Supplement

S1. Ecological and Forestry Inventory of Catalonia (IEFC): description and methods

The IEFC (Gracia *et al.*, 2000 - 2004) covers the entire forested territory of Catalonia (31900 km²), in the North-east Iberian Peninsula. Catalonia is bound by the Mediterranean Sea to the East, the Pyrenees to the North and the continental Ebro depression to the West. The region is hydroclimatically diverse, as a result of the wide altitudinal range (0-3000 m.a.s.l.) and a strong continentality gradient. The dominant climate type is Mediterranean, gradually shifting towards Continental types inland and towards mountainous climates associated to mountain ranges, including an alpine belt in the Pyrenees. Mean annual temperature ranges from 18°C (on the southern coast) to 3°C (in the alpine belt) and annual rainfall varies from 400 mm to more than 1,500 mm (Climatic Digital Atlas of Catalonia, Ninyerola *et al.*, 2000).

10

Forested land covers 38% of the total land area of Catalonia (1.2×10^6 ha), and the 13 species selected in this study dominate > 90% of the forested area. The IEFC sampled the whole forested area of Catalonia between 1988 and 1998, totalling 10638 plots of 10 m radius, at a density of approximately 1 plot/km² of forest. A detailed methodological description of the sampling and measurements can be found in <u>http://www.creaf.uab.es/iefc/pub/metodes/Index.htm</u> (in Catalan). In all plots,

- 15 all trees > 5 cm in diameter at breast height were tagged, identified to species and measured for diamaeter at breast height (dbh). For one or two individuals from each dbh class (5 cm intervals) of the dominant tree species, tree height was measured with a hypsometer. Maximum tree height was estimated as the highest value for a given species at a given plot. Wood samples were taken either from cores or from large first-order branches, and sapwood depth was visually estimated. Wood density (WD) was calculated as the ratio of dry weight to fresh wood volume. Fresh volume was established either by
- 20 Archimedes' principle or measuring precisely the dimensions of the sample (for wood cores), and dry weight was obtained by weighting samples to a precision of 0.001 g after oven-drying for 48 h at 75°C.

In a random subsample of all plots (20%), one or two individuals from each dbh class of the dominant tree species were selected to estimate branch size distribution and to measure foliar and wood traits. Leaves from all cohorts in exposed
branches were sampled proportionally to their abundance. Leaf mass per area was calculated as the ratio of dry weight to fresh leaf area. One-sided, projected leaf area was measured either using a leaf area meter (LiCor 3100 AM; LiCor, Lincoln, NE) for broadleaves or measuring precisely the length and width of needles. Leaves were then weighted to a precision of 0.001 g after oven-drying for 48 h at 75°C. A subsample of the dried leaves was ground with a Cyclotec Foss Tecator 1093-001 grinder (Foss Analytical, Hilleroed, Denmark) and sent for chemical analyses to the Scientific-Technical Service of the

30 University of Barcelona. Nitrogen content was measured with an elemental analyzser (C.E. Instruments, Wigan, UK). For the dominant species in each plot, first-order branches were collected, and their branch diameter and supported leaf biomass

was measured. Allometries between branch diameter and leaf biomass were built by aggregating branch measurements for each species at the county level (N=41 counties). Tree-level leaf biomass was obtained from individual trees' branch size distributions and branch-level $B_L:A_s$ allometries, as described in Laforest-Lapointe *et al.*, (2014).

35

References

Gracia, C. et al. 2000. Inventari Ecològic i Forestal de Catalunya: Centre de Recerca Ecològica i Aplicacions Forestals. 10 volumes.

Laforest-Lapointe, I. et al. 2014. Intraspecific variability in functional traits matters: case study of Scots pine. - Oecologia 40 175: 1337–1348.

Ninyerola, M. et al. 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. - International Journal of Climatology, International Journal of Climatology 20: 1823–1841.

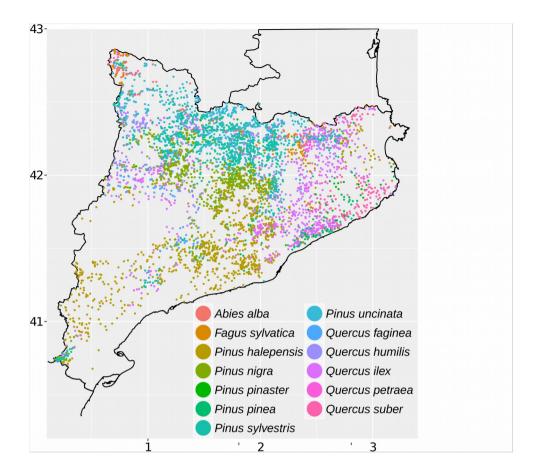


Figure S1. Map of Catalonia with the plots in the IEFC incomplete trait dataset used in this study, categorised by the dominant species.

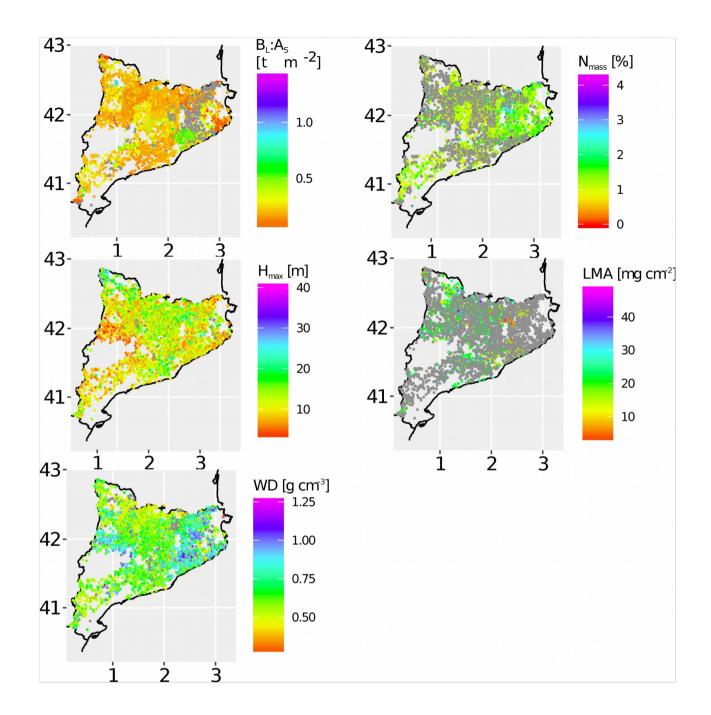
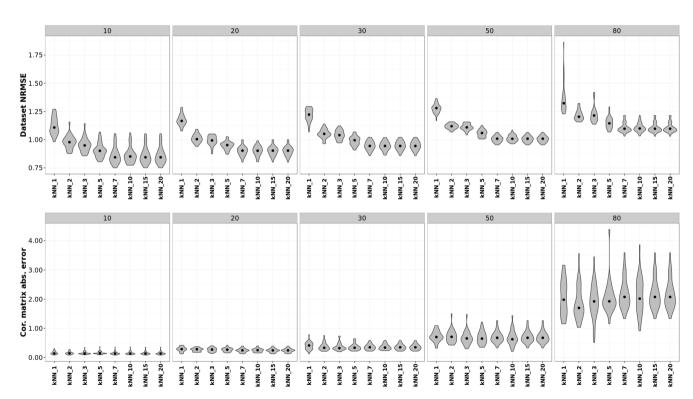



Figure S2. Map of the five palant traits as measured in the selected IEFC plots across Catalonia. Grey symbols depict missing data for the specific trait in a given plot.

S2. Description of the kNN algorithm and optimisations of settings

The implementation of the kNN algorithm in the 'VIM' package (Templ et al., 2013) uses the Gower distance (Gower, 55 1971). The choice of the distance metric, the covariates selected to compute such distance, the k value and the aggregation method may impact the performance of the kNN method. A value of k = 1 yields imputations that preserve the dependence structure of the variables and increasing k improves the accuracy of predictions up to an optimum, beyond which the probability of finding poor matches increases (Eskelson *et al.*, 2009). The choice of an optimum k also depends on the number of observations, and we followed McRoberts (2012) to optimise the value of k that minimises NRMSE. We explored the performance of the kNN method for k = 1, 2, 3, 5, 7, 10, 15 and 20 and observed that the lowest prediction error was 60 observed for k = 7 (Fig. A3), similar to results reported elsewhere (Troyanskaya *et al.*, 2001; McRoberts *et al.*, 2002; Penone et al., 2014). Median aggregation of the k-neighbouring values performed better than mean aggregation (data not shown), as also found by Penone et al. (2014).

65 Figure S3. Dataset NRMSE and correlation matrix error for kNN imputations at different missingness levels (10% to 80%) using k=1, 2, 3, 5, 7, 10, 15, 20.

References

70 Eskelson, B. N. I. et al. 2009. The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. - Scandinavian Journal of Forest Research 24: 235–246.

Gower, J. C. 1971. A General Coefficient of Similarity and Some of Its Properties. - Biometrics 27: 857-871.

McRoberts, R. E. 2012. Estimating forest attribute parameters for small areas using nearest neighbors techniques. - Forest Ecology and Management 272: 3–12.

75 McRoberts, R. E. et al. 2002. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. - Remote Sensing of Environment 82: 457–468.

Penone, C. et al. 2014. Imputation of missing data in life-history trait datasets: which approach performs the best? - Methods Ecol Evol 5: 961–970.

Templ, M. et al. 2013. VIM: Visualization and Imputation of Missing Values. R package version 3.0. 3.1.

80 Troyanskaya, O. et al. 2001. Missing value estimation methods for DNA microarrays. - Bioinformatics 17: 520–525.

<u>S3. Description of the MICE algorithm and of the univariate imputation models</u>

- 85 In a *k*-variate dataset, MICE first fills all missing values by a random draw from the observed values within each variable. Then, for the first target variable x₁ (i.e. first variable to be imputed), the observed values of x₁ and the corresponding imputed values of the predictors are used to fit the individual imputation model (see S4 for a description of some univariate imputation methods used in this study). Then, missing values of x₁ are replaced by simulated draws obtained from the posterior predictive distribution of x₁, given the model and the predictors. Next, for the following incomplete variable, x₂,
 90 posterior predictive distributions are derived from the previously imputed values of x₁, x₃...x_k. This process is repeated for all variables with missing values and constitutes one iteration or cycle (Azur *et al.*, 2011). A relatively small number of
- iterations (10-20) is usually sufficient for the posterior distributions to stabilize, avoiding dependence on the imputation order. The whole process is repeated m times to obtain m imputed datasets.
- 95 We tested three univariate imputation models within the mice R package. The first method, here labelled as PRD, is the imputation of target variables as a function of predictors in the dataset using a linear model (the 'norm.predict' method in mice). In the second method, predictive mean matching (PMM), imputations are obtained using values from the complete cases, matching the actual missing datum with respect to some metric (van Buuren, 2012). PMM does not need an explicit model for the distribution of the missing values, it produces realistic imputations because they are drawn from the observed
- 100 distribution and it does not impute outside the data range (van Buuren, 2012). PMM is also generally robust to non-normality and preserves non-linear relationships amongst the variables, although its performance may decrease at high missingness levels (Morris *et al.*, 2014). The third method, is based on a random forest (RF) algorithm, a recursive partitioning technique which sequentially splits a dataset into the most homogeneous subsamples and creates tree-like structures (Breiman, 2001). Applications of RF in data imputation have shown that they are well-suited to deal with mixed data types, complex interactions and non-linearities within the datasets (Stekhoven & Bühlmann, 2012; van Buuren, 2012). Here, we used the
- interactions and non-linearities within the datasets (Stekhoven & Bühlmann, 2012; van Buuren, 2012). Here, we used the implementation of the random forest algorithm in MICE, a described in Doove *et al.*, (2014).

References

Azur, M. J. et al. 2011. Multiple imputation by chained equations: what is it and how does it work? - Int. J. Methods Psychiatr. Res. 20: 40–49.

110 Breiman, L. 2001. Random forests. - Machine learning 45: 5–32.

Doove, L. L. et al. 2014. Recursive partitioning for missing data imputation in the presence of interaction effects. -Computational Statistics & Data Analysis 72: 92–104. Morris, T. P. et al. 2014. Tuning multiple imputation by predictive mean matching and local residual draws. - BMC Med Res Methodol 14: 1–13.

115 Stekhoven, D. J. and Bühlmann, P. 2012. MissForest—non-parametric missing value imputation for mixed-type data. -Bioinformatics 28: 112–118.

White, I. R. et al. 2011. Multiple imputation using chained equations: Issues and guidance for practice. - Statist. Med. 30: 377–399.

S4. Optimisation of MICE settings.

- 125 Apart from the choice of predictors, already addressed in the main text of this paper, there are several settings in the specification of the imputation model within MICE. These settings are: (i) choosing the form of the imputation model for each variable, (ii) deciding how to impute variables that are functions of other (incomplete) variables, (iii) choosing the imputation order, (iv) setting up the starting imputations and the number of iterations and (v) choosing the number of impute datasets.
- 130

(i) Form of the imputation model

We tested three forms for the imputation model, predictive mean matching, simple linear predictions and random forests (see S3). Despite the good results of random forest-based methods observed elsewhere (Stekhoven & Bühlmann, 2012; Penone *et al.*, 2014), they did not perform better than PMM (Fig. A4-A6). The reduction of stochasticity within MICE, implemented

135 by the PRD method did not result in improved imputations either (Fig. A4-A6).

(ii) Imputation of derived variables and data transformation

In our dataset $B_L:A_S$ is a derived variable, calculated as the ratio of leaf biomass to sapwood area. We approached the imputation of $B_L:A_S$ using two different variants of MICE: 'passive imputation' (Mice_PAS) and 'just another variable' imputation (Mice_JAV). In Mice_PAS, leaf biomass and sapwood area enter the multivariate dataset, imputations are

- 140 performed and then $B_L:A_S$ is calculated. This approach preserves the consistency between original and derived variables (van Buuren, 2012). In contrast, in the Mice_JAV approach, $B_L:A_S$ is calculated first and then imputed. Our results show that the Mice_JAV approach is superior (Fig. A4-A6), as also observed in other studies (Seaman *et al.*, 2012). In Mice_TRN we first log-transformed the trait values prior to imputation, but this did not result in a better performance compared to Mice_JAV (Fig. A4-A6).
- 145 (iii) Imputation order

Preliminary tests of the influence of the visiting order in the MICE algorithm did not show substantial differences on imputation performance (data not shown). We therefore used the default setting of imputing from left to right positions in the data frame (in our case, variables were in alphabetical order).

(iv) Starting imputations and number of iterations

- 150 The starting imputations were a random draw within each variable and the number of iterations *t* was set to 20, higher than the MICE default value of 5. This increased number of iterations ensures stabilisation of the parameters of the imputation model and minimises the effects of the imputation order (van Buuren & Groothuis-Oudshoorn, 2011; van Buuren, 2012). We monitored the convergence of the MICE algorithm by plotting the mean and variance of imputations per stream and checking that the traces corresponding to the different streams intermingled with each other (van Buuren & Groothuis-
- 155 Oudshoorn, 2011; van Buuren, 2012).

(v) Number of multiply imputed datasets.

As the purpose of this study is to explore different imputation approaches and imputation is computationally demanding, we set the number of imputed datasets to the default value of m = 5. This value is within the classic recommendation of m =

160 [3,10], although in a final application of MICE a value of m set closer to the average percentage of missing data may be desired (van Buuren, 2012). A larger value of m = 50 was used to obtain the final, imputed -trait maps (Fig. 8 in the manuscript).

References

165 Penone, C. et al. 2014. Imputation of missing data in life-history trait datasets: which approach performs the best? - Methods Ecol Evol 5: 961–970.

Seaman, S. R. et al. 2012. Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods. - BMC Medical Research Methodology 12: 46.

Stekhoven, D. J. and Bühlmann, P. 2012. MissForest—non-parametric missing value imputation for mixed-type data. -170 Bioinformatics 28: 112–118.

van Buuren, S. 2012. Flexible Imputation of Missing Data. - CRC Press.

van Buuren, S. and Groothuis-Oudshoorn, K. 2011. mice: Multivariate Imputation by Chained Equations in R. - Journal of Statistical Software 45: 3.

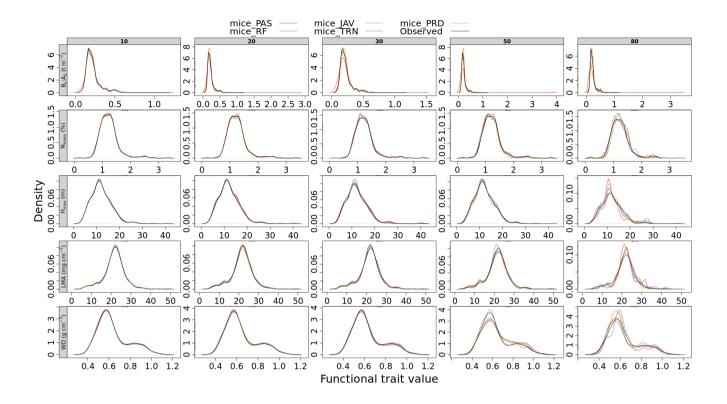


Figure S4. Imputed trait distributions at increasing missingness levels (10% to 80%) using different MICE settings (see text for details). The following approaches used the predictive mean matching method (PMM) as the univariate imputation model: passive imputation of derived variables (mice_PAS), derived variables imputed as 'just another variable' (mice_JAV), imputation using log-transformed variables (mice_TRN). mice_RF tested a random forest approach to univariate imputation and mice_PRD used the predicted trait from multiple regression models, without introducing the stochasticity in regression coefficients as in PMM approaches (see text).

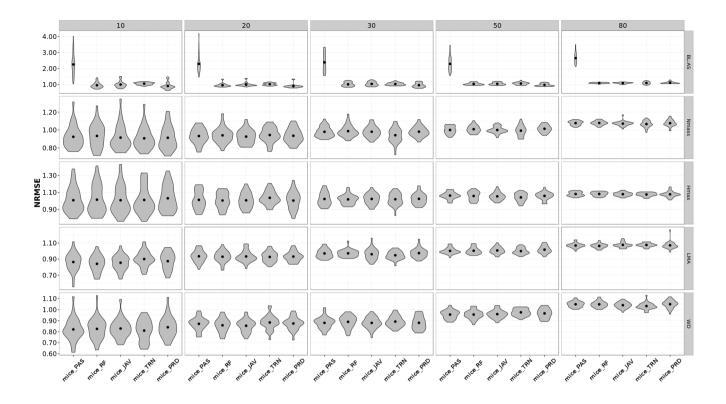


Figure S5. Trait-specific imputation performance (NRMSE) at increasing missingness levels (10% to 80%) using different MICE settings (see text for details). The following approaches used the predictive mean matching method (PMM) as the univariate imputation model: passive imputation of derived variables (mice_PAS), derived variables imputed as 'just another variable' (mice_JAV), imputation using log-transformed variables (mice_TRN). mice_PRD differed from PMM in that mice_PRD used the predicted trait from the sequential multiple regression models in the MICE framework without the stochasticity in regression

190

(mice_JAV), imputation using log-transformed variables (mice_TRN). mice_PRD differed from PMM in that mice_PRD used the predicted trait from the sequential, multiple regression models in the MICE framework, without the stochasticity in regression coefficients that is introduced in PMM. mice_RF uses a random-forest algorithm for univariate imputation instead of PMM (see text).

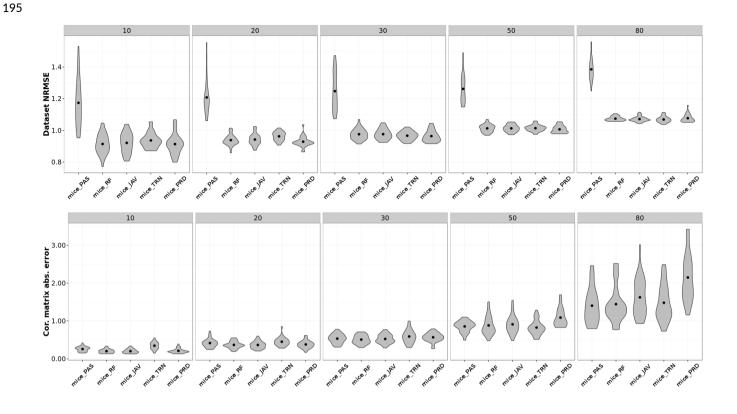


Figure S6. Dataset-specific imputation performance (dataset NRMSE and correlation matrix error) at increasing missingness levels (10% to 80%) using different MICE settings (see text for details). The following approaches used the predictive mean matching method (PMM) as the univariate imputation model: passive imputation of derived variables (Mice_PAS), derived variables imputed as 'just another variable' (Mice_JAV), imputation using log-transformed variables (Mice_TRN). Mice_PRD differed from PMM in that Mice_PRD used the predicted trait from the sequential, multiple regression models in the MICE framework, without the stochasticity in regression coefficients that is introduced in PMM. Mice_RF uses a random-forest algorithm for univariate imputation instead of PMM (see text).

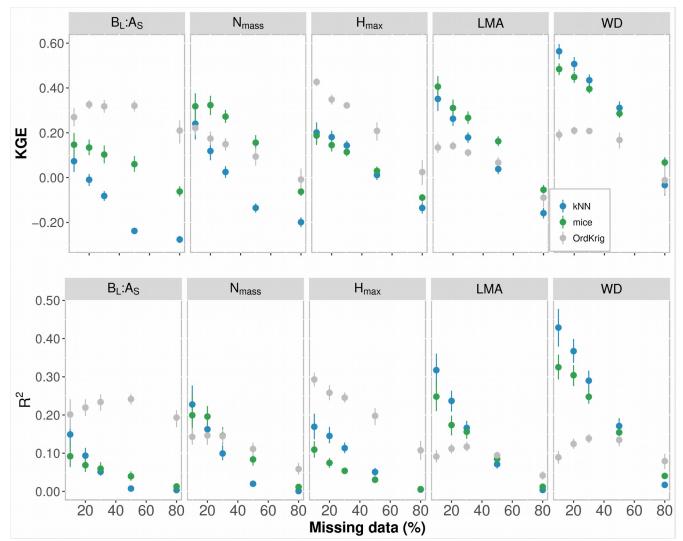


Figure S7. Trait-specific KGE and R^2 between observed and imputed at increasing missingness levels (10% to 80%) for different imputation methods: overall trait mean (Mean), MICE and kNN, both using only the trait matrix in the predictor set (mice) or in the distance calculation (kNN) and ordinary kriging (OrdKrig). KGE and R^2 are undefined for mean imputations.

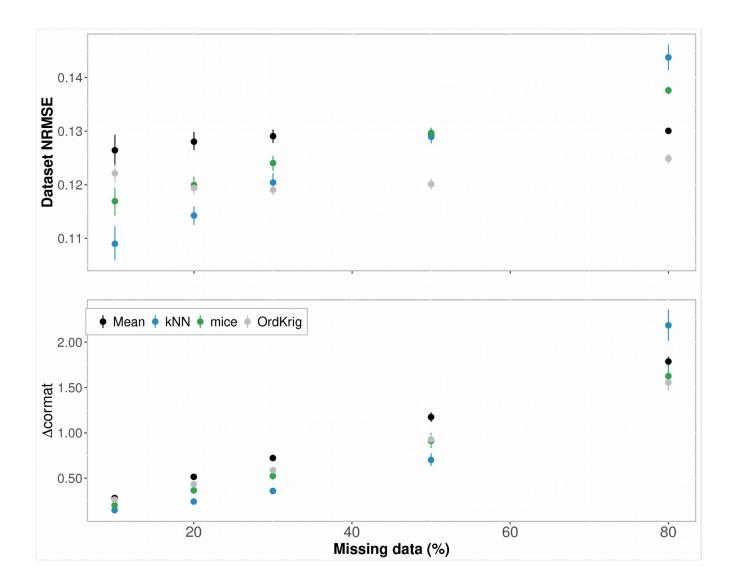


Figure S8. Data set -averaged NRMSE and Δ cormat at increasing missingness levels (10% to 80%) for different imputation methods: overall trait mean (Mean), MICE, OrdKrig and kNN, both using only the trait matrix in the predictor set (mice) or in the distance calculation (kNN).

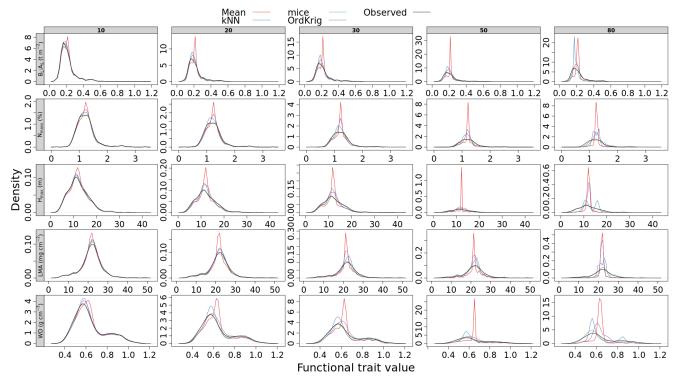


Figure S9. Imputed trait distributions at increasing missingness levels (10% to 80%) for different imputation methods: overall trait mean (Mean), MICE, OrdKrig and kNN, both using only the trait matrix in the predictor set (mice) or in the distance calculation (kNN). The original trait distributions in the IEFC complete data set (Observed) is are also shown.

S6. MICE imputations using different levels of ecological information

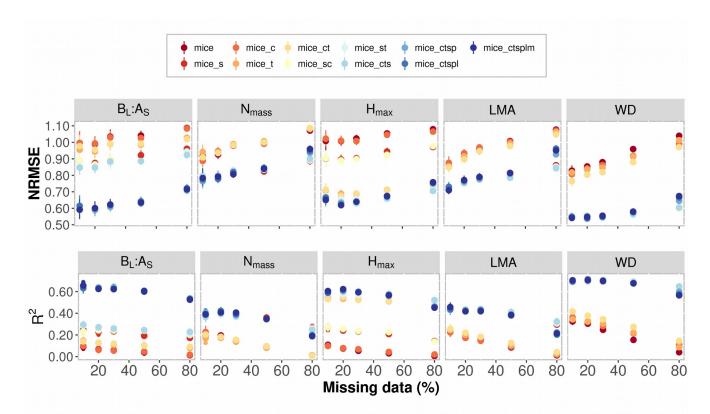


Figure S10. Trait-specific NRMSE and R² between observed and imputed at increasing missingness levels (10% to 80%) for
 MICE imputations using different combinations of additional predictor sets: species identity ('s'), climate ('c'), forest structure ('t'), spatial variables ('p'), lithology ('l') and sampling month ('m'). See Fig. 1 for an overall view of the experimental design and the Methods section for a detailed description of the variables included in each predictor set.

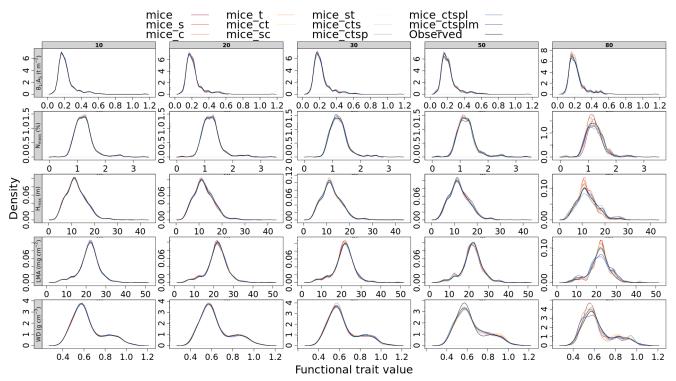


Figure S11. Imputed trait distributions at increasing missingness levels (10% to 80%) for MICE imputations using different combinations of additional predictor sets: species identity ('s'), climate ('c'), forest structure ('t'), spatial variables ('p'), lithology ('l') and sampling month ('m'). See Fig. 1 for an overall view of the experimental design and the Methods section for a detailed description of the variables included in each predictor set. The original trait distributions in the IEFC complete data set (Observed) are also shown.

S7. Species mean imputations compared to MICE, Kriging and kNN imputations using optimum levels of ecological information

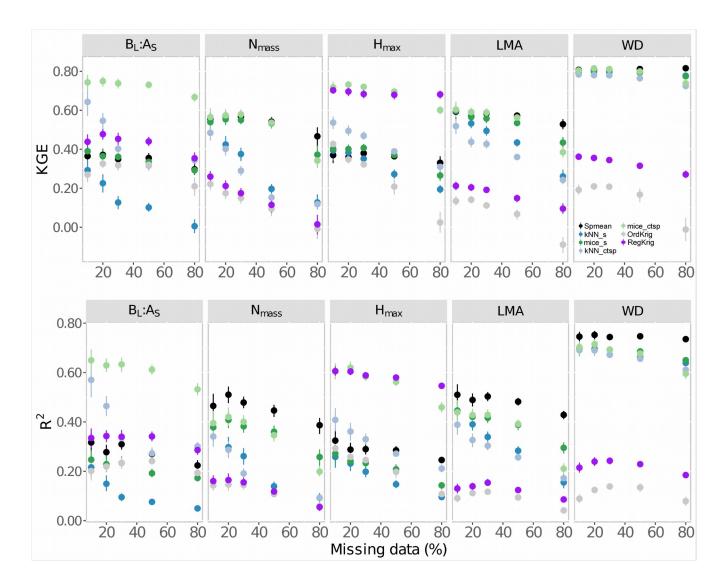


Figure S12. Trait-specific KGE and R² between observed and imputed at increasing missingness levels (10% to 80%) for different imputation methods: species mean (Spmean), MICE and , OrdKrig, RegKrig and kNN with species as predictor (mice_s and kNN, respectively) and MICE and kNN with species, climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively).

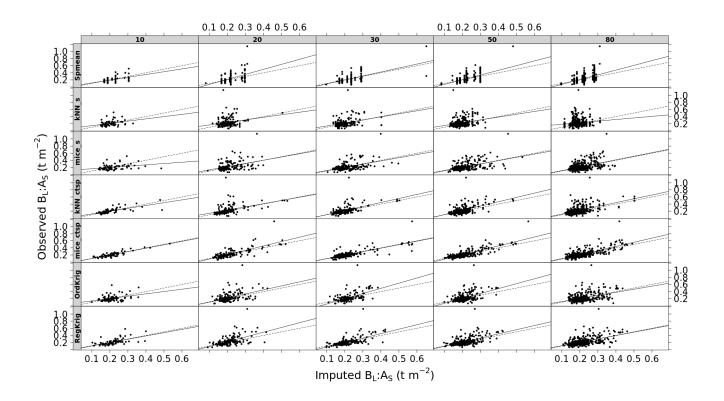


Figure S13. Imputed and observed values for $B_L:A_s$ in one example data set for each trait, missingness level and imputation method (only gap-filled values are shown). Results are shown for different missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), MICE and kNN with species as auxiliary predictor (mice_s and kNN_s, respectively) and mice, MICE and kNN with species, climate, forest structure and spatial variables as auxiliary predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The linear regression between imputed and observed values is shown by a solid line and the 1:1 relationship is depicted by a dashed line.

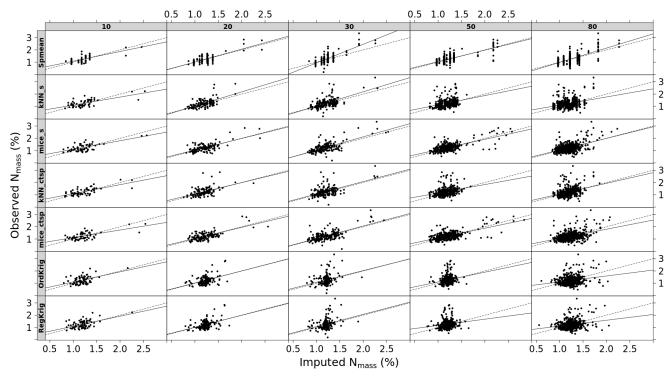


Figure S14. Imputed and observed values for N_{mass} in one example data set for each trait, missingness level and imputation method (only gap-filled values are shown). Results are shown for different missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), MICE and kNN with species as auxiliary predictor (mice_s and kNN_s, respectively) and mice, MICE and kNN with species, climate, forest structure and spatial variables as auxiliary predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The linear regression between imputed and observed values is shown by a solid line and the 1:1 relationship is depicted by a dashed line.

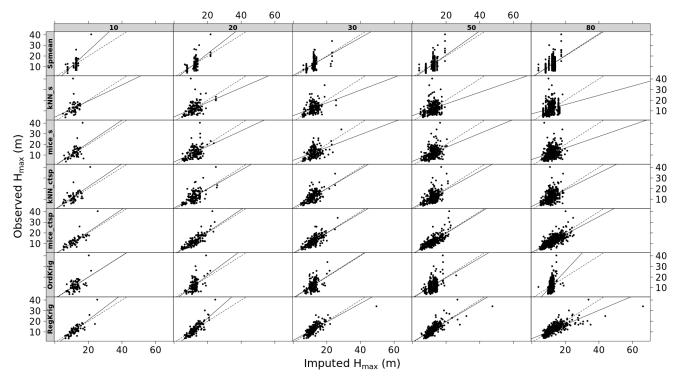


Figure S15. Imputed and observed values for H_{max} in one example data set for each trait, missingness level and imputation method (only gap-filled values are shown). Results are shown for different missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), MICE and kNN with species as auxiliary predictor (mice_s and kNN_s, respectively) and, MICE and kNN with species, climate, forest structure and spatial variables as auxiliary predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The linear regression between imputed and observed values is shown by a solid line and the 1:1 relationship is depicted by a dashed line.

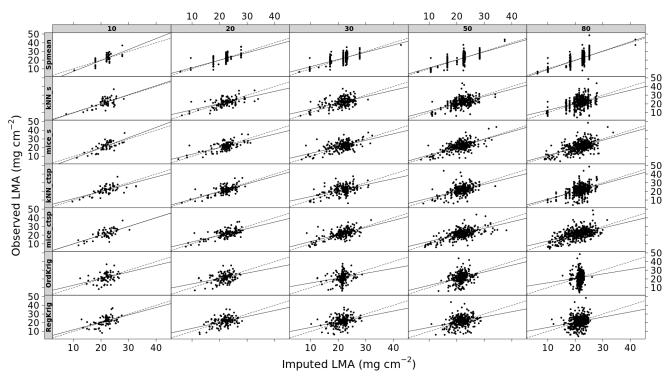


Figure S16. Imputed and observed values for LMA in one example data set for each trait, missingness level and imputation method (only gap-filled values are shown). Results are shown for different missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), MICE and kNN with species as auxiliary predictor (mice_s and kNN_s, respectively) and , MICE and kNN with species, climate, forest structure and spatial variables as auxiliary predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The linear regression between imputed and observed values is shown by a solid line and the 1:1 relationship is depicted by a dashed line.

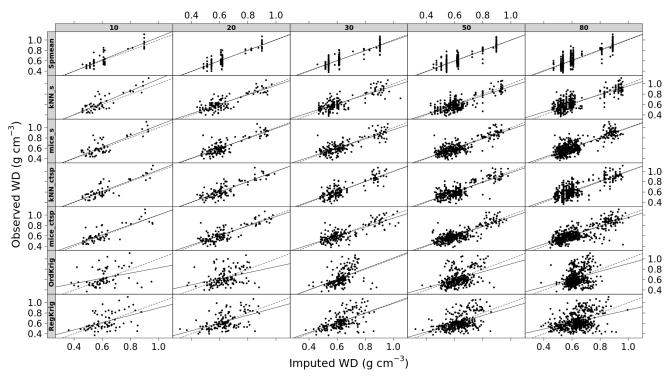


Figure S17. Imputed and observed values for WD in one example data set for each trait, missingness level and imputation method (only gap-filled values are shown). Results are shown for different missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), MICE and kNN with species as auxiliary predictor (mice_s and kNN_s, respectively) and, MICE and kNN with species, climate, forest structure and spatial variables as auxiliary predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The linear regression between imputed and observed values is shown by a solid line and the 1:1 relationship is depicted by a dashed line.

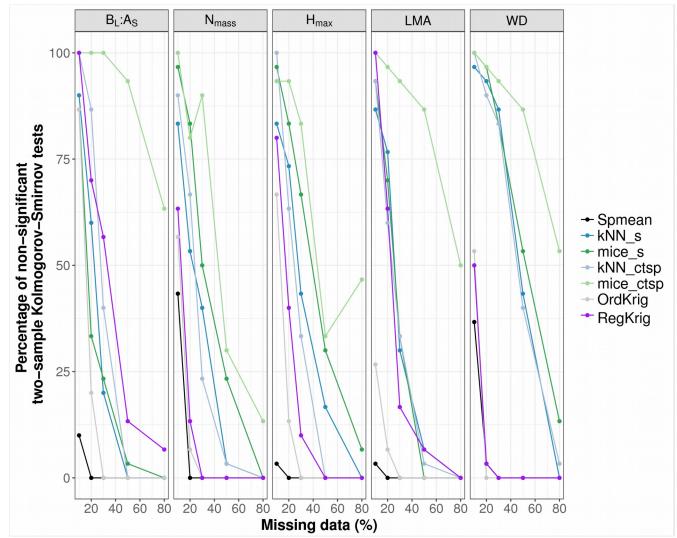



Figure S18. Imputed trait distributions for different imputation methods at increasing missingness levels (10% to 80%): species mean (Spmean), MICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN with species, climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. The original trait distributions in the IEFC complete dataset (observed) are also shown.

285 Figure S19. Percentage of non-significant two-sample Kolmogorov-Smirnov tests at increasing missingness levels (10% to 80%): species mean (Spmean), MICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN with species, climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig.

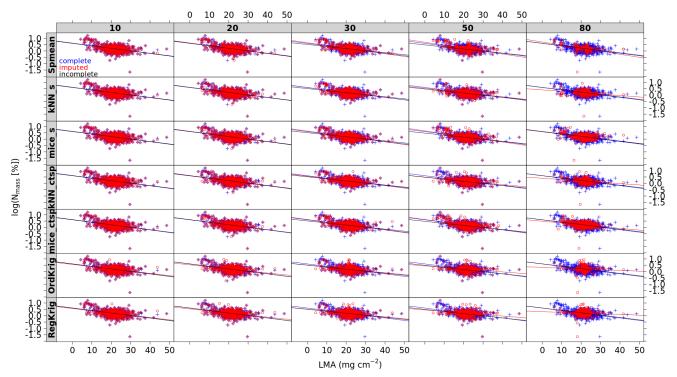


Figure S20. Linear regressions between log-transformed N_{mass} and LMA in the IEFC complete trait dataset (blue), and in incomplete IEFC trait datasets at different missingness levels (from 10% to 80%), either imputed (red) or non-imputed (black). Imputation methods are: species mean (Spmean), MICE and kNN with species as predictor (mice_s and kNN_s, respectively), MICE and kNN with species, climate, forest structure and spatial structure as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig.

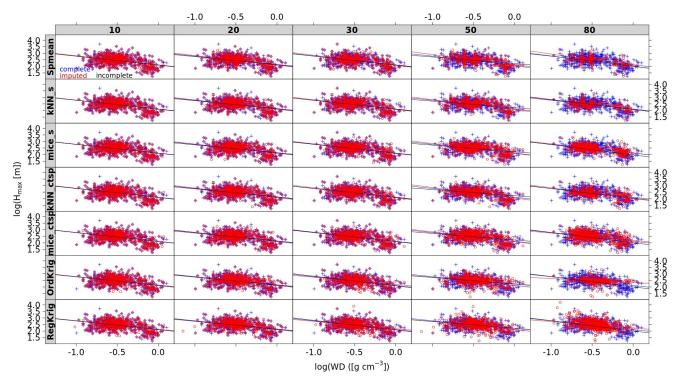


Figure S21. Linear regressions between log-transformed H_{max} and log-transformed WD in the IEFC complete trait dataset (blue), and in incomplete IEFC trait datasets at different missingness levels (from 10% to 80%), either imputed (red) or non-imputed (black).

S8. Quantifying the effects of missingness levels on imputation performance

300

305

For the comparison of species-mean imputation with kNN and MICE optimally informed by auxiliary variables, we analysed the effects on trait-specific KGE of imputation method and missingness level (fixed factors, including the interaction) using a linear mixed-effects model (LME), with data set replicate as random effect. The LME model was fitted using the nlme package in R (Pinheiro et al., 2012). Pairwise comparisons of model coefficients were performed using the lstrends function in the lsmeans package (Lenth, 2016). The KGE of 'Spmean' imputations was less sensitive to increasing missingness levels compared to MICE and kNN approaches (Fig. S22). Indeed the LME model showed that the rate of increase in KGE with increasing missingness is the lowest for 'Spmean' in four out of five traits (Table S1, Fig. S22).

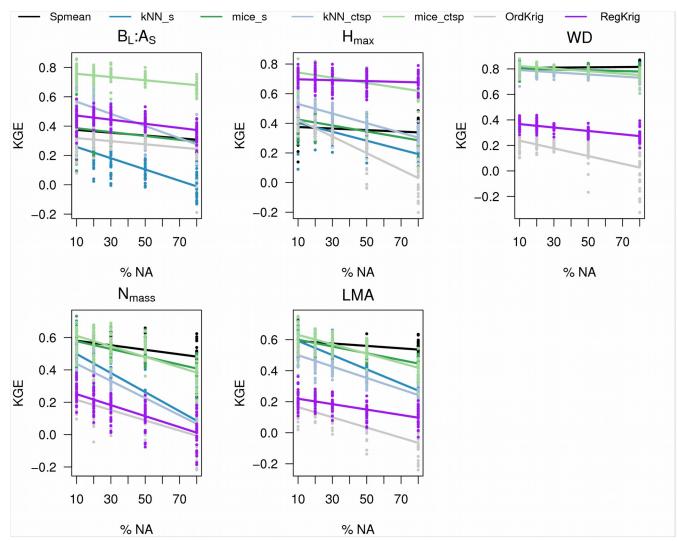


Figure S22. Variation in trait-specific KGE with increasing missingness levels (10% to 80%) and for different imputation methods: species mean (Spmean), miceMICE and kNN with species as predictor (mice_s and kNN_s, respectively) and , MICE and kNN with species, climate, forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively), OrdKrig and RegKrig. Lines depict the LME fits.

Table S1. Tukey pairwise comparisons of the LME model coefficients (and 95% lower/upper confidence limits) relating traitspecific and dataset-averaged NRMSE to increasing missingness levels for selected imputation methods. Letters represent significant differences (P < 0.05) and imputation methods are listed in increasing order of the model coefficient.

OrdKrig 5.27E-04 3.93E-04 148 2.50E-04 1.30E-03 a RegKrig 9.25E-04 3.93E-04 148 1.49E-04 1.70E-03 ab spmean 1.29E-03 3.93E-04 148 3.79E-04 1.93E-03 ab spmean 1.29E-03 3.93E-04 148 9.28E-04 2.48E-03 bc kNN_s 2.29E-03 3.93E-04 148 1.52E-03 3.07E-03 cc kNN_ctsp 3.27E-03 3.93E-04 148 2.50E-03 4.05E-03 cc Spmean 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a Spmean 1.41E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 1.92E-03 a 2.80E-03 a mice_s 1.50E-03 2.80E-04 148 2.52E-03 2.80E-03 a	Co	efficient SE	df	Lo	wer CL U	Upper CL
RegKrig 9.25E-04 3.93E-04 148 1.49E-04 1.70E-03 ab mice_s 1.16E+03 3.93E+04 148 3.79E+04 1.93E+03 ab Spmean 1.29E+03 3.93E+04 148 5.17E+04 2.07E+03 ab mice_tsp 1.70E+03 3.93E+04 148 5.17E+04 2.07E+03 ab kNN_sts 2.29E+03 3.93E+04 148 1.52E+03 3.07E+03 cb Name 3.93E+04 148 2.50E+03 4.05E+03 db 0.7E+03 cb OrdKrig 1.14E+03 2.80E+04 148 5.88E+04 1.69E+03 a Spmean 1.41E+03 2.80E+04 148 9.40E+04 2.05E+03 a mice_tsp 2.33E+03 2.80E+04 148 9.49E+04 2.05E+03 a kNN_tsp 2.70E+03 2.80E+04 148 1.77E+03 2.88E+03 b kNN_s 2.70E+03 2.80E+04 148 2.53E+04 1.17E+03 a Spmean 7.23E+04 2.32E+04 148 2.53E+04 1.18E+03 a	$B_L:A_S$					
nice_s 1.16E-03 3.93E-04 148 3.79E-04 1.93E-03 ab Spmean 1.29E-03 3.93E-04 148 5.17E-04 2.07E-03 ab mice_ctsp 1.70E-03 3.93E-04 148 9.28E-04 2.48E-03 bc kNN_s 2.29E-03 3.93E-04 148 1.52E-03 3.07E-03 c kNN_s 2.29E-03 3.93E-04 148 2.50E-03 4.05E-03 d Nums 07dKrig 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a RegKrig 1.49E-03 2.80E-04 148 9.49E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_s 1.50E-03 2.80E-04 148 1.82E-03 2.26E-03 b kNN_s 2.32E-03 2.80E-04 148 1.82E-03 2.26E-03 b Mex 1.17E-03 2.32E-04 148 2.53E-04 1.18E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.66E-	OrdKrig	5.27E-04	3.93E-04	148	2.50E-04	1.30E-03 a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RegKrig	9.25E-04	3.93E-04	148	1.49E-04	1.70E-03 ab
nicc_ctsp 1.70E-03 3.93E-04 148 9.28E-04 2.48E-03 bc kNN_s 2.29E-03 3.93E-04 148 1.52E-03 3.07E-03 c kNN_ctsp 3.27E-03 3.93E-04 148 2.50E-03 4.05E-03 d Ness	mice_s	1.16E-03	3.93E-04	148	3.79E-04	1.93E-03 ab
kNn_s 2.29E-03 3.93E-04 148 1.52E-03 3.07E-03 c kNn_ctsp 3.27E-03 3.93E-04 148 2.50E-03 4.05E-03 d Nums 4.05E-03 d Nums 4.05E-03 a Spmean 1.41E-03 2.80E-04 148 5.88E-04 1.69E-03 a RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a kNN_st 2.33E-03 2.80E-04 148 1.7E-03 2.88E-03 b kNN_sts 2.32E-03 2.80E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.53E-04 1.60E-03 a Spmean 7.23E-03 2.32E-04 148 1.62E-03 2.01E-03 be kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 be kNN_s 1.75E-03 2.32E-0	Spmean	1.29E-03	3.93E-04	148	5.17E-04	2.07E-03 ab
kN_ctsp 3.27E-03 3.93E-04 148 2.50E-03 4.05E-03 d OrdKrig 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a Spmean 1.41E-03 2.80E-04 148 8.54E-04 1.96E-03 a RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.04E-03 a mice_tsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_stp 2.70E-03 2.80E-04 148 1.82E-03 2.93E-03 b Hmsc 2.70E-03 2.80E-04 148 2.53E-04 1.17E-03 a RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 1.30E-03 2.10E-03 <td< td=""><td>mice_ctsp</td><td>1.70E-03</td><td>3.93E-04</td><td>148</td><td>9.28E-04</td><td>2.48E-03 bc</td></td<>	mice_ctsp	1.70E-03	3.93E-04	148	9.28E-04	2.48E-03 bc
Nearse OrdKrig 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a Spmean 1.41E-03 2.80E-04 148 8.54E-04 1.96E-03 a RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_s 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b Hmax Hmax 2.70E-03 2.80E-04 148 2.55E-03 3.26E-03 b Hmax Hmax Hmax 1.17E-03 2.82E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a OrdKrig 1.22E-03 2.32E-04 148 1.60E-03 ab 1.66E-03 ab mice_s 1.75E-03 2.32E-04 148 1.32E-03 2.16E-03 b kNN_s 1.75E-03	kNN_s	2.29E-03	3.93E-04	148	1.52E-03	3.07E-03 c
OrdKrig 1.14E-03 2.80E-04 148 5.88E-04 1.69E-03 a Spmean 1.41E-03 2.80E-04 148 8.54E-04 1.96E-03 a RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_s 2.32E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 2.55E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a Spmean 7.23E-04 2.32E-04 148 6.84E-04 1.66E-03 ab mice_s 1.14E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_s 1.64E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.32E-03 2.21E-03 bc <td>kNN_ctsp</td> <td>3.27E-03</td> <td>3.93E-04</td> <td>148</td> <td>2.50E-03</td> <td>4.05E-03 d</td>	kNN_ctsp	3.27E-03	3.93E-04	148	2.50E-03	4.05E-03 d
Spmean 1.41E-03 2.80E-04 148 8.54E-04 1.96E-03 a RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 2.15E-03 3.26E-03 b Hmax Hax 2.15E-03 3.26E-03 b 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab mice_s 1.14E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.30E-03 2.21E-03 be kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 be NN_s 1.75E-03 2.32E-04 148 1.32E-03 2.23E-03 c	N _{mass}					
RegKrig 1.49E-03 2.80E-04 148 9.40E-04 2.04E-03 a mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a gregkrig 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 1.9E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.32E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.22E-03 c LMA - - 0rdKrig 7.36E-04 1.99E-04 148	OrdKrig	1.14E-03	2.80E-04	148	5.88E-04	1.69E-03 a
D D D mice_s 1.50E-03 2.80E-04 148 9.49E-04 2.05E-03 a mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 2.15E-03 3.26E-03 b Hmax 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab ordKrig 1.22E-03 2.32E-04 148 1.9E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.22E-03 c kNN_s 1.77E-03 2.32E-04 148 1.32E-03 a 2.22E-03 a gegKrig 7.36E-04 1.99E-04 148<	Spmean	1.41E-03	2.80E-04	148	8.54E-04	1.96E-03 a
mice_ctsp 2.33E-03 2.80E-04 148 1.77E-03 2.88E-03 b kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 1.82E-03 2.93E-03 b Hmax RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c MM 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.21E-	RegKrig	1.49E-03	2.80E-04	148	9.40E-04	2.04E-03 a
kNN_ctsp 2.38E-03 2.80E-04 148 1.82E-03 2.93E-03 b kNN_s 2.70E-03 2.80E-04 148 2.15E-03 3.26E-03 b Hmax RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.77E-03 2.32E-04 148 1.32E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 0rdKrig 7.36E-04 1.99E-04 148 1.32E-03 2.23E-03 a Spmean 1.24E-03 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148	mice_s	1.50E-03	2.80E-04	148	9.49E-04	2.05E-03 a
kNN_s 2.70E-03 2.80E-04 148 2.15E-03 3.26E-03 b <i>H_max</i> RegKrig 7.11E-04 2.32E-04 148 2.65E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.07E-03 2.32E-04 148 1.32E-03 2.23E-03 a RegKrig 7.36E-04 1.99E-04 148 3.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1	mice_ctsp	2.33E-03	2.80E-04	148	1.77E-03	2.88E-03 b
$ H_{max}$ RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.07E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.07E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.07E-03 2.32E-04 148 1.32E-03 2.23E-03 a Spmean 1.24E-03 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 1.64E-03 a mice_s 1.82E-03 1.99E-04	kNN_ctsp	2.38E-03	2.80E-04	148	1.82E-03	2.93E-03 b
RegKrig 7.11E-04 2.32E-04 148 2.53E-04 1.17E-03 a Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1 1.41E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 <td>kNN_s</td> <td>2.70E-03</td> <td>2.80E-04</td> <td>148</td> <td>2.15E-03</td> <td>3.26E-03 b</td>	kNN_s	2.70E-03	2.80E-04	148	2.15E-03	3.26E-03 b
Spmean 7.23E-04 2.32E-04 148 2.65E-04 1.18E-03 a mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_ctsp 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA OrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a RegKrig 8.36E-04 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.82E-03 3.27E-03 c kNN_s 3.20E-03 <td< td=""><td>H_{max}</td><td></td><td></td><td></td><td></td><td></td></td<>	H _{max}					
mice_s 1.14E-03 2.32E-04 148 6.84E-04 1.60E-03 ab OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_ctsp 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.07E-03 2.32E-04 148 1.32E-03 2.23E-03 c DrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a RegKrig 8.36E-04 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 1.64E-03 a 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_s 1.82E-03 1.99E-04 148 1.87E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03	RegKrig	7.11E-04	2.32E-04	148	2.53E-04	1.17E-03 a
OrdKrig 1.22E-03 2.32E-04 148 7.62E-04 1.68E-03 ab mice_ctsp 1.64E-03 2.32E-04 148 1.19E-03 2.10E-03 bc kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_s 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 1.32E-03 2.23E-03 c 1.13E-03 a 2.23E-03 c DrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a RegKrig 8.36E-04 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_s 3.20E-03 1.99E-04 148 1.87E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c	Spmean	7.23E-04	2.32E-04	148	2.65E-04	1.18E-03 a
nice_ctsp1.64E-032.32E-041481.19E-032.10E-03 bckNN_s1.75E-032.32E-041481.30E-032.21E-03 bckNN_ctsp1.77E-032.32E-041481.32E-032.23E-03 cLMA </td <td>mice_s</td> <td>1.14E-03</td> <td>2.32E-04</td> <td>148</td> <td>6.84E-04</td> <td>1.60E-03 ab</td>	mice_s	1.14E-03	2.32E-04	148	6.84E-04	1.60E-03 ab
kNN_s 1.75E-03 2.32E-04 148 1.30E-03 2.21E-03 bc kNN_ctsp 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA 0	OrdKrig	1.22E-03	2.32E-04	148	7.62E-04	1.68E-03 abc
kNN_ctsp 1.77E-03 2.32E-04 148 1.32E-03 2.23E-03 c LMA OrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a RegKrig 8.36E-04 1.99E-04 148 3.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c WD OrdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 8.05E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	mice_ctsp	1.64E-03	2.32E-04	148	1.19E-03	2.10E-03 bc
LMA OrdKrig 7.36E-04 1.99E-04 148 3.43E-04 1.13E-03 a RegKrig 8.36E-04 1.99E-04 148 4.43E-04 1.23E-03 a Spmean 1.24E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c WD 148 2.80E-03 3.59E-04 c OrdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 <t< td=""><td>kNN_s</td><td>1.75E-03</td><td>2.32E-04</td><td>148</td><td>1.30E-03</td><td>2.21E-03 bc</td></t<>	kNN_s	1.75E-03	2.32E-04	148	1.30E-03	2.21E-03 bc
OrdKrig7.36E-041.99E-041483.43E-041.13E-03 aRegKrig8.36E-041.99E-041484.43E-041.23E-03 aSpmean1.24E-031.99E-041488.50E-041.64E-03 amice_s1.82E-031.99E-041481.43E-032.21E-03 bkNN_ctsp2.26E-031.99E-041481.87E-032.65E-03 bmice_s2.88E-031.99E-041482.48E-033.27E-03 ckNN_s3.20E-031.99E-041482.80E-033.59E-03 cWDVOrdKrig-7.13E-041.41E-04148-9.92E-04-4.35E-04 aRegKrig2.65E-051.41E-041481.52E-055.72E-04 bSpmean2.94E-041.41E-041481.52E-055.72E-04 bmice_s7.70E-041.41E-041488.05E-041.05E-03 ckNN_s1.08E-031.41E-041488.05E-041.36E-03 c	kNN_ctsp	1.77E-03	2.32E-04	148	1.32E-03	2.23E-03 c
RegKrig8.36E-041.99E-041484.43E-041.23E-03 aSpmean1.24E-031.99E-041488.50E-041.64E-03 amice_s1.82E-031.99E-041481.43E-032.21E-03 bkNN_ctsp2.26E-031.99E-041481.87E-032.65E-03 bmice_ctsp2.88E-031.99E-041482.48E-033.27E-03 ckNN_s3.20E-031.99E-041482.80E-033.59E-03 cWDOrdKrig-7.13E-041.41E-04148-9.92E-04-4.35E-04 aRegKrig2.65E-051.41E-04148-2.52E-043.05E-04 bSpmean2.94E-041.41E-041481.52E-055.72E-04 bmice_s7.70E-041.41E-041484.91E-041.05E-03 ckNN_s1.08E-031.41E-041488.05E-041.36E-03 c	LMA					
Spmean 1.24E-03 1.99E-04 148 8.50E-04 1.64E-03 a mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c WD 0rdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -9.92E-04 -4.35E-04 b Spmean 2.94E-04 1.41E-04 148 -5.22E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	OrdKrig	7.36E-04	1.99E-04	148	3.43E-04	1.13E-03 a
mice_s 1.82E-03 1.99E-04 148 1.43E-03 2.21E-03 b kNN_ctsp 2.26E-03 1.99E-04 148 1.87E-03 2.65E-03 b mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c WD VD VD VD VD VD OrdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -9.92E-04 -4.35E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	RegKrig	8.36E-04	1.99E-04	148	4.43E-04	1.23E-03 a
	Spmean	1.24E-03	1.99E-04	148	8.50E-04	1.64E-03 a
mice_ctsp 2.88E-03 1.99E-04 148 2.48E-03 3.27E-03 c kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c WD 0rdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	mice_s	1.82E-03	1.99E-04	148	1.43E-03	2.21E-03 b
kNN_s 3.20E-03 1.99E-04 148 2.80E-03 3.59E-03 c WD 0rdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	kNN_ctsp	2.26E-03	1.99E-04	148	1.87E-03	2.65E-03 b
WD OrdKrig -7.13E-04 1.41E-04 148 -9.92E-04 -4.35E-04 a RegKrig 2.65E-05 1.41E-04 148 -2.52E-04 3.05E-04 b Spmean 2.94E-04 1.41E-04 148 1.52E-05 5.72E-04 b mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	mice_ctsp	2.88E-03	1.99E-04	148	2.48E-03	3.27E-03 c
OrdKrig-7.13E-041.41E-04148-9.92E-04-4.35E-04 aRegKrig2.65E-051.41E-04148-2.52E-043.05E-04 bSpmean2.94E-041.41E-041481.52E-055.72E-04 bmice_s7.70E-041.41E-041484.91E-041.05E-03 ckNN_s1.08E-031.41E-041488.05E-041.36E-03 c	kNN_s	3.20E-03	1.99E-04	148	2.80E-03	3.59E-03 c
RegKrig2.65E-051.41E-04148-2.52E-043.05E-04 bSpmean2.94E-041.41E-041481.52E-055.72E-04 bmice_s7.70E-041.41E-041484.91E-041.05E-03 ckNN_s1.08E-031.41E-041488.05E-041.36E-03 c	WD					
Spmean2.94E-041.41E-041481.52E-055.72E-04 bmice_s7.70E-041.41E-041484.91E-041.05E-03 ckNN_s1.08E-031.41E-041488.05E-041.36E-03 c	OrdKrig	-7.13E-04	1.41E-04	148	-9.92E-04	-4.35E-04 a
mice_s 7.70E-04 1.41E-04 148 4.91E-04 1.05E-03 c kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	RegKrig	2.65E-05	1.41E-04	148	-2.52E-04	3.05E-04 b
kNN_s 1.08E-03 1.41E-04 148 8.05E-04 1.36E-03 c	Spmean	2.94E-04	1.41E-04	148	1.52E-05	5.72E-04 b
-	mice_s	7.70E-04	1.41E-04	148	4.91E-04	1.05E-03 c
kNN_ctsp 1.14E-03 1.41E-04 148 8.58E-04 1.41E-03 cd	kNN_s	1.08E-03	1.41E-04	148	8.05E-04	1.36E-03 c
	kNN_ctsp	1.14E-03	1.41E-04	148	8.58E-04	1.41E-03 cd

mice_ctsp 1.56E-03	1.41E-04	148	1.28E-03	1.84E-03d	
--------------------	----------	-----	----------	-----------	--

Table S2. Tukey pairwise comparisons of the LME coefficients relating Δ cormat to increasing missingness levels for selected imputation methods. Letters represent significant differences (P < 0.05) and imputation methods are listed in increasing order of the model coefficient.

	Coefficient	SE	df		Lower C	L	Upper CL
mice_ctsp	1.27E-02		6.27E-04	14	8 1.1	5E-02	1.39E-02 a
kNN_ctsp	1.46E-02		6.27E-04	14	8 1.3	3E-02	1.58E-02 ab
mice_s	1.61E-02		6.27E-04	14	8 1.4	9E-02	1.73E-02 bc
RegKrig	1.68E-02		6.27E-04	14	8 1.5	5E-02	1.80E-02 bcd
kNN_s	1.71E-02		6.27E-04	14	8 1.5	8E-02	1.83E-02 cd
OrdKrig	1.84E-02		6.27E-04	14	8 1.7	1E-02	1.96E-02 d
Spmean	2.20E-02	2	6.27E-04	14	48 2.0)8E-02	2.33E-02e

320

References

Lenth, R. V. 2016. Least-Squares Means: The R Package Ismeans. - Journal of Statistical Software 69: 1–33.

Pinheiro, J. et al. 2012. nlme: Linear and Nonlinear Mixed Effects Models.

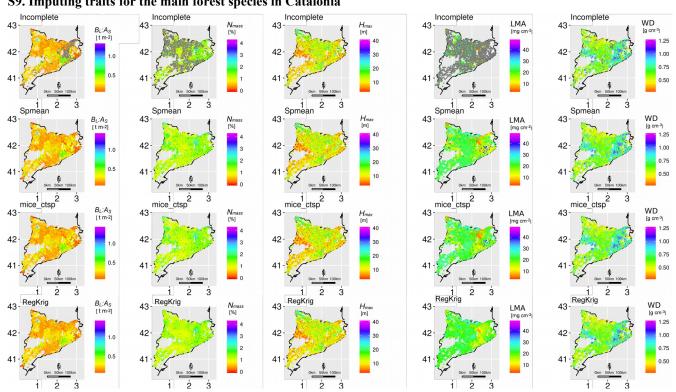


Figure S23. Maps with the distribution of functional traits across the selected plots in the IEFC. The first row shows the incomplete dataset, with missing values in grey. The second row shows species mean imputations ('Spmean'), the third row shows the 'mice ctsp' imputations (MICE imputation using species identity, climate, forest structure and topography as predictors) and the fourth row shows the universal kriging imputations (RegKrig).