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Abstract. The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and

processes. Spatially-explicit datasets with information on intraspecific trait variability are rare but offer great promise in

improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data

imputation. Here we compare statistical imputation approaches, using varying levels of ecological information, for five plant

traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density)

in a spatially-explicit plant trait dataset of temperate and Mediterranean tree species (Catalonia, north-east Iberian Peninsula,

31900 km2). We simulated gaps at different missingness levels (10% – 80%)  in a complete trait matrix, and we used overall

trait means, species means, k-nearest neighbours (kNN), ordinary and regression kriging and multivariate imputation using

chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their

ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good

performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions

and multivariate  trait  structure.  Species  identity improved MICE imputations for  all  traits,  whereas  forest  structure and

topography improved imputations for some traits. No method performed best consistently for the five studied traits, but,

considering all traits and performance metrics, MICE informed by relevant ecological variables produced globally more

plausible datasets.  However,  at higher missingness (> 30%) species  mean imputations and regression kriging tended to

outperform MICE for some traits. Spatial patterns of the studied traits in Catalan forests (5495 plots) were largely similar

when using species means, regression kriging or the best-performing MICE application. Our results highlight the need to

assess imputation quality beyond just imputation accuracy,  and show that  including ecological  information in statistical

imputation approaches yields more plausible imputations in spatially-explicit plant trait datasets.
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1 Introduction

Trait-based ecology has emerged in recent  years as one of the most active ecological  sub-disciplines, specially in plant

ecology (Westoby & Wright, 2006; Violle et al. 2007). The move from a taxonomic perspective of biodiversity towards a

focus on continuous axes of functional variation holds promise for greater generalisation, synthesis and predictive ability in

ecology  (Funk  et  al.  2016;  Shipley  et  al.  2016).  As  a  result,  plant  ecologists  have  increasingly  embraced  trait-based

approaches because they may be specially suited to study plant strategies (Reich, 2014), community assembly and dynamics

(McGill et al. 2006) or ecosystem functioning, particularly in the context of global environmental change (Reichstein et al.

2014). But trait-based ecology is also unquestionably thriving because of the increasing availability and reliability of plant

trait data (Kattge et al. 2011).

Plant  trait  databases  compiled  from primary  sources  and  multiple  individual  contributions  lack  a  common design  and

inevitably  result  in  sparse  data  matrices  (e.g.  Jetz  et  al.  2016).  Complete-case  analyses  (i.e.,  data  analyses  using  only

sampling units with complete data availability) entail a reduced sampling size, which complicates community-level studies

(Pakeman,  2014) and limit  the spatial  coverage of  trait  maps usable in trait-based models of ecosystem function. Data

deletion may also bias parameter estimates (e.g., in trait relationships) if the data are not missing completeley at random

(MCAR; Little & Rubin, 2002; Nakagawa & Freckleton, 2008). Imputation (i.e., gap-filling) of missing data with plausible

values has only relatively recently started to be widely advocated in ecology (Nakagawa & Freckleton, 2008), although

imputation may not be recommended in certain studies (Blonder 2016).

Single imputation methods replace a missing datum by one value and proceed with the analysis as if the imputed data had

been observed (Nakagawa & Freckleton, 2008); species mean or median imputation are probably the most widely used

methods in ecology, but they ignore the variance of the imputed variables.  Other single imputation approaches such as

model-based imputation (Gelman & Hill, 2007),  k-nearest neighbour (kNN) or machine-learning methods (Stekhoven &

Bühlmann, 2012) may be more appropriate for multivariate data, but they all alter, to different degrees, the univariate trait

distributions  and  the  covariance  structure  of  the  dataset.  In  a  multiple  imputation  framework,  m imputed  datasets  are

obtained  through  simulation  and  may  be  jointly  analysed  to  provide  parameter  estimates  that  take  into  account  the

uncertainty introduced by the imputations themselves (e.g. Fisher et al. 2003). Some multiple imputation techniques, such as

multivariate imputation using chained equations (MICE) may be specially well-suited to  preserve the original structure and

distribution of multivariate datasets (van Buuren & Groothuis-Oudshoorn, 2011; van Buuren, 2012).

While forest inventories have adopted sophisticated imputation methods for some time, as for example the kNN methods

(Eskelson et al. 2009 and references therein), imputation methods have only recently been started to be used in trait-based

ecology (Baraloto et al. 2010; Pyšek et al. 2015). Complex imputation methods such as kNN, MICE or random forests
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generally outperform overall mean or species mean imputations (Penone et al. 2014; Taugourdeau et al. 2014). In earlier

applications of these methods, it has been common to assume that interspecific, compared to intraspecific trait variability,

was  dominant.  The  strong  phylogenetic  signal  may  then  be  sufficient  to  impute  species-averaged  trait  values  using

taxonomic information (Swenson, 2014). However, intraspecific variability in plant traits may be substantial (Siefert et al.

2015; Vilà-Cabrera et al. 2015) and imputation methods that use environmental information may be more appropriate when

assessing trait relationships and trait-environment covariance in a spatially explicit context. Biotic or abiotic variables other

than the trait matrix of interest can be included in imputation algorithms as auxiliary variables to reduce imputation bias

(Azur et al. 2011; Rezvan et al. 2015). Geostatistical methods of spatial interpolation can also be used with (e.g. regression

kriging) or without (e.g. ordinary kriging) auxiliary variables (e.g. Hengl et al. 2007).

Additional challenges occur in the imputation of traits in large databases. The expected declining performance of imputation

methods with increasing missingness levels, may be trait- and dataset-dependent (Penone et al. 2014; Taugourdeau et al.

2014).  Moreover,  the  impact  of  imputations  on  altering  bivariate  trait  relationships  has  only  been  tested  for  single

relationships (Penone et al. 2014; Schrodt et al. 2015) and not for the multiple relevant relationships within a plant trait

dataset. Likewise, there are few studies quantifying how different imputation methods alter the multivariate structure of plant

trait datasets (Schrodt et al. 2015).

Our overarching aim here is to assess the performance of different imputation methods to fill simulated gaps at different

missingness levels in a spatially-explicit plant trait dataset. We imputed these missing data using single imputation (kNN),

multiple  imputation  (MICE)  and  geostatistical  approaches  (ordinary  and  regression  kriging,  OrdKrig  and  RegKrig,

respectively),  and  compared  the  imputations  with  baseline  scenarios  of  overall  mean  and  species  mean  imputation.

Imputation performance was assessed in terms of accuracy,  univariate trait distributions, multivariate trait structure and

deviations in trait relationships. Our specific objectives are: (i) to test which imputation method (overall mean imputation,

kNN, MICE, OrdKrig) performed best when relying only on plant trait data; (ii) to assess the impact of including additional

predictors (i.e. ecological information such as species identity, climate, forest structure, topography, lithology and sampling

date) in MICE and kNN imputations; (iii) to compare the performance of kNN, MICE and RegKrig using optimum levels of

ecological information; and, finally, (iv) to apply the best performing method to fill the gaps in a major subset of the IEFC

database to obtain ‘continuous’ maps of plant traits for the main forest species across a relatively large Mediterranean region.

2. Methods

2. 1 Study area

The study area is the entire territory of Catalonia (31900 km2), in the north-east Iberian peninsula. Catalonia has 38% forest

cover (1.2 x 106 ha) and forests are largely dominated by species belonging to the Pinaceae and Fagaceae families. We
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selected 13 tree species, including 6 Pinus spp., 5 deciduous and evergreen Quercus spp., Abies alba and Fagus sylvatica,

which altogether cover >90% of the forested area in Catalonia (see Supplement S1).

2. 2 Data

Plant trait and forest data were retrieved from the Ecological and Forest Inventory of Catalonia (IEFC), carried out between

1988 and 1998 (Gracia et al. 2000‒2004). A complete description of the sampling scheme and methods used to measure

plant traits in the IEFC can be found in the Supplement S1. The subset of the IEFC limited to the 13 study species, hereby

called ‘IEFC incomplete dataset’, included 5495 plots. Stand structure, lithology and sampling information for each plot

were retrieved from the IEFC database, whereas climate data were obtained from the Climatic Digital Atlas of Catalonia,

with a spatial resolution of 180 m (Ninyerola et al. 2000).

We selected five plant traits (leaf mass per area, LMA, mg cm -2; nitrogen per unit mass, Nmass, %mass; maximum tree height,

Hmax, m; wood density, WD, gm cm-3; leaf biomass to sapwood area ratio, BL:AS, t m-2) that are used to describe major plant

functional strategies (Westoby et al. 2002; Wright et al. 2004; Chave et al . 2009; Laforest-Lapointe et al. 2014). In Catalan

forests, four of these traits (LMA, Nmass, Hmax, WD) mostly vary across families (Pinaceae and Fagaceae) and within species

(Vilà-Cabrera et al. 2015). The missing data patterns in this trait data matrix shows a much higher percentage of missing data

(hereafter, ‘missingness) for foliar traits, corresponding to a less intense sampling of these traits (Supplement S1). These

intentional missing data (van Buuren 2012) would correspond to a  planned missing data design,  where missingness  at

random (MAR) is deliberately applied (Nagakawa  2015). 

2.3 Experimental design

All data manipulations, imputations and statistical  analyses were performed with the R programming language (R Core

Team, 2015). We created a subset of the IEFC incomplete dataset only including those plots (N = 630) where all 5 traits had

been measured on the dominant species (‘IEFC complete dataset’). In this dataset, we randomly deleted measured values at

different  probability  levels  (10%,  20%,  30%,  50%  and  80%)  and  independently  for  each  trait,  thus  the  missing  data

artificially introduced are MCAR. This data deletion was replicated, to yield 30 simulated datasets for each missingness level

(Fig. 1). Hence, the different imputation methods were assessed on 150 datasets (5 missingness levels x 30 replicates). 

We ran different single and multiple imputation algorithms (see 2.3 Imputation methods) to fill the gaps in the trait data of

the simulated incomplete datasets. Single imputation methods yield m = 1 imputed dataset per simulated dataset and here we

set the multiple imputation methods to yield m = 5 datasets per simulated dataset to incorporate imputation uncertainty. Prior

to the calculation of different performance metrics for each dataset, trait values in multiply imputed datasets were averaged

(Penone et al. 2014). Performance metrics were assessed using the measured values of each trait in the IEFC complete
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dataset (see 2.5. Statistical evaluation of the imputations). Note that each imputed dataset contains both measured and gap-

filled data, but the expression ‘imputed values’ refers only to gap-filled data. 

2.3 Imputation methods

We used two simple approaches to provide baseline imputations. Mean imputation (‘Mean’) filled missing data using the

overall  mean  value  for  each  trait  and  species  mean  imputation  (‘Spmean’)  replaced  missing  values  with  trait  means

computed for each species.

 k-nearest neighbour imputation (‘kNN’) calculates a multivariate distance using only non-missing variables, selects the k-

nearest plots with measured values for the target missing trait and aggregates these  k neighbouring values to replace the

missing value (R package VIM; Templ et al. 2013). We selected k = 7 and median aggregation (Supplement S2). We also

analysed  how the inclusion of  auxiliary  variables  in  the distance  calculation  affected  imputation performance  (see  2.4

Comparative assessment of imputation methods).

We also used two geostatistical approaches. Ordinary kriging calculates a weighted average of nearby observations to predict

values of a target variable in an unmeasured location, with weights that minimize prediction error and depend on spatial

structure of the target variable via a variogram model (Hengl et al. 2007). Regression kriging combines a deterministic

model of the target variable as a function of auxiliary variables with kriging applied to fit the residuals (Hengl et al., 2007).

We included climate and forest structure variables in the model used for regression kriging imputations (cf. ‘Comparative

assessment  of  imputation  methods’),  but  not  species  identity,  because  there  were  not  enough  data  to  generate  the

experimental variograms for some of the less common species for all the simulations. We performed all kriging imputations

with the ‘autoKrige’ function in the automap R package. This function tests different variogram models and applies the best-

fit variogram model for kriging (Hiemstra et al. 2009).

The MICE (Multivariate Imputation using Chained Equations) algorithm (van Buuren & Groothuis-Oudshoorn, 2011; van

Buuren, 2012) sequentially and iteratively imputes incomplete data, variable by variable, using individual imputation models

conditionally specified by the user.  One cycle through all  the imputed variables  is  one iteration and MICE performs  t

iterations  in  m parallel  streams,  generating  m multiple imputations (Supplement  S3).  Stochasticity  is  introduced  in the

imputation process because the parameters of the univariate imputation models are drawn from their posterior distributions,

obtained using a Gibbs sampler  (van Buuren,  2012).  Here  we use predictive mean matching (PMM) as  the univariate

imputation model, as it is robust to non-normality and preserves non-linear relationships between variables (Supplement S3).

Several parameters must be tuned to specify the imputation models in the R implementation of MICE (mice package) to

yield reliable imputations (van Buuren & Groothuis-Oudshoorn, 2011). The specific settings used in this study are assessed
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in Supplement S4. Please note that we will use the uppercase acronym ‘MICE’ to refer to the technique in general and the

lowercase acronym ‘mice’ to refer to a particular application in this study.

2.4 Comparative assessment of imputation methods

We conducted three methodological comparisons of imputation performance. A first exercise compared ‘Mean’, ‘OrdKrig’,

‘kNN’ and ‘mice’ imputations. ‘Mean’ imputations used only the information on the target trait, ‘OrdKrig’ additionally used

the spatial coordinates and ‘mice’ included only the information in the trait matrix. 

A second exercise assessed in detail the impact on trait imputation of including additional ecological information as auxiliary

predictors in MICE and kNN. We focused our detailed analysis on MICE only but we also made a simplified comparison

between kNN and MICE (cf. next paragraph). The auxiliary variables we considered were species identity, a set of climatic

variables  (mean  annual  temperature,  annual  thermal  amplitude,  both  in  °C),  a  set  of  forest  structure  variables  (total

aboveground biomass [T ha-1] and stem density [stems ha-1]), a set of topographical variables (county, elevation [m.a.s.l.],

slope [°] and aspect), lithology and sampling month. These predictors were complete and they did not need to be imputed

themselves. The selection of the specific variables describing climate and forest structure was based on a recent analysis of

trait variation in the same IEFC dataset (Vilà-Cabrera et al. 2015). We further added topographical variables, lithology and

sampling month given that they may influence some trait values (Niinemets, 2015; Simpson et al. 2016). Species identity

(‘s’),  climate (‘c’)  and forest  structure (‘t’)  were  introduced in a factorial  design. Topography (‘p’),  lithology (‘l’)  and

sampling month ‘(m’) were sequentially added to MICE and kNN imputations using species, climate and forest structure.

Topography included spatial structure through the ‘county’ variable; preliminary tests using coordinates instead of ‘county’

did not show better results. Thus, ‘mice_ctsplm’ was the MICE application with the highest level of ecological information

(Fig. 1).

The third exercise  compared  species  mean imputations (‘Spmean’)  with MICE and kNN using two different  levels  of

auxiliary  variables:  (i)  only  species  identity  (‘mice_s’  and  ‘kNN_s’)  and  (ii)  the  level  of  auxiliary  information  which

performed best  overall  in  the second exercise.  In  this  same exercise,  we also compared  the  previous  approaches  with

‘OrdKrig’  and  regression  kriging  (‘RegKrig’)  imputations.  This  third  exercise  thus  compares  a  baseline  scenario  of

‘Spmean’  with  imputation  approaches  informed  either  by  species  identity  only  or  by  an  optimum level  of  ecological

information. 

2.5 Statistical evaluation of the imputations

Imputation performance was evaluated by comparing the imputed datasets with the complete, original dataset. A first set of

metrics, Normalised Root Mean Square Error (NRMSE) and Kling-Gupta Efficiency (KGE), was calculated only for those
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values that  had been randomly deleted and subsequently gap-filled.  We tested whether  the distribution of  imputed and

original trait values differed using a two-sample Kolmogorov-Smirnov test, which tests the null hypothesis that two samples

are identically distributed. 

For each simulated dataset and trait, we calculated the Normalised Root Mean Square Error (NRMSE) as:

NRMSE=√
mean [ ( y imp− yobs )

2 ]
var ( yobs )

(Eq. 1)

where yimp and yobs represent the vectors of imputed and observed values for a given trait, respectively. Values of NRMSE

approaching zero denote a better performance of the imputation method. We also calculated a dataset-averaged NRMSE by

averaging the values of NRMSE for all the traits. 

We further assessed imputation performance for each trait by using KGE, a goodness-of-fit measure originally developed for

hydrological models, as implemented in the R package hydroGOF (Zambrano-Bigiarini, 2014):

KGE=1−√ (r−1 )
2
+( vr −1 )

2
+( β−1 )

2(Eq. 2)

where r is the Pearson correlation coefficient between observed and imputed values, vr is the ratio of the standard deviations

between imputed and observed values and β is the ratio of imputed and observed means. The KGE range is [-∞,1], with

higher  values  indicating  better  imputation  performance.  KGE jointly  assesses  correlation,  bias  and  variability  between

imputed and observed values, and it is therefore a powerful, synthetic indicator of imputation quality in spatially-explicit

datasets. We also calculated alternative metrics such as the R2 between observed and imputed data, but results did not differ

from those obtained using NRMSE and KGE (Supplement S5, S6, S7).

A second set of metrics compared the whole complete trait dataset  Yobs with the whole imputed dataset  Yimp (i.e. including

observed  and  gap-filled  trait  values).  The  deviations  from the  original  multivariate  structure  of  the  trait  dataset  were

quantified by comparing the correlation matrices of the original and imputed datasets using the following index:

Δcormat=∑|L [ cor (Y obs) ]− L [ cor (Y imp) ]|(Eq. 3)

Where L [cor (Y obs ) ]denotes the lower triangular part of the correlation matrix of the observed dataset and L [cor (Y imp )]
denotes the lower triangular part of the correlation matrix of the imputed dataset. Δcormat is indicative of the aggregated

absolute difference between correlation matrices. Note that some traits were log-transformed before the calculation of the

corresponding correlation matrix, following Vilà-Cabrera et al. (2015). 

We also tested the impact of the imputation algorithms on selected bivariate trait relationships: Hmax WD and N‒ mass LMA‒

(log-transformed when necessary); as the correlation coefficients (r) of these relationships were >0.3 in absolute value and
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were highly significant in the complete dataset.  We quantified the relative difference between the complete and the imputed

datasets by calculating: 

% Δr=100·|robs −rimp|/|robs|(Eq. 4)

Throughout the paper, we show violin plots representing the median and the distribution of each performance metric as a

function of missingness levels, but we only graphically display the 10%, 30%, 50% and 80% levels, for ease of visualisation.

2.6 Imputing traits for the main forest species in Catalonia

Finally, we applied three imputation methods to gap-fill and map the five traits across all the plots in the ‘IEFC incomplete

dataset’. We chose ‘Spmean’, as the most widely used imputation method in trait-based studies ‘RegKrig, as a reference

geostatistical approach including auxiliary variables and ‘mice_ctsp’, as the best method globally, considering all traits and

performance metrics (see  3. Results and discussion). We ran ‘mice_ctsp’ setting  m = 50 (i.e. 50 imputations per missing

value), a value closer to the missingness rate, as recommended for final MICE applications (van Buuren, 2012).

3. Results and discussion

3.1 Mean imputations compared to MICE and kNN imputations using only trait information

In general, ‘mice’ and ‘kNN’ imputations resulted in more accurate imputations in terms of NRMSE than ‘Mean’ at low

missingness  rates  (10%).  However,  at  moderate  and  high  missingness  both  ‘mice’  and  ‘kNN’  were  comparable  or

outperformed by ‘Mean’,  and specially  by ‘OrdKrig’  (Fig.  2,  Supplement  S5).  Recent  assessments  also report  that  the

performance of MICE and kNN notably declines when missingness is ≥ 30% (Penone et al. 2014; Taugourdeau et al. 2014).

Even if ‘Mean’ imputations imply the rather naive assumption that species identity may be unknown in a given dataset, it is

nonetheless useful to compare ‘Mean’ imputations against ‘mice’ and ‘kNN’, which use the full trait matrix for prediction,

because  this  comparison  shows  how  trait  covariation  can  be  used  to  improve  imputations.  However,  our  results  for

‘OrdKrig’ show that  spatial structure, rather than trait covariation, may provide more accurate trait imputations when gaps

are frequent (Fig. 2, Supplement S5). 

As expected (Gelman and Hill, 2007), however, ‘Mean’ imputation severely altered trait distributions (Supplement S5), and

introduced larger errors in selected trait correlations (Fig. 3). ‘Mean’ imputations tended to cause larger deviations in the

correlation matrix, and, although kNN showed the lowest Δcormat below 50% missingness, its performance declined at high

missingness (Supplement S5). In contrast, ‘mice’ closely tracked observed trait distributions (Supplement S5), introduced

the least error in trait correlations under high missingness levels (Fig. 3) and yielded low Δcormat at extreme missingness

levels (Supplement S5). Recent results also show that kNN tends to introduce larger bias in bivariate trait relationships
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compared to MICE (Penone et al. 2014). Despite showing the lowest  Δcormat at 80% missingness, ‘OrdKrig’ imputations

altered distributions and trait correlations more than ‘mice’ (Fig. 3, Supplement S5).

3. 2 MICE imputations using different levels of ecological information

Introducing auxiliary variables as predictors improved MICE performance substantially (Fig. 4, Supplement S6). However,

these improvements were dependent on the specific predictor set and trait. Species identity increased KGE for all traits (Fig.

4) and it was the major predictor for Nmass, LMA and WD. Forest structure notably improved imputations for Hmax, and only

slightly for BL:AS. Climate only produced minor increases in KGE, but in a consistent way across traits (i.e., compare ‘mice’

with ‘mice_c’ in Fig. 4). These results are in line with the distinct role of phylogeny and environmental variables as drivers

of trait variability recently observed for the same tree species in the IEFC (Laforest-Lapointe et al. 2015; Vilà-Cabrera et al.

2015). Including topography in MICE imputations only substantially improved BL:AS imputations, probably because the leaf

area used in BL:AS calculations are obtained from county-level allometries, and county is one of the variables included in the

topography predictor set (see 2. Methods and Supplement S1). 

In general, high levels of auxiliary information greatly improved MICE imputations. In terms of dataset-averaged NRMSE,

Δcormat (data not shown) and preservation of trait distributions, ‘mice_ctsp’ imputations (including climate, forest structure,

species and topography) tended to show the best performance (Supplement S6). Nevertheless, introducing sampling month

in the predictor sets did not appreciably improve MICE imputations in terms of KGE (Fig. 4, Supplement S6), despite that

phenological variation has been reported for some foliar traits (Niinemets, 2015; but see Fajardo & Siefert, 2016). Lithology

did not appreciably improve MICE imputations, in contrast with the reported influence of soil pH on some foliar traits

(Maire et al. 2015; Simpson et al. 2016).  

Including auxiliary variables as predictors also decreased %Δr for selected trait relationships. In this case, lithology and

sampling month slightly reduced %Δr for Hmax – WD and  Nmass –  LMA relationships (Fig. 5). However, these reductions

were not consistent across missingness levels. For example, sampling month reduced %Δr for the Nmass –  LMA relationships

at 50% but not at 80% missingness (Fig. 5).

Our results collectively suggest that, apart from species identity, different types of ecological information, particularly stand

structure  and  topography,  may improve  statistical  imputation  schemes.   In  contrast,  the  role  of  climate,  lithology and

sampling month in improving imputations was comparatively minor. Similarly, including climate and soil data as predictors

did not improve imputations of the TRY database obtained with the recently proposed Bayesian Hierarchical Product Matrix

Factorisation method, (BHPMF; Schrodt et al. 2015). It is unclear, however, to what extent these results simply reflect the

relatively poor quality of the climate and soil data generally available at regional scales.
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3.3 Species mean imputations compared to MICE and kNN using optimum levels of ecological information

Adding auxiliary variables to calculate the distance matrix also improved kNN imputations. Values of KGE for ‘kNN_s’ and

‘kNN_ctsp’ were much higher than those observed for ‘kNN’ imputations, which only included the trait data in the distance

matrix (Supplementary  material,  compare Fig.  A7 and A12).  Likewise,  adding climate and forest  structure as auxiliary

variables improved ‘RegKrig’ performance compared to ‘OrdKrig’ (Fig. 6). For both, kNN and kriging methods, WD and

Hmax were the traits for which these improvements were largest.

In general, ‘mice_ctsp’ and ‘Spmean’ tended to be the best methods in terms of KGE, except for Hmax, for which ‘mice_ctsp’

and ‘RegKrig’ performed best. At highest missingness levels, ‘Spmean’ showed the highest KGE for Nmass, LMA and WD

(Fig.  6,  Supplement  S7).  Compared  to  ‘Spmean’  and  ‘RegKrig’,  performance  of  MICE and kNN declined  more  with

increasing  missingness (Supplement S8), but MICE generally outperformed kNN (Fig. 2, 3, Supplement S7), as already

observed in a recent imputation assessment of species-level, life-history traits (Penone et al. 2014). 

MICE imputations, especially ‘mice_ctsp’ showed the lowest %Δr for the studied trait correlations, although ‘Spmean’ also

showed low values  for   for  the  Nmass LMA  relationship  (Fig.  7).  Neither  kNN nor kriging imputations succeeded  in‒

minimising changes in trait correlations; for kriging imputations, only ‘RegKrig’ showed a relatively high value of %Δr for

the  Hmax WD relationship (Fig.  7).  Kernel  density  plots  and Kolmogorov-Smirnov tests  showed that  MICE produced‒

imputations (especially ‘mice_ctsp’) most consistent with observed distributions at all missingness levels (Supplement S7).

‘Spmean’ and ‘OrdKrig’ imputations modified trait distributions substantially, while’kNN_ctsp’ and ‘RegKrig’ showed an

intermediate performance, but generally far from that of ‘mice_ctsp’  (Supplement S7). ‘Spmean’ and kriging imputations

also yielded larger Δcormat values (data not shown). 

The application of ‘mice_ctsp’  successfully  filled the gaps in the IEFC incomplete dataset  and quantified the variation

among the multiple imputations, providing an estimation of the level of confidence in the imputed values for specific traits

(Fig. 8).  ‘Spmean’ and ‘RegKrig’ show a largely similar spatial pattern of trait variation compared to ‘mice_ctsp’, although

some discrepancies between ‘Spmean’ and  ‘mice_ctsp’  can be observed in the north-eastern pre-litoral and coastal area for

LMA (Fig. S23). Here, ‘Spmean’ imputations tend to predict lower values compared to ‘mice_ctsp’ imputations. These areas

are mostly dominated by Quercus suber forests (Supplement S1), and LMA was only measured in 5 out of the 149 plots of

this species  present in the IEFC incomplete dataset.  Therefore,  as there is little information on trait covariation for the

imputation of LMA in Q. suber plots, MICE imputations are largely based on the auxiliary variables and they yield a distinct

spatial pattern of trait variation, compared to ‘Spmean’. 
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4 Implications

The problem of missing data is ubiquitous in plant trait datasets of regional to global scope. Nevertheless, ecologists have

recently made substantial progress in (i) the assessment of the best imputation methods in trait-based applications, (ii) how

these methods perform with increasing missingness , (iii) which ecological covariates aid to improve imputations and (iv)

how different  imputation methods impact the results of  trait-based analyses (Pakeman,  2014, Taugourdeau  et  al.  2014,

Penone et al. 2014, Schrodt et al. 2015). Most effort thus far, however, has been directed at imputing species-level trait

means and all the abovementioned questions have rarely been assessed on the same dataset. Here we deal here with all the

previous issues simultaneously and focusing on the spatial component of trait variability, where the intra-specific component

cannot be neglected. 

Our results show that, in terms of trait prediction error, no imputation method performs best consistently for the five studied

traits.  However,  when  all  performance  metrics  are  jointly  considered  (i.e.  errors  in  trait  prediction,  multivariate  trait

distribution and trait correlations), MICE informed by relevant ecological variables outperforms approaches based on trait

averaging, geostatistical models and kNN methods, albeit this superiority of MICE tends to vanish at higher missingness. For

kNN, MICE and kriging imputations we have highlighted the key role of auxiliary variables as necessary covariates to yield

reliable imputations in spatially explicit settings. The importance of covariates differed across traits, but, in addition to the

expected influence of species, climate and topography in predicting trait values, we also showed a prominent role of stand

structure for some traits. The ongoing development of global databases of vegetation structure (e.g. Dengler et al. 2014) will

likely enable the incorporation of stand variables in future imputation exercises.

Given  the  limited  number  of  species  in  our  study,  reflecting  the  relatively  low richness  of  the  studied  communities,

taxonomic information introduced as species identity was enough to improve imputations of all studied traits. However, in

studies coping with a larger set of species, phylogeny may need to be considered in the imputation models (Schrodt et al.

2015, Swenson et al. 2017). For global trait datasets, a combination of imputation with data augmentation approaches (e.g.

Nakagawa & Freckleton, 2008) has been proposed to minimise potential errors in trait-driven analyses caused by incomplete

and biased species sampling (Sandel et al. 2015). 

Compared to other imputation approaches, MICE is well-suited to deal with multivariate missing data (i.e. MICE produce

imputations when some predictors are also missing) and provides information to quantify the uncertainty associated with the

imputed  data  (Fig.  8).  MICE  also  provides  a  full  framework  for  inference  from  incomplete  datasets.  Because  our

comparative assessment of imputation methods is already complex, here we have only dealt with imputation, the first step of

the full process (e.g. Nakagawa & Freckleton 2008), but MICE produces multiple datasets that are individually combined in

the  analysis and  pooling steps.  The analysis step refers  to the estimation of the parameters of scientific interest  (e.g.  a
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regression coefficient) for each dataset. In MICE, parameters are then pooled across datasets to produce unbiased estimates

and standard errors, providing a natural way to take into account the additional uncertainty introduced in the analysis by the

presence of missing data (van Buuren 2012). However, ecological studies using multiple imputation approaches usually only

apply the imputation step (Baraloto et al. 2010, Paine et  al. 2011, Pyšek et al 2015, Díaz et al. 2016) and do not take

advantage of the multiple imputation framework to quantify the uncertainty resulting from the presence of missing data (but

see Fisher et al. 2003).

Our results have important implications given that the demand for spatially explicit datasets is increasing rapidly and that

species mean imputation and casewise data deletion are still  widespread practices in trait-based ecology. We show that

species mean imputation may result in substantial  information loss that may hinder research development on important

topics in functional  biogeography, such as the ecological  significance of intraspecific  trait  variability (e.g.  Siefert  et  al.

2015), the synthesis of plant form and function (Díaz et al. 2016) or the development of trait-driven modelling approaches

(Yang et al. 2015). We also show that spatially-distributed layers of ecological information for trait imputation, as shown

here for MICE, can thus be used to obtain trait maps to inform trait-driven ecosystem process models (Christoffersen et al .

2016). 
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Figure 1. Description of the experimental design. A subset was obtained from the incomplete IEFC trait dataset containing

only  plots  where  all  functional  traits  had  been  measured  (complete  dataset)  to  perform  the  gap  simulations  and  the

imputations. Imputation methods are described in terms of the input information used. The selected methods for the final

application of imputation methods to obtain a gap-filled IEFC trait dataset are also shown.
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Figure 2.  Trait-specific NRMSE at increasing missingness levels (10% to 80%) for different imputation methods: overall

trait mean (Mean), mice (using only the trait matrix in the predictor set), kNN (using only the trait matrix for the distance

calculation) and ordinary kriging (OrdKrig).
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Figure 3. Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different imputation methods: overall trait mean (Mean), mice (using only the trait matrix in the predictor set),

kNN  (using only the trait matrix for the distance calculation) and ordinary kriging (OrdKrig).
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Figure 4. Trait-specific KGE at increasing missingness levels (10% to 80%) and for different MICE imputations using

different combinations of additional predictor sets: species identity (s), climate (c), forest structure (t), sptatial structure (p),

lithology (l) and sampling month (m). See Fig. 1 for an overall view of the experimental design and the Methods section for

a detailed description of the variables employed in each predictor set. 
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Figure 5. Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different MICE imputations using different combinations of additional predictor sets: species identity (s),

climate (c), forest structure (t), topography (p), lithology (l) and sampling month (m). See Fig. 1 for an overall view of the

experimental design and the Methods section for a detailed description of the variables employed in each predictor set. Note

that the y-axis is in the logarithmic scale.
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Figure 6. Trait-specific KGE at increasing missingness levels (10% to 80%) for different imputation methods: species mean

(Spmean), mice and kNN with species as predictor (mice_s and kNN_s, respectively), mice and kNN with species, climate,

forest structure and spatial variables as predictors (mice_ctsp and kNN_ctsp, respectively) and universal krigingregression

kriging (RegKrig).
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Figure 7.  Errors in the correlation coefficient for two selected trait relationships, at increasing missingness levels (10% to

80%) and for different imputation methods: species mean (Spmean), mice and kNN with species as predictor (mice_s and

kNN_s, respectively), mice and kNN with species, climate, forest structure and spatial variables as predictors (mice_ctsp and

kNN_ctsp, respectively) and universal krigingregression kriging (RegKrig).
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Figure 8.  Maps with the distribution of functional traits across the selected plots in the IEFC. The first row shows the

incomplete dataset,  with missing values in grey.  The second row shows the mean of  50 multiple imputations for each

missing  value  using  the  ‘mice_ctsp’  approach  (MICE  imputation  using  species  identity,  climate,  forest  structure  and

topography  as  predictors).  The  third  row  shows  the  corresponding  coefficient  of  variation  (CV)  for  these  multiple

imputations. Note that, for the third row, only imputed values are shown and that the colour scale varies across different

traits. 
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