

package. This function tests different variogram models and applies the best-fit variogram model for kriging (Hiemstra et al.

2009).

 k-nearest  neighbour  imputation  (‘kNN’)The  kNN  method calculates  a  multivariate  distance  using  only  non-missing

variables, selects the k-nearest plots with measured values for the target missing trait and aggregates these k neighbouring

values to replace the missing value (R package VIM; Templ et al. 2013). We selected k = 7 and median aggregation after
5

130

135

140

145

150

155

160



some preliminary tests (Supplement S2, Fig. S2). We also analysed how the inclusion of auxiliary variables in the distance

calculation affected imputation performance (see 2.45 Comparative assessment of imputation methods).

We also used two geostatistical approaches. Ordinary kriging calculates a weighted average of nearby observations to predict

values of a target variable in an unmeasured location, with weights that minimize prediction error and depend on spatial

structure of the target variable via a variogram model (Hengl et al. 2007). Regression kriging combines a deterministic

model of the target variable as a function of auxiliary variables with kriging applied to fit the residuals (Hengl et al., 2007).

We included climate and forest structure variables in the model used for regression kriging imputations (cf. ‘Comparative

assessment  of  imputation  methods’),  but  not  species  identity,  because  there  were  not  enough  data  to  generate  the

experimental variograms for some of the less common species for all the simulations. We performed all kriging imputations

with the ‘autoKrige’ function in the automap R package. This function tests different variogram models and applies the best-

fit variogram model for kriging (Hiemstra et al. 2009).

The MICE (Multivariate Imputation using Chained Equations) algorithm (van Buuren & Groothuis-Oudshoorn, 2011; van

Buuren, 2012) sequentially and iteratively imputes incomplete data, variable by variable, using individual imputation models

conditionally specified by the user.  One cycle through all  the imputed variables  is  one iteration and MICE performs  t

iterations in m parallel streams, generating m multiple imputations (Supplement S3). We set  t = 20 to ensure convergence

and to minimise the effects of imputation order (van Buuren 2012) .  Stochasticity is introduced in the imputation process

because the parameters of the univariate imputation models are drawn from their posterior distributions, obtained using a

Gibbs sampler (van Buuren, 2012).  Assessments of  imputation methods in the ecological  literature  have not tested the

impact of the choice of univariate imputation models within MICE (Penone et al. 2014, Taugourdeau et al. 2014). Here we

use  pHere we showed that  predictive mean matching (PMM), the default algorithm in the mice package, performed well

compared to alternative methods (Supplement S3, Fig. S3, S4).  Therefore,  we used MICE with PMM  as the univariate

imputation model,  also because  as  it is robust to non-normality and preserves non-linear relationships between variables

(Supplement  S3Morris  et  al.,  2014).  Several  parameters  must  be  tuned  to  specify  the  imputation  models  in  the  R

implementation of MICE (mice package) to yield reliable imputations (van Buuren & Groothuis-Oudshoorn, 2011). The

specific settings used in this study are assessed in Supplement S34 (Fig. S3, S4). Please note that we will use the uppercase

acronym ‘MICE’ to refer to the technique in general and the lowercase acronym ‘mice’ to refer to a particular application in

this study.

2.45 Comparative assessment of imputation methods

We conducted three methodological comparisons of imputation performance. A first exercise compared ‘Mean’, ‘OrdKrig’,

‘kNN’ and ‘mice’ imputations. ‘Mean’ imputations used only the information on the target trait, ‘OrdKrig’ additionally used

the spatial coordinates and ‘mice’ and ‘kNN’ included only the information in the trait matrix. 
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A  second  exercise  assessed  in  detail  the  impact  on  trait  imputation  of  including  additional  ecological

informationenvironmental information as auxiliary predictorsvariables in MICE and kNN. We focused our detailed analysis

on MICE only but we also made a simplified comparison between kNN and MICE (cf.  next paragraph).  The auxiliary

variables  we  considered  were  species  identity,  a  set  of  climatic  variables  (mean  annual  temperature,  annual  thermal

amplitude, both in °C), a set of forest structure variables (total aboveground biomass [T ha-1] and stem density [stems ha-1]), a

set of topographical variables (county, elevation [m.a.s.l.], slope [°] and aspect), lithology (calcareous, non-calcareous or

undetermined) and sampling month. These predictors were complete and they did not need to be imputed themselves. The

selection of the specific variables describing climate and forest structure was based on a recent analysis of trait variation in

the same IEFC dataset (Vilà-Cabrera et al. 2015). We further added topographical variables, lithology and sampling month

given that they may influence some trait values (Niinemets, 2015; Simpson et al. 2016). Species identity (‘s’), climate (‘c’)

and forest structure (‘t’) were introduced in a factorial design to identify those combinations of variables leading to improved

imputations. Because we expected them to play a secondary role in explaining trait variability, Ttopography (‘p’), lithology

(‘l’) and sampling month ‘(m’) were sequentially added to MICE and kNN imputations using species, climate and forest

structure. Topography included spatial structure through the ‘county’ variable; preliminary tests using coordinates instead of

‘county’ did not show better results. Thus, ‘mice_ctsplm’ was the MICE application with the highest level of  ecological

informationenvironmental information (Fig. 1).

The third  exercise  compared  species  mean imputations (‘Spmean’)  with MICE and kNN using two different  levels  of

auxiliary variables:  (i)  only species identity (‘mice_s’  and ‘kNN_s’) and (ii)  the level  of auxiliary  informationvariables

which performed best overall in the second exercise. In this same exercise, we also compared the previous approaches with

‘OrdKrig’  and  regression  kriging  (‘RegKrig’)  imputations.  This  third  exercise  thus  compares  a  baseline  scenario  of

‘Spmean’  with  imputation  approaches  informed  either  by  species  identity  only  or  by  an  optimum level  of  ecological

informationenvironmental information. 

2.56 Statistical evaluation of the imputations

Imputation performance was evaluated by comparing the imputed datasets with the complete, original dataset. A first set of

metrics, Normalised Root Mean Square Error (NRMSE) and Kling-Gupta Efficiency (KGE), was calculated only for those

values  that  had been randomly deleted and subsequently gap-filled.  We tested whether  the distribution of imputed and

original trait values differed using a two-sample Kolmogorov-Smirnov test, which tests the null hypothesis that two samples

are identically distributed. 
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For each simulated dataset and trait, we calculated the  Normalised Root Mean Square Error (NRMSE) as a measure of

accuracy:

NRMSE=√mean [ ( y imp− yobs )2 ]
var ( yobs )

(Eq. 1)

where yimp and yobs represent the vectors of imputed and observed values for a given trait, respectively. Values of NRMSE

approaching zero denote a better performance of the imputation method. We also calculated a dataset-averaged NRMSE by

averaging the values of NRMSE for all the traits. 

We further assessed imputation performance for each trait by using KGE, a goodness-of-fit measure originally developed for

hydrological models, as implemented in the R package hydroGOF (Zambrano-Bigiarini, 2014):

KGE=1−√ (r−1 )2+( vr −1 )2+( β−1 )2(Eq. 2)

where r is the Pearson correlation coefficient between observed and imputed values, vr is the ratio of the standard deviations

between imputed and observed values and β is the ratio of imputed and observed means. The KGE range is [-∞,1], with

higher values indicating better imputation performance. KGE jointly assesses correlation, bias and difference in variability

between imputed and observed values, and it is therefore a powerful, synthetic indicator of imputation quality in spatially-

explicit datasets.  We also calculated alternative metrics such as the R2 between observed and imputed data, but results did

not differ from those obtained using NRMSE and KGE (Supplement S5, S6, S7).

A second set of metrics compared the whole complete trait dataset  Yobs with the whole imputed dataset  Yimp (i.e. including

observed and gap-filled trait values). The deviations from the original multi-traitvariate correlation  structure of the trait

dataset were quantified by comparing the correlation matrices of the original and imputed datasets using the following index:

Δcormat=∑|L [ cor (Y obs) ]− L [ cor (Y imp) ]|(Eq. 3)

Where L [cor (Y obs ) ]denotes the lower triangular part of the correlation matrix of the observed dataset and L [cor (Y imp )]
denotes the lower triangular part of the correlation matrix of the imputed dataset. Δcormat is indicative of the aggregated

absolute difference between correlation matrices. Note that some traits were log-transformed before the calculation of the

corresponding correlation matrix, following Vilà-Cabrera et al. (2015). 

We also tested the impact of the imputation algorithms on selected bivariate trait relationships: Hmax WD and N‒ mass LMA‒

(log-transformed when necessary); as the correlation coefficients (r) of these relationships were >0.3 in absolute value and

were highly significant in the complete dataset.  We quantified the relative difference between the complete and the imputed

datasets by calculating: 
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% Δr=100·|robs −rimp|/|robs|(Eq. 4)

Throughout the paper, we show violin plots representing the median and the distribution of each performance metric as a

function of missingness levels, but we only graphically display the 10%, 30%, 50% and 80% levels, for ease of visualisation.

We modelled imputation metrics in a linear mixed-effects model (LME) as a function of the interaction between imputation

method and missingness, with dataset replicate as random effect.   The LME model was fitted using the nlme package in R

(Pinheiro et  al.,  2012) and pairwise comparisons of  model coefficients  were performed using the lsmeans and lstrends

functions in the lsmeans package (Lenth, 2016).

2.67 Imputing traits for the main forest species in Catalonia

Finally, we applied three imputation methods to gap-fill and map the five traits across all the plots in the ‘IEFC incomplete

dataset’. We chose ‘Spmean’, as the most widely used imputation method in trait-based studies ‘RegKrig, as a reference

geostatistical approach including auxiliary variables and ‘mice_ctsp’,  as the best method  globallyoverall, considering all

traits and performance metrics (see 3. Results and discussion). We ran ‘mice_ctsp’ setting m = 50 (i.e. 50 imputations per

missing value), a value closer to the missingness rate, as recommended for final MICE applications (van Buuren, 2012).

3. Results and discussion

3.1 Mean imputations compared to MICE and kNN imputations using only trait information

In general, ‘mice’ and ‘kNN’ imputations resulted in more accurate imputations in terms of NRMSE than ‘Mean’ at low

missingness  rates  (10%).  However,  at  moderate  and  high  missingness  both  ‘mice’  and  ‘kNN’  were  comparable to or

outperformed by ‘Mean’, and specially by ‘OrdKrig’ (Fig. 2,  Supplement S5Fig. S5).  ‘OrdKrig’ was the best-performing

method,  in  terms  of  NRMSE,  at  missingness  ≥ 50%   (P <0.05),  although  for  three  traits  its  performance  was

indistinguishable from that  of  ‘Mean’  imputations (Nmass,  Hmax,  LMA;  P>0.05).  Recent  assessments  also report  that  the

performance of MICE and kNN notably declines when missingness is ≥ 30% (Penone et al. 2014; Taugourdeau et al. 2014).

Even if ‘Mean’ imputations imply the rather naive assumption that species identity may be unknown in a given dataset, it is

nonetheless useful to compare ‘Mean’ imputations against ‘mice’ and ‘kNN’, which use the full trait matrix for prediction. In

this  case,  trait  covariation  did  not  improve  imputations  at  high  missingness;  recent  assessments  also  report  that  the

performance of MICE and kNN notably declines when missingness is ≥ 30% (Penone et al. 2014; Taugourdeau et al. 2014). ,

because this comparison shows how trait covariation can be used to improve imputations. HoweverTherefore, our results for

‘OrdKrig’ , compared to those for ‘mice’ and ‘kNN’, show that  spatial structure, rather than trait covariation, may provide

more accurate trait imputations when gaps are frequent (Fig. 2, Supplement S5Fig. S5, S6). 
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As expected (Gelman and Hill, 2007),  however, ‘Mean’ imputation severely altered trait distributions (Supplement S5Fig.

S6),  and introduced  larger  errors  in selected trait  correlations (Fig.  3).  ‘Mean’  imputations  also  tended to cause  larger

deviations in the correlation matrix, and, although  (Fig. S5). ‘kNN’ showed the lowest  Δcormat below 50% missingness,

(P>0.05) but its  performance declined at  high missingness (Supplement S5Fig. S5).  In  contrast,  ‘mice’  closely tracked

observed trait distributions (Supplement S5Fig. S6), introduced the least error in trait correlations under high missingness

levels (Fig. 3; P<0.05) and yielded low Δcormat at extreme missingness levels (Supplement S5Fig. S5). Recent results also

show that kNN tends to introduce larger bias in bivariate trait relationships compared to MICE (Penone et al . 2014). Despite

showing the lowest Δcormat at 80% missingness, ‘OrdKrig’ imputations altered distributions and trait correlations more than

‘mice’ (Fig. 3, Supplement S5Fig. S6), but they performed similarly in terms of Δcormat .at all missingness levels (Fig. S5).

3. 2 MICE imputations using different levels of ecological informationenvironmental information

Introducing  auxiliary  variables  as  predictors  improved  MICE  performance  substantially  (Fig.  4,  Supplement  S6).

Howeverbut, these improvements were dependent on the specific predictor set and trait (Fig. 4). Species identity increased

KGE for all traits (Fig. 4) and it was the major predictor for  Nmass, LMA and WD, as all MICE applications with species

identity  performed  significantly  better  than  those  not  including  it  (Fig.  4;  P<0.05).  Forest  structure  notably  improved

imputations  for  Hmax,  and  only  slightly and for  BL:AS.  , particularly  at  missingness  ≥ 50%  (P <0.05).  Climate  only  produced

minorsignificant increases  in KGE (i.e.,  compare ‘mice’  with ‘mice_c’ in Fig. 4) for  Hmax and WD (P<0.05),. but in a

consistent way across traits (i.e., compare ‘mice’ with ‘mice_c’ in Fig. 4). TheseOur results are in line with the distinct role

of phylogeny and environmental variables as drivers of trait variability recently observed for the same tree species inusing

the IEFC (Laforest-Lapointe et al. 20154; Vilà-Cabrera et al. 2015).  One of these studies shows that, after controlling for

family (Pinaceae and Fagaceae), environmental variables only explained a substantial fraction of the variability for Hmax, they

explained very little variability for  LMA and WD and played no role in explaining Nmass (Vilà-Cabrera et al. 2015). 

Including  topography  in  MICE  imputations  only  substantially  improved  BL:AS imputations (compare  ‘mice_cts’  with

‘mice_ctsp’, P<0.05), probably because the leaf area used in BL:AS calculations are obtained from county-level allometries,

and  county  is  one  of  the  variables  included  in  the  topography  predictor  set  (see  2.  Methods and  Supplement  S1).

Nevertheless, introducing sampling month in the predictor sets did not appreciably improve MICE imputations in terms of

KGE (Fig. 4), despite that phenological variation has been reported for some foliar traits (Niinemets, 2015; but see Fajardo

& Siefert, 2016). Lithology did not appreciably improve MICE imputations, in contrast with the reported influence of soil

pH on some foliar traits (Maire et al. 2015; Simpson et al. 2016).  

At high missingness ( ≥ 50%), ‘mice_ctsp’ (including climate, forest structure, species and topography) was always within

the best-performing methods (P<0.05), except for LMA and WD at 80% missingness, according to KGE results (Fig. 4). In

general, high levels of auxiliary information greatly improved MICE imputations.  In terms of dataset-averaged NRMSE,
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Δcormat  (data not shown) and preservation of trait distributions (Fig. S7), the inclusion of topography only produced a

significant improvement  for dataset  NRMSE at  50% missingness (P<0.05). ‘mice_ctsp’  imputations (including climate,

forest structure, species and topography) tended to show the best performance (Supplement S6). Nevertheless, introducing

sampling month in the predictor sets did not appreciably improve MICE imputations in terms of KGE (Fig. 4, Supplement

S6), despite that phenological variation has been reported for some foliar traits (Niinemets, 2015; but see Fajardo & Siefert,

2016). Lithology did not appreciably improve MICE imputations, in contrast with the reported influence of soil pH on some

foliar traits (Maire et al. 2015; Simpson et al. 2016).  

Including auxiliary variables as predictors also decreased %Δr for selected trait relationships (Fig. 5). The best-performing

MICE applications (lower %Δr) always included species identity and forest structure; including other auxiliary variables did

not lower %Δr significantly (P>0.05). In this case, lithology and sampling month slightly reduced %Δr for Hmax – WD and

Nmass –  LMA relationships (Fig. 5). However, these reductions were not consistent across missingness levels. For example,

sampling month reduced %Δr for the Nmass –  LMA relationships at 50% but not at 80% missingness (Fig. 5).

Our results collectively suggest  that,  apart  from species identity, different  types of  ecological  informationenvironmental

information, particularly standforest structure and topography, may improve statistical imputation schemes.  In contrast, the

role of climate, lithology and sampling month in improving imputations was comparatively minor.  However, we selected

‘mice_ctsp’  as  the  method  that  performed  best  for  all  traits,  because  adding  climate  did  not  deteriorate  imputation

performance and not including ‘topography’ would worsen BL:AS imputations. A negligible influence of Similarly, including

climate and soil data on trait imputation in as predictors did not improve imputations of the TRY database obtained with the

recently proposed Bayesian Hierarchical Product Matrix Factorisation method,was also recently reported (BHPMF; Schrodt

et al. 2015). It is unclear, however, to what extent these results simply reflect the relatively poor quality of the climate and

soil data generally available at regional scales.

3.3  Species  mean  imputations  compared  to  MICE  and  kNN  using  optimum  levels  of  ecological
informationComparing imputation methods using optimum levels of environmental information

Adding auxiliary variables to calculate the distance matrix also improved kNN imputations. Values of KGE for ‘kNN_s’ and

‘kNN_ctsp’ were much higher than those observed for ‘kNN’ imputations (data not shown), which only included the trait

data in the distance matrix (Supplementary material,  compare Fig.  A7 and A12). This improvement was largely driven by

the inclusion of species identity; only for BL:AS  and Hmax  did ‘kNN_ctsp’ perform significantly better than ‘kNN_s’ (Fig. 6;

P<0.05). Likewise, adding climate and forest structure as auxiliary variables improved ‘RegKrig’ performance compared to

‘OrdKrig’ (Fig. 6,  P<0.05), except for  Nmass. For both, kNN and kriging methods, WD and  Hmax were the traits for which

these improvements were largest.
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In terms of KGE, general,  ‘mice_ctsp’ was the best performing method at 50% missingness for all traits, together withand

‘Spmean’  for  Nmass,and LMA and with ‘RegKrig’  tended to be the best methods in terms of KGE, except  for  Hmax,  for  which

‘mice_ctsp’ and ‘RegKrig’ performed best. (P>0.05 for comparisons between ‘mice_ctsp’, ‘Spmean’ and ‘RegKrig for these traits) . However,

at 80% missingness,  At highest missingness levels,  ‘mice_ctsp’ only ranked first for  BL:AS whereas  ‘Spmean’ showed the

highest KGE for  Nmass, LMA and WD and ‘RegKrig’ performed best for  Hmax  (Fig. 6,  Supplement S7).  These results are

consistent with the prominent role of taxonomic identity in explaining variability in foliar traits and WD and with the higher

predictive ability of environmental and spatial information in explaining Hmax  (Vilà-Cabrera et al. 2015).  The LME model

showed that the rate of increase in KGE with increasing missingness was lowest for ‘Spmean’ in four out of five traits (Table

1).  Compared to ‘Spmean’ and ‘RegKrig’, performance of MICE and kNN declined more with increasing   missingness

(Supplement S8Table 1, Fig. S8, Table S1), but MICE generally outperformed kNN (Fig. 26, 3, Supplement S77), as already

observed in a recent imputation assessment of species-level, life-history traits (Penone et al . 2014).  In terms of dataset-

averaged NRMSE, ‘mice_ctsp’ and ‘Spmean’ were the best-performing methods at 50% and 80% missingness, respectively

(P<0.05).

MICE imputations, especially ‘mice_ctsp’ showed the lowest %Δr for the studied trait correlations, although ‘Spmean’ also

showed low values  for  for the  Nmass LMA  relationship  (Fig.  7).‒  Neither  kNN nor  kriging imputations succeeded in

minimising changes in trait correlations; for kriging imputations, only ‘RegKrig’ showed a relatively high value of %Δr for

the  Hmax WD relationship‒  (Fig. 7).  Kernel density plots  (Fig. S9) and Kolmogorov-Smirnov tests  (Fig. S10) showed that

MICE produced imputations (especially ‘mice_ctsp’) most consistent with observed distributions at all missingness levels

(Supplement  S7Fig.  S9,  S10).  ‘Spmean’  and  ‘OrdKrig’  imputations  modified  trait  distributions  substantially,  while

’‘kNN_ctsp’ and ‘RegKrig’ showed an intermediate performance, but generally far from that of ‘mice_ctsp’   (Supplement

S7Table 1,  Fig. S8, Table S1). ‘Spmean’ and kriging imputations also yielded larger  Δcormat values  (data not shown).

compared to the rest of the methods (P<0.05), reflecting their lower ability to maintain trait correlation structures. 

For the selected trait relationships, ‘mice_ctsp’ showed the lowest values of %Δr at  ≥ 50% missingness (P<0.05), although

for the Nmass LMA  relationship ‘kNN_s’ and ‘mice_s’ performed equally well at 50% and 80% missingness, respectively‒

(Fig. 7; P>0.05). ‘Spmean’ imputations showed variable results, severely altering Hmax WD‒  relationship (P<0.05, Fig. 7) but

showing comparable performance to ‘mice_ctsp’ for the  Nmass LMA  relationship at 80% missingness (‒ P>0.05, Fig. 7).

Kriging imputations did not succeed in minimising changes in reproducing trait correlations (Fig. 7).

Using imputed or incomplete datasets did not lead to large differences in the studied trait relationships when missingness

was <50% (Fig. S11, S12). However, at high missingness, using imputed datasets led to comparatively larger departures

from the relationships obtained with the complete dataset, especially for the Nmass LMA ‒ relationship. No imputation method

appeared to perform consistently better than others in preserving trait relationships at high missingness levels (Fig. S11, S12)
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and, under these conditions, using incomplete datasets appeared to correctly reproduce the observed trait relationships in the

complete dataset.

3.4 Imputing traits for the main forest species in Catalonia

The application of ‘mice_ctsp’ successfully filledallowed to fill the gaps in the IEFC incomplete dataset and quantifiedy the

variation among the multiple imputations,  providing an estimation of the level of confidence in the imputed values for

specific traits (Fig. 8).  ‘Spmean’ and ‘RegKrig’ show a largelybroadly similar spatial pattern of trait variation compared to

‘mice_ctsp’,  although some  important  discrepancies between ‘Spmean’ and  ‘mice_ctsp’   can be observed in the north-

eastern  pre-litoral  and  coastal  area  for  LMA (Fig.  S2313).  Here,  ‘Spmean’  imputations  tend  to  predict  lower  values

compared to ‘mice_ctsp’ imputations. These areas are mostly dominated by Quercus suber forests (SupplementFig. S1), and

LMA was only measured in 5 out of the 149 plots of this species present in the IEFC incomplete dataset. Therefore, as there

is little information on trait covariation for the imputation of LMA in Q. suber plots, MICE imputations are largely based on

the auxiliary variables and they yield a distinct spatial pattern of trait variation, compared to ‘Spmean’. Imputations obtained

using regression kriging result in more blurred spatial patterns, relative to other imputation methods (Fig. S13).

4 Implications and conclusions

The problem of missing data is ubiquitous in plant trait datasets of regional to global scope. NeverthelessRecently, ecologists

have recently made substantial progress in (i) the assessment of the best imputation methods in trait-based applications, (ii)

how these methods perform with increasing missingness , (iii) which ecological covariates aid to improve imputations and

(iv) how different imputation methods impact the results of trait-based analyses (Pakeman, 2014, Taugourdeau et al. 2014,

Penone et al. 2014, Schrodt et al. 2015). Most effort thus far, however, has been directed at imputing species-level trait

means and all the abovementioned questions have rarely been assessed on the same dataset. Here we deal here with all the

previous issues simultaneously and also deal withfocusing on the spatial component of trait variability, where the intra-

specific component cannot be neglected.  We did not focus on differences in imputation errors across species  because this

issue is, to a large extent, related to the degree of trait variability explained by biotic and abiotic predictors across different

taxa, which was recently reported by Vilà-Cabrera et al. (2015).

One limitation of this study is that we simulate data missing completely at random (MCAR) whereas a missing at random

(MAR) assumption would have probably been more realistic given the properties of the dataset (Nakagawa 2015). However,

a recent study did not show differences in trait imputation performance between these two missing data mechanisms (Penone

et  al. 2014).  Our study assesses  different  imputation methods in  spatial,  traits  datasets  with multivariate  missing data.

Amongst the methods assessed here, MICE and kNN are the most adequate to impute multivariate datasets, as they can be
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used when predictors also include missing data.  Kriging methods may be more difficult  to apply when predictors are also

missing, but we have shown that,  at  high missingness levels and when environmental  information is lacking, they can

outperform MICE and kNN. This implies that geostatistical methods may sometimes provide more accurate imputations than

those using trait covariation. 

Our results show that, in terms of trait prediction error, no imputation method performs best consistently for the five studied

traits.  However,  when  all  performance  metrics  are  jointly  considered  (i.e.  errors  in  trait  prediction,  multivariate  trait

distribution and trait correlations), MICE informed by relevant ecological variables outperforms approaches based on trait

averaging,  geostatistical  models  and kNN methods, albeit  this  superiority of  MICE tends to  vanish at  highervery  high

missingness levels. For kNN, MICE and kriging imputations we have highlighted the key role of auxiliary variables as

necessary covariates to yield reliable imputations in spatially explicit settings. This result calls for the inclusion of site-

specific environmental variables associated with trait data in trait databases. The importance of covariates differed across

traits, but, in addition to the expected influence of species, climate and topography in predicting trait values, we also showed

a  prominent  role  of  standforest structure  for  some traits.  The ongoing  development  of  global  databases  of  vegetation

structure  (e.g.  Dengler  et  al. 2014)  will  likely  enable  the  incorporation  of  stand  variables  in  future  trait  imputation

exercisesapproaches .using spatial and environmental information (Butler et al. 2017).

Given  the  limited  number  of  species  in  our  study,  reflecting  the  relatively  low richness  of  the  studied  communities,

taxonomic information introduced as species identity was enough to improve imputations of all studied traits. However, in

studies coping with a larger set of species, phylogeny may need to be considered in the imputation models (Schrodt et al.

2015, Swenson et al. 2017). For global trait datasets, a combination of imputation with data augmentation approaches (e.g.

Nakagawa & Freckleton, 2008) has been proposed to minimise potential errors in trait-driven analyses caused by incomplete

and biased species sampling (Sandel et al. 2015). 

Compared to other imputation approaches, MICE is well-suited to deal with multivariate missing data (i.e. MICE produce

imputations when some predictors are also missing) and provides information to quantify the uncertainty associated with the

imputed data  (Fig.  8).  MICE uses  multivariate  relationships  in  the  dataset  to  impute missing data,  and  this may raise

concerns about potential circularity in trait or trait-environment correlations. Despite these concerns, it has been argued that

the full inference framework based on multiply-imputed datasets would minimise circularity (van Buuren 2012). MICE also

provides  a  full  framework  for  inference  from incomplete  datasets.  Because  our  comparative  assessment  of  imputation

methods is already complex, here we have  only dealtfocused on the initial with imputation stage, the first step of the full

process  (e.g.  Nakagawa & Freckleton 2008),  but  .  MICE produces multiple datasets,  with imputed values  drawn from

distributions, and these datasets that arecan be individually combined in the  analysis and pooling steps. The analysis step

refers to the estimation of the parameters of scientific interest (e.g. a regression coefficient) for each dataset. In MICE,
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parameters are thencan be pooled across datasets to produce unbiased estimates and standard errors, providing a natural way

to take into account the additional uncertainty introduced in the analysis by the presence of missing data,  and to avoid

circularity effects (van Buuren 2012). However, ecological studies using multiple imputation approaches usually only apply

the imputation step (Baraloto et al. 2010, Paine et al. 2011, Pyšek et al 2015, Díaz et al. 2016) and do not take advantage of

the multiple imputation framework to quantify the uncertainty resulting from the presence of missing data (but see Fisher et

al. 2003).

Our results have important implications given that the demand for spatially explicit datasets is increasing rapidly and that

species mean imputation and casewise data deletion are still  widespread practices in trait-based ecology. We show that

species  mean imputation may result  in substantial  information loss that  may hinder research development on important

topics in functional biogeography, such as the ecological significancedrivers and implications of intraspecific trait variability

(e.g. Siefert et al. 2015). Gap-filled multivariate trait datasets may increase the robustness of, the  syntheseis of plant form

and function (Díaz et al. 2016)  and  or the development of trait-driven modelling approaches (Yang et al. 2015). We also

show  that  spatially-distributed  layers  of  ecological  informationenvironmental  information may  improve  trait  mapping,

increasing spatial resolution and/or sample size in for trait imputation, as shown here for MICE, can thus be used to obtain

trait maps to inform trait-driven ecosystem process models (Christoffersen et al. 2016). 
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Table 1. Tukey pairwise comparisons of the LME model coefficients (and 95% lower/upper confidence limits) relating trait-

specific KGE (higher values of KGE imply higher performance) to increasing missingness levels for different imputation

methods: species mean (Spmean), mice and kNN with species as predictor (mice_s and kNN_s, respectively), mice and kNN

with species, climate, forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively), ordinary

kriging (OrdKrig) and regression kriging (RegKrig). Traits: leaf biomass to sapwood area ratio, BL:AS  (t m-2  ); leaf nitrogen

per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood density, WD, (gm

cm-3  ).  Different  letters,  in alphabetical  order  following the increasing order  of the model coefficient,  denote significant

differences (P < 0.05) in the results of multiple comparisons.

Coefficient SE df Lower CL Upper CL

BL:AS

OrdKrig 5.27E-04 3.93E-04 148 2.50E-04 1.30E-03 a

RegKrig 9.25E-04 3.93E-04 148 1.49E-04 1.70E-03 ab

mice_s 1.16E-03 3.93E-04 148 3.79E-04 1.93E-03 ab

Spmean 1.29E-03 3.93E-04 148 5.17E-04 2.07E-03 ab

mice_ctsp 1.70E-03 3.93E-04 148 9.28E-04 2.48E-03 bc

kNN_s 2.29E-03 3.93E-04 148 1.52E-03 3.07E-03 c

kNN_ctsp 3.27E-03 3.93E-04 148 2.50E-03 4.05E-03 d

Nmass

OrdKrig 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a

Spmean 1.41E-03 2.80E-04 148 8.54E-04 1.96E-03 a

RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a

mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a

mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b

kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b

kNN_s 2.70E-03 2.80E-04 148 2.15E-03 3.26E-03 b

Hmax

RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a

Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a

mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab

OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 abc

mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc

kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc

kNN_ctsp 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c
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LMA

OrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a

RegKrig 8.36E-04 1.99E-04 148 4.43E-04 1.23E-03 a

Spmean 1.24E-03 1.99E-04 148 8.50E-04 1.64E-03 a

mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b

kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b

mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c

kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c

WD

OrdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a

RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b

Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b

mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c

kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c

kNN_ctsp 1.14E-03 1.41E-04 148 8.58E-04 1.41E-03 cd

mice_ctsp 1.56E-03 1.41E-04 148 1.28E-03 1.84E-03 d
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Figure 1. Description of the experimental design. A subset was obtained from the incomplete IEFC trait dataset containing

only  plots  where  all  functional  traits  had  been  measured  (complete  dataset)  to  perform  the  gap  simulations  and  the

imputations. Imputation methods are described in terms of the input information used. The selected methods for the final

application of imputation methods to obtain a gap-filled IEFC trait dataset are also shown.
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Figure 2.  Trait-specific NRMSE at increasing missingness levels (10% to 80%) for different imputation methods: overall

trait mean (Mean), mice (using only the trait matrix in the predictor set), kNN (using only the trait matrix for the distance

calculation) and ordinary kriging (OrdKrig). Traits: leaf biomass to sapwood area ratio, BL:AS  (t m-2  ); leaf nitrogen per unit

mass,  Nmass  (%mass);  maximum tree height,  Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood density, WD, (gm cm-3  ).

Letters denote results of multiple comparisons, in alphabetical order from highest to lowest performance. 
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Figure 3. Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different imputation methods: overall trait mean (Mean), mice (using only the trait matrix in the predictor set),

kNN  (using only the trait matrix for the distance calculation) and ordinary kriging (OrdKrig). Letters denote results of

multiple comparisons, in alphabetical order from highest to lowest performance. Traits involved in the relationships are: leaf

nitrogen per unit mass, Nmass  (%mass);  maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood density,

WD, (gm cm-3  ).
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Figure 4. Trait-specific KGE at increasing missingness levels (10% to 80%) and for different MICE imputations using

different combinations of additional predictor sets: species identity (s), climate (c), forest structure (t), sptatial structure (p),

lithology (l) and sampling month (m). See Fig. 1 for an overall view of the experimental design and the Methods section for

a detailed description of the variables employed in each predictor set. Traits: leaf biomass to sapwood area ratio, BL:AS (t m-  
2  ); leaf nitrogen per unit mass,  Nmass  (%mass);  maximum tree height,  Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood

density, WD, (gm cm-3  ). Higher values of KGE imply higher performance. 
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Figure 5. Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different MICE imputations using different combinations of additional predictor sets: species identity (s),

climate (c), forest structure (t), topography (p), lithology (l) and sampling month (m). See Fig. 1 for an overall view of the

experimental design and the Methods section for a detailed description of the variables employed in each predictor set. Note

that the y-axis is in the logarithmic scale. Traits involved in the relationships are: leaf nitrogen per unit mass, Nmass (%mass);

maximum tree height, Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood density, WD, (gm cm-3  ).
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Figure 6. Trait-specific KGE at increasing missingness levels (10% to 80%) for different imputation methods: species mean

(Spmean), mice and kNN with species as predictor (mice_s and kNN_s, respectively), mice and kNN with species, climate,

forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively), ordinary kriging (OrdKrig) and

universal krigingregression kriging (RegKrig). Higher values of KGE imply higher performance. Traits: leaf biomass to

sapwood area ratio, BL:AS (t m-2  ); leaf nitrogen per unit mass, Nmass (%mass);  maximum tree height, Hmax  (m); leaf mass per

area LMA (mg cm-2  ); wood density, WD, (gm cm-3  ). Higher values of KGE imply higher performance. Letters denote results

of multiple comparisons, in alphabetical order from highest to lowest performance. 

29

680

685



Figure 7.  Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different imputation methods: species mean (Spmean), mice and kNN with species as predictor (mice_s and

kNN_s, respectively), mice and kNN with species, climate, forest structure and spatial variables as predictors (mice_ctsp and

kNN_ctsp,  respectively),  ordinary  kriging  (OrdKrig) and  universal  krigingregression  kriging  (RegKrig). Letters  denote

results of multiple comparisons, in alphabetical order from highest to lowest performance. 
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Figure 8.  Maps with the distribution of functional traits across the selected plots in the IEFC. The first row shows the

incomplete dataset,  with missing values  in grey.  The second row shows the mean of 50 multiple imputations for  each

missing  value  using  the  ‘mice_ctsp’  approach  (MICE  imputation  using  species  identity,  climate,  forest  structure  and

topography  as  predictors).  The  third  row  shows  the  corresponding  coefficient  of  variation  (CV)  for  these  multiple

imputations. Note that, for the third row, only imputed values are shown and that the colour scale varies across different

traits.  Traits: leaf biomass to sapwood area ratio,  BL:AS  (t m-2  ); leaf nitrogen per unit mass,  Nmass  (%mass);  maximum tree

height,  Hmax  (m); leaf mass per area LMA (mg cm-2  ); wood density, WD, (gm cm-3  ). Higher values of KGE imply higher

performance. 
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